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Abstract: The increasing number of IoT devices equipped with sensors and actuators pervading
every domain of everyday life allows for improved automated monitoring and analysis of processes
executed in IoT-enabled environments. While sophisticated analysis methods exist to detect specific
types of activities from low-level IoT data, a general approach for detecting activity executions
that are part of more complex business processes does not exist. Moreover, dedicated information
systems to orchestrate or monitor process executions are not available in typical IoT environments.
As a consequence, the large corpus of existing process analysis and mining techniques to check and
improve process executions cannot be applied. In this work, we develop an interactive method
guiding the analysis of low-level IoT data with the goal of detecting higher-level process activity
executions. The method is derived following the exploratory data analysis of an IoT data set from a
smart factory. We propose analysis steps, sensor-actuator-activity patterns, and the novel concept of
activity signatures that are applicable in many IoT domains. The method shows to be valuable for the
early stages of IoT data analyses to build a ground truth based on domain knowledge and decisions
of the process analyst, which can be used for automated activity detection in later stages.

Keywords: Internet of Things; business process management; activity detection; process mining

1. Introduction

The Internet of Things (IoT) is experiencing increasing adoption in almost every
domain of everyday life. Smart, interconnected devices consisting of a multitude of sensors
and actuators are able to sense and interact with the physical world and other smart devices.
On the one hand, these smart devices are more and more involved in the automation and
execution of business processes. On the other hand, they act as interfaces with the physical
world to provide real-time data about the execution of processes and activities as well as
their surroundings. For this reason, the IoT is receiving increasing attention as an enabler
of smart business process management (BPM) [1].

In many IoT domains (e.g., smart homes, smart healthcare and smart manufacturing)
processes and routines describing repetitive sequences of activities and interactions among
humans, computers and smart devices to achieve a common goal are omnipresent. How-
ever, the explicit notion of a process as a first-class citizen is rarely found in IoT. Existing
solutions and related research are usually concerned with the tracking of specific types of
activities and ad hoc interactions based on events from specialized sensors and analysis
algorithms, but not with the overall processes these activities are part of. On the other
hand, BPM systems are rarely used in IoT contexts to orchestrate, or at least to monitor, the
execution of processes [2].

The goal of this work is to bridge this gap between event-based and process-based
systems [1] and to derive a method to detect process activity executions from IoT data
without relying on the existence of a BPM system for monitoring. By making process
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activities monitorable from IoT data, we are able to then apply the rich corpus of existing
process mining techniques to discover (new) processes, check conformance of process
executions, and optimize processes [1,3]. The following research question guides the devel-
opment of the data analysis method: Which steps need to be taken to manually analyze IoT
data for process activity executions? In this work, we focus on the interactive analysis of IoT
data performed manually in an early stage by a data analyst. While several unsupervised
machine learning approaches have produced unsatisfying results due to the complexity of
IoT data and missing domain knowledge to build a ground truth [4], we propose a general,
structured method to support the analyst with detecting and deriving knowledge about
activity executions step-by-step from IoT data. This knowledge can then be used as ground
truth for supervised learning and application to large data sets.

This work is structured as follows: Section 2 introduces the relevant background, the
goal of our work and a scenario from smart manufacturing. Section 3 discusses related work.
Section 4 develops the method for detecting activity executions from IoT data. Section 5
describes the application of the method in a proof of concept evaluation. Section 6 discusses
the method. Section 7 concludes the paper and shows starting points for future work.

This paper is an extended version of the work presented in [5]. It was modified and
extended as follows. The paper focuses on the research question related to the development
of the analysis method. The background section provides a detailed discussion of process-
awareness of IoT data and IoT-awareness of process data (Section 2.1). The smart manufacturing
scenario and example processes are explained in more detail (Section 2.2). Related work is
updated and extended (Section 3). The method for activity detection is revised, extended
and derived more profoundly (Section 4). Several examples from the scenario are used to
illustrate and back up the individual steps. The method now also includes a classification of
sensor and actuator patterns related to activity detection (Section 4.4.1). It also discusses the
discovery of processes and the existence of ambiguities. The tooling infrastructure and data
pipeline are described briefly (Section 4.8). The analysis is based on a new data set from our
smart factory, which is made publicly available [6]. A proof of concept evaluation is added
describing the application of the method by a domain expert to label an unknown IoT
data set (Section 5). The discussion section provides a broader discussion of the research
question, the developed method, its applicability and limitations (Section 6).

2. Background and Motivation

This work is located at the intersection of Business Process Management (BPM) and
the Internet of Things (IoT) as well as Cyber–Physical Systems (CPS). We start by providing
a conceptual model regarding the interplay of these three fields and then describe a running
example from the smart manufacturing domain. Thereby, we introduce our smart factory
model as a small-scale representative of a CPS [2] and two typical manufacturing processes.

2.1. BPM Meets CPS and IoT

BPM is considered to be “the art and science of overseeing how work is performed in
an organization to ensure consistent outcomes and to take advantage of improvement op-
portunities” [3]. A business process in this context can be seen as a chain of events, activities,
and decisions that describe how work should be performed (cf. Figure 1) [3]. In our work,
we focus on activities representing units of work performed by actors. Traditionally, these
actors can be human actors, organizations, or software systems [3]. As shown in Figure 1,
we propose that also components of Cyber–Physical Systems can be active participants
involved in the execution of activities.

Cyber–Physical Systems (CPS) are “integrations of computation with physical pro-
cesses” [7]. Computers embedded into physical objects and devices monitor and control
processes with bi-directional feedback loops between the physical and digital worlds.
Closely related to CPS is the concept of Internet of Things (IoT) [8] representing “a world-
wide network of interconnected objects“ [9]. We will use the term CPS in this paper to
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address aspects regarding process automation and control. IoT will be used to talk about
interaction and data acquisition (IoT data) from individual components.

Being parts of CPS components, sensors and actuators are the basic building blocks for
interactions with the physical world. Sensors provide data about physical entities and their
surroundings. Actuators are capable of modifying the state of physical entities [10]. Actua-
tors can also provide data about their state or the physical entity they are manipulating.
Thus, we regard both, sensors and actuators, as producers of sensor events (cf. Figure 1).

The focus of this work is on investigating the correlation between these sensor events
(IoT data) and the execution of process activity executions, and vice versa. Linking IoT
data to process executions in CPS promises many benefits [1] including, e.g., the improved
monitoring of process activity executions by providing additional context data [11,12], or
the real-time decision making in processes based on sensor data [13]. In this work, we
distinguish between the linking of IoT data with processes (Process-Awareness of IoT Data)
and the linking of process data with IoT (IoT-Awareness of Process Data) [14]. Usually, a data
set containing one of the two types of data is given as the basis for analysis and the other
type needs to be derived or linked.
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Figure 1. UML class diagram of BPM–CPS concepts serving as basis for our work (adapted from [5]).

2.1.1. Process-Awareness of IoT Data

Given a set of IoT data from sensors and actuators of CPS components, we define
process-awareness of IoT data as the amount of information related to the execution of
processes and activities that is contained within the data set (cf. Figure 1).

Full process-awareness is given if each sensor event is fully contextualized in the process
execution, i.e., it can be clearly and directly associated with the execution of a specific
instance of an activity within a specific process instance. No process-awareness is given if
only the raw sensor readings are available without any process-related information.

The goal of this work is to increase the level of process-awareness in a given IoT data
set with no process-awareness to full process-awareness based on a set of semi-automated
steps and assumptions.

Note that as partially shown in Figure 1 the relation between a sensor reading and
an activity execution is not always a clear 1:1 relation. This increases the complexity of
determining the relationships automatically. A sensor event may also be associated with:

• More than one activity (e.g., in case of batch processing);
• No activity (e.g., in case of context data [12]);
• An activity only indirectly (e.g., as an effect of activity execution).

2.1.2. IoT-Awareness of Process Data

Given an event log of the process (activity) executions from a BPM system [3], we
define IoT-awareness of process data as the amount of information related to the sensor
events of the CPS that is contained in the process event log (cf. Figure 1), also known as
IoT-enriched event log [14]).
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Full IoT-awareness is given if each process or activity execution-related event in the
event log is linked to a set of relevant actuator and sensor events influencing or influenced
by the execution of the corresponding activity. No IoT-awareness is given if there is no
relation to IoT data contained in the event log.

Note that sensor events may also be associated with more than one event in the event
log or with no event (e.g., context data on the level of an entire trace [12,14]).

Once we were successful in reaching full process-awareness of IoT data as discussed
in the previous section, we can automatically generate an IoT-enriched event log based on
the SensorStream format [14] that has full IoT-awareness and that can then be exploited for
improved process monitoring and mining.

2.2. Smart Manufacturing Running Example

Smart manufacturing integrates manufacturing assets with sensors, computing plat-
forms, communication, control, and simulation using concepts of CPS [15,16]. Manufac-
turing processes are highly automated and modern production machines provide vast
amounts of sensor data. However, process-awareness of this data might vary as there is
usually no BPM system in place to orchestrate or monitor executions [17]. Sensor and
process-related data might come from different systems (e.g., IoT applications, manufactur-
ing execution systems (MES), programmable logic controllers (PLC)) at different levels of
granularity [18]. Moreover, legacy machines and human shop floor workers might only
provide limited amounts of sensor data to allow for monitoring of activity executions.

In this work, we will base our investigations on examples from the domain of discrete
smart manufacturing [19,20]. Here, we find a sophisticated set of sensors and actuators
producing low-level–raw–IoT data that can be analyzed for generic patterns and other
aspects that may indicate the execution of process activities. Higher level, process-related
data from machines and control systems will only be used to validate the correctness of
identified patterns in raw IoT data and of analysis steps. The patterns and analysis method
can then be transferred to other smart spaces (e.g., smart homes, smart offices, and smart
hospitals) that also emit low-level IoT data, but only very limited process-related data. In
these smart spaces, there are usually no central BPM systems or other information systems
for automated activity monitoring in place and processes are only partially automated [21].

2.2.1. Smart Factory Model

We base the running examples on a smart factory model that serves as a typical
representative of a CPS [2]. It includes different CPS components (here, production stations),
each equipped with a number of sensors and actuators that allow us to demonstrate our
approach in a sophisticated IoT environment. The smart factory model simulates a complete
production line consisting of the production stations, sensors and actuators depicted in
Figure 2. In general, we find the following types of sensors and actuators (cf. Table 1 for a
generic and Table 2 for a concrete example) as part of the following CPS components.

Table 1. Sensors and actuators of CPS components in the smart factory simulation model.

Type Name Device Measurement Range

Sensor i{x}_pos_switch position switch binary {0, 1}

Sensor i{x}_light_barrier light barrier binary {0, 1}

Sensor i{x}_color_sensor color sensor discrete {blue, white, red}

Actuator o{x}_valve valve binary {0, 1}

Actuator o{x}_compressor compressor discrete [0 .. 512]

Actuator m{x}_speed motor discrete [−512 .. 512]
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Table 2. Sensors and actuators of the WT_1 (Workstation Transport) component.

Type Name Device Measurement Range

Sensor i3_pos_switch position switch binary {0, 1}

Sensor i4_pos_switch position switch binary {0, 1}

Actuator o5_valve valve binary {0, 1}

Actuator o6_valve valve binary {0, 1}

Actuator o8_compressor compressor discrete [0 .. 512]

Actuator m2_speed motor discrete [−512 .. 512]

Sorting Machine (SM_1)

High-bay Warehouse (HBW_1)

Vacuum Gripper Robot with
Delivery & Pickup (VGR_1)

Oven
(OV_1)

Milling Machine
(MM_1)

Workstation
Transport 

(WT_1)

Environment & Camera (EC_1)

Figure 2. Components and layout of the smart factory model, partially adapted from [22] with
permission.

• VGR_1: The vacuum gripper robot with delivery and pickup station includes the
central transportation robot and a station for delivery and pickup of new or produced
workpieces. The vacuum gripper emits its current position as triple current_pos_{x,y,z}
and its target position as triple target_pos_{x,y,z} of continuous values.

• HBW_1: The high-bay warehouse allows for storage and retrieval of workpieces in
containers in a 3 × 3 matrix. Its loading robot emits its current position as a tuple
current_pos_{x,y} and its target position as a tuple target_pos_{x,y} of continuous values.

• OV_1: The oven allows for simulating the baking of a workpiece. It features a door
that can be opened and closed, and a sled to move the workpiece in and out of the
oven.

• MM_1: The milling machine allows for simulating the milling of a workpiece. It
features a turntable to move the workpiece inside and outside of the milling area.

• WT_1: The workstation transport component features a vacuum gripper to transport
a workpiece between the oven and milling machine along a slide.

• SM_1: The sorting machine uses a color sensor to determine the color of a workpiece. It
then uses compressors to push the workpiece into one of three ejection bays according
to the color.

• EC_1: The environment and camera station features an RGB camera and a comprehen-
sive environment sensor. The environment sensor provides continuous measurements
of air quality (aq), gas resistance (gr), humidity (h), indexed air quality (iaq), relative hu-
midity (rh), pressure (p), temperature (t), relative temperature (rt), brightness (b), and
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light-dependent resistance (ldr). This station also includes two joysticks for calibration
of the smart factory.

The design of the physical smart factory simulation model and the separation of CPS
components according to the descriptions above are based on the configuration provided
in [22]. All sensors and actuators of one CPS component are controlled by one embedded
controller, which serves as a physical (bounded) context for one CPS component.

2.2.2. Example Processes

We will use the following two example manufacturing processes in our smart factory
to illustrate the new concepts. Note that depending on the goal and use case of the data
analyst, these processes can already be known from domain knowledge or be discovered
from the detection of activity executions. In the latter case, there is no prior process
knowledge (unsupervised setting) and the analyst attempts to detect and label activities from
the raw IoT data and their knowledge about the CPS components. If processes are known,
the analyst attempts to identify known activities and sequences of activities from the raw
IoT data (supervised setting).
Storage Process: This process starts with a new raw workpiece in the delivery and pickup
area of the VGR_1 station. The vacuum gripper robot picks up the workpiece and moves it
to the station’s color sensor. Then, the workpiece color is determined. Then, the vacuum
gripper robot picks up the workpiece and moves it to the HBW_1 station. Then, the
vacuum gripper robot holds the workpiece until the high-bay warehouse retrieves an
empty container to store the new workpiece. Then, the vacuum gripper robot moves to its
initial position. We use the business process modeling standard BPMN 2.0 [23] to provide
an abstract representation of this process in the form of a graphical process model. This
process model is shown in Figure 3.
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Read Color Move to HBW Hold at HBW Calibrate

Storage ended

Store Workpiece

Figure 3. Storage process model in BPMN 2.0.

Production Process: This process starts with a human entering the color of a workpiece
that should be produced. Then, the HBW_1 station unloads a corresponding workpiece
from the warehouse. Then, the vacuum gripper robot of the VGR_1 station picks up the
workpiece and moves it to the OV_1 station. Then, the workpiece is burnt in the oven.
Then, the WT_1 station moves the workpiece to the MM_1 station. Then, the workpiece is
milled. Then, the workpiece is sorted in the SM_1 station according to its color. Then, the
vacuum gripper robot of the VGR_1 station picks up the workpiece (now: product) and
moves it to the pickup and delivery area. The corresponding process model in BPMN 2.0 is
shown in Figure 4.

2.2.3. IoT Data from Example Processes

We have recorded the raw IoT data from all sensors and actuators of all CPS com-
ponents in the smart factory during the sequential execution of three instances of the
storage process followed by three instances of the production process. Figure 5 shows the
corresponding plot of all sensor and actuator values over time. Thereby, each graph of a
different color represents the measurements (values on the y-axis on a log scale) from one
sensor or actuator over time (x-axis on a linear scale). The sensors and actuators correspond
to the descriptions in Section 2.2.1. Each graph represents a time series of measurements
that contain a timestamp and a value for a sensor or actuator. This type of data set and
plot serves as a starting point for the data analysis in our work. The data set used in this
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work is publicly available [6]. It contains the measurements for all 7 CPS components
with 53 sensors and 24 actuators at a frequency of 1 measurement per CPS component per
second over a duration of 27 min.
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Figure 4. Production process model in BPMN 2.0.

Figure 5. Plotof IoT data containing all sensors and actuators of all CPS components over time.

2.3. Goal

The goal of this work is to address the research question (cf. Section 1) regarding
the steps of analyzing IoT data to derive a method for the detection of process activity
executions (i.e., to increase the process-awareness of IoT data). The method shall be generic
and applicable to other IoT domains (e.g., smart homes, smart offices, smart hospitals)
featuring mostly low-level sensors and actuators as data sources [10].

The method shall support the data analyst in analyzing IoT data for process activity
executions. It shall provide a guideline regarding the step-by-step analysis and common
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patterns to look for in the IoT data. We focus on deriving an interactive method for the
data analyst as we argue and will show in the course of the paper, that full automation is
only partially (i.e., within certain steps) possible to achieve. Once IoT data sets have been
successfully analyzed and activities labeled, a knowledge base of known activities in the
specific domain can be built. This can then be used as ground truth to find similar activities
in unknown data sets and, thus, to increase the level of automation.

3. Related Work

Relevant related work can be classified into approaches discussing aspects of integrat-
ing IoT technology with BPM along the BPM lifecycle and into approaches that specifically
address process event extraction and abstraction from IoT data to facilitate process mining.

3.1. BPM Meets IoT

The introduction of IoT technology into the BPM domain has been vibrantly discussed
in recent years. Related work addresses a broad range of aspects to augment the model-
ing [24–27], execution [17,28–30], monitoring [14,31–33], and mining [2,4,11] of business
processes with data and concepts from the IoT and CPS. Our work can be considered as a
pre-processing stage of process mining where process-awareness of IoT data is increased
and subsequently used for event extraction, event abstraction and event correlation [34].

The BPM–IoT Manifesto discusses the benefits and challenges of bringing the worlds
of BPM and IoT together [1]. Sensors and actuators are new sources of real-time data that
provide opportunities to develop advanced monitoring approaches, e.g., for condition
monitoring, predictive maintenance [35] or verification of process outcomes [36]. With our
work we aim at contributing a solution to the challenge Bridging the Gap Between Event-Based
and Process-Based Systems as we raise the abstraction from IoT sensor and actuator events to
the level of business processes. From these insights, we may then also contribute to the
challenge Detecting New Processes from Data.

The IoT introduces new data sources for monitoring activities, behavior and daily
routines, e.g., using multi-modal motion and vision sensors to detect objects or humans [37].
Many approaches specialize in the detection of specific activities from one or more sen-
sors [38,39]. The automated correlation of detected activities with each other in the form of
daily routines and habits [40,41] as well as business processes [4] for process mining [42] is
also receiving increasing attention. We aim at providing a general method for correlating
data from arbitrary types of IoT sensors and actuators with the execution of arbitrary types
of process activities executed in the physical world.

3.2. Process Event Extraction and Abstraction from IoT Data

Process event extraction comprises the identification of event data relevant for process
mining and its extraction from different data sources, e.g., databases and information
systems [34,43]. Recent research is also considering the IoT as new source for event
data [12,44–47]. In our work, we focus on low-level IoT sensors and actuators serving as
the only sources that provide data about the processes and activities being executed in the
corresponding smart space.

Event abstraction aims at bridging the gap in the level of detail at which data is
recorded and at which it is analyzed [1,34,48]. Especially IoT sensors are capable of
producing data at a very fine-grained level [49], which may not be suitable for process
mining. Related work proposes to use, e.g., Complex Event Processing (CEP) [2,50],
clustering [51], supervised machine learning [4,51,52] or combinations together with expert
knowledge [53] to bridge this abstraction gap [54]. To enable process mining, the resulting
coarse-grained events then need to be matched to the activities in a process model and
correlated with the process instances through event-to-activity mappings [50,55,56].

In [46], the authors present a framework for deriving process event logs from sensor
data including the aggregations needed for event abstraction, activity discovery, and event
correlation. The lack of process-related information in IoT data often leads to uncertainties
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when being correlated with specific activities and cases as data patterns can often be
associated with multiple candidates [46]. Senderovich et al. propose a knowledge-driven
approach applying interaction mining to transform historical sensor data into process event
logs [57]. Mannhardt et al. discuss a supervised method for event abstraction based on
activity patterns, which are derived from low-level events using domain knowledge and
then aligned with process cases into an event log [58].

In summary, most approaches assume certain amounts of process-related knowledge
when discovering activities and processes from sensor data to generate IoT-enriched event
logs [14,33,59]. In many cases, existing activity labels have to be connected to the raw
events [34,47,60]. Related approaches are often not applicable to IoT data sets in more
unsupervised settings when almost no process knowledge and limited domain and topol-
ogy knowledge are given. The goal of our work is to support the process analyst with
analyzing unknown IoT data sets for activity and process executions in an early analysis
stage. In providing the process analyst with a guideline in the form of a structured interac-
tive analysis method, we rely on domain knowledge for the activities of event extraction,
event abstraction and event correlation. Once an initial set of IoT data from a specific
IoT domain was analyzed and labeled by the process analyst, the knowledge about IoT
data–activity–process correlations can be used as input for more sophisticated supervised
learning techniques to automatically analyze larger data sets [37,53,57,58].

4. Method to Identify Activity Executions

In this section, we investigate the research question: Which steps need to be taken
to manually analyze IoT data for process activity executions? To develop these steps into
a systematic method for activity identification, we will first conduct an exploratory data
analysis [61] of the given data set (cf. Section 2.2.3) from different angles based on the
visual information seeking paradigm: “Overview first, zoom and filter, then details-on-
demand” [62]. From these insights, we will then derive a generic method for the interactive
process activity identification from IoT data.

4.1. Assumptions

One of the main motivations and assumptions for our work is that a central BPM
system to execute and/or monitor the execution of processes is not available in many
IoT environments and thus, the raw IoT data from sensors and actuators is the only data
source. Regarding domain knowledge, we assume that the data analyst is at least familiar
with the CPS, its components and characteristics of sensors and actuators (e.g., as given in
Section 2.2.1).

Two additional basic assumptions in this work are that (1) CPS components are capable
of only sequential executions of activities (i.e., at most one activity at a time for a CPS
component), and (2) that the execution of one activity is limited to one CPS component
(i.e., an activity does not involve more than one CPS component). The latter assumption is
consistent with the general definition of a processing activity being regarded as an atomic
unit of work, which cannot be further decomposed and is executed by one actor [3]. The
first assumption is reasonable for discrete manufacturing [19] and other smart spaces where
CPS components have limited multi-tasking capabilities. We will discuss the effects of
relaxing these assumptions on the developed method in Section 6.

4.2. Overview First: Visualize the Entire IoT Data Set

The first natural step is to get an overview of the entire data set that should be analyzed.
Thus, finding an appropriate visualization for the type of data is the first challenge. Since
activity executions can be associated with a specific time frame (i.e., they have a duration)
and IoT data is available as time series [49], line graphs plotted for each sensor and actuator
over time provide a suitable visualization to get an overview of the data (cf. Figure 5).

The line graph plots of all the 77 sensors and actuators from our data sets result
in a rather complex visualization. Filtering and zooming are necessary actions to derive
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specific correlations among sensors and actuators that may indicate the execution of process
activities. However, in the figure, we are already able to see some first recurring patterns
that are worth to be further investigated. On the one hand, there are time frames with
high frequencies of sensor and actuator changes, which might be an indication of activity
execution, and there are time frames with almost no changes, which might be an indication
of inactivity. On the other hand, CPS components are active at different times or the entire
time, which might be an indication of their relevance and the type of activity being executed.
We use these two criteria—CPS components and time frames—as the basis for filtering in
the next step.

4.3. Zoom and Filter: Identify and Filter by Relevant CPS Components and Time Frames

To reduce the complexity of the initial visualization, we propose to filter the data first
by each CPS component to determine their relevance for the entire process execution. Then
the data set has to be segmented into time frames per component to identify phases that
should be analyzed further. As stated in Section 4.1, some of our basic assumptions are that
the execution of an activity is limited to one CPS component and that a CPS component
does not execute multiple activities in parallel. With these assumptions, we are able to
determine the relevance of a CPS component for the process execution as stated below. It is
up to the analyst to decide the granularity level of the time-based segmentation of the data
set. Recommendations here are to segment the data by periods of activity and inactivity per
component according to the following definitions. This step does not need to completely
rely on the domain expert but can be partially inferred automatically by analyzing the
sensor/actuator changes following the activity/inactivity patterns.

• If a CPS component does not exhibit significant changes in the values of its sen-
sors or actuators for the time frame in question, it is considered not relevant for the
identification of activity executions.

• If a CPS component exhibits significant changes in the values of its sensors or actuators
for the time frame in question, it might be considered relevant for the identification of
activity executions.

Example 1. Figure 6 shows the sensor and actuator values of the given data set filtered by the
workstation transport (WT_1) component. Here we see that changes in the component’s sensors and
actuators only occur in the second part of the time frame (18:53–19:07). Thus, this component seems
to be irrelevant for the first part of the process execution and relevant for the second part. Here we
could divide the identified relevant time frame further into parts of activity and inactivity to make
the segmentation more fine-grained. Given domain knowledge about the existing processes in the
CPS (here: smart factory), we can additionally already derive that the activity executions in the first
part of the data set might belong to the Storage Process since the WT_1 station is not involved here
(cf. Section 2.2.2). Similarly, we can derive that the second part belongs to the Production Process
with the involvement of the WT_1 station. Note that this is only possible in the example data set
because there are only sequential process executions without overlap and a clear distinction between
the first three instances (storage process, Section 2.2.2) and the second three instances (production
process, Section 2.2.2).
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Figure 6. IoT data filtered by the WT_1 (Workstation Transport) component.

Example 2. Figure 7 shows the sensor and actuator values of the given data set filtered by the
high-bay warehouse (HBW_1) component. Here we see significant changes in its sensors and
actuators during the entire time frame. Thus, the component might be relevant for the entire process
execution. As the patterns look very similar and the HBW_1 component is part of both example
processes, either to store a new workpiece (Storage Process) or to unload a workpiece (Production
Process, cf. Section 2.2.2), we cannot make any statements about the types of processes the individual
activities belong to.

Figure 7. IoT data filtered by the HBW_1 (High-bay Warehouse) component.

Example 3. Figure 8 shows the sensor and actuator values of the given data set filtered by the
vacuum gripper robot (VGR_1) component. Being the central entity responsible for transportation,
we see changes in this component’s sensors and actuators and with that its relevance along the entire
timeline. From the figure, we can also observe that patterns between the first part of the data set
and the second part differ slightly, which might be an indication that they belong to different types
of activities.
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Figure 8. IoT data filtered by the VGR_1 (Vacuum Gripper Robot) component.

Example 4. Figure 9 shows the sensor and actuator values (on a log scale) of the given data set
filtered by the environment and camera (EC_1) component. Here we see continuous readings from
all the sensors (e.g., gas resistance, temperature, humidity, pressure, brightness) during the entire
time frame. At this point, the data analyst has to decide about the relevance of the individual sensors
and the entire component. In our example manufacturing processes, the EC_1 component might
provide useful context data [12], but the component has no relevance for activity detection.

Figure 9. IoT data filtered by the EC_1 (Environment and Camera) component.

Table 3 summarizes the relevance determined for all the CPS components of the
smart factory and the corresponding time frames referring to the absolute time stamps
displayed in the visualizations of the given IoT data set. For the exemplary sequential
process executions (cf. Section 2.2.2), this table can be used to determine which details
to investigate in the next step, namely all components and time frames considered to be
relevant. Additionally, the table can be helpful to provide context and correlations among
components, e.g., to determine which type of process and activity might be executed
in the specific parts based on domain knowledge. In the two smart factory processes
(cf. Section 2.2.2), we know for example that the oven is capable of executing only one
type of activity (Burn) as part of the production process. Thus, we may already infer
that the second part of the data set may refer to the production process and the burn
activity being executed due to the OV_1 component being only relevant in this part. If this
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knowledge is not available, the time frame segmentation in the example would have been
more fine-grained and aligned with the relevance of the individual CPS components.

Table 3. Relevance of CPS components for the different (time-related) parts of the data set.

CPS Component Relevance Part 1 (18:40–18:53) Relevance Part 2 (18:53–19:07)

VGR_1 X X

HBW_1 X X

OV_1 – X

MM_1 – X

WT_1 – X

SM_1 – X

EC_1 – –

4.4. Then Details-on-Demand: Determine Start and End Patterns and Activity Signatures

Each component and time frame determined to be relevant is then investigated in more
detail. The plots for each component are analyzed with the goal of finding and annotating
specific patterns related to one or more sensors and actuators that might indicate either the
start time of an activity or the end time of an activity. Once the start and end events for an
activity are identified, the process analyst provides a suitable label for the activity.

Example 5. Figure 10 shows the details for the relevant time frames of the WT_1 (workstation
transport) component including annotations for the start and end of activities. Given all sensors
and actuators have been inactive, a change in the speed value of one of its motors from 0 to −512 (for
moving backward) or to 512 (for moving forwards), depending on the initial position of the transport
gripper, signifies the start of an activity. In our context, this refers to the activity Transport from
Oven to Milling, which needs to be provided as a label by the process analyst. Similarly, the end of
an activity is indicated by a change in the last active motor’s speed value to 0 followed by a longer
period of inactivity.

Start: Transport from Oven to Milling

End: Transport from Oven to Milling
Start: Transport from Oven to Milling

End: Transport from Oven to Milling

Start: Transport from Oven to Milling

End: Transport from Oven to Milling

Figure 10. Details of the IoT data filtered by the WT_1 component with manual annotations.

Example 6. Figure 11 shows the details for one relevant time frame of the HBW_1 (high-bay
warehouse) component including annotations for the start and end of activities. Again, the change
in the speed value of one of the motors from 0 to −512 indicates the start of an activity, namely the
Store Workpiece activity as labeled by the process analyst. The end of the activity is indicated by a
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position switch being pressed (i.e., its value changes from 0 to 1) as an effect of moving the loading
robot. The remaining active sensor values refer to the target positions of the warehouse robot, which
will only change with the start of a new activity in the HBW_1 component. The irrelevance of these
sensors at this point is part of the analyst’s domain knowledge.

Start: Store Workpiece
End: Store Workpiece

Figure 11. Details of a part of IoT data filtered by the HBW_1 component with annotations.

Example 7. Figure 12 shows the details for one relevant time frame of the VGR_1 (vacuum
gripper robot) component including annotations for the start and end of activities based on sensors
and actuators changes as well as more specific attributes. This central transportation component
is relevant in many parts of the process execution. Here we see that refinements of detected
activities might be necessary as a seemingly coherent activity that is preceded and succeeded by
periods of inactivity can actually represent a sequence of several shorter activities. As the vacuum
gripper robot is constantly moving and with this, its motors and compressors as well as switches
are constantly active or triggered, and different types of sensors/actuators need to be taken into
consideration to identify activity borders. In the case of this robot being responsible for the execution
of transportation activities from one station to another, the change of the target position values
provides good hints for the start and end of this type of activity in general. The change of one or more
of the target coordinates usually indicates that one target was reached, and with that, the associated
activity ended (e.g., in combination with the status of motor movements), and the movement to a
new target is started as part of a new activity. However, we may also see movements to more than
one target as part of one activity. The device-specific attribute target position is an indicator for
activity borders, which is usually part of the data analyst’s domain knowledge. Additionally, for the
vacuum gripper robot, we can consider the status of its compressor as an indicator for the start/end
of activities. The compressor’s status (on/off) is related to the picking up/dropping of workpieces,
which may mark the start or end of an activity. In general, the analyst also has to decide about the
correct levels of granularity of a detected activity, i.e., if it should be subdivided or merged with
others [48].
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Start: Get Workpiece from Pickup

End: Get Workpiece from Pickup

Start: Move to HBW End: Move to HBW
Start: Calibrate

End: Calibrate

Start: Hold at HBW End: Hold at HBW

Figure 12. First part of IoT data filtered by the VGR_1 component with manual annotations.

4.4.1. Activity Start and End Patterns

From the examples and further observations in the given data set, we can derive the
following general conceptual patterns regarding the changes in sensor and actuator values
(with x and y being arbitrary values) that may be indications for the start or end of an
activity (cf. Table 4). These patterns have shown to be valid more generally in CPS [2,63].
Note that these patterns only refer to single sensors and actuators. In complex CPS that
execute more complex processes, these patterns might be combined to composite patterns
based on logical conjunctions, aggregations or temporal dependencies between atomic
patterns as described in [63] to detect the start or end of an activity.

Table 4. Change patterns of single sensors and actuators and possible interpretations.

Device Change Pattern Interpretation Example

Sensor 0→ x Start or End light barrier interrupted

Sensor x→ 0 Start or End position switch released

Sensor x→ y Domain Knowledge color changed

Actuator 0→ x Start motor started

Actuator x→ 0 End compressor off

Actuator x→ y Domain Knowledge position reached

Additionally, we have observed that periods of inactivity followed by one or multiple
sensors or actuators becoming active are good indications for the start of an activity
and, vice versa, the change from activity to inactivity might indicate the end of activity
execution. This holds at least for CPS components that are not operating at high loads
(e.g., the oven, sorting machine, and milling machine in our setup). Other components
(e.g., the vacuum gripper robot) that are constantly involved in different activity executions
require refinements of activities detected solely based on a switch of sensors/actuators
from inactive to active. Here, additional component-specific attributes have to be taken
into consideration.

Regarding sensor characteristics, changes within discrete or even binary states of
sensor and actuator values (cf. Table 1) are more likely to indicate activity boundaries
than within continuous sensors. Continuous sensors or actuators require additional domain
knowledge and discretization into intervals to derive activity executions. Although in our
examples we have classified the environmental sensors as irrelevant, changes in their continu-
ous values following specific patterns (e.g., sudden changes or slow increase/decrease) might
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generally also be effects of the activity execution by a different component (e.g., an increase
of the environment temperature as a result of starting to burn a workpiece in the oven). We
assume these indirect patterns and cross-component dependencies to be part of the domain
knowledge of the analyst. However, here we also see a large potential for automating the
detection of sensor/actuator correlations across CPS components as part of future work.

While the focus of our analysis is on low-level IoT data coming from individual sensors
and actuators, CPS components might also emit higher-level sensor data (e.g., discrete
state changes within a machine), which should be prioritized when identifying activity
executions. This information is either part of the analyst’s domain knowledge or can be
provided as part of the sensor/actuator characteristics of a CPS component (e.g., in the
form of an ontology [64]).

Note that in this work, the patterns and sensor–actuator–activity correlations proposed
are just indications helping the process analyst to identify potential activity executions
from raw IoT data. It is the main responsibility of the process analyst to make ultimate
decisions about the start and end of activities.

As described above, it is also within the responsibility of the analyst to provide a suitable
activity label based on domain knowledge, or at least a generic label that allows for distinguish-
ing different activities. Thus, far, our approach is limited to detecting start and end patterns
including the associated timestamps for activities, and the CPS component that executed the
activity. The specific type of detected activity (i.e., a suitable label) can only be inferred from
this information or additional domain knowledge as done in the examples above.

4.4.2. Activity Signatures

Once the time-related borders of activity A were clearly identified, we derive its activity
signature AS(A). We define the activity signature AS(A) of activity A as: the sequence of
all sensor and actuator data represented as time series for the particular CPS component
within the identified activity boundaries relative to its start time tAs (with tAs = 0) and
its end time tAe relative to tAs. This sequence of sensor and actuator data is associated
with a unique activity label LA [5]. Following the idea of the digital twin being a digital
representation of a physical component or object [65,66], we regard a processing activity
as an abstract digital concept and its activity signature belonging to the activity’s physical
twin. The activity signature represents the physical manifestation of the execution of the
corresponding process activity in the sensors and actuators of the IoT environment [36].

Figure 13 shows the activity signature for the Transport from Oven to Milling activity
(cf. Figure 10) executed by the WT_1 component (relative time in seconds on x-axis, values
of sensors and actuators on y-axis). Figure 14 shows the more complex activity signature
for the Get Workpiece from Pickup activity (cf. Figure 12) executed by the VGR_1 component.

AS('Transport from Oven to Milling')

50 10 15 20 25 30 35 40

Figure 13. Activity Signature for Transport from Oven to Milling executed by WT_1.
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AS('Get Workpiece from Pickup')

50 10 15 20 25

Figure 14. Activity Signature for Get Workpiece from Pickup executed by VGR_1.

4.5. Find and Label Similar Activities

Using the activity signatures of detected activities, we are now able to analyze un-
known (i.e., unlabeled) parts of the given IoT data set for the occurrence of activities with
similar signatures. In the context of this work, we assume that the process analyst performs
a visual search for similarities with known activities. This step has a high potential for
automation and we will investigate different means for detecting similarities in time series
data (e.g., using dynamic time warping and supervised machine learning) as part of future
work [67]. Identified similar activities have to be labeled. Segments of no activity execution
also need to be labeled as such, so they can be found in other parts of the data set and each
segment (i.e., time frame) receives a label.

The term similarity does not refer to an exact match of a known activity signature (i.e.,
sequence of sensor and actuator values) in unknown parts of the IoT data set, but rather a
match of patterns and values within specific ranges. These variations in activity signatures
might be introduced by different factors, e.g., different parameters for activity executions
or imprecision that results from interactions with the physical world. Thus, when moving
from the manual detection of similarities to an automated approach, a similarity measure
and a threshold have to be introduced in order to find similar activities.

Figure 15 shows an example of similar activities found in the given IoT data set for
the VGR_1 component. Here we can observe very close matches between the signatures of
identified activities. Figure 16 shows an example of similar activities found in the given
IoT data set for the HBW_1 component. Here we see some larger differences between
signatures of the same activities. Taking the Store Workpiece activity as an example, one
influencing parameter is the position of the container in the warehouse that should be used
for storage. This position influences the duration but not the type of the unload and store
procedures and with that, e.g., the number of motor movements.

Figure 16 also shows an important limitation of only analyzing the raw IoT data for
activity executions. All the activities identified here have very similar signatures although
they can be distinguished into two different types that belong to different processes in our
smart factory example (cf. Section 2.2.2). The first three activities Store Workpiece refer to the
storage of a new workpiece in an empty container (cf. Storage Process in Section 2.2.2). The
following two activities Unload Workpiece refer to the unloading of an existing workpiece
from a container (Production Process). Both types of activities are implemented via the
same activations of sensors and actuators and the smart factory configuration currently
does not feature sensors to determine the load within a container. This leads to an ambiguity
regarding the detected activity [46] that could either be resolved through additional sensors
or through the consideration of the activity context (e.g., the preceding and succeeding
activities [2]).
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Get Workpiece 
from Pickup

Move to 
HBW

Calibrate Get Workpiece 
from Pickup

Move to 
HBW

Calibrate

Hold at HBW Hold at HBWno activity

Figure 15. Similar activities found for VGR_1 component.

Store 
Workpiece

Store 
Workpiece

Store 
Workpiece

Unload 
Workpiece

Unload 
Workpiece

no activity no activity no activity no activity no activity

Figure 16. Similar activities found for HBW_1 component.

4.6. Visualize All Activities and Find Repeated Sequences

After labeling the given IoT data set with the start and end of identified activities
based on the similarity search of activity signatures, it may also be possible to discover
entire processes based on the appearance of repeated activity sequences.

Figure 17 shows the visualization of all detected activities in the given IoT data set.
From a visual analysis of similarities and repetitions across activities, we are able to identify
two different types of three repeated sequences of activity executions. These repeated
sequences may be candidates for executed process instances, but can also be part of one
or more loops executed within one or more process instances. In addition, the detected
activities may belong to one or more process instances being executed in parallel. Moreover,
in the example, we assume that the given IoT data set starts with the first activity of a new
process instance, which may not always be the case and there is first a need for orientation,
especially when moving into online data analysis settings [68]. Here we need to again rely
on the process analyst and domain knowledge to label the processes.

In Figure 17, we can see that the first three executions of process instances belong
to the Storage Process (cf. Section 2.2.2) and the second three executions belong to the
Production Process. This can be derived from the involved CPS components (cf. Table 3)
and knowledge about the processes in the smart factory (cf. Section 2.2.2). Once executed
processes were identified in the IoT data set, we can extend the definition of activity signature
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(cf. Section 4.4.2) to the level of process signature considering the time series of sensor and
actuator values over the entire time of the process execution.

Storage: Instance 1 Storage: Instance 2 Storage: Instance 3 Production: Instance 3Production: Instance 2Production: Instance 1

Figure 17. All data (except irrelevant EC1 component) with activity and process annotations.

To automate this step of finding potential processes in the labeled data set, the start
and end of an activity can also be written as events into a process event log, which can be
used for process discovery (e.g., in the form of a process map) using traditional process
mining techniques [3].

4.7. Method

From the previous elaborations in Section 4 we derive the method depicted in Figure 18,
which describes the general process of analyzing raw IoT data for activity executions. We
derive this method as a sequence of the essential steps taken by the process analyst to
analyze a given IoT data set following the visual information-seeking mantra as described
in Sections 4.2–4.6.

1. Visualize all IoT
data over time

2. Identify relevant
CPS components  
and time frames

3. Filter by  
CPS component  
and time frame

For all relevant CPS components and time frames

4. Find activity
start and end

patterns

Refine

5. Determine
activity signature

6. Find and label
similar activities

For all unlabeled parts of the IoT data set

7. Visualize all
detected activites

8. Find repeated
activity sequences

Figure 18. Derived method for detecting activity executions from IoT data.

• Step 1: Visualize all IoT data over time to get on overview of the data set, the involved
CPS components and their sensors and actuators (cf. Section 4.2).

• Step 2: Identify relevant CPS components and time frames to determine the parts of the
IoT data set that need to be further analyzed (cf. Section 4.3).
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• Step 3: Filter by CPS component and time frame to reduce the amount of data to analyze
at a time (cf. Section 4.3).

• Step 4: Find activity start and end patterns to detect the points in time in the IoT data
where an activity started and ended (cf. Section 4.4.1). This step may need to be
repeated to refine the detected activities according to the required level of granular-
ity [48].

• Step 5: Determine activity signature to make a detected activity identifiable in other
parts of the IoT data set (cf. Section 4.4.2).

• Step 6: Find and label similar activities to provide labels for unknown parts of the IoT
data set (cf. Section 4.5).

• Steps 4–6 have to be repeated for all unlabeled parts of the IoT data set for the current
CPS component.

• Steps 3–6 have to be repeated for all relevant CPS components and time frames
(cf. Step 2) of the IoT data set.

• Step 7: Visualize all detected activities to get an overview of all identified activity execu-
tions in the IoT data set (cf. Section 4.6).

• Step 8: Find repeated activity sequences to identify candidates for processes (cf. Section 4.6).

4.8. Tooling and Data Pipeline

In our prototypical implementation, we use the system architecture described in [17]
to execute processes in the smart factory simulation model (cf. Section 2.2.1). Events
from sensors and actuators are published from the smart factory as messages in JSON
format [5] with a customizable frequency via the MQTT (https://mqtt.org/, accessed on
22 January 2023) protocol (one topic per CPS component). The sensor events contained
in these messages are written as measurements of a time series into an InfluxDB (https:
//www.influxdata.com/, accessed on 22 January 2023) database (one bucket per CPS
component). Finally, Grafana (https://grafana.com/, accessed on 22 January 2023) is used
to create the interactive visualizations and activity annotations in the form of dashboards
(per CPS component and for the entire CPS) from the database.

5. Proof of Concept Evaluation

To validate the proposed method we conducted a proof of concept evaluation, which
consisted of the manual activity detection and annotation of a new, unknown IoT data set
from the smart factory model following the steps illustrated in Section 4. Figure 19 shows
the visualization of the IoT data sets.

5.1. Setup

One of the authors acted as the process analyst performing the annotation. We remark
that the analyst did not know the process in advance, so as not to influence the annotation
operations. However, the analyst has knowledge about the individual CPS components as
described in Section 2.2.1 and basic knowledge about processes and types of activities that
can be executed in the smart factory. The analyst was asked to follow the developed method
as described in Section 4 and analyze the data step-by-step. The analyst was also given
the additional general recommendations regarding the determination of a component’s
relevance (Section 4.3) and the general set of sensor/actuator patterns to look for when
determining the start and end of an activity (Section 4.4.1). We deem conducting the
evaluation with an internal participant acceptable, since the method assumes the analyst to
be familiar with the CPS, its components and characteristics of sensors and actuators, and
proficient with the developed method. Nevertheless, we regard a structured user-study as
an interesting follow-up work to further validate our findings.

https://mqtt.org/
https://www.influxdata.com/
https://www.influxdata.com/
https://grafana.com/
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Figure 19. Plot of IoT data set used in evaluation.

The resulting annotation of the IoT data set was then compared with the actual process
event log constituting the ground truth. This log was automatically recorded during the
execution of the process by a BPM system [17] and not disclosed to the analyst. Figure 20
shows the underlying model of the executed processes used to generate the data set.
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Storage
ended

Figure 20. Process model (in BPMN 2.0) used for evaluation.

5.2. Results

Table 5 summarizes the relevance determined by the analyst for all the CPS compo-
nents of the smart factory (cf. Step 2, Section 4). Seven relevant time frames were identified
from the IoT data set based on the visualization of changes in sensor and actuator values
within the individual CPS components. The corresponding start and end time stamps
(absolute time stamps) are reported in the table. The analyst determined that the vacuum
gripper robot (VGR_1) was relevant in parts 1, 3, 5, and 7, the high-bay warehouse (HBW_1)
in parts 3 and 7, and the oven (OV_1) in parts 2 and 6. Other components were considered
not relevant in any time frame due to the absence of changes (MM_1, WT_1, SM_1) or
insignificance of changes (EC_1) in the corresponding data.
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Table 5. Relevance of CPS components for the given IoT data set.

CPS Part 1 Part 2 Part 3 Part 4 Part 5 Part 6 Part 7
Component (15:14:46–15:15:53) (15:15:53–15:16:25) (15:16:25–15:18:46) (15:18:46–15:19:00) (15:19:00–15:20:04) (15:20:04–15:20:38) (15:20:38–15:23:18)

VGR_1 X – X – X – X

HBW_1 – – X – – – X

OV_1 – X – – – X –

MM_1 – – – – – – –

WT_1 – – – – – – –

SM_1 – – – – – – –

EC_1 – – – – – – –

Figure 21 illustrates the result of the manual annotation done by the analyst (activity
boundaries in green), complemented with the annotation directly derived from the process
event log created by the BPM system (activity boundaries in red). The figure also shows
suggested abbreviated labels for the activities (in green suggested by the analyst, in red
suggested by the BPM system, and in black where the analyst and BPM system match) and
distinction into process instances.

The identification of the type of activity by the analyst almost completely matches the
ground truth. For the second activity executed, the process analyst was uncertain about
the semantics of this activity. A sequence of movements of the vacuum gripper including
dropping and picking up the workpiece again was observable in the data. However, no
other component was active in between. Here the actual intention is that the color of the
workpiece is determined with the help of the color sensor at the delivery and pickup station
connected with the VGR_1 component. This activity does only refer to reading a specific
sensor, which is constantly emitting data. Thus, this explicit sensor data retrieval cannot be
observed in the IoT data.

Additionally, we see deviations in the timestamps related to the start and end of
activities generated by the BPM system and identified by the process analyst. The process
analyst focuses on sensor/actuator patterns as the only indicators for activity boundaries.
However, the actual implementation and execution of the specific activity by the BPM
system refers to a call to a web service [17]. This invocation might involve additional
computations, requests to the other applications, or other forms of communication, which
might introduce delay. Thus, there may be mismatches emerging between the recorded
start/end of an activity and its manifestation in the IoT data. Examples here are the
implementation of (1) the Burn activity, which includes a short period of waiting before
moving the workpiece into the oven, and (2) the Store Workpiece activity, which is considered
to have ended once the container has been loaded into the warehouse, although the loading
crane is moving to its initial position afterward.

Based on the similarities of identified activity sequences, the process analyst was able
to successfully identify the execution of two process instances belonging to the same process.
From these instances, the analyst was able to recreate the process model accordingly, which—
apart from the uncertain second activity—corresponds to the model used for execution
(cf. Figure 20). Therefore, we conclude that the detection of activities and the whole process
following the developed method was achieved successfully.
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Figure 21. Evaluation IoT data set labeled by the analyst (green), BPM system (red) or both (black).

5.3. Observations

During analysis, the process analyst took note of some relevant observations to docu-
ment difficulties and challenges:

• The relevance of CPS components and time frames was easy to determine given
knowledge about the characteristics of sensors and actuators (cf. Section 4.3). However,
determining the size of a time frame based on a component being active/inactive may
already result in a very fine-grained segmentation of the data set.

• Activities executed by CPS components that involve only a small number of sensors
and actuators and that only offer one or two different activity types (e.g., the oven)
were easy to identify. Here the analyst was able to identify the start and end based on
simple change patterns (cf. Section 4.4.1) within the values of a sensor or actuator with
high accuracy compared to the ground truth. This is the case, for example, for the Burn
activity by OV_1. However, as mentioned in Section 5.2 there might be deviations in
the precision of identified time stamps due to the implementation of an activity not
directly manifesting itself in the IoT data.

• Activities executed by CPS components that involve multiple sensors and actuators
and depending on domain knowledge regarding the change patterns (e.g., referring
to the target position of the vacuum gripper robot) were more difficult to identify.
Here it was not always obvious which combinations of change patterns among one
or multiple sensors and actuators indicate the start or end, and which activity was
identified. Moreover, finding the right level of granularity of the detected activities
was non-trivial. For example, although correctly identified, it was not immediately
obvious that the activities Move to HBW and Hold at HBW executed by VGR_1 are
indeed two in sequence instead of one single activity.

• Finding similar activities visually based on the same signatures in the IoT data was
easy to achieve.

• Distinguishing activities with very similar signatures from each other was only pos-
sible by taking the process context (i.e., preceding and succeeding activities) into
account. This was the case, for example, for activities Pickup from DPS and transport to
OV and Pickup from OV and transport to DPS.

• The detection of activities contributes to incrementally developing process knowl-
edge in the analyst’s mental model, which in turn facilitates further detection and
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disambiguation of other activities from the data set. For example, it was possible
to distinguish between Pickup from DPS and transport to OV and Pickup from OV and
transport to DPS because in a previous iteration of the method loops, the Burn activity
was detected, signaling that OV_1 was active in the time frame between these two
activities and the workpiece must have been transported to the oven.

• The execution of a process activity may not manifest itself directly in the IoT data. For
example, the process activity Read Color only retrieves the current value of the color
sensor. Thus, there may not be an explicit change in the sensor data visible and the
execution not be detectable.

• Based on the identified repeated sequences of activity executions and underlying
assumptions (cf. Section 4.1), the analyst was able to recreate (discover) the process
models for two different instances of the process (cf. Section 2.2.2).

5.4. Conclusions from Evaluation

The evaluation indicates that the proposed method is a viable approach for the de-
tection of process activity executions and the discovery of process models from IoT data
given basic knowledge about the domain and characteristics of the sensors and actuators.
We noticed that changes within sensors and actuators can be linked to the execution of
activities in the physical world. However, in our setup, the ground truth refers to the event
log created by a BPM system that executed the activities. These activities are implemented
via software in the form of web services [17], which may include additional computations
and logic that cannot be observed in the IoT data and thus, may lead to a mismatch in the
IoT data observations and events recorded by the BPM system [36].

It is relatively simple to determine the relevance of CPS components and time frames
for the analysis of the data set and to identify similar activities based on the same signatures.
Difficulties might emerge in finding the exact indicators for the start and end of activities
and the right level of granularity of activities, especially in the case of several sensors
and actuators involved. Nevertheless, as we observed during the evaluation, potential
imprecision and ambiguities might be mitigated by considering the steps of the method
not in a strict sequence. Indeed, we noticed that looking at both the process context and
the already identified activities from other components (including the corresponding time
stamps) helps to disambiguate specific uncertain parts of the data set. We also noticed that
through annotation, the analyst incrementally acquires process knowledge, which then
applies to facilitate further annotation steps. For instance, after having identified the Burn
activity by the oven, it was possible for the analyst to annotate the subsequent activity at
the vacuum gripper robot as Pickup from OV and transport to DPS.

The method does not enforce a particular order to follow for the selection of the rele-
vant components to analyze (Step 4). However, the evaluation results suggest that it might
be beneficial to start with CPS components with fewer sensors and actuators and exhibiting
fewer change patterns. We observed that detecting activities for these components is easier
and facilitates detecting activities for other components exhibiting more complex patterns,
as these detected activities contribute to an incremental development of process knowledge
and context to exploit in subsequent iterations of the method.

6. Discussion

Complementary to the discussion of the evaluation results and observations in Section 5,
we elaborate on the potential for automation of the method’s steps, the applicability of the
method in other IoT domains as well as its limitations in this section. A discussion of the
research question and outcomes summarizes our findings.

6.1. Manual Annotations vs. Automated Labeling

The focus of our work is on providing an interactive method for the process analyst
to conduct an initial analysis of unknown data sets from IoT for activity executions. In
our elaborations, we have seen that expert knowledge and manual steps and decisions are
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vital in the early stages of data analysis. In Table 6, we summarize the role of the process
analyst, domain knowledge, and the potential for automation in each step of the method
(cf. Section 4).

Table 6. Manual steps in the method and automation potential.

Step Analyst Decision Domain
Knowledge Automation Potential

1: Visualize all IoT data over
time – – not necessary (only to support the

analyst)

2: Identify relevant CPS
components and time frames

relevance of CPS
components

characteristics of CPS
components, sensors and
actuators; process
knowledge

high: detect areas of sensor/actuator
changes
limitations: irrelevant CPS components
with sensor/actuator changes

3: Filter by CPS component
and time frame – – full automation

4: Find activity start and
end patterns

start and end pattern
of activities; level of
granularity; activity
label

characteristics of CPS
components, sensors and
actuators; process
knowledge

low: find general patterns (cf. Table 4),
calculate sensor/actuator dependencies
for new patterns
limitations: interpretation of calculated
dependencies, domain-specific patterns,
unknown level of activity granularity and
activity labels, insufficient IoT data

5: Determine activity
signature – – full automation

6: Find and label similar
activities similarity threshold process knowledge

very high: find similarities in time series
data
limitations: varying similarity thresholds,
ambiguities of activity labels

7: Visualize all detected
activities – – not necessary (only to support the

analyst)

8: Find repeated activity
sequences

loops; start and end
of one process
instance;
activity–instance
correlation

process knowledge high: find repeated sequences
limitation: activity–instance correlation

6.2. Applicability of the Method in Other IoT Domains

We have derived the method for activity detection from IoT data based on the com-
prehensive, exploratory analysis of a data set from the domain of smart manufacturing.
As seen in the example setup (cf. Section 2.2.1), CPS in this domain usually contain a rich
set of sensors and actuators that generate low-level (raw) IoT data. This environment
provides a suitable basis for deriving sensor/actuator patterns and an analysis method
that is applicable more generally, which was the goal of our work. The patterns and their
composition presented in Section 4.4.1 refer to sensors and actuators in general, which are not
specific to the domain of smart manufacturing but can be found in every IoT domain [10].
The derived method addresses the analysis of data from sensors and actuators independent
of a specific domain. Hence, we expect the method to be applicable in other IoT domains.

While the low-level IoT data in smart manufacturing is usually complemented by
higher-level status and process information coming from the PLCs and MES that may
help with the detection of automated process activities (cf. Section 2.2), other IoT domains
(e.g., smart homes, smart offices, smart healthcare) only feature a smaller set of sensors
and actuators that produce low-level IoT data. We expect that the proposed method and
sensor/actuator patterns may prove to be even more valuable in these IoT domains relying
only on a limited amount of sensors and actuators to enable the monitoring of activity
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executions. The application of the proposed method for activity detection in various case
studies in other smart spaces remains subject to future work.

6.3. Assumptions and Limitations

With the proposed method we put focus on the detection of the sequence of activity
executions, which are part of the control flow perspective. Other elements of a business
process in this regard (e.g., decision points, events) or of other perspectives cannot be
derived. However, we are also able to identify the resource (i.e., CPS component) that is
responsible for the execution of an activity and its duration.

Formal Domain Knowledge: The proposed method relies on domain knowledge driving
most of the steps. Here, we do not make any assumptions about such knowledge being
formally encoded in some data structures but assume it resides in the mental model of the
analyst. Clearly, this puts the burden of identifying concepts and relations solely on the
analyst, which makes the method fully dependent on the analyst’s cognitive capabilities.
This limitation could be mitigated by integrating a formal representation of the domain
knowledge, e.g., in the form of an ontology, coupled with automated reasoning capabilities
for knowledge inference and with the potential for automatic identification of patterns.
With this integration, the analyst could receive guidance in several steps of the method, with
benefits in particular in the case of complex CPS requiring the analysis of large volumes of
data. We will move in this direction with future work.

Parallel Activity Executions: Some of the basic assumptions in our work are that the
execution of an activity is limited to one CPS component at a time and that one CPS com-
ponent does not execute multiple activities in parallel (cf. Section 4.1). These assumptions
are reasonable in discrete manufacturing and many other IoT domains that show a lower
degree of automation and less complex activities than, for example, in high-throughput
manufacturing settings. This allows us to reliably define the scope of one executed activity
based on IoT data and relate it to the corresponding CPS component. With these assump-
tions, our method can also be applied in the case of parallel activity executions by different
CPS components. However, the correlation with the corresponding process instance(s) be-
comes more difficult and requires additional process knowledge and context. Relaxing the
assumptions would require adjustments to the proposed method. In case a CPS component
executes more than one activity at a time, we may observe an overlay of activity signatures
(in case the activities are independent of each other regarding sensor/actuators), completely
different activity signatures (in case they are dependent) or the same activity signature
(e.g., in case of batch production). To distinguish these activities from each other requires
additional information (e.g., case or object identifiers), process knowledge and context. In
turn, the execution of one activity by multiple involved CPS components would lead to
activity signatures that span across components (e.g., the lifting of a heavy workpiece by
two robots). For the proposed method this means that Step 4 (cf. Section 4) needs to be
extended to not only consider the currently selected CPS component but also other relevant
CPS components to identify the start and end of an activity. These types of correlations
among CPS components have to be derived either as part of the domain knowledge or
calculated (e.g., using clustering techniques).

Data Set: The data set used in the running examples to develop the method contains
data from simplified models of real production machines (CPS components) [6]. The
number of sensors and actuators being active in the execution of activities per component
is limited to a maximum of 16, often less than only three or four sensors/actuators are
relevant for activity signatures. This rather low number of sensors and actuators emitting
data at a relatively low frequency (once per second) makes the interactive, visual analysis
feasible for the process analyst. As such it is representative of use cases and settings in other
IoT domains where the number of available sensors and actuators and the frequency of
emitted data is in similar ranges. Industry-grade production machines and more complex
CPS (e.g., smart cars) produce several magnitudes more of low-level IoT data from sensors
and actuators [49,69]. A visual analysis of this data would require multiple pre-processing
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steps to reach an amount of data and level of granularity suitable for our proposed method
to be applied. This is closely linked to the decision about a suitable granularity level of
activities that should be detected and the subsequent analysis steps. In our work, we
assume that after the successful analysis and labeling of a given IoT data set, we can derive
an event log from the activity annotations that is suitable for process mining tasks [3]. Thus,
the subsequent analysis would focus on rather high-level, coarse-grained activities in the
context of business processes rather than on low-level control processes in CPS [17,70].

6.4. Summary of Discussions

To summarize the discussions, we explicitly address the research question introduced
in Section 1 that guided the development of the data analysis method to increase the
process awareness of IoT data by identifying activity executions (cf. Section 2.1). The
research question asks for necessary steps to analyze a given IoT data set with the goal of
finding a sequence of process activity executions. Following the visual information-seeking
mantra, we have derived a general 8-step analysis method from a given, comprehensive
IoT data set (cf. Section 4). In essence, the CPS components have to be evaluated regarding
their relevance in the process executions, and then specific patterns indicating the start and
end of activity have to be found within the sensors and actuator values (represented as time
series) of the relevant CPS components. From the evaluation of applying the developed
method to an unknown data set, we have learned that the steps of the method should guide
the data analysis, but do not represent a strict sequence that should be followed. Cross-
references with already identified activities in other CPS components and iterations in the
detection of activity boundaries help with the disambiguation of activities and specification
of activity start and end more precisely. During the analysis, the process analyst gains
additional process knowledge and develops an increasing understanding of the executed
processes, which helps in refining the detected activities.

The developed method is useful for activity detection in IoT domains that feature a
manageable amount of sensors and actuators emitting low-level IoT data at a frequency
that is reasonable for a data analyst to perform a visual analysis (cf. Sections 6.2 and 6.3).
In deriving the analysis method, we explicitly focused on the post-mortem analysis of IoT
data for building a knowledge base regarding the activity–IoT data correlations. In the
initial phases of data analysis, many steps rely on domain expertise and manual decisions
regarding the relevance of components, correlations and domain-specific patterns among
sensors and actuators as well as granularity and labels of activities (cf. Table 6). Once a
sufficient part of the data set was labeled with identified activity executions, this knowledge
can be used as ground truth to increase the levels of (supervised) automation for all steps
significantly. The newly introduced concept of activity signatures that contain the sequence
of sensor/actuator values as time series within the boundaries of an identified, labeled
activity facilitates this automation. Using the derived patterns and correlations that are part
of the knowledge base, we are also able to move into the detection of activity executions at
runtime, which will be part of our future work.

7. Conclusions and Future Work

In this work, we investigated the aspect of deriving process-related knowledge from
a given IoT data set consisting of sensor and actuator readings. Based on the assump-
tion that no central BPM system is available to orchestrate or monitor the execution of
processes in typical IoT environments, we focus on the manual detection of the sequence
of executed activities in an IoT data set by a process analyst. Following the well-known
visual information seeking mantra [62] in conducting an exploratory analysis of a data set
from the domain of smart manufacturing, we developed a structured interactive method
that is generally applicable to analyze unknown IoT data sets containing time series of
sensor/actuator readings. As part of the method, we provide guidelines for determining
the relevance of CPS components regarding activity executions, for finding typical patterns
in sensors and actuators that may indicate the start or end of activity, and the novel concept
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of activity signatures to identify similar activities. In a proof of concept evaluation, we were
able to show that the developed method is suitable to guide the process analyst in activity
identification and in building an increasing understanding of the correlations among ac-
tivities and processes from low-level IoT data in an iterative manner. The method is very
useful in the early stages of analyzing unknown IoT data assuming only knowledge about
the characteristics of sensors, actuators and the corresponding CPS is given. Following the
method, the process analyst is able to identify and label activity executions in the data set
to build a ground truth for the automatic detection of activity executions in the same IoT
environment in later stages and large data sets. Once a given data set from an IoT domain
was labeled with start and end events representing the boundaries of process activities
following the proposed method, traditional process mining techniques can be applied to
analyze the process executions.

In future work, we will investigate the applicability of the developed method in
case studies and user studies within other typical IoT domains (e.g., smart healthcare).
We will also focus on increasing the automation levels of specific steps, especially the
search for similarities of unknown parts in an IoT data set with identified activities (e.g.,
using dynamic time warping, case-based reasoning, rule mining, and other supervised
machine learning techniques). While the method presented in this work addresses the
post-mortem analysis of a given, unknown IoT data set, we will increasingly move towards
an online analysis of low-level IoT data streams for activity detection using the derived
sensor-actuator-activity patterns in CEP with the goal of enabling online conformance
checking [2].
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