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Abstract: Recently, few-shot learning has attracted significant attention in the field of video action
recognition, owing to its data-efficient learning paradigm. Despite the encouraging progress, identify-
ing ways to further improve the few-shot learning performance by exploring additional or auxiliary
information for video action recognition remains an ongoing challenge. To address this problem,
in this paper we make the first attempt to propose a relational action bank with semantic–visual
attention for few-shot action recognition. Specifically, we introduce a relational action bank as the
auxiliary library to assist the network in understanding the actions in novel classes. Meanwhile, the
semantic–visual attention is devised to adaptively capture the connections to the foregone actions
via both semantic correlation and visual similarity. We extensively evaluate our approach via two
backbone models (ResNet-50 and C3D) on HMDB and Kinetics datasets, and demonstrate that
the proposed model can obtain significantly better performance compared against state-of-the-art
methods. Notably, our results demonstrate an average improvement of about 6.2% when compared
to the second-best method on the Kinetics dataset.

Keywords: semantic attention; visual attention; relational action bank; few-shot learning; action
recognition

1. Introduction

In recent years, video action recognition has been well studied. However, conventional
action recognition requires a large amount of labelled data for training, such as Sports-1M [1]
and Kinetics-700 [2] datasets. Labeling these video data for training is a highly expensive
process. Identifying methods that use a smaller amount of labelled data to train a bet-
ter available model remains an open issue that needs to be solved urgently. For image
classification, there are many classical methods to solve few example issues. The Siamese
Network [3] enabled the model to generalize from few examples, through limiting as-
sumptions on the input structure and acquiring features automatically. To eliminate the
process of fine-tuning to adapt to new class types, ref. [4] designed Match Network that
maps a small labelled support set and an unlabelled example to its label. The work in [5]
introduced Prototype Network, a few example image-classification method that computes
distances to prototype representations of each class in the learned metric space.

However, for video action recognition, there remains a lack of effective works. Ref. [6]
attempted to reproduce the methods from image to video and proposed CMN method to
solve the few example video action recognition issue, which improved the performance
of action recognition compared against reproduced methods. Another method presented
by [7] can simultaneously capture local and long-term spatial temporal information em-
ploying the proposed dilated dense network, whose blocks consist of densely connected
dilated convolutions layers. Subsequently, Bishay et al. [8] introduced the temporal atten-
tive relation network (TARN) to perform temporal alignment and learn a deep-distance
measure on the aligned representations at the video segment level.
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Although some researchers have studied few-example-based video action recognition,
they all omit the existing prior knowledge. Consequently, they have suffered large losses in
performance. As shown in Figure 1, we can see that the “shoot ball” action is related to
the existing actions, especially the action “turn” and “shoot bow”. As we all know, when
humans memorize and recognize novel few example actions, we will use other related and
familiar action categories to assist this process. How can we make CNNs perform few-shot
action recognition like a human? How can CNNs be enabled as to exploit past knowledge?
The naive method is that we train the CNNs on the past knowledge and fine-tune the
network on novel few shot categories; however, the subsequent performance of the action
recognition is poor.

shoot bow

turn
ride horse

sword exercise

shake hands

throw

shoot ball

Semantic attention
Visual attention
Relational action bank

0.4028

0.8150
0.2185

0.4027

0.5402

0.4028

0.3006

0.4027

Figure 1. The relevancy between the few labelled action “shoot ball” and the actions in the relational
action bank. The value on the green arrow is the output of the semantic attention submodule, which
displays the semantic relevancy, and the value on the brown arrow is the output of the visual attention
submodule, which displays the visual similarity.

To solve this problem, we propose a novel relational action bank with semantic–visual
attention for few example action recognition. Our proposed RABSVA module consists of
two submodules, relational action bank and semantic–visual attention. The action bank
provides prior knowledge for the network and the semantic–visual attention mechanism
generates attention weights to take advantage of the action bank. Thus, the RABSVA can
utilize both the semantic attention and visual similarity attention simultaneously to acquire
useful action information from the action bank. At the same time, our proposed action bank
can learn the clip relations in each video and then use graph neural network (abbreviated
as GNN) to cluster the clips of each class to obtain the representation of each category.

Overall, our contributions can be summarized as follows:

1. To the best of our knowledge, we are the first to propose a relational action bank to
assist the few-shot action recognition.

2. The proposed relational action bank can both enhance the representation ability of clips
in each video and learn the feature vector representations for each class adaptively.

3. We propose a semantic–visual attention mechanism, which can utilize the relational
action bank both in semantic categories and visual similarities.

4. Our proposed method obtains state-of-the-art performance in few-shot action recogni-
tion on Kinetics dataset, notably achieving an average improvement of 6.2%. Further-
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more, we achieve the improved performance on the HMDB dataset compared to the
original model.

The remainder of the paper is arranged as follows: A review of the related work is
presented in Section 2. In Section 3, the detailed network structure design is elaborated
upon. Related experiments are shown in Section 4. Lastly, concluding remarks are provided
in Section 5.

2. Related Works

This work is related to many topics including video action recognition, attention
mechanism, and few-shot learning. We will give an overview of these in this section.

2.1. Video Action Recognition

Video action recognition task has recently become a popular research topic in the
computer vision community. With the great success of deep convolutional networks in
computer vision, especially in the field of images, massive CNN-based approaches [9–16]
have been introduced for video action recognition, gradually surpassing the accuracies
of traditional approaches [17,18]. One approach attempts to learn spatial–temporal fea-
tures directly from RGB frames [19–22] using 3D CNNs. C3D [20] is an early work that
employs deep 3D CNNs to model spatio-temporal features and exposes the source code.
However, the performance of C3D remains unsatisfactory due to the large number of
parameters to optimize for 3D convolution and the lack of high-quality and large-scale
assessment datasets. I3D [22] extends Imagenet’s pre-trained 2D kernel to 3D to capture
spatio-temporal features and uses another stream to model motion features. Furthermore,
with the help of a high-quality and large-scale Kinetics dataset and a two-stream setup,
I3D achieves a highly competitive performance in the benchmark dataset. To solve the
problem whereby most conventional 3D networks can only use local spatio-temporal fea-
tures, ref. [23] introduces the Spatio-Temporal Channel Correlation (abbreviated as STC)
block to model the correlation between channels of 3D CNNs involving both temporal and
spatial features. 3D-CNN is a natural extension of 2D-CNN for learning spatio-temporal
features in videos and has long been used for action recognition. Due to the vast number of
parameters, 3D-CNNs require a large number of videos to learn a promising representation.
Since I3D [22], 3D-CNN has become the dominant method for video action recognition
task. Since then, the action recognition community has proposed many advanced 3D-CNN
models [24,25] that outperform I3D in both accuracy and efficiency. Ref. [25] proposes an
available pseudo labeling algorithm, named Cross-Model Pseudo Labeling (abbreviated as
CMPL), for video action recognition. Specifically, by introducing a lightweight auxiliary
network on top of the backbone network and asking them to predict pseudo label to each
other. In [24], the authors propose the PoseConv3D framework as a competitive alternative
to the GCN-based approach for action recognition.

Recently, with the great success of transformer networks in the field of Natural Lan-
guage Processing, many researchers have started to apply the technique to video under-
standing [26–31]. Since a complex action can consist of a sequence of atomic actions,
ref. [26] designs a probabilistic model, referred to as an Uncertainty Guided Probabilistic
Translator (abbreviated as UGPT), for the recognition of complex actions. To train a more
powerful video vision transformer for the epic-kitchens-100 action recognition dataset,
ref. [32] explores augmentations, resolutions and initialization techniques that combine the
video vision transformer with some convolutional video networks to achieve good action
recognition performance. In [33], the authors devise a spatial dimension sparse attention
enhanced skeleton-based human video action recognition model, which has segmented
linear attention in the temporal dimension of the data. To implement a convolution-free
video classification, ref. [34] introduces “TimeSformer”, which adapts the Transformer
architecture to video by learning spatio-temporal features directly from frame-level patch
sequences. Subsequently, researchers have proposed numerous refining works [16,35–41]
on transformer by combining video spatio-temporal features.
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2.2. Attention Mechanism

As deep learning continues to evolve, the attention mechanism [42–44] remains a
widely used technique with the effect of enhancing some parts of the input data and
weakening others, with the motivation that the network should devote more attention to
the important parts of the data and take the edge off its less important parts. In the early
stages, attention mechanisms were mainly implemented in the domain of Natural Language
Processing (abbreviated as NLP) [45–51]. Later, with the successful application in NLP, an
increasing number of researchers started to use the attention mechanism in the computer
vision domain [52–57]. Ref. [52] combines a spatial attention mechanism and designs a Deep
Recursive Attention Writing (abbreviated as DRAW) architecture for generating images
with neural networks. Inspired by the classical non-local means approach in computer
vision, ref. [54] proposes non-local operations as a family of generic building blocks for
capturing long-range dependencies among different points in the feature maps. For image
classification, ref. [58] presents an end-to-end trainable attention module that based on a
convolutional neural network (abbreviated as CNN) architecture. Using a new contextual
aggregation scheme to address the semantic segmentation task, ref. [59] proposes Ocnet,
which focuses on strengthening the effect of object information. Focusing on channel
relationships, ref. [60] proposed a classical “squeeze and excitation” (abbreviated as SE)
block that adaptively recalibrates the feature responses of channels by explicitly modeling
the interdependencies between them. For image super-resolution, ref. [61] proposes a
very deep residual channel attention network (abbreviated as RCAN). Moreover, a second-
order attention network (abbreviated as SAN) for powerful feature representation and
feature correlation modeling was introduced by [62]. For semantic segmentation, to explore
the impact of global context information, based on channel attention, ref. [63] introduces
a context encoding sub-network, which captures the semantic context of a scene and
selectively highlights class-related feature maps.

For computer vision, there are not only the aforementioned separate studies on spatial
attention and channel attention, but also some studies on attention mechanisms that
combine these two [64–66]. For image captioning, ref. [64] introduces a convolutional
neural network, called SCA-CNN, which integrates spatial and channel attention in a
CNN. In [65], the authors propose the convolutional block attention module (abbreviated
as CBAM) that derives the attention map sequentially along two independent dimensions,
named space and channel, for the given intermediate feature maps, and then multiplies the
attention map by the input feature map to perform adaptive feature refinement. Focusing
on the impact of attention in deep neural networks, ref. [66] devises the Bottleneck Attention
Module (abbreviated as BAM), which derives attention maps along two independent paths,
named space and channel, and can be embedded into any deep convolutional network.

2.3. Few-Shot Learning

Along with the improvement in requirements on sample utilization efficiency, few-shot
learning [67–70] has become one of most popular topics in artificial intelligence. The main
problem that needs to be solved is the classification of unseen categories with only a
few labelled samples in each category from the training set. In recent years, the major
approaches in few-shot learning are metric-based, meta-based and data-augmentation-
based methods. The metric-based methods model the distance distribution of samples
so that samples of the same category are close while those of different categories are far
away. Siamese Network [3], Matching Network [4] and Prototypical Network [5] are three
of the most renowned methods. Different from the metric-based method, the meta-based
method can be summarized as learning to learn. In particular, it learns from the experience
of how different deep learning models perform on a large number of learning tasks in
order to learn new tasks faster [71]. The remarkable methods include [72,73]. In [72], the
authors make use of a memory-augmented CNN network to rapidly absorb new data,
leveraging which the model is able to make accurate predictions with only a few samples.
By exploiting an LSTM-based meta-learner model to train another few-shot learner neural
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network with the learned optimization algorithm, ref. [73] obtains a meta-learning model
that is competitive with deep-metric-learning techniques. Recently, much attention has
been focused on generating more samples from a small number of available samples,
marking the emergence of data-augmentation-based methods, including [74,75] and so on.

In contrast to few-shot learning in images, FSL research in the video realm has only just
begun [7,76–78]. As one of the early studies, for few-shot video action recognition, ref. [6]
presents a compound memory network (abbreviated as CMN) framework. Another method
by [7], proposed a dense dilated network for few-shot action recognition, and the method
can outperform the CMN when using a larger backbone. The drawbacks to these methods
are that they collapse the order of frames at representation, so that the learned model
is weakened when the sequential order of video is important.By developing a Temporal
Alignment Module (abbreviated as TAM), the authors in [79] ameliorate the problem with
a few-shot learning framework that specifically leverages the ordering information of the
time in video data via temporal alignment. Later, the problem was investigated in [8]
with a meta-based approach. In the literature, a novel temporal attention relation network
(abbreviated as TARN) learns to contradistinguish representations of variable lengths of
time. On the other side, the work in [80] addresses the task of few-shot video action
recognition in metric-based method with a set of two-stream models. To avoid the bias of
the classifier against the seen category in the above approaches, ref. [76] employs a novel
ProtoGAN framework, a conditional generative adversarial network conditional on the
category prototype vector, for synthesizing additional samples of novel categories.

3. Method

In this section, we will present the design of our relational action bank with semantic–
visual attention (RABSVA) module. We first review the whole architecture and then
elaborate the detailed design for each submodule in the following paragraphs.

3.1. The Framework

To recognize few labelled examples, we propose a novel relational action bank with
semantic–visual attention module to use past or existing knowledge to assist current
action recognition. Taking full advantage of action bank, we present the semantic and
visual attention mechanism which considers the learned semantic attention and the visual
similarity attention simultaneously. As Figure 2 shows, semantic attention uses the semantic
information to mine the semantically related action representations so that get help from the
existing actions, while visual attention uses the visual similarity to exploit the hidden useful
information from the action bank. We use these two kinds of attention mechanism to mine
semantically and visually related actions and form new useful action feature representation,
which is used to obtain the new attention weights for weighting and enhancing the original
feature maps X.

In Figure 2, the input video clips pass through the backbone subnet (such as C3D
and ResNet-50), which outputs the feature maps X ∈ Rd, where d is the dimension of the
feature maps (here the reshape operation is omitted for simplicity, and if not specified the
one dimensional vector is a row vector). Then the feature maps pass through our proposed
RABSVA module and the output is the enhanced feature maps Y ∈ Rd, which are the input
of the classifier. Our RABSVA module has two branches. The top of Figure 2 denotes the
semantic attention branch and the bottom is the visual attention branch. We fuse the output
of semantic and visual branches together and form our RABSVA module.
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Figure 2. The architecture of our relational action bank with semantic–visual attention module. This
module includes relational action bank and semantic–visual attention submodules. � denotes the
element-wise multiplication. ⊗ denotes matrix multiplication.

3.2. Relational Action Bank

The Action Bank is the bank that stores the feature vectors of existing actions. As we
all know, we can employ the existing knowledge (the action representations in action bank)
to assist the recognition of novel categories. Specifically, we can use the exclusive method
as one of the straightforward methods. In fact, we use the features of base category video
clips to enhance the modeling ability of the network for novel categories. We cluster video
clips of each category into one feature vector as the general representation of corresponding
categories. Then, we use these feature vectors to enhance the modeling ability of the
network for novel categories.

Here, we first give the definition of relational action bank (RAB), which enables a
more robust representation of learned class actions by modeling the relationships between
different videos of the same class action. We extract the features of the base category
video clips via backbone network and form the feature action bank Z = {zi,j,k ∈ Rd|i ∈
{1, 2, · · · , N}, j ∈ {1, 2, · · · , v}, k ∈ {1, 2, · · · , s}}, where N, v and s denote the number of
base categories, the number of videos per category, the number of clips in each videos,
respectively. zi,j,k is the output of one video clip passing through the backbone subnet.
In fact, the number of videos v and the number of clips s are not the same for different
categories and different videos, but we assume v and s are the same for different cate-
gories and different videos for simplicity (in practice, we can use the max value as the
corresponding v and s, and use zeros to fill corresponding positions when the video or
the clip does not exist). The output of RAB is Z̃ = {z̃i ∈ Rd|i ∈ {1, . . . , N}}. Thus, the
RAB submodule only needs to cluster the feature vectors in each category into one feature
vector. We propose to use graph neural network (GNN) to model relations of the action
clips which are stored in the action bank and to aggregate video clips of the same category
into one feature vector. Our relational action bank has N base categories, each category
has v videos and each video has s clip vectors which are extracted via pretrained neural
network from the base categories.

As the clips in each video have strong relations, inspired by Non-local [54], SENet [60]
and bottleneck structure [81], we design our learnable relational action bank as Figure 3
shows, which consists of aggregate operations ( f1 and f2) and expand operation (g). To learn
the strong relations among clips in each video, we use graph neural network (GNN) to
realize an aggregate-expand operation ( f1 and g). We aggregate the clips in each video
and then resume the dimensions via expand operation. During this aggregate-expand
process, our RAB module can learn the relations of clips in one video. At last, we use
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GNN to aggregate the relationally enhanced clips of each category into one feature vector.
As we have action clip feature vectors Z, we consider every clip feature vector zi,j,m as one
node, and build the edges between nodes in the same video (we only build undirected
fully connected graph for simplicity) to build the relations among the clips. We use GNN
to accomplish aggregate operations, so here we first give the definition of GNN. Similar
to [82,83], we define the GNN operations for our RAB module as follows:

z(l)i,j,m = σ(w(l−1)
m z(l−1)

i,j,m + ∑
k∈N (m)

w(l−1)
k z(l−1)

i,j,k ), (1)

where l denotes the l-th layer, w(l−1)
m and w(l−1)

k are learnable parameters, σ is a non-linear
function, N (m) denotes the neighbor nodes of node m (neighbor is defined as having
connected relations with node m on the graph). f1 and f2 are aggregate operations and g is
the expansion function which is the reverse process of aggregation in f1. We can write the
output of our RAB as follow (omit the non-linear function for simplicity):

Z̃ = f2 ◦ g ◦ f1(Z). (2)

f1: 1×1×1

𝐙𝐙 𝑁𝑁 × 𝑣𝑣 × 𝑠𝑠 × 𝑑𝑑

𝑁𝑁 × 𝑣𝑣

𝑁𝑁 × 𝑑𝑑

g: 1×1×1

f2: 1×1×1

�𝐙𝐙

𝑁𝑁 × 𝑣𝑣 × 𝑠𝑠 × 𝑑𝑑

Batch Norm

ReLU

Batch Norm

ReLU

Aggregate

Aggregate

Expand

Figure 3. The detailed design of our proposed relational action bank module.

In practice, we use three 1× 1× 1 3D CNNs to realize the aggregation function ( f1 and f2)
and expansion function (g). As Equation (1) shows, we add BN and ReLU as non-linear
function between f1 and g to enhance the non-linear modeling abilities for clip relation
modeling, and we add BN and ReLU following GNN operation f2. As shown in Figure 3,
we reshape the input feature maps Z and consider the s× d as the channel dimension of
input into f1 (1× 1× 1 3D CNNs) to aggregate the s× d into 1. To expand to the original
dimension, we still use g (1× 1× 1 3D CNNs) to resume the channel dimension to s× d
and obtain the clips relation enhanced features. Later, we use the aggregate operation f2
(1× 1× 1 3D CNNs) to aggregate all clips in each category into one feature vector. During
the above process, we choose BN and ReLU as the non-linear function to enhance the
non-linear representation ability.
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Discussion The basic function of relational action bank is to cluster the clip feature vectors
in each category into one feature vector to represent the corresponding category. The most
direct idea is to use kmeans to cluster the clips of each category into one vector (we denote
it as kmeans-RABSVA for convenient narrative). The kmeans-RABSVA can not dynamically
learn the representation feature vector for the corresponding class adaptively and the
feature vector is specified when the clips are specified. Another naive idea is that we can
use one layer GNN to aggregate the clips in each class into one feature vector (We denote
this method as naive-RABSVA). The naive-RABSVA can learn the representation vector
adaptively. However, it omits the relations of clips in each video and suffer the much
performance loss for that there are strong relations among these clips in each video.

3.3. Semantic–Visual Attention Mechanism

As Figure 2 shows, we propose two types of attention methods (semantic attention
and visual similarity attention) to take advantage of relational action bank. We use these
two attention mechanisms to acquire useful action knowledge from the bank, and then
use this knowledge to form attention weights to weight the feature maps X and obtain the
enhanced feature maps Y. Next, we will describe these two types of attentions in detail.

3.3.1. Semantic Attention

Our semantic attention submodule aims to apply semantic attention to make use of the
relational action bank. For this submodule, we need to use the network to learn semantic
attention weights. Illuminated by [60] and the later layers of the CNNs is semantic related,
so we can just use a FC layer to accomplish attention mechanism simply and efficiently.

For the input video clip, we use the FC layer to learn the semantic attention weights
and apply these weights to the existing action bank. We use these attention weights and
relational action bank to mine useful action knowledge Ysa ∈ Rd as follows:

Ysa = WnaZ̃
T

, (3)

where Wna ∈ RN is the output semantic attention weights of FC layer, and Z̃ is the output
of relational action bank. Then, we use the useful knowledge Ysa to form a new attention
weights to weight the original feature maps X.

3.3.2. Visual Attention

Except semantic attention, we can calculate the visual similarity between input feature
maps X and the category representation vector z̃i, i ∈ {1, 2, · · · , N}, and then apply this
physical visual similarity as another type of attention to utilize the action bank. We can
write the process as follows:

Yva = WvaZ̃
T

, (4)

Wva = {wi =
Xz̃T

i
‖X‖‖z̃i‖

|i ∈ {1, 2, 3, · · · , N}}, (5)

where Yva ∈ Rd and Wva ∈ RN denote the acquisition from the action bank via visual at-
tention and the visual similarity attention, respectively. We also omit the reshape operation
in Equations (4) and (5).

3.3.3. Fusion

To obtain better performance for few-shot action recognition, we fuse semantic and
visual attention branches together. As shown in Figure 2, we define Y as follows:

Y = Sigmoid ◦ favg(Ysa, Yva), (6)

favg(Ysa, Yva) =
1
2
(Ysa + Yva). (7)
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As Equation (7) shows above, we simply average the output of Ysa and Yva to accom-
plish the fusion.

4. Experiments

In this section, we evaluate our proposed RABSVA module on two backbones (ResNet50 [84]
and C3D [20]) and two widely used datasets (HMDB-51 and Kinetics [6]). In the following,
we will first describe the datasets and the implementation details, and then give the ablation
analysis for different components in our proposed RABSVA, followed by a comparison
with state-of-the-art methods.

4.1. Datasets
4.1.1. HMDB-51

It contains 51 action categories. However, it has two categories in common with
Kinetics-400 dataset (pushup and situp), so we omit these two categories from HMDB-
51 and for that we use the pretrained model on kinetics to initialize our model training.
We split these 49 categories into 40 base categories and 9 novel few example categories, and
denote it as HMDB-49. Examples of the dataset can be seen in the top line of Figure 4.

brush_hair climb_stairs golf handstand push smoke

making tea whistlingcracking neck doing aerobicscooking egg pumping gas

Figure 4. Examples of the dataset visualization. The top line is the examples of HMDB-51 dataset,
and the bottom line is the examples of Kinetics dataset.

4.1.2. Kinetics

The original Kinetics dataset includes three versions, Kinetics-400, Kinetics-600 and
Kinetics-700, with 400, 600 and 700 action categories, respectively. For few shot learning, we
follow the splits in [6] and select 100 classes from Kinetics-400. The training set, validation
set and test set correspond 64, 12, 24 categories, respectively, and we denote it as Kinetics-
100. The bottom line of Figure 4 shows the action examples.

4.2. Implementation Details

For HMDB-49, we randomly select 40 categories as base classes and the remainders
are the novel classes for 3 times, respectively. We first train the model on base classes
and obtain the well-trained model. Then, we extract clip features in the base classes via
the well-trained model to form our relational action bank Z. For Kinetics-100 dataset, we
use the splitted base classes and validation classes, which is the same splits as in [6], to
train our base model, and then use it to extract clip features from the train set videos of
base and validation splits. Furthermore, we organize these clip features into the action
bank Z. For ResNet-50, we add our RABSVA module between layer4 and classifier, while
for C3D network we add it into the classifier. To further reduce the dimensions of the
feature maps and improve computing efficiency, we modify the dimension of the middle
layer in classifier from 4096 to 1024 in practice. We fine-tune the model embedding our
RABSVA based on the well-trained model on the base classes. We set the basic learning
rate as 10−3 and initialize that of the new added layers with 10 times the basic learning rate.
We divide it by 10 for every 200 epochs, and fine-tune the model for 300 epochs in total.
Specially, we set the learning rate of the first three layers of ResNet50 with 0.
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4.3. Ablation Analysis

To provide a detailed ablation analysis of various aspects of our RABSVA module, we
employ ResNet-50 as a backbone and conduct an experiment on the HMDB-49 dataset.

4.3.1. Naive Aggregation, K-Means Aggregation and Relational Action Bank

As Table 1 shows, simply aggregate the clips in every category via a parameter matrix
(Naive-RABSVA) can obtain better performance compared with baseline model in most
cases. Meanwhile, we use the kmeans (Kmeans-RABSVA) to aggregate the clips of the
same class into one feature vector, which can also acquire a better performance compared
to baseline model. Overall, RABSVA can achieve the best action recognition performance, a
phenomenon that illustrates the importance of modeling the relationship between different
clips of each video, and further demonstrates the effectiveness of our proposed module.

Table 1. The top-1 performance of 5-shot using 3D ResNet-50 as backbone on HMDB-49.

Method 1st Run 2nd Run 3rd Run AVG

Baseline 77.4 77.0 71.9 75.4
RABSA 78.9 78.9 72.6 76.8
RABVA 79.3 79.3 72.2 76.9
Naive-RABSVA 80.7 77.0 71.5 76.4
Kmeans-RABSVA 80.7 77.0 75.2 77.6
RABSVA 80.7 80.7 75.2 78.9

4.3.2. Semantic Attention, Visual Attention and Semantic–Visual Attention

From Table 1, it is easy to see that Semantic attention branch (RABSA) or Visual
attention branch (RABVA) can obtain an improved performance for 9-way 5-shot learning
compared to original model (Baseline), with average performance increasing from 75.4 to
76.8 and 76.9, respectively, an increase of 1.4 and 1.5. At the same time, fusing semantic and
visual attention branches together (RABSVA) can achieve consistent best top-1 accuracy
(From 75.4 to 78.9, an increase of 3.5) for few-shot action recognition, which indicates that
although semantic attention and visual attention can strengthen network features from two
different perspectives, these two enhancements bear complementary effects on each other.

4.3.3. With and without the RABSVA Module

To understand the RABSVA module better, we use ResNet-50 model as backbone and
conduct more experiments on HMDB-49 dataset. Embedding our RABSVA module, the
ResNet-50 model obtains improved top-1 action recognition performance from 1 to shot to
5-shot as Table 2 shows. This is because our RABSVA module can exploit the action bank
to assist the network to understand the action in novel categories. Furthermore, we use
confusion matrix to visualize the top-1 accuracies of 9-way 5-shot action recognition. With
the confusion matrix in Figure 5, we can see for 9-way 5-shot setting, by embedding our
RABSVA module, the ResNet-50 model can achieve better top-1 performance on most of
these 9 novel categories. Meanwhile, as shown in Figure 5, we can observe that RABSVA-
ResNet-50 works relatively well on the “shoot_ball” category, and relatively poorly on
“draw_sword” and “kick”.

Table 2. The top-1 performance from 1 to shot to 5-shot using 3D ResNet-50 as backbone on HMDB-49.

Method 1-Shot 2-Shot 3-Shot 4-Shot 5-Shot

Baseline 54.3 64.0 67.9 73.8 75.4
RABSVA 54.8 68.4 68.4 74.7 78.9
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Figure 5. Confusion matrix of RABSVA-ResNet-50 on HMDB-49 datasets for 5-shot recognition.
(a) Baseline 9-way 5-shot; (b) Ours 9-way 5-shot.
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4.4. Comparison with State-of-the-Art Methods

Because there are not so many works for few-shot learning in video action recognition,
there is a scarcity of compared datasets except for Kinetics-100 dataset. To compare our
proposed RABSVA module in detail, we report 1-shot, 2-shot, 3-shot, 4-shot and 5-shot
results on the 5-way video action recognition to evaluate our model. We choose C3D
module as our backbone network, which is pretrained on Sports-1M dataset. Because our
proposed method is time-consuming and needs to be fine-tuned 300 epochs, the results
in Table 3 show the top-1 mean accuracy by randomly sampling 100 episodes for all
shot experiment.

Table 3. The top-1 accuracies of C3D embedding our RABSVA module compared with state-of-the-art
methods for 1-shot to 5-shot, the average of which is listed in AVG.

Method 1-Shot 2-Shot 3-Shot 4-Shot 5-Shot AVG

Matching Net [4] 53.3 64.3 69.2 71.8 74.6 66.6
MAML [85] 54.2 65.5 70.0 72.1 75.3 67.4
CMN [6] 60.5 70.0 75.6 77.3 78.9 72.5
TARN [8] 66.6 74.6 77.3 78.9 80.7 75.6
OTAM [86] 73.0 - - - 85.8 -
TRX [87] - - - - 85.9 -

RABSVA-C3D (Ours) 71.0 79.0 85.8 85.4 87.8 81.8

As Table 3 shows, we compare our module to all the state-of-the-art methods, which
include the classic image methods and the video-based methods. Matching Net [4] and
MAML [85] are two classic methods in few-shot image classification. Zhu and Yang [6]
reproduce these two classic methods for few example video action recognition. We can see
the image-based method can not get better performance compared to other video-based
methods. This is because the common image-based methods do not consider the dynamic
information in videos. Meanwhile, we can see that as the training examples increase, the
accuracy is improved in most cases. The 2-shot results of our module is almost the same as
the 5-shot results of others, and is obviously better than other methods in 4-shot, 3-shot,
2-shot and 1-shot. We can also see our proposed module achieves the best performance
on every shot compared with state-of-the-art methods. Moreover, our model can get the
larger improvement at the higher shot. Compared with the second-best model, our model
achieves an average improvement of 6.2% improvement. Moreover, we can observe that
compared to the recent OTAM [86] and TRX [87], our proposed RABSVA-C3D is still able
to achieve a performance improvement of about 2%.

5. Conclusions

In this paper, we proposed a novel relational action bank with a semantic–visual
attention module for few example video action recognition. The proposed relational action
bank can use existing or past actions for current few-shot action recognition. Furthermore,
we introduce a semantic and visual attention mechanism to exploit the relational action
bank. The extended experiments demonstrate that embedding our proposed RABVSA
module can obtain state-of-the-art performance on a common kinetics dataset. In particular,
we achieved a 6.2% improvement in top-1 accuracy compared to the current second-
best method.
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