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Abstract: The application of robotic systems is widespread in all fields of life and sport. Tennis ball 
collection robots have recently become popular because of their potential for saving time and energy 
and increasing the efficiency of training sessions. In this study, an unmanned and autonomous ten-
nis ball collection robot was designed and produced that used LiDAR for 2D mapping of the envi-
ronment and a single camera for detecting tennis balls. A novel method was used for the path plan-
ning and navigation of the robot. A fuzzy controller was designed for controlling the robot during 
the collection operation. The developed robot was tested, and it successfully detected 91% of the 
tennis balls and collected 83% of them. 
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1. Introduction 
The development of unmanned robots for both civilian and military use is ongoing. 

Present day examples include robot vacuum cleaners, robot lawn mowers, and unmanned 
aerial, ground, and underwater vehicles for surveillance, mapping, and object manipula-
tion. Unmanned Ground Vehicles (UGVs) may be used in a variety of hazardous or im-
possible-to-accomplish tasks. They may also be utilized to simplify people’s lives by sav-
ing them energy, time, and money. Often, the vehicle will have a collection of sensors to 
study its surroundings and either make autonomous judgments about its behavior or 
transmit the information to a human operator in a remote location who manages the ve-
hicle through teleoperation. Various types of unmanned robots, such as autonomous vac-
uum cleaners, are designed to be used indoors and outdoors with the assistance of colli-
sion detection and mapping sensors. Detecting special objects and generating a proper 
path regarding the object’s camera coordinates can be very effective for autonomous ro-
bots that are designed to collect special shapes or objects. Collecting tennis balls autono-
mously can be very helpful for players as it saves their time and energy during tennis 
training. Ball detection, path planning, motion control, and the collecting mechanism are 
critical tasks that should be done by the robot. Avoiding dynamic obstacles is a common 
algorithm in designing robot movement strategies [1-5]. Edge detection algorithms are 
very popular in detecting tennis balls and path planning based on detection results [6]. 
The main challenge in the application of edge detection algorithms is that they are effec-
tive when there are a small number of balls and many edge profiles in the environment. 
However, the detection error rate and the processing time increase as the number of balls 
increases. Tennis ball collection robots were developed to [7,8] use the fixed lines on the 
court for their navigation algorithm. Recently, artificial intelligence and deep learning 
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techniques have become popular in the recognition, classification, and path planning of 
robots [9,10]. Vision-guided golf ball-collecting autonomous robots have been developed 
by [11,12] using external cameras and sensors mounted on golf courts that help them de-
tect the balls. The purpose of this study was to develop a tennis ball-collecting robot that 
mapped its environment in parallel by detecting tennis balls with a single camera and 
collecting them. The robot was also enabled to classify the priority of the balls based on 
their distance from the robot and then collect them based on this priority. A vision-aided 
and automated ball-retrieving robot was proposed [13] where object detection and path 
planning tasks were done by a computer fixed to the court and the mobile robot motion 
control was implemented by an onboard microcontroller. Communication between the 
computer and the mobile robot was supplied using a Wi-Fi network. Using an omnidirec-
tional wheel, LiDAR, and RGB-D camera, [14] we developed an autonomous, wheeled, 
mobile robot for tennis and table tennis that collects balls. Using a vision system based on 
the YOLO algorithm, [15] we presented an object detection method for identifying static 
objects that could be obstacles in the path of a mobile robot. To identify the objects and 
their distances, a Microsoft Kinect sensor and an Nvidia Jetson TX2 GPU were used to 
improve the performance of the image processing algorithm. Fuzzy logic algorithms are 
used for various missions in robotics, such as object detection, classification, path plan-
ning, position, and velocity control, etc. Afshar et al. proposed a GA-based, fuzzy, adap-
tive nonlinear observer for the estimation of tennis ball trajectory in [16]. With the pro-
posed method, they predicted the ball’s trajectory with greater precision than with a 
model-based method. In [17], a non-mode-based controller based on fuzzy logic was pro-
posed for the real-time control of wheeled mobile robots. The fuzzy logic-generated con-
trol input was adjusted to meet the actuation saturation limits and non-slipping condi-
tions. An implementation of a tennis ball picker robot was proposed by Faizah et al. [18] 
using fuzzy logic. The x and y coordinate points of the tennis ball’s position relative to the 
robot were used as inputs, and the output of the fuzzy logic was the speed of the motor 
actuator on the robot wheel. 

In this study, an unmanned and autonomous robot for collecting tennis balls was 
designed and built using LiDAR for 2D mapping of the environment and a single camera 
for detecting tennis balls. The robot’s path planning and navigation were carried out using 
an innovative method. A fully controller was developed to control the robot during the 
collection operation. The developed robot and algorithm were successfully tested. 

After the brief introduction and literature review, the remaining components of the 
research paper include the following sections. Initially, in the Materials and Methods sec-
tion, the structural design of the tennis ball collection robot is explained, followed by the 
robot electronics details and the applied YOLO 5 object detection method. Afterward, the 
environmental mapping is explained, which used the Hector Slam method. Then, the pro-
posed navigation and path planning algorithm is explained, followed by the developed 
mobile robot which used fuzzy control algorithm. The implementation results are shown 
in the Results and Discussion section. In the Conclusion section, a summary of the re-
search and suggestions for future research are presented. 

2. Materials and Methods 
In this section, the structural design of the robot, the object recognition algorithm, 

and the developed control strategy are explained. 

2.1. Structural Design 
In this study, a tennis ball collecting robot was designed and produced that is com-

posed of two main parts. The first part was a skid steering 4-wheel robot, and the second 
part was the ball collecting mechanism (Figure 1). 
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Figure 1. UGV main parts. 

The main part was designed and produced with aluminum sheets that were 2 mm 
thick. Four brushed DC motors were used that were equipped with 4 encoders to get feed-
back from the wheel’s position and velocities. The skid steering concept was used for the 
robot. The collecting process was the process of picking up the balls from a tennis court. 
Various techniques can be used for ball collecting, including a vacuum suction mechanism 
or a robot manipulator with a gripper. In this study, the robot collection mechanism was 
based on a spinning drum that pushed tennis balls into a storing basket. Two brushed DC 
motors made the drums spin at the desired speed where one rotated clockwise and the 
other rotated counterclockwise with an aim to push the balls inside the storing basket 
(Figure 2). 

 
Figure 2. Ball collecting mechanism. 

2.2. Robot Electronics 
In this study, a mini-computer board and a microcontroller were used simultane-

ously for mapping, path planning, and controlling the robot’s motion. A Raspberry Pi4-B 
was chosen as a mini-computer board, and an Arduino Mega was used as the microcon-
troller. Herein, the Raspberry Pi was responsible for map generating, video processing, 
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and path planning. The Arduino Mega microcontroller was used to control the 4 DC mo-
tors. It was also used to gather data from the ultrasonic sensors and supply collision pre-
vention. The reason that a mini-computer and a microcontroller were used separately was 
to decrease the processing load of the Raspberry Pi minicomputer. Using the mini-com-
puter GPIO pins for motor controlling and collision detection would make encountering 
delays in collision prevention of the robot probable and risky. 

The schematic connection diagram between the robot components is shown in Figure 
3. 

 
Figure 3. Robot components connection diagram. 

The developed final prototype is shown in Figure 4. The only modification included 
the front ultrasonic sensor which was mounted on the top of the robot. Some conflicts 
happened during the ball collection operation, and these conflicts were solved by this 
modification. 
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Figure 4. Developed tennis ball collection robot. 

2.3. Tennis Ball Detection Using YOLOv5 
One of the most important parts of a tennis ball collection robot is object (tennis ball) 

detection. In this study, the challenge was to use an algorithm that worked in different 
environments with various illuminations. Consequently, using RGB or HSV protocols and 
arranging the intensity range was not a trusted method for tennis ball detection. That is 
why a YOLOv5 algorithm was used in this study for tennis ball detection since it is a very 
powerful and accurate method. 

In this section, we first discuss the network’s overall architecture. Then, we introduce 
the specifics of our updated classifier and the dataset’s evaluation criteria. This study em-
ployed a YOLOv5 object identification network and a multi-layer perceptron (MLP) neu-
ral network to classify tennis balls. Since May 2020, YOLO has made a significant break-
through in its industry, which it has dominated for years. Two revised and improved ver-
sions of YOLO were released in quick succession. The first was Joseph Redmon and 
Alexey Bochkovskiy’s YOLOv4 [19], and the second was Glenn Jocher’s newly published 
YOLOv5. This new version was received with some criticism, but the v5 model has dis-
played a substantial increase in performance compared with its predecessors. YOLOv5 
has a number of technical benefits. The most acclaimed change is the adoption of Python 
as the programming language instead of C, which was utilized in earlier versions. This 
considerably facilitates IoT device installation and integration. Furthermore, the PyTorch 
community is bigger than the Darknet community, suggesting that PyTorch gets more 
contributions and has a greater potential for future expansion. 

The YOLOv5 network is made up of three main components: 
a The backbone, which consists of a CNN layer that combines image properties at mul-

tiple scales. 
b The neck, which is a layer collection that is used to gather visual attributes and pass 

them to prediction. 
c The head, which collects neck parameters and performs localization and classifica-

tion. 
As shown in Figure 5, all object detection designs share a property, which is that the 

input image characteristics are compressed by a feature extractor (backbone) and then 
transferred to the object detector (including the detection neck and detection head). 

The detection neck (or neck) serves as a feature aggregator, combining and mixing 
the features created in the backbone to prepare for the next step in the detection head (or 
head). The head is in charge of detections as well as the classification and localization of 
each bounding box. The two-stage detector does these two jobs separately and then ag-
gregates their findings (sparse detection), whereas the one-stage detector performs them 
simultaneously (dense detection). YOLO is a single-stage detector (You Only Look Once). 
Tennis ball images in various backgrounds and illuminations were utilized in this study 
to train the YOLO network. 
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Figure 5. YOLOv5 network structure. CBL: Conv2D+BatchNormal+LeakyRELU; Bottleneck CSP: 
Cross Stage Partial; SPP: Spatial Pyramid Pooling. 

2.4. Environment Mapping Using the Hector Slam Method 
In this study, LiDAR was used to map the working environment and designate a safe 

working area for the mobile robot. Based on data from the utilized LiDAR and SLAM 
(Simultaneous Localization and Mapping) techniques, a 2D map of the working environ-
ment was generated for each work setting. In robotics research, it is common for mobile 
robots to perform simultaneous localization and mapping (SLAM) in an unknown envi-
ronment. SLAM is a technique for mapping an unknown area while monitoring the posi-
tion of moving objects under specific conditions. We can perform SLAM using various 
sensors, including laser sensors with LiDAR or visual sensors with stereo cameras. A map 
of the environment is required for a mobile robot to move from room to room and collect 
and deposit objects. To perform these tasks, the robot must be aware of its surroundings 
as well as its position within them [20]. This study examined Hector SLAM, which was 
the LiDAR-based 2D-SLAM algorithm that was implemented in the robot operating sys-
tem. Experiments were conducted to generate maps using the Hector SLAM method. The 
map was created in real-time, which allowed us to view the mobile robot’s path through-
out its operation. The robot was equipped with an RP LiDAR A1 that was utilized for 
Hector SLAM. A robot operating system (ROS) was utilized to implement the SLAM al-
gorithms. We could see the entire procedure due to the use of the RViz program. Addi-
tionally, the map was saved in the system. An ROS provides frameworks and tools for 
robot application and development. It includes components such as hardware abstraction, 
device drivers, libraries, visualizers, message forwarding, and package management. 
Mapping, localization, and autonomous navigation in an unfamiliar environment are all 
frequent challenges for autonomous mobile robots. An ROS serves as an operating system 
as well. The melodic release of an ROS was installed on a Linux workstation that was 
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linked to LiDAR in the proposed project, and the data collected from LiDAR was used to 
generate a 2D map of the surrounding environment. 

Hector SLAM is an open-source method that employs a laser scan sensor to generate 
a 2D grid map of the surrounding area. In contrast to existing SLAM algorithms that rely 
on wheel odometry, this algorithm determines the location of the robot through scan 
matching. Due to its rapid update rate, LIDAR can perform the scan matching function to 
detect borders and objects quickly and accurately. The initial frame data generated by 
LiDAR is immediately utilized to create a graph of the home location, after which the 
sensor data is compared with the map and the optimal position for the LiDAR unit is 
chosen [21]. The Hector algorithm employs the Gaussian–Newton minimization tech-
nique [22], which is regarded as an update to the Newton method and eliminates the need 
to calculate second derivatives. By obtaining the transformation specified by Equation (1) 
[23], this method was used to determine the optimal endpoint of the laser scan in relation 
to the map. The optimal location of the LiDAR unit was then transmitted to the ROS-
operating hector mapping node. This served as the algorithm’s base link, and the odome-
try frame served as the base link and odometry frame for the algorithm by recording the 
ideal location of the LiDAR unit. Consequently, we were not required to provide odome-
try information. The optimal LiDAR position is represented as: 𝜁 = ൫𝑃௫, 𝑃௬, 𝜓 ൯் (1)

The 𝜁 is calculated by an argument of the minimum: 𝜁∗ = 𝑎𝑟𝑔𝑚𝑖𝑛 ෍ ൣ1 − 𝑀൫𝑆௜(𝜁)൯൧ଶ௡௜ୀଵ  (2)

where 𝑆௜(𝜁) represents the coordinates 𝑆௜ = ൣ𝑆௜௫, 𝑆௜௬൧்of the endpoint coordinate of 
the LiDAR in the global coordinate system, as shown in Equation (3) below. 𝑆௜(𝜁) = 𝑅௭(𝜓). 𝑆௜ + ൣ𝑃௫, 𝑃௬൧் (3)

where the matrix 𝑅௭(𝜓) is the planar rotation around the Z-axis. 𝑅௭(𝜓) = ൤cos (𝜓) −sin (𝜓)sin (𝜓) cos (𝜓) ൨ (4)

where 𝑀൫𝑆௜(𝜁)൯ represents the 2-D grid map value when the coordinate is 𝑆௜(𝜁). 
 
Based on the Gauss–Newton gradient method [4], an initial estimation for 𝜁∗ഥ  is given 

according to Equation (5) to estimate ∆𝜁∗: ෍ ൣ1 − 𝑀൫𝑆௜(𝜁∗ഥ + ∆𝜁∗)൯൧ଶ௡௜ୀଵ  (5)

The equation will be reduced by applying a Taylor expansion of the first order to 
Equation (5) and setting a partial derivative of ∆𝜁∗* to 0: 

∆𝜁∗ = 𝐻ିଵ ෍ ቈ∇𝑀൫𝑆௜(𝜁∗ഥ )൯ 𝜕𝑆௜(𝜁∗ഥ )𝜕𝜁∗ഥ ቉ଶ ൣ1 − 𝑀൫𝑆௜(𝜁∗ഥ )൯൧௡௜ୀଵ  (6)

where 

𝐻 =  ቈ∇𝑀൫𝑆௜(𝜁∗ഥ )൯ 𝜕𝑆௜(𝜁∗ഥ )𝜕𝜁∗ഥ ቉் ቈ∇𝑀൫𝑆௜(𝜁∗ഥ )൯ 𝜕𝑆௜(𝜁∗ഥ )𝜕𝜁∗ഥ ቉ (7)

2.5. Navigation and Path Planning 
In this section, the motion control principles of the developed UGV are explained. In 

this study, global path planning was restricted to the tennis court boundaries determined 
by LiDAR and Hector SLAM. The robot executes the local path planning algorithm in 
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accordance with the identified boundaries. The design of a path-planning algorithm based 
on a single camera and local path-planning is one of the most important contributions of 
this study. It is a common technique to install a camera on top of a tennis court that is 
responsible for identifying the position of the robot and tennis balls in the global coordi-
nate system. This method of path planning is not applicable to all courts and players be-
cause it is challenging and expensive to install cameras on the courts’ roofs. A cable-driven 
robot system is a common and expensive system that can be utilized for this purpose. 
Another challenge is to develop a wireless communication system between the camera 
and the robot for implementing the outcomes of the global path planning algorithm. This 
research tried to eliminate common global path planning by using a camera mounted on 
top of the tennis court. Using a single camera and the developed algorithm, the local co-
ordinate system was utilized to control the robot. This strategy made the system flexible 
and able to be used standalone in every tennis court across the world without any neces-
sary modifications or special equipment. 

The study’s goals were as follows: 
• Searching for the working environment of the tennis balls. 
• Path planning for the robot to the nearest balls using a single webcam. 
• Collision detection and obstacle avoidance. 
• Calculating the desired heading angle for the navigation of the robot. 

At the starting point, if the robot did not detect any tennis ball, the search function 
was called. While implementing the function, the robot began to rotate around itself in a 
clockwise direction where the right wheels rotated backward and the left wheels rotated 
forward. Using feedback from wheels’ encoders, the robot counted the number of balls 
and the related number of pixels every 10 degrees and recorded them in a matrix. A 
greater number of pixels identified the desired direction of motion. In this study, the main 
hypothesis in the path planning of the robot using a single camera, and in absence of the 
ball’s depth information, was “a higher number of pixels shows the nearest tennis ball 
and has a higher priority”. Based on this hypothesis, the camera frame was divided into 
15 regions as shown in Figure 6. 

 
Figure 6. The camera frame was divided into 15 regions. α: camera field of view; L: camera horizon-
tal field of view; D: Distance to object. 

During the ball collection mission, the robot moved toward the region that includes 
a higher number of tennis ball pixels, which is the direction of the nearest tennis ball. It is 
necessary to map a camera frame with the robot reference frame for this purpose. I.e., the 
desired heading angle should be identified for every 15 regions. There are three possible 
scenarios to control the heading angle of the robot. If the greater number of pixels related 
to the tennis balls belong to regions 3, 8 or 13, the robot should go forward to collect the 
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closest ball set (Scenario 1—Figure 7). In this scenario the desired heading angle or refer-
ence input of the controller is 𝜃ௗ = 0. 

 
Figure 7. Scenario 1: the closest set of tennis balls was accumulated in front of the robot. 

If the greater number of pixels related to the tennis balls belong to regions 2, 7 or 12, 
the robot should turn left slightly for 𝜃ௗ = −16.7° to collect the closest ball set (Scenario 
2A—Figure 8). If the greater number of pixels related to the tennis balls belong to regions 
4.9 or 14, the robot should turn right slightly for 𝜃ௗ = +16.7° to collect the closest ball set 
(Scenario 2B—Figure 8). 

 
Figure 8. Scenario 2: the closest set of tennis balls was accumulated slightly left (A) or slightly right 
(B) of the robot heading. 

If the greater number of pixels related to the tennis balls belong to regions 1, 6, or 11, 
the robot should turn left for 𝜃ௗ = −31° to collect the closest ball set (Scenario 3A—Figure 
9). If the greater number of pixels related to the tennis balls belong to regions 5, 10, or 15, 
the robot should turn right for 𝜃ௗ = +31° to collect the closest ball set (Scenario 3B—Fig-
ure 9). 

A B 
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Figure 9. Scenario 3: the closest set of tennis balls was accumulated left (A) or right (B) of the robot 
heading. 

2.6. Robot Control 
The control algorithm of the robot is explained in this section. Generally, two control 

schemes can be considered for this robot. The global control strategy is responsible for 
keeping the robot inside the desired region and navigating the robot toward the closest 
tennis balls. Meanwhile, the local control strategy is responsible for the robot’s collision 
prevention and collision passing maneuvers. A flowchart of these robot control strategies 
is shown in Figure 10. After starting the operation, first, the robot position was checked 
manually or autonomously based on the LiDAR data and the 2D map generated by the 
Hector SLAM. If the robot’s position was not inside the desired region, then the position 
revise function was called, and the position revising maneuver was implemented. If the 
robot’s position was not inside the desired region, then the camera frame was captured 
and analyzed using the YOLO algorithm. At this stage, if the robot did not find a tennis 
ball, the search function was called as mentioned in the navigation and path planning 
section. 

If the YOLO algorithm found the tennis balls, the number of pixels related to the 
detected balls in each of the 15 camera frame regions was calculated. Considering the pixel 
numbers, the path planning algorithm identified the desired heading angle of the robot, 
and this value was used as a reference input for the fuzzy controller. The fuzzy controller 
was responsible for navigating the robot toward the planned route by regulating its head-
ing angle. However, during this navigation process, the priority was always the collision 
prevention algorithm. If the ultrasonic sensors sent feedback that detected an object in the 
robot’s way, the motion control of the robot was broken up, and a predefined object pass 
maneuver was implemented. Then, the path planning and fuzzy control stages were im-
plemented again. 

A B 
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Figure 10. A flowchart of the robot control strategies. 

Fuzzy Controller Design 
In this study, a fuzzy controller was developed and implemented to control the head-

ing angle and speed of the motors. The general architecture of the controller is shown in 
Figure 10. First, the user specified a PWM value for the robot’s forward movement. This 
value was responsible for the speed of the robot when it moved in a forward direction, 
and the reference heading angle 𝜃ௗ was equal to zero. By running the controller, the ref-
erence heading angle 𝜃ௗ was identified using the algorithm explained in the Section 2.5. 
Afterward, the controller calculated the 𝑃𝑊𝑀 values of the right and left wheels (see Fig-
ure 11). 

 
Figure 11. General architecture of the controller. 

The construction of a fuzzy inference system (FIS) refers to the act of constructing a 
map between a given input and an output using fuzzy logic. After the mapping has been 
established, decisions and patterns can be identified. The FIS applied in this paper was 
the Mamdani technique, which is a well-recognized method for capturing expert 
knowledge. This allowed us to describe the knowledge in ways that were more approach-
able and straightforward. However, fuzzy inference of the Mamdani kind is computation-
ally intensive [24, 25]. 

Based on the sign of the reference heading angle 𝜃ௗ, 𝑃𝑊𝑀 signals were calculated 
by the fuzzy controller, and the updated PWM signals were sent to the left (𝑃𝑊𝑀௅) and 
right (𝑃𝑊𝑀ோ) motors. 
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The difference between the speed of the left and right motors resulted in the rotation 
of the robot in the desired direction. The new heading angle was calculated considering 
the difference between the rotation angles of the left and right wheels (Figure 12). 

 
Figure 12. Heading angle calculation. 

Considering the Instantaneous Center of Rotation (𝐼𝐶𝑅), rotation radius (𝑟), inner 
rotation radius (𝑟௜), and instantaneous rotation angle (∅), and based on the encoders 
feedback, it was possible to obtain the inner and outer rotation arc lengths, 𝐿௜ 𝑎𝑛𝑑 𝐿௢. 
Consequently, neglecting slippage of the wheels of the heading angle of the robot in the 
robot reference frame (𝜃) can be obtained as follows: 𝐿௜ = 𝑟௜ ɸ  (8)𝐿௢ = 𝑟௢ ɸ (9)

The difference between 𝑟௢ 𝑎𝑛𝑑 𝑟௜ is a constant value and equal to the distance be-
tween the left and right wheels (𝑑): 𝑟௢ − 𝑟௜ = 𝑑 (10)

Therefore, considering 𝐿௜, 𝐿௢, 𝑎𝑛𝑑 𝑑 as known parameters, from Equations (8)–(10), 
the instantaneous rotation angle (∅) can be calculated as follows: 𝜓 = 𝜋2 − ∅ (11)

𝜃 = గଶ − 𝜓 = ∅ (12)

As proved above, the heading angle of the robot in the robot reference frame 𝜃 is 
equal to the instantaneous rotation angle (∅) and can be calculated using feedback from 
the left and right wheels’ encoders. 

In this article, the Fuzzy Logic Designer toolbox from Matlab software was adopted 
to design the required FIS. Figure 13 illustrates the designed FIS utilizing the MATLAB 
FIS toolbox. As seen in Figure 13, the input was the position error, and the two outputs 
were output 1 as the PWM of the right wheels and output 2 as the PWM of the left wheels. 
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Figure 13. The designed FIS controller. 

Five membership functions were created for the input variable (position error), as 
shown in Figure 14: negative big (NB), negative small (NS), zero (Z), positive small (PS), 
and positive big (PB). 

 
Figure 14. Input membership functions. 

Three membership functions were created for the output variables (PWM right and 
PWM left), as shown in Figures 15 and 16: Low (L), Medium (M), and High (H). 
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Figure 15. Output1—PWM right membership functions. 

 
Figure 16. Output2—PWM left membership functions. 

Based on the single input and two outputs of the controller, the rule base was con-
structed based on five rules (see Figure 17). 
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Figure 17. Fuzzy rule base. 

3. Results and Discussion 
In this study, the developed tennis ball collection robot was tested in various condi-

tions, and its performance was analyzed. As mentioned in the flowchart of Figure 9, after 
starting the mission, the robot began to create a 2D map of the working environment using 
Hector SLAM. An example of the generated map is shown in Figure 18. 

 
Figure 18. 2D map generation using Hector SLAM. 

The map generation algorithm was tested in various indoor environments. The Hec-
tor SLAM map generation algorithm has its advantages and disadvantages. An advantage 
is that it is independent of odometry data. Therefore, the map generation software can be 
run individually, and only its results are used to control the robot. However, due to a lack 
of odemetry feedback and fusion techniques, such as the Extended Kalman Filter, the gen-
erated 2D map may include some inaccuracies. 
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Tennis ball detection is an important part of the mission. The applied algorithm 
should be strong enough to handle various environment illuminations. It should also be 
applicable to minicomputers such as Raspberry Pi and able to process enough frames per 
second (FPS). In this study, the applied YOLOV5 method supplied 9 FPS. The supplied 
FPS is not a high value, but considering the low speed of the robot during ball collection 
operation, the supplied FPS was enough for this application. A comparison was done be-
tween the applied YOLO algorithm and the tennis ball detection using green pixels inten-
sity ranges. For this purpose, the grabbed frames changed to the HSV (Hue Saturation 
Value) protocol, and based on the intensity values of the tennis balls in different environ-
ment illuminations, upper and lower limits were defined for the Hue, Saturation, and 
Value parameters. Both algorithms were tested to detect the 20 balls in three different 
indoor and outdoor environments. Even though the pixel intensity ranges provided 
higher FPS, the accuracy of the YOLO method was higher. The comparison results are 
mentioned in Table 1. 

Table 1. Comparison between tennis ball detection YOLOV5 and HSV pixel intensity limits. 

Method Supplied FPS Detection accuracy 
YOLOv5 9 91% 

HSV intensity limits 21 71% 

For the robot path planning and navigation using a single camera and a lack of depth 
information, the camera frame was divided into 15 regions, as explained in Section 2.5. 
An example of this implementation is shown in Figure 19. The binary image related to the 
selected pixels is also shown. 

 
Figure 19. Path planning using a single camera with 15 regions of the camera scene. 
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Figure 20 depicts the placement of 23 tennis balls in one-half of a tennis court to eval-
uate the performance of the developed algorithms. The origin of the figure was the base 
station where the tennis court net was placed. The robot started its motion from the base 
point. While implementing the explained path planning algorithm, the robot began to col-
lect the tennis balls that were distributed on the court. The path followed by the robot is 
shown in Figure 21 and was based on the encoders’ data. As previously stated, if the robot 
failed to detect a tennis ball, the search function was activated. While implementing the 
function, the robot began to rotate in a clockwise direction until a tennis ball was detected 
or the mission ended. As depicted in Figure 20, 21 (91%) tennis balls were successfully 
detected by the robot’s YOLO algorithm. These balls are shown in green and blue colors. 
The green points successfully collected 19 tennis balls, which represents a success rate of 
approximately 83%. The blue points are the detected but not collected balls. There are two 
primary causes for the failure of this call collection. The first problem was structural as 
the robot collided with the balls and sent them in unintended directions as opposed to 
collecting them. This typically occurred when the balls were grouped closely together. 
Therefore, when the robot attempted to collect the closest ball, it would likely collide with 
neighboring balls and launch them in undesirable directions. The second reason was the 
absence of algorithms for the memorization of ball positions. This means that when the 
robot detected balls in multiple regions of the camera frame, it chose the closest one to 
collect. After collecting the closest ball or balls, the path planning algorithm continued to 
search for nearby tennis balls, possibly forgetting previously detected tennis balls that 
were too far away to be selected for collection in the previous step. As depicted in Figure 
20, the YOLO algorithm missed two of the twenty-three balls (approximately nine per-
cent). As shown in Figures 20 and 21, these tennis balls were positioned along the tennis 
court’s perimeter, such as near the net. It is concluded that the path planning and fuzzy 
controller that were developed to control the robot and collect the tennis balls demon-
strated a smooth and acceptable performance where more than 83% of the detected balls 
were collected. 

 
Figure 20. Distribution of the tennis balls on half of the tennis court. Green points are detected and 
successfully collected balls. Blue points are detected but not collected balls. Red points are the un-
successfully detected tennis balls. 
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Figure 21. The path is followed by the robot during ball collection. Green points are detected and 
successfully collected balls. Blue points are detected but not collected balls. Red points are the un-
successfully detected tennis balls. 

4. Conclusions 
In this study, an unmanned and autonomous robot was developed for tennis ball 

collection using LiDAR for 2D map generation of the working environment, a camera for 
ball detection and path planning, and three ultrasonic sensors for collision detection. The 
study's findings show that the YOLO algorithm outperforms intensity-based segmenta-
tion approaches for detecting tennis balls. If such an intelligent algorithm is used for object 
detection and robot navigation, a simple webcam is enough for the robot’s control and its 
path planning, and there is no need for stereo cameras. Additionally, the study proves 
that a combination of a global control strategy that is responsible for general path plan-
ning and control schemes and a local control strategy that is responsible for collision pre-
vention is very effective for autonomous vehicle control. Future studies should integrate 
a camera-based mapping module into the path planning algorithm. This module will be 
responsible for registering the detected ball numbers and their locations on a map and 
navigating the robot to collect the distributed balls without forgetting any. Future research 
should also incorporate various optimization cost functions, such as minimum power con-
sumption or rapid collection of tennis balls at targeted regions, etc., into the path planning 
algorithm. 
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