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Abstract: Smart grids are rapidly replacing conventional networks on a worldwide scale. A smart
grid has drawbacks, just like any other novel technology. A smart grid cyberattack is one of the
most challenging things to stop. The biggest problem is caused by millions of sensors constantly
sending and receiving data packets over the network. Cyberattacks can compromise the smart grid’s
dependability, availability, and privacy. Users, the communication network of smart devices and
sensors, and network administrators are the three layers of an innovative grid network vulnerable to
cyberattacks. In this study, we look at the many risks and flaws that can affect the safety of critical,
innovative grid network components. Then, to protect against these dangers, we offer security
solutions using different methods. We also provide recommendations for reducing the chance that
these three categories of cyberattacks may occur.

Keywords: smart grid; cyber security; cyberattacks; machine learning; deep learning; data mining

1. Introduction

Modern technologies were integrated into the traditional electrical infrastructure to
create a “smart grid”. A smart grid has several ways to control operations and power.
Examples of operational and energy measures include smart meters and appliances in-
stalled at the client’s site, a production meter, renewable energy generators, smart inverters,
and resources installed at the grid’s location for energy efficiency [1]. Renewable energy
generators can lower energy costs because it is free to produce energy from renewable
sources, even though it is not always available and depends on variables like temperature,
humidity, wind speed and direction, and location. Solar energy is influenced by the sun’s
brightness, cloud cover, and temperature [2]. The power that can be taken from the wind
depends significantly on its direction and speed. Using renewable energy effectively and
on time is possible because of the many technologies available for forecasting wind, solar,
and battery state of charge. Sensors may communicate to and receive data from the smart
grid because it has data transmission and reception capabilities [2]. These sensors provide
data packets to the grid continuously. These data packets could include information on
the production. Information on energy generation, use, voltage, and frequency may be
found. The battery management system is vulnerable to hackers due to the communication
channel used by existing battery-integrated grids to convey charge status. Batteries that are
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overcharged or undercharged could become worthless as a result of cyber risks [3]. Figure 1
shows the components of a power grid that houses electrical support systems.
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The smart grid has many benefits over traditional grids, such as better power quality,
self-healing, cost-effectiveness with the integration of renewable energy, adaptive energy
generation, more environmentally friendly operation, aggregation of distributed energy
resources, real-time energy consumption monitoring at the customer end, integration of
AI models to automate tasks, remote energy motoring, rapid response to faults, remote
fault location. Smart grids are more attractive than conventional grids because of these
benefits. The two most important problems are complexity and cybersecurity. It is more
challenging to fix these vulnerabilities when smart grid data is stored on the cloud [4].
In addition to physical security, cybersecurity is a crucial element of the smart grid since
it ensures its dependability and safety at all times. Not only are smart grids required to
have cyber security, but [5] also shows that non-smart and older grids are susceptible to
hackers. This study, shown in [5], shows how the power grid is affected when criminal
software manages the whole power consumption of computers, including the CPU, GPU,
hard drives, screen brightness, and laser printers. The study found that 2.5 to 9.8 million
illnesses can potentially upset the system. Another study [6] found that when an attacker
gains access to the IoT botnet for high-power smart appliances, it can lead to frequency
instability, line failure, and increased operational costs. These kinds of attacks have the
power to cause widespread shortages by manipulating energy consumption. As the
grid’s complexity rises, the likelihood of issues increases. Power networks, which are
already noteworthy in and of themselves, are undergoing considerable changes due to
the development of renewable energy sources, quick signal processors, and sophisticated
sensors. These changes are severely disrupting the industry. These modifications have a
considerable impact on the grid. Due to the existing situation, electricity producers and
consumers must share information in both directions. A smart grid, which can dynamically
monitor and regulate energy flow to deliver constant electricity for clients, is replacing the
existing power infrastructure [7]. Data from research that have been published that deal
with SG are shown in Figure 2.
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Table 1. Existing Surveys Related to the Cyber-security of Smart grids.

References Cyberattacks Objectives

[10]
Multiple cyberattacks were launched targeting
the CIA computers and the five OSI
communication layers.

The various forms of cyberattacks and the over-all
necessity of taking prevention achievement. An analysis
of multiple cyberattacks, including the requirements for
their protection, as well as the directions for the future.

[11]

Analysis of traffic, social engineering, scanning
an IP address, scanning a port, scanning a
vulnerability, worms, denial of service attacks,
forward data thefts, replays, violations of
privacy, and DDoS.

Cyber-physical security of smart grids and potential
attack scenarios based on information technology.
Methods of prevention and detection, as well as the
difficulties involved, concerning the threats posed by
smart grids.

[12]

Attacks against the generation system, attacks
against the transmission system, attacks against
the distribution system and the client side, and
attacks against the electrical market.

Critical cyber-physical attacks and the various ways to
defend against them. Investigating the effects of
combined cyber and physical attacks on smart grids.

[10] DoS/DDoS attacks

The smart grid and all of its core elements. Methods
now in use for various communication protocols and
their underlying systems Attacks of the DoS and DDoS
variety, and the effects they have on smart grids.

[13]

Some of the hacking techniques covered in this
article are traffic analysis, social engineering,
scanning IP addresses, monitoring ports,
scanning vulnerabilities, worms, Trojan horses,
DoS, FDI, replay, privacy violations, integrity
violations, backdoors, MITM, jamming, popping
the HMI, and masquerade.

Major cyberattacks against the smart grid and the effects
have various security approaches to solve the
cyber-security problem in smart grids.

[14]
Various forms of online attacks on confidentiality,
integrity, availability, authorization,
and authenticity.

The most commonly encountered challenges when
dealing with smart homes and smart grids. A variety of
cyberattack situations, each with its unique defensive
measures. Strategies to protect against or avoid the
occurrence of cyberattacks.

[1] MITM, jamming, FDI, spoofing, DoS, malware,
replay attacks.

Multiple cyberattacks have been directed at smart grids
and the security systems used.

[15]
Attacks of various forms launched against
energy corporations, renewable energy resources,
and metering networks.

Vulnerabilities in the traditional electricity network that
cyberattacks can target. In the case of smart grid
metering networks, security, and privacy criteria must
be addressed research in the future, including its trends
and problems.
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Machine learning, deep learning, Data mining, evolutionary algorithms, fuzzy logic,
and other similar techniques are all included in artificial intelligence. Machine learning is
becoming increasingly important to researchers for danger detection. The authors of [16]
used machine learning methods such as random forest, support vector machine, and neural
networks to recognize jamming attacks. Their numerical tests show that the suggested
random forest strategy works well. The authors employed machine learning techniques to
identify social engineering attacks. The system uses unsupervised learning, so it doesn’t
need to be familiar with cyberattacks to recognize them. The authors examined different
machine learning applications’ accuracy, speed, and consistency. They discovered that
support vector machines outperform competing strategies using computer simulations [17].

The authors of [18] used machine learning methods to protect against network-layer
brute force attacks on the Secure Shell protocol. The authors developed scalable detection
models with the help of classifiers like K-Nearest Neighbors decision trees and Naive
Bayes that may be effective at making predictions. The author of [19] describes a different
experiment that utilized machine learning. The idea of “first difference” from statistics
and economics inspired the authors of this study to develop a classifier that can identify
dangers to network time synchronization. They found that Artificial Neural Networks
outperformed traditional techniques for detecting network security issues. An ANN model
was used to identify MITM assaults, and the authors noted a high detection rate. The
authors of [20] used machine learning techniques to identify and remove hackers from
smart grids. The simulations conducted for this study showed that the suggested approach
might have a high detection rate.

Deep learning has also been used to track cyberattacks on the smart grid. For example,
the authors of [21] created a deep neural network and a deep learning ensemble technique
based on decision trees. Ten-fold cross-validation was employed to assess the model.
The evaluation results show that the suggested model beats the most effective methods
currently available, such as random forest, Ada Boost, and DNN [22].

Cyberattacks on the smart grid can potentially be discovered through data mining, a
type of AI. The authors of [20] discussed past research that used data mining techniques to
spot fake data injection attacks in smart grids. These methods allow you to explore data
patterns that you usually wouldn’t be able to see and find ways in vast amounts of data.
In [23], the authors used the data mining method known as Common Path Mining to find
FDIA in their networks. To describe how the samples were arranged, they chose to use the
idea of a “route.” Every unique incident has a different course that has a wide range of
flaws. A sequence is considered an attack if it fits within one of the paths. A Casual Event
Graph can be used by the authors of [24] to identify FDIA in smart grids.

The training of historical datasets is the primary goal of the data mining techniques
used hereafter; training is finished, and data-mining algorithms may have low computa-
tional complexity depending on the volume of the data, which helps try to identify FDIA
in a smart grid. Fuzzy logic-based techniques for spotting network breaches have also
been developed. For example, the developers of [25] constructed artificial immune systems
that recognize dangers like network flooding using fuzzy logic. Fuzzy logic is used to
discriminate between illegal and legal traffic. The authors present a fuzzy logic-based
technique for pinpointing jammer attacks. This serves as yet another example of how fuzzy
logic can be used to identify cyberattacks. This method uses the precise channel evaluation,
the low packet ratio, and the received signal intensity to ascertain if the connection loss
was due to jamming. They had some perfect ideas for intermittent and persistent jamming.

Fuzzy logic was combined with other methods [26] to recognize different cyberattacks.
Another crucial AI-based way is evolutionarily based algorithms. They are widely used for
global advancement. Well-known evolutionary algorithms include genetic algorithms as
examples. This kind of program can simulate how evolution and natural selection work. A
genetic algorithm-based technique with two steps—training and detection—was proposed
by the authors of [27]. They used a genetic algorithm in their research to remove all but the
essential components of the detecting process. The authors conclude that this tactic works
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well for various network intrusions. The authors of [28] examined the potential effects of
genetic algorithms on various machine-learning approaches. The simulation results show
that genetic algorithms and the other three machine learning methods can identify FDIA.
Figure 3 shows different components of the smart grid.
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Advanced metering infrastructure is essential to intelligent grid architecture. The
primary purpose of AMI is to measure the energy consumption of integrated appliances and
other devices, such as solar panels on roofs, gas meters, smart appliances, and water heaters.
The smart meter, data concentrator, and central system are all constantly communicating
with one another as part of AMI [30]. The meter data management system receives data
from electricity meters via the AMI host system. MDMS is in charge of organizing and
analyzing the data that utility systems send to it. Utilities and service providers can save
costs and improve service quality due to the AMI system [31].

A Process Control System called SCADA enables the real-time monitoring, measuring,
and analyzing data from the power grid. However, SCADA can also guarantee connections
over short and long distances, making it ideal for installations [30]. The three main parts of
this system are the Human Machine Interface, Master Terminal Unit, and Remote Terminal
Unit [32]. There are three parts to the remote Terminal Unit. The first component has data
processing capabilities, the second component has logic program execution capabilities
downloaded from the MTU Master Terminal Unit, and the third component is primarily in
charge of network configuration [33]. Another element of SCADA that assists in controlling
and keeping track of the RTU is the MTU. The system’s final element, the HMI, gives the
SCADA operator a graphical user interface. Demand Side Management is a crucial part of
the smart grid. This system regulates residential energy use. Demand Side Management
can improve power market stability by balancing supply and demand [34]. Demand-side
management has several benefits, including improved short-term reliability, lower peak-to-
average demand and power supply ratios, cheaper user bills, and lower production costs.
The stretcher of paper is shown in Figure 4.
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Table 2. List of abbreviations.

Abbreviations Full Form Abbreviations Full Form

P.M.U.s power monitoring units N.I.S National Institute of Standards
A.I Artificial Intelligence A.M.I advanced metering infrastructure
W.A.M.R wireless asset management relay IoE Internet of Energy
S.G Smart grid E.I Energy Internet
S.S Smart system IoT Internet of Things
S.H Smart House D.O.E Department of Energy
E.V Electric Vehicle EISA Energy Independence and Security Act
I.G Intelligent grid NASPI North American Synchro Phasor Initiative

N.E.T.L National Energy
Technology Laboratory NERC North American Electric

Reliability Corporation
L.A.N Local area network EEGI European Electric Grids Initiative
H.A.N home-area network ISGTF Indian Smart grid Task Force
S.G.M.M Smart grid Maturity Model CPRI Central Power Research Institute’s

2. Literature Review

In a multi-energy microgrid, numerous unknowns exist regarding the interactions
between renewable energy sources, power demands, and electricity transaction costs. A
two-stage, mixed-integer, deterministic, linear programming model of the problem has
been developed, and it can be addressed by linearizing constraints and generating and
reducing uncertain scenarios. The suggested approach is then tested on a microgrid that
uses an IEEE 33 bus distribution network to control energy from various sources [34].
As smart grids replace conventional electrical grids, one of the significant problems that
have developed is maintaining the system’s safety. However, if the design and supporting
infrastructure are created from the initial concept with security in mind, this problem
can be solved. Therefore, implementing cyber security is a crucial and additional step.
The National Institute of Standards and Technology initially recognized confidentiality,
integrity, and availability as the three principles of smart grid security [35]. However, the
authors highlighted the importance of accountability for smart grid security in Secrets that
are frequently compromised when unauthorized people access private data.

On the other hand, integrity guarantees that data is sent without being changed
or deleted. However, accessibility is a critical feature that ensures users access to the
system’s data in the context of smart grids. People cannot obtain information since it is
not available [36]. Accountability assures that the system can be tracked and must be
verified by a person, a device, or a government organization, which is essential for the
security of the smart grid. Additionally, the recorded data can be used as proof in the event
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of an attack to establish the actions taken by each user, including administrators, and to
guarantee the accuracy of the data collected from each device [36]. Consequently, adopting
the following four rules confidentiality, integrity, availability, and accountability, is the best
way to safeguard smart grid systems. Smart grid networks are vulnerable to numerous
attacks due to insufficient communication.

AI is widely used in the field of Cybersecurity. The digitization of manufacturing
processes is usually correlated with machine learning, natural language processing, and
robot-assisted process automation [37]. However, Cybersecurity has long used techniques
of a similar nature. Consider the filtering system as an example of how machine learning
might be helpful. It has been used since the early 2000s [38]. It is clear that methods
have changed through time, and current algorithms can draw much more complex judg-
ments. The digital security of smart grids has significantly improved due to recent AI
developments. These improvements enhance the defenses against various threats. The
five most common uses of machine learning are security (detection of fraud and viruses),
privacy, business, and IT. Most people are unaware of how often artificial intelligence is
used. Companies can quickly understand threats due to AI, which speeds up response
times and ensures that best security practices are followed. Even while technologies like AI,
5G, and others are on the threshold of helping to resolve these problems, the energy sector
must continue to invest to remain ahead of cyberattacks [39]. AI is also used to identify
and stop intrusions into computer networks. Deep learning systems can also keep track of
user identities if needed. Figure 5 describes the relationship between AI and Cybersecurity.
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The use of databases infrequently or never, frequent location changes, access times, or
other anomalies can all be picked up by AI algorithms [41]. Machine learning, in contrast,
makes it easier to find data patterns that enable automated learning [42]. Utilizing cyber
threat knowledge, smart grid users can quickly and effectively fix problems. Although
today’s security systems are perfect for identifying and stopping common threats, they
cannot keep up with the growing need for Cybersecurity. None of these methods can
contain zero-day vulnerabilities, an extremely slow cyberattack. A more flexible approach
is needed to investigate data sets and find hidden security problems [43]. Machine learning
has shown to be quite capable of identifying threats that were not there before using
adaptive baseline behavior models. The security landscape would drastically change when
predictive analytics and machine intelligence are combined with known and unknown
data sets [44]. Table 3 illustrates how AI can be applied to strengthen security.
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Table 3. Summary of AI Methods on smart grid.

AI Technique Advantages Disadvantages

ANN

AI methods are more complex to understand than
artificial neural networks. A multi-step process known
as information technology is used to analyze data and
look for a potentially unexpected pattern. It works with
a range of teaching techniques [45].

It has a higher computational cost and tends
to overload. The model creation process is
based on empirical research [45].

SVM

Control parameters in ANN keep the model without
being too accurate. This works best when there are
apparent differences between the groups in the data set.
The kernel technique makes it quick and easy to become
an authority on a particular subject [46].

Large data sets are too complicated for this
method. Using this method when there are
overlapping categories is not practical.
Testing is a slow process [46].

ANFIS

By combining the learning capabilities of an ANN with
fuzzy systems, a neuro-fuzzy system may automatically
create fuzzy if-then rules and optimize their parameters.
This fixes the fundamental problems that have
prevented designing fuzzy systems up to now [47].

Depending on the number of fuzzy rules that
were initially used. More calculations must
be done as unclear regulations are added.

One of the most popular ways to attack a smart grid is by jamming. An attacker can
block communication by sending out constant or irregular signals. The operation of the
smart grid network may be affected by various jammers [48], including continuous, random,
misleading, and reactive jammers. Attacks known as “flow-jamming” use several jammers
distributed throughout a network to slow down or stop normal traffic flow. Information
is taken from the current network layer for these attacks. Jamming can be an extremely
powerful strategy when used against a weak opponent. With centralized management, the
jammer may be set to use just the right amount of power to stop a specific packet [49]. In a
non-centralized jammer model, each jammer shares information with neighbor jammers
to maximize efficiency. As a type of attack, spoofing attacks can be harmful to smart grid
networks. These “spoofing” attacks fall under this category and include MAC spoofing,
ARP spoofing, GPS spoofing, identity/data spoofing, and others.

A spoofed creates a fake grant in any of these attacks to deceive other nodes and
damage the network’s security, dependability, stability, and operation, which can compro-
mise the integrity, confidentiality, and accountability of the smart grid [7]. Attacks can be
launched against the network layer, the data link layer, and the physical layer. Injection
attacks can happen when an attacker tries to remove, change, or add new data to a network,
claim the authors of [50]. This might interfere with the smart grid’s functionality and
lead to a blackout. This cyberattack also corrupts data, compromises data integrity, and
introduces malicious nodes into the network. Unlike earlier assaults, injection attacks might
target the transport layer, the network layer, or the data-link layer [50]. A flooding attack is
another hack that can be used against smart grid networks. This attack may limit system
access at the network or application layer [51]. The target can expend all of its resources
processing the fake messages sent to it. Another effect of this attack is that individual
nodes cannot join the network. Man-in-the-Middle attacks on the smart grid are another
type of cyberattack. The session and network layers are these intrusions’ targets [52]. A
man-in-the-middle attack happens in a smart grid when an attacker physically placed
between two authorized devices connects to and sends communication between them.
While the devices seem to speak, the attacker includes a third device in the conversation.
These attacks’ main goals are to interrupt network activity, change data while it is being
transmitted, or obtain unauthorized access to sensitive data [53]. The security and privacy
of a network may be risked if MITM is used. Social engineering is another cyberattack that
could be used against smart grid technology. These attacks aim at the application layer and
potentially risk the system’s privacy [54]. According to the authors, social engineering is
the greatest threat to information security. They explored social engineering techniques
such as rob calls, phone/windows fraud, and reverse social engineering. Each of these
attacks aims to trick victims into disclosing private information. These risks put users at
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risk of having their personal information stolen for impersonation purposes, which can
reduce their sense of security. A well-known passive attack on communication routes for
smart grids is listening [54]. It goes after the network layer and affects the smart grid’s
specific privacy requirements. According to the attacks occur when a malicious user listens
in on a conversation between two nodes on a LAN network to gather information. A user
could use this sensitive data maliciously to interfere with the network. These assaults
compromise the network’s security.

A smart grid’s physical and data link layers are known targets for timing-sensitive
attacks [55]. The TSA is capable of managing, monitoring, and protecting large regions and
3-phase measuring devices. Synchronized measurements are required for numerous smart
grid applications, and the vast majority of measuring instruments now come standard with
GPS to provide accurate time information. These are vulnerable to spoofing attempts, just
like other GPS-enabled devices. Smart grids require quick communication and control sig-
nals, making them more susceptible to cyberattacks such GPS spoofing and time-sensitive
access [56]. By using hybrid brute force, reverse brute force, and credential stuffing, the
presentation layer, session layer, or network layer can be compromised. Figure 6 shows the
Cyber-Attack Classification.
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A “password guessing attack” is when an attacker attempts to guess or decode a user’s
username or passphrase to access the user’s account or system. The authors of [57] explored
the effects of attacks, including unauthorized access to the system and user accounts and
the use of security flaws to reduce the system’s privacy and dependability. An attacker
can use a brute-force attack to get private data about smart grid users [24]. Another type
of cyberattack on the smart grid is intrusions, in which an attacker takes advantage of
flaws in the network to gain unauthorized access to nodes. Therefore, improper behavior,
such as using force or making threats, may result in an invasion [58]. By interfering with
the network’s security and privacy at both the application and network layers, it also
wants to waste network resources. The relevance and sensitivity of the smart grid make it
especially vulnerable to intrusion attacks that could compromise the security of its network.
Due to problems with authentication and integrity, modern SCADA systems, including
smart grids, are becoming more vulnerable to cyberattacks like infiltration. Therefore, the
network will function more effectively, and system downtime will be decreased if this
attack can be located and halted. Traffic analysis attacks occur when an attacker listens to
conversations and analyses what they hear. This attack aims to take over computers and
other smart grid devices. The data connection layer is the target of this kind of attack [59].
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Additionally, it may reveal confidential network data. In this attack, the assailant
can listen in on conversations and analyze them to learn how network nodes converse
with one another. Another well-known cyberattack on the data link layer of smart grids
is the masquerade attack. This attack puts the security of the network’s confidentiality,
availability, integrity, and accountability at risk. To access a network or carry out illegal
activity, an adversary could pretend to be an authorized user. To reduce the energy used by
a home’s electronic devices, an attacker usually alters a Programmable Communicating
Thermostat in a smart grid [60]. Manipulating smart meters is one of the most common
ways to undermine the smart grid. An attack at the physical layer can risk the security
of a network. The information sent to any client can be changed in case of an assault
on a smart meter. The consumer may pay more or less for electricity, depending on the
results. Cyberattacks like buffer overflow, which require sending data to specific systems
and components, are becoming more common in the smart grid. Concentrating on the
application and transport layers also decreases network availability [61]. Because it could
lead to a system crash and consume all network resources, this exploit should be avoided.
Table 4 shows the Cyber-Attacks in Smart grids.

Another well-known smart grid vulnerability is the dummy attack. To attack the
network layer, it makes use of network availability. The AMI network of the smart grid is
penetrated by this attack, which takes advantage of a flaw in the Dynamic Source Routing
protocol. As a result, storage space on our communication systems can become limited. One
of the most noticeable effects of this attack is a 10–20% reduction in the number of packets
that can be transmitted [62]. Targeting the smart grid in a hack known as an “IP spoofing
attack” can also be used to decrease network accessibility. This kind of attack slows down
and affects the person and the network’s processing power in addition to hitting a single
smart grid node. An attacker could use the broadcast address of the bounce site to deliver
counterfeit packets from the source site. The bounce site may send incorrect packets to all
hosts if it gets them. The approach can cause the target network to become overloaded.
The network layer is the primary target of this kind of attack [63]. The HMI attack is a form
of malicious online behavior that might result in a lack of the smart grid. In this case, the
attacker uses a standard device attack (weaknesses in the operating system or software of
the device) to get remote access to the server from their computer. The attackers’ goal is
to take total control of the machine that is being attacked. Infrastructure for smart grids
and substations is managed and automated by SCADA devices, which could have security
flaws. This attack necessitates little network expertise because the device’s documentation
is accessible. A hacker can easily take complete control of a compromised machine. The
application layer’s responsibility, availability, and integrity are all at risk [64].

Because it enables utility companies, customers, and producers to communicate auto-
matically and in both directions via smart grid networks, advanced metering infrastructure
has grown to be a critical part of the developing smart grid industry. Smart meters are
high-tech devices that, in contrast to conventional meters, record a variety of information
about a person’s energy use, energy production, energy status, and diagnostics [65]. For
purchasing, managing and watching user appliances, and troubleshooting, this data is
really helpful. These data transfers all take place across a wide area network and are all kept
in data centers that are hosted in the cloud. A centralized system may result in problems
including a single point of failure, the potential for manipulation, and the loss of sensitive
data. Performance, availability, and response time may be affected if more users connect to
the same server. Smart meters and electric vehicles in smart grid systems also save a lot of
information about payments and energy use [66]. These details and data are frequently
disseminated to other businesses for monitoring, billing, and trading. Sharing a lot of data
in such a complicated system; however, offers major privacy problems since middlemen,
intermediaries, and trusted third parties might divulge private data on identities, locations,
patterns of energy output and consumption, energy profiles, charging, or discharging
quantities. The situation is made worse by the mistrust that exists between consumers
and manufacturers. Because of this, it could be challenging for centralized parties to win
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the trust of producers and customers by being truthful and open. It is a difficult effort to
develop a decentralized AMI system that is dependable, private, and safe. Research on
AMI and blockchain.

Table 4. Cyber-Attacks in Smart grids [14].

Cyber-Attack Objectives Layers Impacts Security
Requirements

Jamming Attacks

The main objective is to
create trouble with
both the data transfer
and the data receiving.

Physical Data Link
Networks

To prevent the sending and
receiving of information
collisions by blocking one
or more nodes.

Availability

Spoofing Attacks

Trying to trick an
authorized node into
getting unauthorized
access to the system

Physical Data Link
Network Transport

Trying to mislead other
nodes in the network.

Integrity Availability
Confidentiality
Accountability

Injection Attacks

The practice of
inserting false or
untrusted data packets
into a network.

Data Link Network
Transport Application

It injects false data
perverting legal procedures
and business activities with
corruption the appearance
in the network of nodes not
authorized to be there.

Integrity

Flooding Attack

The main objective is to
Bring about the loss
and destruction of
system resources.

Data Link Network
Transport Application

In a network, failure of
individual nodes and loss
of availability of resources.

Availability

Man-in-the-Middle
Attack

It blocks or alters the
flow of data while it is
being transmitted over
the network.

Data Link Network
Session

Access to confidential
information that was not
allowed.

Integrity
Confidentiality

Social Engineering
Attacks

Using fraud to
encourage people to
provide confidential
information

Application

The users’ right to privacy
was violated. The system
may suffer either
temporary or permanent
damage. Take confidential
and sensitive information
without permission. Theft
of personal identity

Confidentiality

Eavesdropping Attack
Following up on and
recording every bit of
network activity

Physical Network A violation of somebody’s
security Confidentiality

Intrusion Attack
Acquire access to the
node or network in an
unauthorized manner.

Network Application
To Misuse the resources
that are accessible on the
network.

Integrity
Confidentiality

Brute Force Attacks
Cracking user names
and passwords requires
a lot of work.

Session Presentation
It is obtaining access to a
user’s system or account
without permission.

Integrity
Confidentiality

Time synchronization
Attack

Attacking the timing
data and causing the
nodes to lose their time
synchronization

Physical

Events that compromise
security, such as location
estimation and fault
detection, Performance
decrease.

Integrity Availability

Traffic Analysis Attack

Execute command over
the computers and
other electronic devices
linked to the network.

Data Link

Detect the message and
analyze it to obtain
information about the
communication patterns
between the nodes.

Confidentiality
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The authors in [67] offers a paradigm in which the authors use blockchain technology
and smart contracts to improve the security and dependability of the smart grid. Both
energy buyers and sellers will profit from the contracts’ capacity to serve as a middleman.
Productivity will rise, costs will drop, and the system will be safer as a result. After a
transaction, a smart meter connected to the blockchain will submit the record, adding a
new block to the distributed ledger with a timestamp that may be used to verify the data.
The customer’s bill can then be determined using the ledger information. The book’s main
issue is that it doesn’t provide enough technical information.

In order to achieve decentralization and autonomy, a demand-side management
paradigm for intelligent energy networks is described in [68]. This architecture creates
a decentralized, secure, and autonomous energy network using blockchain technology,
allowing each node to function independently of the others and the DSO. In addition, it is
utilized to safely store the data blocks that smart meters collect about energy consumption.
By establishing a prototype on the Ethereal blockchain platform using energy consumption
and production traces from UK building databases, the method is finally assessed and
confirmed. The findings show that this model is able to take into account different levels
of energy flexibility and validate every demand response agreement in a manner that is
almost real-time. Uncertainty exists over the energy profiles’ anonymity in an open-source
blockchain. The user can be identified by looking at transactions that are available to
the public.

Security, privacy, and trust are three of any system’s most important components. The
similar level of security will be necessary for future intelligent grid systems [69]. This is
sure that no unauthorized entity obtains information by putting in place the necessary
cryptographic safeguards.

The most popular use of blockchain technology to date is Bitcoin. This is due to
Nakamato’s invention of a novel consensus technique in [70], which made it possible to
create trust in distributed systems. A cryptographically secure data structure, a digital
signature method, a time-stamp, and a numerous benefit are used in addition to the
consensus process. Consensus mechanisms, for instance, are commonly used in blockchain
applications to establish credibility. To handle fundamental security issues including
privacy, integrity, authentication, authorization, non-repudiation, and anonymity, a variety
of cryptographic approaches are used. It is not necessary to build a cryptocurrency in order
to develop a blockchain-based decentralized system, even though coin applications are
where the principles of consensus mechanisms and blockchain are initially exposed [9].

Nowadays, centralized platforms are used for a number of services by smart grid
components such billing and monitoring, bidding, and energy trading. Although these
technologies are advanced and work well, the existing smart grid system still has a number
of important problems. As was already said, the smart grid also makes it possible to
connect various RES, consumers, and cyber-physical systems. The grid’s architecture is
changing from a centralized, fully automated network to a decentralized, fully automated
network as a result of the need for better interoperability. The EI idea is assisting in the
transition in the smart grid industry from a producer-controlled network to a high-end
decentralized network [68].

The decentralized nodes of the network all agree regarding what is happening, guar-
anteeing that the blockchain always works as intended.

Many times, the peers in this network are able to carry out tasks like approving new
members and keeping the network running without the aid of a centralized authority. The
blockchain’s network capacity grows as more computers join it on its own. The blockchain
is a decentralized network that is mostly controlled by its users, which explains this. The
blockchain is a safe but unreliable network because nodes can connect with each other
without the help of a reliable third party and because all data and transactions are encrypted
asymmetrically [71].

Blockchain differs from earlier systems that demanded constant trust in those in authority.
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The data in the blocks cannot be changed until a majority of users oppose it because
blockchain technology uses cryptography and keeps a shared global record across all nodes.

The immutability of the blocks and the validity of the contents may both be indepen-
dently confirmed by nodes on the blockchain network [72]. As a result, the blockchain’s
architecture is incredibly transparent and reliable. Any node on the network may check
the legitimacy of the blocks with this level of openness without requiring access to
confidential information.

3. Methods and Materials
3.1. Research Method

The literature on IoT Security studies has grown in recent years as more and more
academics have developed an interest in the field. With the use of the AND OR search
operators, we were able to find a vast amount of information that was relevant to topics like
“IoT”, Machine Learning”, Deep Learning”, threats, “cyberattacks”, and “vulnerabilities”.
We have also included other terms like “blockchain”, healthcare”, and “Data Mining. ML
and DL” in our search for a solution to the issue of IoT security breaches.

3.2. Exclusion and Inclusion

IoT and machine learning approaches were used as a keyword string to find pub-
lications in databases from the IEEE, Springer, Scopus, Google Scholar, A.C.M., Science
Direct, and Wiley. These works include research on machine learning categorization, IoT
security, and integration of health systems. Papers that were first chosen for review are
peer-reviewed before being published. To better understand how machine learning works
and how it might be used to improve IoT security, this research explores publications that
concentrate on machine learning-based approaches. After the initial search, any papers
found were discarded. We only looked at a few articles because the review aimed to set
standards for machine learning research criteria and methodology. The committee did not
even read the additional recommendations.

3.3. Objective of the Study

Our main objectives of the study are.

1. To know about the smart grid and its security issues.
2. To know about the different types of attacks on smart grid.
3. To know about the different methods to overcome these issues.
4. To know about the Open Issues, Challenges, and Future Research Directions.

3.4. Smart Grid Communication Challenges

The Smart grid Communication Challenges are explained below.

3.4.1. Interference

For the smart grid to work, smart meters must be installed in homes and businesses.
In the typical household, more and more technologies are becoming standard. Nowadays,
H.A.N.s are almost ubiquitous in homes. Under conditions of dense distribution, Network
Area Controllers and smart meters may interact. This might result in inaccurate readings
from smart meters, endangering the system’s stability. Power line harmonics may cause
communication equipment on the smart grid to malfunction.

3.4.2. Transmission of Data Rate

The smart grid’s communication infrastructure is essential for various reasons, some
of which are the collection and analysis of data and the distribution of instructions to the
system’s numerous nodes. On the other hand, the smart grid necessitates an abundance
of real-time sensors as well as smart meters, both of which, when combined, generate a
substantial quantity of data that has to be sent rapidly while maintaining its integrity. In
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addition, the foundation for mutual comprehension has to be created. Because of this, the
smart grid requires a network connection that is both reliable and secure.

3.4.3. Regulation

A wide variety of different parts come together to form the electrical Grid. The smart
grid relies on the interplay of many other factors, each of which plays a specific role. A
well-integrated communication channel network is crucial for adequately constructing such
a system. This has resulted in a proliferation of global initiatives aimed at standardization
and developing generally accepted standards. These efforts have the backing of various
institutions, including the IEEE, the European Committee for Standardization, the American
National Standards Institute, and the International Telecommunication Union.

4. Results
4.1. Cyber-Attacks and Security Risks

It is common to see attacks, including who’s conducting them, which system vul-
nerabilities are being used, which security gaps are being targeted, and the outcomes of
the attack s possible risks. These are all important considerations that need to be con-
sidered [73]. When there is a risk to the confidentiality, integrity, or accessibility of data,
systems, or other resources, a security flaw occurs. Each cybersecurity event offers a differ-
ent threat to an individual or organization’s systems and networks. Commonly referred
to as “malware,” malicious software is computer code created to harm a user’s computer,
server, or network [74]. Malware can enter a system by taking advantage of a security hole,
such as when a user accidentally installs spyware by opening a malicious attachment or
visiting a compromised website. Usually, the system’s actual user won’t be aware that this
malicious program is present. Malicious software can easily access a system since there are
many different ways to do it. A user may be deceived into installing malware by accessing
a fake version of a valid file, going to a website known to spread malware, or connecting to
an infected system or device. Another situation is when someone views malicious websites
and is deceived into installing them. Any computing device is vulnerable to being infected
by malicious software. Cyberattacks can target process control systems like Supervisory
Control and Data Collection systems, end users, servers, and the hardware that connects
them. Like the people it hurts, malicious software comes in various shapes and sizes. Ex-
amples include bot executables, Trojan horses, spyware, viruses, ransomware, and worms.
Unhealthy programmed are constantly evolving and getting more complex [75].

The most cost-effective way to make long-term savings is to install efficient controls at
the system’s boundaries. A detection and prevention system is one type of this technology
(firewall, anti-virus software). Using a security barrier, administrators can limit user
access to a protected internal resource. Despite these safeguards, it is still possible for
someone to misuse their access credentials. The degree of the misbehavior will determine
whether a corporation uses a punishment from its accountability policy. Regrettably
likely, comprehensive security strategies, access control techniques, and accountability
mechanisms won’t work [76].

The idea behind the Internet of Things is that everyday things may communicate with
one another and other computers via the internet without the need for human interaction.
Fires, break-ins, overheating, and door locks that unlock as someone approaches can all be
detected and prevented with the use of Internet of Things technology.

The Smart workspace system, which makes use of Telegram messengers and the on-
hand AI Chabot, is made to make it easier for employees to use electronic devices at their
workplaces. Remote management is possible for the office’s technology [77]. Additionally,
the Chabot can inform staff members whether a device can be turned on or off or remind
them to turn on the fan if the temperature rises too high. By enabling workers to manage all
office technology from a single internet-connected device, such as a smartphone or laptop,
the Internet of Things and artificial intelligence in the workplace can help employees save
money on utilities and time.
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The number of people using the messaging programmed Telegram Messenger is
growing. There are 62 million active Telegram users right now, 15 million DAU, and
1 million new users join every week [78]. Since Telegram Messenger can be used with or
without a smartphone and can also be accessed through a web browser, many people use it
every day to connect with family, friends, and coworkers.

The term “smart grid” describes a power system that makes use of sensing technolo-
gies, communication, digital control, information technology, and other field equipment
to coordinate its current operations and improve the efficiency and responsiveness of the
power grid. The Photovoltaic Generation System may be tracked and measured with the
help of the Internet of Things, and the WSN in particular [79].

The Internet of Things has also been utilized in agriculture to find farming-friendly
places so that the correct plants can be planted [80]. IoT is used in medical to track heart rate.

It is feasible to build Smart door locks with Mobile Backend as a Service and home
automation and smart security systems with Low Cost Real-Time [81] using an ESP 8266, a
straightforward and affordable Internet of Things key.

Researchers in a range of fields are interested in neuro-fuzzy systems because of their
better learning and reasoning capabilities. In neuro-fuzzy systems, the representation of
implicit information via fuzzy inference systems and the ability of artificial neural networks
to learn from their experiences are merged. Because of the speed, accuracy, and difficulty
of creating computers, researchers have thought about using soft computing techniques to
characterize, forecast, and manage dynamic nonlinear systems. Fuzzy logic systems and
artificial neural networks are examples of soft computing techniques. To address critical
difficulties, a number of research and engineering sectors are starting to combine the two
schools of thinking. An intelligent machine’s ability to reason and draw conclusions can be
greatly enhanced by fuzzy logic. Fuzzy logic describes qualitative yet flawed data, allowing
machine learning to be symbolically expressed. Neural networks are used because they can
learn, are reliable, and offer a lot of parallel to a system. The neuro-fuzzy system is a great
place to start when trying to solve machine learning problems because it can represent
knowledge and self-learn. The Takagi-Sugeno-Kang fuzzy inference method is the most
effective way to represent nonlinear dynamic systems. As a “multimodal” technique, TSK
system modelling can use linear sub models to show how a complex nonlinear dynamic
system behaves as a whole. One of the most well-liked neuro-fuzzy methods is ANFIS.
Regression, modelling, forecasting, and control have all used it. The ANFIS utilizes a fuzzy
inference system of the TSK type on a 5-layer network design. The two types of parameters
in ANFIS are assumption and consequence. The relationship between the two groups of
variables is described using fuzzy if-then rules. The biggest problem with ANFIS is that it
uses a lot of computer resources and frequently produces models that are unnecessarily
complex for even the most straightforward problems. The accuracy and training time of
standard neuro-fuzzy networks have recently increased due to recent developments in
learning algorithms and network architecture. A neuro-fuzzy system needs the following
qualities to perform well: Positive qualities include one that can learn quickly, adapt on
the fly, continuously optimize itself to attain the minimum possible global error, and use
the least amount of computing power possible. Because hybrid techniques are used to
continuously good them, most neuro-fuzzy inference systems take a long time to learn. On
occasion, it’s necessary to manually change some parameters. On the other hand, overfitting
and local minima are easily induced by diffusion learning methods. While the input weights
and hidden layer biases are chosen at random and can be thought of as a linear system,
the output weights of ELM are determined using a straightforward generalized inverse
operation. as opposed to the norm. Most CPSGs rely on wireless communication, it is
simple for enemies to target that channel. Information technology attacks are those that
limit access to data. Classical Intricate attacks operate on communication networks such as
cognitive radio networks and mobile Adhoc networks [82]. By blocking trusted routing,
these attacks slow down the network by taking advantage of infected insider nodes. A
faulty sensing node may post inaccurate channel sensing data following an attack, which
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is advantageous to the node but harmful to more reliable nodes. Intricate attacks are
typically used by enemies for two reasons. The main goal is to stop criminal damage,
which happens when untruthful people claim a channel is empty when it’s actually in
use. The second goal is exploitation when sensing indicates that a channel is not being
used. This happens when an attacker makes up a busy signal to try to use a channel
exclusively. Attackers can increase the efficacy of their attacks by giving priority to these
goals [83]. The flaw in the aurora generator was found by the Idaho National Laboratory.
By using a series of improper control commands, the attacker tries to open and close the
circuit breaker on a generator in this type of attack. The disconnecting of the generator
from the utility grid is referred to as interruptions. When the system and generator lose
synchronization the safety mechanism can react, the Aurora Assault’s goal is to reclose
the circuit breaker. The aurora attack alters the generator’s electrical output and rotational
speed, which causes physical damage. This is due to the safety features of the generator
being purposefully delayed to prevent accidental tripping. Closing the circuit breakers
could be harmful to the generator because of the difference in frequency and phase angle
between the generator and the main grid. Which circuit breakers are most vulnerable to
Aurora attacks can be determined using a score method using vulnerability rating variables.
Modeling and research into the effects of an aurora attack on the PCC and synchronous
generator breakers of the micro grid may be found in [84]. Sync-check relays, which were
previously used to defend against aurora attacks, are not permitted according to the IEEE
1547 Standard because they have the potential to unintentionally turn a micro grid into an
island. The authors showed that tripping a micro grid’s main circuit breaker could cause
harm to the synchronous generator. The retail industry has recently given demand-response
technology, which can enhance the functioning of the electrical grid, more attention [85]. At
its core, demand-response demands, response an incentive-based control system in which
incentives are communicated through command signals. In [86] simulation of an attacker
with the goal of increasing the gap between production and consumption by hacking the
transmission channel and changing market prices using an assault time series made the
attack considerably more potent. One-shot assaults, in which harmful code is inserted
just once, are different from this kind of attack. In [87] Looked at attacks that might insert
false pricing information at any point over an extended period of time. Attacks that occur
frequently can lead to power imbalances that cause overproduction, financial losses, and
poor power quality. The amount of damage caused by repeated strikes was calculated by
the authors using a technique called “sensitivity analysis.” The authors used a sensitivity
function based on the z-transform to model the system’s behavior when analyzing its
behavior over time. Challenges with energy-exchange systems were looked at by [88].
The end-user network’s controllers quickly receive a price signal from the active market,
and the network rapidly transmits bid information back to the controllers. Hackers can
access the data that is sent between a prosumer and a market agent. The pricing attack
was made worse by the insertion of fictitious prices and quantities from prosumers due to
the deployment of malware. These attacks caused the market clearing price to fluctuate,
each prosumer used a different amount of energy, and the overall demand on distribution
feeders decreased. The authors in [88] examined two types of attacks: one that aims to
undermine the system’s reliability by changing the bid price to extreme values and another
that aims to make money over time by keeping the bid price within predetermined limits
in order to avoid detection. Prosumers are aware of their maximum bid amount thanks
to the service agreement. Signal manipulation can be used by an attacker to get around
these restrictions, but their actions will be exposed. Frequency regulation is extensively
used in connected power networks. Controlling automatic generation would serve as an
example. It guarantees that power moves along the tie-line between control zones at the
predetermined rates and that the system’s frequency stays within safe bounds. AGC uses
data from distant sensors to ascertain a region’s frequency and power flow. This enables
it to assess how well the area is regulated The ACE shows the discrepancy between the
recommended configuration for power exchange and system frequency and the current
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configuration. Every few seconds, the AGC generators use the ACE to determine the
control instructions automatically. Only a few minutes’ worth of measurement validation
processes, like state estimation, are carried out, which is insufficient to support the second-
level frequency required by AGC. Since there is no way to check or locate the accuracy of
measurements, AGC is vulnerable to attack. AGC is highly automated and only needs
occasional system administrators’ maintenance. When damaged, it can quickly alter how
the system works [89].

Some of the most frequent outcomes of malware entering a network include the following:

• It prevents essential network elements.
• To spy using malware itself, it installs extra harmful software.
• It receives information and has access to personal data.
• It interferes with some components, rendering the system unusable for users.

Malicious malware, known as ransomware, has users pay in return for keeping their
files from being deleted or denied access. Trojan horses are the most dangerous kind
of malware because they can seem to be helpful, popular software while attempting to
access sensitive financial information. Such “drive-by” attacks are a common way for
malware to spread. The user must act before these records are created. Users only need
to visit a secure website for their PC to become silently infected [90]. A compromised
user’s computer transforms into an Iframe and sends the victim’s browser to a malicious
website under the attacker’s control after being compromised. Phishing is using email
corruptly or falsely, for example, by sending spam or phishing emails. The goal is to gain
the victim’s private information to be used maliciously to access their bank accounts. This
extreme threat is frequently used as part of a more extensive operation to gain access to
corporate or governmental networks. As a result, it is commonly used in conjunction with
other strategies. A type of phishing called spear phishing targets particular people or
organizations, including those working in government or military intelligence. Criminals
can get private company information through these attacks, which they can use to steal
money or carry out other crimes. Whale phishing is spear phishing that targets powerful
people, like the CFO or CEO, to gain sensitive data. When an attacker can place himself
between two participants in a transaction or conversation, they commit a man-in-the-
middle attack or listen in on a discussion [91]. Man-in-the-middle attackers most typically
employ the following entries:

• Public Wi-Fi that isn’t secure when unauthorized users place their devices in between
a visitor’s device and the network.

• If an attacker’s virus successfully infiltrates the victim’s PC, they can install software
to obtain the victim’s secure information.

IoT is becoming more and more popular because it can be used for a wide range of
tasks, including intelligent energy management and industrial automation. At various grid
nodes, Internet of Things sensors are installed to guarantee that electricity is transferred
efficiently and correctly. IoT-SG integration problems must be fixed for the network to
operate as planned. A neuro-fuzzy smart grid energy monitoring system for the Internet
of Things is used by the operator’s backbone to gather and transmit the parameters of
the prediction model. we assess the effectiveness of an SG power monitoring system that
is based on the Neuro-Fuzzy Internet of Things. Both customers and energy providers
can gain from better resource analysis and management. Artificial neural network and
fuzzy systems are combined in the ANFIS to provide a model that incorporates the best
features of each. It makes use of a method called “Takagi-Surgeon fuzzy inference”. This
structure’s layers each carry out a certain task and produce an output after processing
inputs. The hybrid model combines the iteratively approach and the least-squares method.
Any inference system with outputs from linear or constant membership functions can be
built using Surgeon-type systems. For modern grids to function properly, the electrical
infrastructure needs to be intelligent. Because it addresses the problems that plagued
earlier grids, SG is a better and more dependable grid. A power monitoring system that is
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enhanced by the Neuro-Fuzzy Internet of Things. Systems for managing solar and wind
energy are controlled by the ANFIS smart grid controller. Wind and solar power plants will
be able to produce much more energy with ANFIS-based power management. Using load
power, current, and voltage as inputs, a Neuro-Fuzzy notion for power monitoring based
on the Internet of Things was constructed A network or service must be taken down to stop
responding to valid requests via a denial-of-service attack. DDoS attacks typically target
the servers of well-known organizations, including financial markets, news organizations,
banks, and governments. SQL injection changes database data that shouldn’t be accessible
to users [92]. A website’s search bar is regularly used for malicious ends. This is known as
SQL injection. A security flaw that cannot be addressed or that programmers are unaware
of is called a “zero-day exploit.” Engineers must constantly be on the lookout for this
vulnerability. DNS tunneling enables the transmission of non-DNS communications on
port 53, including HTTP and other protocols. As a standard and authorized method, DNS
tunneling is usually disregarded when used for illegal activities [93]. Attackers can transmit
their traffic outside and cloak it as DNS to hide the data they transport via the Internet.
Table 5 shows the Cyber-Attacks and Security Risks.

Table 5. Cyber-Attacks and Security Risks.

References Types of Attacks Solution

[94] FDIA A method based on data-driven ML to identify stealthy FDIA on state estimate.

[95] FDIA
Consider the notion drift while analyzing historical data, and concentrate on the
distribution shift. Dimensionality reduction and statistical testing of hypotheses
are used.

[96] SCA
The data are transformed into a lower-dimensional space using the KPCA
approach. The KPCA-transformed data are inputted for the ERT’s SCA assault
detection system.

[97] DoS A multi-class classification technique used in the smart grid for anomaly detection.

[98]
Pulse, ramp,

relay trip,
and replay attack

Supervised machine learning and model-based mitigation for anomaly detection
(AD). The robustness and detection accuracy of the ML model was boosted by
physics and signal entropy-based feature extraction.

[99] FDIA A CPADS created using ML techniques, network packet characteristics, and
PMU. Metrics.

[100] FDIA A new FLGB ensemble classifier and optimum feature extraction ensemble
learning-based FDIA detection algorithm are used.

[101] FDIA Extreme learning machines create a classifier that can identify abnormalities
brought on by FDIAs.

Data streams from the control center may be altered by intruders, resulting in incorrect
choices that put the whole system in danger. Despite using encrypted communication, the
P.M.U. and PDC, two essential components of the smart grid, are still vulnerable to hackers.

Components like P.M.U.s may have problems if a dependable connection cannot be
ensured, which makes these problems worse. The selected method of communication
has to be able to overcome these obstacles to be successful. The other components must
still be able to carry out their intended tasks, notwithstanding the safety precautions that
have been put in place. Because of this, measurements made by P.M.U.s, for example, rely
on time. These measurements ought to arrive at the data-gathering facility within two
seconds. No time must be wasted when a new security measure is implemented. The
interconnection of the many cutting-edge and complex technologies that make up the smart
grid is another reason for worry—the synchronization of measurements with P.M.U. Data
is made possible by the use of G.P.S. The efficiency and dependability of the measures
may be compromised if the G.P.S. signal is hacked or interfered with. The measurements
collected from the P.M.U. will be worthless due to incorrect time stamping. Figure 7 shows
the different types of attacks on the smart grid.
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4.2. ML and DL Algorithms for Cybersecurity

As we’ll see below, one of the most popular ways to overcome the limitations of
traditional cybersecurity strategies is to use machine learning and deep learning algorithms.
These methods can recognize intrusions that target the network in the issue. Machine
learning is frequently seen as an essential part of cybersecurity because it can be used to
attack and defend. One of these studies [103] looked at different machine-learning methods
for identifying security flaws in IT systems. These techniques were random forests, support
vector machines, naive Bayes, decision trees, artificial neural networks, and deep belief
networks. The three main security challenges of intrusions, spam, and malware were the
main areas of our examination.

4.2.1. Support Vector Machine Support Vector Machine

The usage of Support Vectors improves machine learning. The performance of nu-
merous cybersecurity applications has been shown to benefit from the use of support
vector machines. SVM is rarely used since it uses many resources, especially in real-time
applications. Using kernel changes on the data, SVM establishes the ideal split between
samples [104]. SVM transforms data using kernels to discover the best border between
pieces. The authors in [105] created a model combining deep feature extraction with
multi-layer support vector machines to identify abnormal behavior in a sizable amount of
network traffic data. Distributed networks’ security was ensured by doing this.

4.2.2. K-Nearest Neighbor

The K-Nearest Neighbor method uses a dataset’s distance between two classes to assess
their similarity or dissimilarity [106]. Since KNNs don’t make assumptions, they can adapt
to the numerous data formats now available more readily than other ML algorithms [107].
The decision tree is a supervised learning method in which the labeled dataset accurately
predicts the model’s output. The Wisdom Tree. A type of supervised learning known as
decision trees uses labeled data to predict a model’s production correctly. This machine
learning method uses supervised learning and looks like a flowchart tree. To better prepare
the large-scale cybersecurity dataset (UGR’16) for the anomaly detection model, used a
decision tree and multilayer perceptron processing [108].
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4.2.3. Deep Belief Network

According to one definition, a deep belief network comprises numerous layers, each
of which can function as a restricted Boltzmann machine. Applications in the field of cyber-
security that require access to massive databases may find this helpful strategy. In [109],
the writers thoroughly examined the use of deep belief networks and other deep learning
techniques in cybersecurity. In the same way, the authors in [110] used the NSL-KDD
dataset to assess the performance of the deep belief network for face recognition, pedes-
trian detection, and intrusion detection compared to a region extreme learning machine
technique. In [111], Network performance may be monitored using traffic and payload
parameters, enabling a secure deep neural network-based design. This framework was
created to help identify hackers’ behaviors in SCADA environments. A healthcare system’s
use of a blockchain-based architecture made it easier to pinpoint where unauthorized access
attempts were attempted [112].

4.2.4. Recurrent Neural Networks

The directed graph structure of the recurrent neural network sets it aside from other
neural networks. RNN also creates bidirectional signals and extends the network via
loops. Since RNNs take longer to process than feed-forward neural networks, they are
used less commonly in real-time applications. However, RNN was used to improve the
accuracy of intrusion detection systems that used the dataset. In [113], To solve the issue of
improper data injection in DC microgrids, a novel artificial intelligence-based method has
been created. Researchers used RESs and a nonlinear auto-regressive external model to
forecast dc voltages and currents. NARX aims to improve network performance compared
to traditional RNNs in terms of speed, accuracy, and ease of understanding [114].

4.2.5. Convolutional Neural Networks

Compared to other deep learning algorithms, CNNs can learn from raw data. As a
result, data extraction, which is generally done before training a model, is no longer neces-
sary. Hidden networks, pooling networks, convolutional networks, and fully-connected
networks are frequently included in convolutional networks (CNNs). In terms of cyber
security, CNN lacks a particular leader in the field. The many security and privacy issues
that organizations currently confront have led to the development of many CNN-based
methods. For instance, as part of a cutting-edge method for identifying abnormal incur-
sions, CNN was used to create a multiclass classification model for IoT networks. This
process was used to find any possible threats [115]. The authors in [116] used this technique
to find cyber-attacks on industrial control systems to create a small version of a wide
range of industrial water treatment facilities. In [117], To recognize DoS attacks on IoT
networks, writers used CNN. A distinct deep CNN technique was also recommended for
malware identification [118]. It also allows the network to be used successfully on a GPU.
A multi-CNN fusion technique was suggested to detect intrusion attacks on industrial IoT
networks [119].

Thousands of sensors are being included in the smart grid’s infrastructure to make the
switch from a traditional grid to a smart grid. These sensors produce enormous amounts
of data in the form of log files or time series data since they continuously check the health
of the hardware to which they are connected. A smart grid system has several different
kinds of sensors, including those that measure voltage, current, module temperatures, and
irradiance. The information gathered by these sensors is processed before being sent to a
server for storage. Both local and remote hosting options exist. The most secure way to
store data is on a local server, but doing so limits the data’s usefulness for identifying novel
patterns or developing a deeper understanding of the subject of the study. The user has
more control over how data is used when information is stored on a cloud server, accessible
from a distance, and scraped to a computer using the GETS command. Machine learning
approaches have lately been effective at locating cases of cyber intrusion. By examining
past events, machine learning, on the other hand, may be able to identify intrusions. To
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prepare for power outages, 54 linked J Ripper with Ada boost. The model divided the data
into three categories based on its findings (assault, natural disturbances, and no event). An
attack known as the false data injection attack is typical and has the potential to damage
smart grid networks seriously. For utilities and consumers, tampering with data from smart
meters might be pretty expensive. To locate the FDIA, researchers used ensemble-based
machine learning [55]. Figure 8 shows the supervised learning process.

Future Internet 2023, 15, x FOR PEER REVIEW 22 of 39 
 

 

intrusion. By examining past events, machine learning, on the other hand, may be able to 
identify intrusions. To prepare for power outages, 54 linked J Ripper with Ada boost. The 
model divided the data into three categories based on its findings (assault, natural dis-
turbances, and no event). An attack known as the false data injection attack is typical and 
has the potential to damage smart grid networks seriously. For utilities and consumers, 
tampering with data from smart meters might be pretty expensive. To locate the FDIA, 
researchers used ensemble-based machine learning [55]. Figure 8 shows the supervised 
learning process. 

 
Figure 8. Supervised learning techniques in the smart grid. 

The IEEE 14 bus system was used to evaluate the model. Unlike linear regression, 
naive Bayes, decision trees, and support vector machines, unsupervised ensemble models 
were more accurate than individual models, with the most incredible accuracy reaching 
73%. The multilayer perceptron is used in [56] to examine how FDIA affects AI-based 
smart grids thoroughly. The study found that even if only 20% of the data is false, machine 
learning algorithms’ accuracy might drop by 15%. This may significantly impact the deci-
sion-making process for the smart grid. Suppose a disruption happens, and the model 
cannot predict it because of inaccurate data, for example. In that case, data poisoning 
could cause the grid to become unstable and have unfavorable effects. The entire system 
can be negatively affected. The authors in [33] suggests using a conditional deep belief 
network technique to identify FDIA for power theft in real-time. The IEEE 118 bus and 
the IEEE 300 bus were used to test the model. The model’s outcomes contrasted with sup-
port vector machines and artificial neural networks. Attacks that cause distributed denial-
of-service to a smart grid are another possible danger. Attacks using distributed denial of 
service render servers and other crucial communication channels unusable. The goal of a 
DDoS assault is to bring down the targeted communication server by flooding it with fake 
requests. The authors in [57] proposes a multilevel auto-encoder model for detecting dis-
tributed denial of service attacks. An autoencoder has one input layer, at least one hidden 
layer, and one output layer. 49 characteristics and 700,000 data packets were used to train 
the model. These packets could be identified from others by their source IP address and 
ports, destination IP address and ports, both ends’ jittering, record time, and type of at-
tack. The UNSW-NB15 data set, available to the public for free, was used to develop the 
model. The results show that the auto-encoder-based prediction model performs better 
than the LSTM, random forest, naive Bayes approach, decision tree, k-nearest neighbor, 
and LSVM. Table 6 shows the Summary of different Machine Learning and deep learning 
Methods. 

Figure 8. Supervised learning techniques in the smart grid.

The IEEE 14 bus system was used to evaluate the model. Unlike linear regression,
naive Bayes, decision trees, and support vector machines, unsupervised ensemble models
were more accurate than individual models, with the most incredible accuracy reaching
73%. The multilayer perceptron is used in [56] to examine how FDIA affects AI-based
smart grids thoroughly. The study found that even if only 20% of the data is false, machine
learning algorithms’ accuracy might drop by 15%. This may significantly impact the
decision-making process for the smart grid. Suppose a disruption happens, and the model
cannot predict it because of inaccurate data, for example. In that case, data poisoning
could cause the grid to become unstable and have unfavorable effects. The entire system
can be negatively affected. The authors in [33] suggests using a conditional deep belief
network technique to identify FDIA for power theft in real-time. The IEEE 118 bus and
the IEEE 300 bus were used to test the model. The model’s outcomes contrasted with
support vector machines and artificial neural networks. Attacks that cause distributed
denial-of-service to a smart grid are another possible danger. Attacks using distributed
denial of service render servers and other crucial communication channels unusable. The
goal of a DDoS assault is to bring down the targeted communication server by flooding
it with fake requests. The authors in [57] proposes a multilevel auto-encoder model for
detecting distributed denial of service attacks. An autoencoder has one input layer, at least
one hidden layer, and one output layer. 49 characteristics and 700,000 data packets were
used to train the model. These packets could be identified from others by their source
IP address and ports, destination IP address and ports, both ends’ jittering, record time,
and type of attack. The UNSW-NB15 data set, available to the public for free, was used
to develop the model. The results show that the auto-encoder-based prediction model
performs better than the LSTM, random forest, naive Bayes approach, decision tree, k-
nearest neighbor, and LSVM. Table 6 shows the Summary of different Machine Learning
and deep learning Methods.
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Table 6. Summary of different Machine Learning and deep learning Methods.

References Methods Solution

[120] Naive Bayes
Can be applied to analyses of both discrete and continuous variables.
Features are assessed mutually exclusive, speeding up the process and
making it applicable for real-time decision-making.

[121] Support Vector Machines In high-dimensional spaces, it effetely uses memory. Features that use
numbers and categories

[122] Decision Tree Effectively uses memory in elevated environments. Features that employ
categories and numbers

[123] Sequential Pattern Mining Frequent sequential patterns for a frequency support measure.

[124] DBSCAN Identify outliers and separate clusters of high density from sets of
low density.

[125] ADMIT It doesn’t need a lot of labeled data to function. Makes use of a recursive
clustering algorithm, A K-means clustering variant.

[126] A priori algorithm As a result, the resulting restrictions make sense. Unsupervised, therefore
labeled data aren’t needed.

[73] Radial Basis Function Real-time network anomaly detection.
[127] Random forest Multi-class classification of network traffic threat
[128] Extra-tree classifier Multi-class classification of DoS, probe, R2L, and U2R
[129] Radial Basis Function Comparative classification between lazy, eager learning, and deep learning
[130] Random forest Comparative classification between lazy, eager learning, and deep learning.
[130] Random forest Android malware detection
[131] ANN Abilities to learn, classify, and process information; faster self-organization.

[132] Deep Flow
Specifically designed to identify malicious software. Flow Droid, a program
for static impurity analysis, is employed. Determines the paths taken by
potentially sensitive data within Android applications

[133] DBNs Discovers layers of features and uses a feed-forward neural network to
optimize discrimination.

[134] Deep Belief Network Real-time network anomaly detection.
[135] Gated Recurrent Unit Multi-class classification of network traffic threats
[136] CNN-LSTM Multi-class classification of DoS, probe, R2L, and U2R.
[137] Deep Feed Forward Differentiating between shallow, intermediate, and deep learning
[138] Temporal convolutional networks Comparative classification between lazy, eager learning, and deep learning.
[139] CNN Android malware detection.
[140] Bi-LSTM Classification of spam and ham from emails.

Machine learning techniques such as unsupervised pattern discovery look for patterns
in data without the help of labels. Although supervised learning algorithms have been
the subject of decades of research, their use still depends on the users’ access to the truth
or their knowledge of the patterns to seek. This rarely happens when theory is applied
in practice. Unsupervised learning can be used to find ways before data or predict what
will happen in the future because it doesn’t require labels. The method is, therefore,
beneficial. Unsupervised neural networks can be used for several tasks, such as predicting
load [63], determining stability [64], and detecting errors [65]. Auto encoders, variant auto
encoders, and constrained Boltzmann machines are a few of these machines, but they are
not the only ones. There are many examples of this. Clustering is a statistical approach by
dividing a population or set of data points into subgroups that are comparable to the total.
Untrained and uncontrolled persons carry out clustering. Some clustering methods include
k-means, fuzzy c-means, hierarchical clustering, and DBSCAN. Additional clustering
techniques not covered here exist. Applications are categorized using efficiency noise
analysis. Data handling for smart grids typically use dimension reduction. Moving data
from a high-dimensional space to a low-dimensional area is crucial to this method. These
techniques have made it much simpler to utilize the information obtained [66]. Principal
component analysis (PCA), linear discriminant analysis, extended linear discriminant
analysis, and nonnegative matrix factorization is DR approaches used in smart grids [67].
The un-supervised learning process is shown in Figure 9.
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4.2.6. Deep Reinforcement Learning

Reinforcement learning (RL) algorithms have the ability to maintain order in unpre-
dictable situations. Therefore, the described POMDP challenge can be resolved using RL.
The issue can be resolved using either a model-based RL algorithm for POMDPs [141] or a
model-free RL algorithm without having to learn the underlying model. In general, only
an unsubtle model can be learned using the model-based approach because it requires a
two-step solution that is more challenging to compute. Attack-free worldwide anomaly
identification methods include the Euclidean detector [142] and the arcos metric-based de-
tector [26]. These systems compare expected and actual meter readings (using the Kalman
filter) and, if the difference is greater than a set threshold, they declare an attack or anomaly.
These detectors, however, only look at one sample at a time, so they cannot tell if attacks
are taking place at the same time as strange results. Because of this, they are unable to
differentiate between short-term anomalies generated, for instance, by an unfavorable
system intervention and longer-term anomalies caused by system-level randomness. As a
result, we need methods for universal attack detection that are more reliable than those that
look for anomalies. Here, we look at the issue of smart grid security from the defender’s
point of view and use RL approaches to find an effective detection system [143]. The
issue can also be viewed from the perspective of an attacker, in which case the goal is
to determine the most harmful attack strategies. For vulnerability analysis, which is the
process of identifying the worst possible thing an attacker might do to a system and then
taking precautions against it, a challenge like this can be very helpful. RL has been the focus
of numerous vulnerability investigations. For examples of FDI and sequential network
topology attacks [50]. We also point out that the issue can be seen simultaneously from
both the defenders and the attacker’s points of view, just like in game theory. Multiage
RL is a single-agent RL extension that heavily relies on game theory. This is thus because
each actor’s best behaviors depend on both their surroundings and the actions of other
agents. Furthermore, stochastic games extend Markov decision processes to the multi-agent
environment, where the game is played in a certain order, has many states, and is subject to
payoffs that depend on the actions of all agents. To solve stochastic games, offer a number
of RL-based techniques [144]. Additionally, if the environment’s fundamental state, other
agents’ actions and rewards, etc. are only partially observable, the game is a partially
observable stochastic one, which is often more challenging to solve.

4.2.7. Cloud-Based Detection and Mitigation

When combined with IoT technologies, cloud computing offers quick Internet access
to a range of cloud services, including memory, storage, processing, network capacity,
and database applications. One helpful feature of cloud computing is “pay as you go”.



Future Internet 2023, 15, 83 24 of 37

It is challenging for utility companies to build and execute this architecture to lower the
cost of the hardware, software, and network services for the Smart grid. It is crucial to
maximizing the network infrastructure’s existing buffer, storage, constrained processing,
and bandwidth since smart meters generate much additional traffic in the Smart grid. The
authors of [60] examined how cloud computing features could be used to defend smart
grids from DDoS attacks. The authors of [61] suggest using a cloud-based firewall to
prevent DDoS attacks on smart grids. We created 250 Gbps of data for this experiment to
simulate a distributed denial of service attack. According to the simulation results, the
grid Open Flow firewall is not particularly slow. To ensure that only authorized users
have access to cloud-based data, [62] proposes an attribute-based online/offline searchable
encryption solution for smart grid applications. Figure 10 shows a cloud-Based Detection
and Mitigation.
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The authors of [63] describe a secure home area network that uses the cloud of things
and is protected against threats, including brute force, replay, and capture. A model for
assessing the security of a smart grid is created in [64]. A deep belief network comprises
numerous RBMs, and a BP neural network is used to achieve this. To assess the overall
level of security risks related to policy and organization and technological risks in general,
SaaS, PaaS, and IaaS risks were looked at. Table 7 shows the Cloud-Based Detection
and Mitigation.

Table 7. The Cloud-Based Detection and Mitigation.

References Objectives Techniques Limitations Solutions

[145]
Auto-scaling of VM
and VM-to-PM
packing.

The approach is based
on shadow routing.

Less no. of hosting PMs
by intelligently packing
VMs-into-PM.

Less no. of hosting PMs by
intelligently packing
VMs-into-PM.

[146] Balance the load of
network resources.

Layered virtual
machine migration.

The migration cost
is high.

High performance in balancing
the bandwidth utilization rate
of hosts and sound
management of both the
physical and network
resources.
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Table 7. Cont.

References Objectives Techniques Limitations Solutions

[147]
Minimize resource
consumption and
heavy traffic.

Cluster-aware VM
collaborative migration
scheme for media
cloud.

The approach that has
been proposed does not
optimize the virtual
machine migration in
the media cloud. The
expense of migration
is costly.

A perfect migration is achieved
by the utilization of clustering
and placement algorithms, as
well as an efficient migration
of VM media servers.

[148]
Reduce energy
consumption with high
migration costs.

An improved grouping
genetic algorithm
(IGGA).

The migration cost is
still high because of the
migration of one VM at
a time.

Increases the concentration
score while bringing down the
energy consumed while the
consolidation score is high.

[149]

Minimize energy
consumption and
excellent migration
cost.

Ant colony system
(ACO)

The migration cost is
still high because of
migrating one VM at
a time.

Reduces the overall amount of
energy used by reducing the
number of active PMs while
ensuring compliance with the
SLA’s quality of service
requirements.

[150]

Lessen energy
consumption and
excellent migration
cost.

Firefly optimization
approach.

Because migration may
only result in a high
utilization rate of
network resources, the
load cloud data centers
are currently carrying
is not going away.

Technique for migrating
virtual machines in the cloud
that is sensitive to energy
consumption and moves
overloaded VMs to
regular PMs.

4.3. Blockchain-Based Detection and Mitigation

The authors of [151] analyses each publication published between 2016 and 2022
that exclusively discusses protective measures for blockchain-based systems. The first
cryptocurrency built on a blockchain, Bitcoin, was announced in 2008. The first blockchain-
based cryptocurrency with smart contracts, Ethereum, made its debut in 2015. An alternate
use of blockchain technology is the public blockchain project. blockchain technology was
initially connected to the virtual currency bitcoin, but a new study suggests that it might
be used for much more. Taking into account [152] claims, More investigation was done to
determine whether blockchain technology might be used to improve cybersecurity. The
authors looked into various potential fixes for blockchain security problems. To reduce
the risk of cybercrime, a web-based cybersecurity awareness was developed. To maintain
software security against hackers, the suggested method uses blockchain technology [112].

It was shown that a data-transfer system with an object-categorization algorithm
might be created using blockchain technology due to its security; blockchain a sort of
distributed ledger technology that has recently appeared as one of the most useful in
numerous industries. On the blockchain, each block contains data, an index, a time stamp,
a hash, and the hash of the block before it. A block cipher, in the opinion of many, forms
the basis of blockchain dependability. Suppose the hash value of one block changes; all
succeeding blocks in the chain must also change. Usually, it takes a lot of time and money to
achieve this on a computer. According to the authors of [153], a policy architecture for data
flow between autonomous system operations and agents that aren’t performing their duties
should be built using blockchain technology. These actions were all taken to combat the
FDIA. Three sections make up the model: “data”, “detection”, and “blockchain”. Figure 11
shows the blockchain Applications.
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Information is gathered by the data layer and sent to the detection layer for community
detection. The blockchain layer also secures the community detection and transaction
record. In their article, the authors created a blockchain-based system for smart meters
and service providers to communicate through encrypted communications [154]. The
technique stops FDIA from happening on the smart meter’s side. Smart meters serve as
controller nodes in this study, starting all interactions with the service provider. Data is
shared and validated throughout a network by auditing and broadcasting transactions.
Service providers communicate with one another over P2P networking. A new transaction
or block cannot be added until consensus has been validated, and only then can a new block
be added. Each trade generates a unique key using the SHA-256 method. In this study, the
authors showed that a framework built on a blockchain might be used to speed up data
transmission and reception inside a P2P service provider network. This study [155] created
a decentralized security paradigm using smart contracts and the lightning network in a
blockchain environment. The registration, scheduling, verification, and payment processes
are among the several procedures in this method. The authors of [156] created a product
power system device design that combines hardware security with a blockchain-based
method for maintaining a distributed security mechanism that checks the provenance of
incoming communications. Table 8 shows the blockchain-Based Detection and Mitigation.

Table 8. Blockchain-Based Detection and Mitigation.

References Methods Short Description Findings

[157] A game theoretic approach
A framework for energy trade
and decision-making based on
game theory

The strategy makes P2P trade both fair
and optimum.

[158]
Networks of bilateral
agreements for peer-to-peer
energy trading

Networks for P2P energy
trade that are bilateral
and scalable

combines real-time and forward
contract trading strategies

[61] blockchain Applications in
Smart grid

It looked at new blockchain
applications and how they
were used in the SG.

It showed the advantages of blockchain
in the electrical network and the SG
framework SPB, which reduces the
costs, size, and processing time
associated with energy trade.
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Table 8. Cont.

References Methods Short Description Findings

[159] A Distributed Private Energy
Trading Platform.

Presented a proof-of-concept
for a secure private blockchain
energy transaction system.

It showed the advantages of using
blockchains in the electrical network
and the SPB framework, which lowers
the expenses, volume, and processing
times related to energy trade.

[160]

Energy Trading Between
Individuals Using a Virtual
Power Plant Which Is Powered
by Smart Contracts Stored on a
blockchain

A public, sale price
purchasing mechanism SC
enables is recommended for
energy trading.

Auction-based energy-trading platform

[161]

blockchain-based smart contract
architecture for distributed
generation trade and
management

An infrastructure built on the
blockchain to close the
demand-response gap
between energy supply by
producers and consumer
demand in peer-to-peer
energy trading.

More than 25 individuals can trade
energy at once due to it.

[162] Blockchain-enabled Peer-to-Peer
energy trading

investigates the best
application of blockchain
technology for peer-to-peer
energy trading

The method is cheap for blockchain
transactions.

[163] Energy sharing between peers
using batteries

It proposed an energy-sharing
architecture based on energy
pieces in a community market
with a shareholder energy
storage system, consumers,
and users

Maximizes the income output for the
energy supplier

[164]

Energy-backed token trading
that is peer-to-peer and based
on a decentralized blockchain
platform for active producers
and consumers

Utilize the blockchain to
enable peer-to-peer trading of
energy tokens

The suggested strategy ensures a global
and practical resolution while
requesting no private information from
the participants.

4.4. Hardware-Based Security

The smart grid system is useless without devices connecting to the internet. These
devices must resist cyberattacks since they gather, process, and transmit data over the
channel. The authors in [165] discussed some of the most critical hardware security issues.
Security flaws might appear in many ways, including physical attacks, hardware Trojans,
and side-channel analyses. The attacker wants to avoid being identified during the actual
physical attack by the authentication procedure. System flaws were exploited using reverse
engineering to plan the attack. An opponent can determine the cryptographic keys by
analyzing the profile of numerous variables, including current, voltage, and frequency,
using a method called “side-channel analysis”. Any deliberate alterations or additions to a
circuit are referred to as hardware Trojans. Hardware Trojans are malicious applications that
steal sensitive information, change circuitry, or lower the system’s dependability. According
to the authors’ analysis, path delay fingerprinting may be utilized to identify hardware
Trojans. Smart meters, sensors, and communication devices are examples of IoT devices that
battle with how much energy they can use and how little power they can use [166]. Because
they allow fully secure authentication without requiring the device to have cryptographic
expertise, PUFs are perfect for low-power Internet of Things (IoT) devices. Even so, by
analyzing historical data and events, it is now possible to predict PUF behavior with
a 95% degree of accuracy because of the development of machine learning [167]. To
prevent machine learning-based attacks from breaching PUFs, the study’s authors [167]
developed a CTPUF, or configurable tristate PUF, using an XOR-based technique that hides
the connection between the issue and the solution. The environment is too chaotic for the
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machine learning model to detect recurring patterns between the challenge and responses.
The results of this study showed that the accuracy of machine learning models that used
CTPUF, such as support vector machines, artificial neural networks, and logistic regression
models, was about 60%. Another study [168] used machine learning models to show the
shortcomings of voltage-over-scaling (VOS)-based authentication. The studies also made
abuse a possibility. The authors of this work developed a VOS technique that is immune to
ML by fusing earlier challenges with keys. The results showed that when the challenge
self-obfuscation structure was used, the ML model was approximately 51.2% accurate.

4.5. Future Improvements and Challenges

Source datasets are crucial for both cybersecurity and machine learning in a similar
way. Most publicly available data is older, which might not be enough to identify trends in
undetected cyberattacks. The most recent attacks and their repeated patterns remain a mys-
tery, even though current data can be processed into knowledge through several different
processing steps. As a result, it’s possible that certain conclusions won’t be drawn with
exceptional precision using future processing or machine learning approaches. The produc-
tion of numerous new cybersecurity datasets for particular problems like predicting attacks
or detecting intrusions is a significant difficulty when using machine learning techniques in
cybersecurity. Security datasets may be unbalanced, noisy, lacking crucial details, meaning-
less, or include examples of security vulnerabilities that are inconsistent with one another.
The training of machine learning models may be more challenging and time-consuming
when a dataset contains this kind of consistency [169]. These data concerns need to be fixed
before using machine learning to create a data-driven cybersecurity solution.

Knowing everything there is to know about the issues with cybersecurity data is
essential, as is finding reasonable solutions to these issues by using either current algorithms
or brand-new algorithms to, among other things, locate malware and intrusions. One
method to directly address these problems is feature engineering [170], which examines
model features to remove related parts.

This method reduces the complexity of the data. A key strategy for dealing with mea-
surement errors is using hybrid models, as explained in [73], or data creation, as described
in [171]. More vulnerabilities that could lead to data leakage need to be addressed. The
most popular and well-known techniques in cyber security use signatures to find intrusion
attempts [172]. Due to data shortages, overly simplified characteristics, or inadequate
profiling, these systems might overlook some assaults or events. These problems can be
mitigated by signature-based or hybrid detection strategies combining signature-based and
anomaly-based detection techniques. With a hybrid learning strategy that makes use of
numerous machine learning techniques, intrusion detection, malware analysis, phishing
detection, etc., all perform better. Machine learning, statistical analysis, and deep learning
algorithms can be combined to make wise cybersecurity management decisions.

Due to the enormous amount of network traffic data and the high number of minute
traffic features, a security model based on machine learning has frequently been questioned
regarding its effectiveness and performance. Principal component analysis, singular value
decomposition [73], and linear discriminant analysis have all been used by researchers to
handle high-dimensional data [173].

Contextually, it might be advantageous to include low-level information in datasets
that could be connected to problematic behaviors. This kind of contextual data may be
categorized using an ecosystem or taxonomy for upcoming research. Therefore, choosing
the best features or extracting the most important ones while considering machine-readable
aspects and the context presents another challenge for machine-learning approaches in
cybersecurity. To create effective cybersecurity solutions, this is necessary.

When models are used to produce predictions even while essential data is missing
or significantly varies between datasets, this is known as data leakage [169]. Prediction
models frequently result in too hopeful conclusions when they are being created. Still,
when evaluated on new data, unsatisfactory findings list this problem, known as “leaks
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from the future,” as “one of the top 10 data mining defects.” They suggest using exploratory
data analysis to find and fix leakage sources. EDA enables machine learning models to
collect more accurate data, enhancing the dataset’s usefulness. Leakage detection and
exploitation are substantial contributors, according to recent studies [174]. They were also
noted as a critical factor in the failure of a data mining program. Researchers address the
use of giveaway characteristics in data mining competitions to forecast the objective in
another paper. This is because certain qualities were added afterward [175]. This article
looks at the most popular techniques for categorizing documents and possible dataset
structures for binary prediction. Each observation was given a “legitimacy tag” during the
data collection phase, and data breaches were subsequently identified using a learn-predict
separation. Maximum accuracy values of 91.2% for naive Bayes, 87.5% for k-NN, and 94.4%
for centroid suggest that the suggested strategy is effective based on numerous categories.

The use of EDA to detect leaks is an exciting area for future research since it can be
used in various situations when the machine learning scientist has little control over the
data-gathering procedure. Homomorphic Encryption (HE) is regarded as a significant
technological achievement by many cryptography experts [176]. HE gives unreliable third-
party access to private data without disclosing anything. The encrypted data may end
up on the user’s computer or an unauthorized distant server, but not the decryption key.
No information will be disclosed to unauthorized parties so the host can relax. HE can be
used for various things, including cloud computing, financial transactions, and defense
against quantum computing. HE can be used in a constrained or expansive way. During
machine learning training, Fully Homomorphic Encryption (FHE) aids in maintaining the
confidentiality of sensitive data. Shallow machine learning and deep learning substantially
rely on domain data, which isn’t always easy to come by for free [177].

Asymmetric encryption techniques were first thought to be straightforward for quan-
tum computers to decrypt [178]. A pair of keys—one public and one private—are used
for asymmetric key encryption. By multiplying two huge prime numbers, these keys are
created. We employ large encryption keys to ensure the security of our data because it is
challenging to factor in large prime numbers but simple to factor in small ones. A more
labor-intensive approach for factoring such enormous prime integers is Shor’s algorithm.
The superposition quantum computing method may allow the factors to be discovered in a
small portion of the time needed by a traditional binary computer. Elliptic curve algorithms
and digital signature technologies like RSA and DES are weak points. Grover’s method [73],
based on quantum computing, claims that it will only take 185 searches to find the key to a
56-bit DES. Despite the existence of quantum computers, symmetric essential techniques
like AES are still secure. Researchers are examining if these constraints may be overcome
using mathematical and quantum methods. A quantum key distribution example is the
BB84 protocol [179]. Lattice-based cryptography and other mathematical techniques are
also being researched. Asymmetric encryption cannot be solved with quantum computing;
however, using it as subroutine helps speed up machine learning [180].

This can drastically shorten prediction times for algorithms like SVM, where construct-
ing a hyperplane and performing kernel modifications can take some time.

They may also be used for deep learning if they are well-designed. However, there are
problems because quantum neural networks move in a straight path.

5. Conclusions

Transitioning from a traditional grid to a smart grid is complex and loaded with
the inherent risks of testing out trying to cut technologies. Creating and maintaining an
effective communication network architecture is one of the smart grid’s most difficult
tasks. In addition, creating a reliable physical architecture and keeping it up-to-date are
challenging tasks. In this study, the communication infrastructure of the smart grid was
studied, and future cyberattacks and defense strategies were taken into account. It would
help if you never risked starting an attack because even a small one can have harmful effects.
We think the people who use or operate the communication network are just as vulnerable
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to attacks as the network itself. If the attacks are not successfully dealt with, they can turn
into easy targets. It was suggested that security measures be put in place for smart grid
clients, their communications network, and smart grid operators to build a reliable smart
grid network. We took this action because we know that hackers target computer systems
and their users and administrators. We considered many essentials before concluding this
conclusion, including the nature of the attack, its scope, the individuals it affected, and the
results it produced. Cyberattacks were also categorized according to the features of the
attacks, such as the large areas that were compromised, the methods that were utilized to
carry them out, and the measures necessary to establish dependable and efficient defenses.
To successfully implement smart grid technology, network security must be addressed.
However, previous studies have shown that their impact is minimal when assessing cyber-
security solutions for smart grid networks. Therefore, this study completes the gaps left by
earlier research by providing an in-depth description of potential smart grid attacks and
assessing various security solutions.

In this research, we propose a layer-based classification of cyberattacks and a grading
of these attacks regarding integrity, availability, confidentiality, and accountability. Finally,
we highlight persistent issues that can guide future studies. Based on the results of this
study, it is clear that there is a great need for novel approaches that may collectively resolve
the complications associated with security issues in smart grid infrastructures without
compromising the efficiency and usefulness of the network. For instance, “important
regions impacted” refers to geographical locations essential to the network’s functioning.
Cyberattacks on smart grids are currently the focus of an extended investigation into the
formation of a categorical classification. In this article, we will examine the many challenges
that the sector is presently facing regarding cyber security, as well as the solutions that
are currently accessible and the expected needs for future research. A comprehensive
understanding of the types of security threats and assaults that smart grids are vulnerable
to, as well as how these threats and attacks can be avoided, can be obtained by a review
of the available research and literature. A comprehensive understanding of the types of
security threats and assaults that smart grids are susceptible to and how these threats and
attacks can be avoided can be attained by reviewing the available research and literature.
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