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Abstract: Wireless sensor networks consist of many restrictive sensor nodes with limited abilities, 
including limited power, low bandwidth and battery, small storage space, and limited computa-
tional capacity. Sensor nodes produce massive amounts of data that are then collected and trans-
ferred to the sink via single or multihop pathways. Since the nodes’ abilities are limited, ineffective 
data transmission across the nodes makes the network unstable due to the rising data transmission 
delay and the high consumption of energy. Furthermore, sink location and sensor-to-sink routing 
significantly impact network performance. Although there are suggested solutions for this chal-
lenge, they suffer from low-lifetime networks, high energy consumption, and data transmission de-
lay. Based on these constrained capacities, clustering is a promising technique for reducing the en-
ergy use of wireless sensor networks, thus improving their performance. This paper models the 
problem of multiple sink deployment and sensor-to-sink routing using the clustering technique to 
extend the lifetime of wireless sensor networks. The proposed model determines the sink place-
ments and the most effective way to transmit data from sensor nodes to the sink. First, we propose 
an improved ant clustering algorithm to group nodes, and we select the cluster head based on the 
chance of picking factor. Second, we assign nodes to sinks that are designated as data collectors. 
Third, we provide optimal paths for nodes to relay the data to the sink by maximizing the network’s 
lifetime and improving data flow. The results of simulation on a real network dataset demonstrate 
that our proposal outperforms the existing state-of-the-art approaches in terms of energy consump-
tion, network lifetime, data transmission delay, and scalability. 

Keywords: wireless sensor networks; sink; multiple sink deployment; sink placement; sensor-to-
sink routing; ant-clustering algorithm; data transmission; data transmission delay 
 

1. Introduction 
Wireless sensor networks (WSNs) have notably increased in popularity over the last 

few decades. Their success, and the rising demand for them, are reflected in the ever-
expanding range of applications in various fields, such as transportation [1–5], health [6–
8] (human activities in health care), manufacturing [9–12], military [13,14] (battleground 
surveillance by the military), and environment [15–17] (wildfire early detection, air pol-
lution monitoring, and water monitoring). WSNs are also critical components of the In-
ternet of Things (IoT) [18]. 

A typical WSN consists of several sensor nodes (SNs) and at least one base station 
(BS), called the sink. An SN is a small device with limited abilities (energy, processing 
capacity, and memory) that is placed in the environment to sense and gather the necessary 
data before sending it directly (single hop) or via other multihop communications to the 
nearest sink [19]. The sink is in charge of receiving and conveying these gathered data to 
the final user and is outfitted with high energy and processing capabilities [20]. Commu-
nications consume more than 70% of the battery energy among various nodes. In sparse 
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topology, a WSN with limited node capacities cannot function as intended if one of the 
network’s sensors runs out of energy [21]. In dense topology, the overlapped sensing areas 
significantly increase unnecessary energy consumption and shorten the network’s life-
time. For that reason, it is necessary to construct an energy-efficient WSN to maximize the 
network’s lifetime. 

The lifetime is the time until the energy of the first sensor node is exhausted [22], and 
to improve it the flow balance between nodes must be significantly improved. SNs closer 
to the base station conserve a considerable quantity of energy for extended periods of 
time, and energy consumption is related exponentially to distance during data transmis-
sion. Hence, the distance between communicating nodes determines the quantity of en-
ergy used for data transmission. Specifically, the nodes nearest to the sink consume less 
energy. In contrast, distant nodes may use other nodes to transmit the data to the sink, 
which causes energy depletion of the SNs that are closest to the base station. Indeed, the 
sink location impacts the network’s lifetime based on its distance from a significant num-
ber of sensor nodes. 

An excellent way to design an energy-efficient WSN is to deploy numerous sinks 
rather than a single sink [23]. When designing a network with several sinks, we intend to 
determine how many sinks there should be. However, even more crucially, we need to 
determine where the sinks should be placed and then select the optimal path for data 
transmission. Clustering is a promising strategy for managing the WSN structure, since it 
has the potential to improve network performance. It aims to group nodes based on pre-
determined criteria, such as ensuring the quality of service, balancing the network load, 
and optimizing the resource requirements [24]. Resource-constrained nodes no longer 
need to send data directly to sinks using clustering techniques. Other approaches are pro-
posed to outperform energy efficiency, such as sleeping mechanisms [25], data aggrega-
tion algorithms [20] and compressed sensing mechanisms [26]. The sleeping mechanism 
significantly reduces energy consumption by putting sensors to sleep or waking them up. 
The data aggregation algorithm is mainly used to process massive data that does not sup-
ply meaningful information to its owner in its current inconsistent form. The compressed 
sensing mechanism takes advantage of the redundancy present in environmental WSN 
signals to decrease the number of transmitted measurements and, as a result, achieve an 
appealing reduction in network energy consumption. However, it necessitates significant 
data preprocessing, which runs counter to Ambient Intelligence domains’ processing and 
energy limitations. 

In general, sensor nodes can be deployed in different environments with different 
technologies, such as Wireless Body Sensor Networks [27] that gather and evaluate pa-
tients’ vital-sign-related data by deploying various bio-medical sensors (body tempera-
ture, blood pressure, heartbeat, etc.) in the human body for an extended period, thereby 
lowering healthcare costs. An essential part of the Intelligent Transport System (ITS), the 
Vehicular Ad-hoc Network (VANET) [28], connects and allows wireless communication 
between moving vehicles. It is a particular type of Mobile Ad-hoc Network (MANET). 
The Flying Ad-hoc Network (FANET) [29] consists of several Unmanned Aerial Vehicle 
(UAV) nodes that connect wirelessly. UAVs can be controlled remotely or using pre-pro-
grammed instructions.  

Typically, SNs consume a larger amount of energy while transmitting data. Hence, 
reducing the amount of redundant data transferred to the BS is crucial when the cluster 
head (CH) nodes in a network are appropriately selected. Additionally, it is essential to 
examine the routing protocol in the main features and common scenarios to ensure real-
world WSN construction and optimum environment simulation for further improve-
ments using a range of optimization methodologies [30]. 

Previous studies have notably discussed approaches to sensor deployment, sink 
placement, and data transmission for energy efficiency. These techniques [23,31–34] are 
not suggested in the case of large-scale sensor deployment. Other studies focused only on 
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the issue of routing paths without attaching them to sink placements [31,34–39] or ad-
dressed only the sink placement [23,32]. Studies have provided a clustering model for data 
routing, but there are considerable shortcomings in the clustering methods. In particular, 
they put a tremendous load on CH and ignore the residual energy and distance between 
the Cluster Head and the sink, which impacts energy consumption. Therefore, we need a 
solution that addresses the aforementioned issues in order to reduce energy consumption, 
increase the network’s lifetime, and shorten the data transmission delay in a constrained 
IoT network. Thus, we have to propose a fully analytical model that considers the most 
common review limitations: clustering optimization, placement of multiple sinks, and 
data routing problems in heterogeneous WSNs. 

In this research, inspired by swarm intelligence methods, especially the ant clustering 
algorithm, we propose an efficient model based on clustering that determines the ideal 
position for multiple sinks and routing data pathways in WSNs. The following are some 
of our research’s significant points in terms of the proposed model-based clustering: 

1. We propose a complete model that aims at increasing the network’s lifetime. It per-
forms essential tasks like CH selection (higher Cp factor), path construction from sink 
to CH (less costly path), and sink placement (in the barycenter of the cluster); as a 
result, it minimizes the load on the sensor nodes. 

2. Under the operation of our model, no intermediate node participates or transmits 
their data packets with less than an energy threshold and more than a distance 
threshold (long link—discussed in Section 3.1), thereby conserving a significant 
amount of energy. 

3. We compared our proposed technique with others under various simulation settings 
(varying the number of sensor nodes, CHs, and sinks) to identify areas of limitation 
and found that it outperformed all of them. We observed that the number of hops is 
reduced by more than 4% to one hop, and the residual energy is increased by more 
than 3%. 
We have adopted the ant clustering algorithm because of its various features [40]: (i) 

it requires minimal information about the issue at hand; (ii) it can typically complete both 
broad and parallel searches over the area of potential solutions by having a swarm (pop-
ulation) of candidate solutions. In our study, the execution time is a carried-out concern, 
so a parallel search is needed; (iii) it is scalable in clustering issues because of its distrib-
uted nature [41]. In this research, we address the problem of clustering in a constrained 
environment in which we have a high number of varied sensors and features; (iv) it is 
robust to the impacts of outlier data [42–45]; (v) it examines the space issue more deeply 
than greedy algorithms that use local search. According to [46], ant-based algorithms can 
find near-optimal solutions. 

The structure of this work is organized as follows: the second section includes a sum-
mary and a review of the most recent works on sink placement and data routing paths. In 
Section 3, we provide a definition of the problem, the ant clustering algorithm, and the 
adopted model of energy. In Section 4, we present an appropriate way to formulate the 
proposed method, which deals with four issues: deployment sensors, applied clustering, 
multiple sinks placements, and data routing paths. In Section 5, we further discuss the 
main extracted results. Finally, a thorough conclusion and proposal for future work are 
presented in Section 6. 

2. Related Works 
The optimization of energy consumption and the maximization of a network’s life-

time are related to different factors such as data routing, sink assignment, and optimal 
multiple sink locations (i.e. finding the optimal number and the best placement of the 
sinks). 
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2.1. Sink Placement 
Single-sink solutions are not highly efficient in applications requiring large-scale de-

ployment, such as environmental monitoring, industrial networks, surveillance, and ag-
ricultural scenarios.  

In an early study by [23], the authors used an iterative clustering technique with mul-
tiple sinks in the agricultural field to find the optimal location for each sink while maxim-
izing the network’s lifetime. To ensure the network’s scalability, they used the k-means 
method to divide the whole network into clusters, where each sink is situated in the mid-
dle of each cluster in terms of energy. The number of sinks increases until a necessary 
lifetime is reached. However, due to the vast number of SNs and the deterministic static 
number of sinks at constant positions in the network, the technique is unsuited to large-
scale networks. In addition, the route from sensors to sinks needs to be considered. 

Another work [47] modelled the problem of optimal sink position and sensor-to-sink 
communication as a mixed integer linear programming (MILP) model that attempts to 
prolong the network’s lifetime and simplify the routing to the sink to gather data using 
the PSO algorithm. The model indeed prolonged the network’s lifetime, but it may choose 
the longest path. An analytical model [32] proposed to deal with the energy hole issue by 
allocating k-sinks in the network based on the k-median problem, hence marking a more 
extended network lifetime. However, the model did not mention the type of applications 
used, since in cognitive WSN the sinks are not qualified for processing the data of every 
sensor. 

Other studies [48] combined sink position, sensor position, scheduling, and routing 
with the linked coverage (SPSRC) model in a single model that deals with the design prob-
lems mentioned. The SPSRC model allows the deployment of sink and sensor locations, 
as well as scheduling/monitoring the activity of the located sensors, and the data travels 
from each energized node to its associated sink for network coverage across a restricted 
zone area. Meanwhile, [49] introduced a model for heterogeneous-WSN using a clustering 
technique founded on the energy forecast (CTEF). This model considered quality and 
packet loss rate to decrease SN’s energy consumption. Unfortunately, coverage time has 
not been considered in this model. As a result, it impacts the lifetime performance of sen-
sor networks. 

The use of a mobile sink trajectory, where the moving sink traverses all SNs and 
gathers data by means of single-hop communication based on the Hilbert curve, was ini-
tiated in [35]. However, this method suffers from a high transmission time, since data is 
only conveyed to the sink by traveling near to the boundary and in a single hop. Similarly, 
efficiency, scalability, and availability are factors to be achieved with a single sink. The 
authors of [50] gathered sensor data using several sinks around the observation field. The 
sensors have three-sector antennas and send data to BS directly or via intermediary nodes, 
depending on which sector they use. 

In [51], they developed mixed-integer linear programming (MILP), in addition to ref-
erencing the hot-spot or energy-hole problem by proposing the utilization of “optimal 
mobility patterns” on three representations for multiple sinks (random, grid, and spiral 
patterns). As a result, it extended the WSN lifetime as long as possible. A mobile sink can 
be suggested as a solution to the energy hole problem, but it remains challenging to design 
a dynamic path sink. 

Some research [52] has combined the moth flame optimization (MFO) algorithm and 
differential evolution (DE) algorithm to construct an optimal mobile sink route by clus-
tering the wireless sensor networks. This technique reduced energy usage and maximized 
the network’s lifetime. Nevertheless, it failed to calculate the data transmission delay and 
throughput. Table 1 summarizes relevant research papers studying sink placement. 
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Table 1. Functional comparison of the most recent studies for sink placement. 

Authors 
\Year Sink Type Number of 

Sinks 
Clustering 
Mechanism 

Network Constraints Considered Keys Points: 
Algorithms 
/Protocols 

Limitation/ 
Constraint Network 

Lifetime 
Energy 

Consumption 
Data 

Routing 

Sapre et al. 
(2021) [52]  

mobile single √ √ √ √ 

Combines meta-heuris-
tic differential moth 
flame optimization 

(MFO) and differential 
evolution (DE) as DMFO 
to place the relay nodes 

to cluster the WSN. 

Coverage time has not 
been considered in 
this model. As a re-

sult, it impacts the life-
time performance of 

sensor networks. 

Kabakulak 
(2019) [48]  

static multiple × √ √ √ 

SPSRC, a mixed integer 
programming formula-

tion, determines the best 
placement for sensors 
and sinks, as well as 

sensor active/standby 
times and data transmis-
sion paths from each ac-
tive node to its assigned 

sink. 

This method assigns 
the task of selecting 
alive nodes to lower 
energy sensor nodes; 
this raises dead nodes 
and breaks network 

connections. 

 Tsoumanis 
et al. (2018) 

[32]  
static multiple × √ √ × 

A k-median facility loca-
tion problem. 

Focus only on sink de-
ployment. 

Cayirpunar 
(2017) [51]  

mobile multiple × √ √ √ 

The mixed integer pro-
gramming (MIP) frame-
work defines network 
lifetime (NL) for multi-
ple mobile BSs under 
various mobility pat-

terns. 

The method fails to 
determine the data 
transmission delay 

and throughput. 

Zhao et al. 
(2017) [47]  

static multiple √ √ √ √ 

Sink location and sen-
sor-to-sink route optimi-
zation using the PSO al-

gorithm. 

The protocol is limited 
to sinks in the moni-

toring zone. 

Hong et al. 
(2016) [49]  

static multiple √ √ √ × 

CTEF is a clustering-tree 
topology control tech-
nique based on the en-
ergy forecast for con-
serving energy and 

guaranteeing network 
load balancing while 

considering connection 
quality and packet loss 

rate. 

This solution does not 
address the issue of 

data transmission de-
lay. 

Ghafoor et 
al. (2014) 

[35]  
Mobile single × √ √ √ 

Based on the Hilbert 
curve, a mobile sink tra-

jectory is created. 

Collecting data in the 
direction of the Hil-
bert curve does not 
guarantee that the 

load on the network’s 
nodes will be balanced 
and energy consump-

tion will rise. 
Oyman et 
al. (2004) 

[23]  
static Multiple √ √ √ × 

Sink placement using 
the k-means algorithm. 

The method is unsuit-
able for large-scale 
networks, and the 
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pathway from sensors 
to sinks must be con-

sidered. 

2.2. Data Transmission and Routing Paths 
The crucial role of each sensor in a WSN is to regularly transfer its perceived data to 

the sink. The simple method is Direct Transmission (DT) [34], a scheme where sensors 
transmit directly to the sink nodes without using an intermediate node. This configuration 
is mainly employed in networks with topologies that rely on a central node to oversee the 
operation. However, it results in an unequal depletion of energy among the nodes. As a 
result, nodes located far away from the sink are depleted more rapidly than nodes placed 
near to the sink. 

The significant variance in node energy consumption shortens the total network life-
time, breaching fundamental WSN requirements (energy efficiency). Several methods 
have been offered to address these concerns, including minimizing the energy consump-
tion of SNs and enhancing their lifetime. The routing solutions may be classified into flat 
and hierarchical protocols. Flat routing protocols [53], such as DD [54] and SPIN [55], use 
data diffusion to load the network with a massive number of packets, which impacts 
transmission time and the network’s lifetime. Flooding is the most fundamental adaptive 
strategy for WSNs. It is highly dependable since it ensures network throughput across the 
sink’s many little paths. However, it suffers from traffic implosion, overlapping, and re-
source blindness [56]. 

Clustering techniques are used in hierarchical routing to improve network perfor-
mance. Clusters of nodes are formed, with each cluster having its own head node. The 
Cluster Head nodes are in charge of gathering and aggregating data from the particular 
clusters and relaying the aggregated data to the sink node. Low energy adaptive cluster-
ing hierarchy (LEACH) [57], power-efficient gathering in sensor information systems 
(PEGASIS) [36], centralized energy efficient distance (CEED) [31], threshold-sensitive en-
ergy efficient sensor network protocol (TEEN) [58] and general self-organized tree-based 
energy-balance (GSTEB) [37] are some of the most well-known hierarchical routing sys-
tems. 

One of the first studies on this issue was in relation to the LEACH system. In this 
system, the CH receives data from the other members’ nodes in the cluster, collects it, and 
then sends it all to a base station. LEACH rotates the CH to ensure that energy usage is 
evenly distributed. The dynamic and distributed clustering protocol LEACH is the most 
outstanding example. LEACH increases the network lifetime by eight times more than 
DT. Nonetheless, it assumes that the medium is static. 

In another way, several solutions to improve network lifetime using the Compressive 
Sensing (CS) theory have been proposed by researchers. Cluster-based routing, CS theory 
and single-sink deployment are all discussed in [59]. The researchers evaluated the influ-
ence of BS location on transmission numbers and offered two data gathering approaches: 
Energy-aware CS-based Data Aggregation and Energy-balanced High level Data aggre-
gation Tree (EHDT). 

The distance between nodes and the associated sink is a critical factor in choosing the 
best path to transmit the collected data in an energy-efficient routing technique [38]. This 
low-energy routing path should in fact reduce communication costs. Using block-diago-
nal matrices as measurement matrices, [60] combined CDG and clustering in WSNs, re-
sulting in a significant decrease in transmission power utilization. These cluster-based 
CDG methods, however, still necessitate a substantial amount of intra-cluster data ex-
changes. Furthermore, none of the previous studies have looked into the robustness of 
signal recovery performance in the event of network node drops. 

The authors of [33] presented two algorithms: Multi-sink Placement and Anycast 
Routing (MPAR), and Extended Multi-sink Placement and Anycast Routing (EMPAR). 
The two algorithms are built for a two-level architecture, with nodes grouped on the first 
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level. A load-balanced data aggregation routing tree connects SNs to the corresponding 
CH. At the second level, the algorithms optimized the sojourn positions of mobile BSs 
using a particle swarm optimization technique. Each mobile BS’s ant colony optimization 
technique represents the high-level Anycast routing tree. The data is then sent from CHs 
to BSs using a hybrid compressive sensing approach. Nevertheless, as the number of 
nodes grows, the runtime complexity grows. The network becomes expensive when using 
several sinks. In this regard, succeeding in choosing their best possible location is increas-
ingly challenging as the number of sinks increases.  

By dividing the network into balanced clusters, the Hybrid Energy-Efficient Multi-
Path (HEEMP) routing algorithm improves the energy efficiency of WSN networks [39]. 
It also solves the issue of imbalanced cluster formation. In order to reduce the energy used 
during data transmission from the SNs to respective CHs, HEEMP has employed a multi-
hop communication technique inside the cluster. 

Recently, a technique [61] was proposed based on the DP clustering algorithm that 
allows nodes to be grouped based on their coordinate locations. It also enables SNs to self-
generate decisions depending on the data flow condition in the network and builds an 
automated path plan that extends the network’s lifetime. Although the study improves 
the lifetime, choosing a low-energy node as a CH results in a non-uniform distribution of 
CHs. Table 2 shows the most recent studies on routing protocol and sink placements. 

Table 2. Functional comparison of latest studies for sink routing protocol. 

Authors\ 
Year Approach Clustering 

Mechanism 

Network constraints  
considered CH  

Selection  
Criteria 

Data  
Transmission Drawbacks/Limitations 

Network 
Lifetime 

Energy  
Consumption 

Zannou et 
al. (2022) 

[61] 
DP clustering √ √ √ 

-Coordinate’s 
location of the 
node. 

Multi-hop 
It is likely to select a low-

energy node as CH. 

Sajwan et al. 
(2018) [39] 

HEEMP √ √ √ 
-Residual en-
ergy 
-Node degree 

Multi-hop 

The nodes near the CH 
node in the proposed 

multi-hop intra-cluster 
communications receive 

multiple messages and col-
lect them without consider-
ing whether they can han-

dle the load or not. 

Jari et al.  
(2018) [33] 

MPAR& EM-
PAR 

√ √ √ 
-Residual en-
ergy 
-distance 

Multi-hop 

The network becomes 
costly when several sinks 
are involved. Finding the 
best position becomes in-
creasingly challenging as 
the number of sinks in-

creases. 
Pantazis et 
al. (2018) 

[38] 
CDG √ √ √ 

-At the centre 
of evenly di-
vided regions 

Multi-hop 
It considers network prop-
erties, but ignores CDG fea-

tures. 

Gawade et 
al. (2016) 

[31] 
CEED √ √ √ 

-Dissipation 
energy of 
node 
-Distance to 
sink 

Multi-hop 
It puts a tremendous load 

on CH. 

Han et al.  
(2014) [37] 

GSTEB √ √ √ 
-Maximum re-
sidual energy 
(as root node) 

Multi-hop 
It consumes more energy 
due to direct routing. The 
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significant number of con-
trol packets has a higher 

energy overhead. 

Lindsey et 
al. (2012) 

[36] 
PEGASIS √ √ √ 

-Each node se-
lected as a 
leader 

Multi-hop 

There is a significant delay 
for remote nodes, and the 
single leader mechanism 
can generate congested. 

Heinzelman 
et al.  (2000) 

[34] 
DT √ √ √ 

-Random 
threshold 

Multi-hop 
It ignores the distance be-
tween the Cluster Head 

and the BS. 

3. Preliminaries 
This section provides background information, including the definition of the prob-

lem, the ant clustering algorithm, and the energy model adopted for the rest of this paper. 

3.1. Problem Definition 
A typical WSN consists of N+M nodes, where N sensor and actuator nodes are de-

ployed randomly in an area with different communication ranges and M stationary sinks. 
Sensor nodes can monitor environmental factors as well as generate data. Actuator nodes 
or end-users can use the generated data. The actuator nodes can convey data from SNs 
via intermediary nodes or end-users to the BS in order to execute a physical parameter. In 
general, each node can transfer data to the sink in direct or indirect communication. There-
fore, the WSN serves as a link between the physical and digital information worlds by 
gathering data from its surroundings and transmitting it to digital devices like computers. 

Direct communication is the process of allowing nodes to communicate directly with 
the sink. It would only be accessible to nodes with a communication range more extensive 
than their distance from the sink (within range of the sink). Indirect communication is 
available for all nodes. It is based on assigning intermediate nodes to convey data to a 
sink. 

Furthermore, indirect communication can be visualized in two cases. Firstly, the 
node’s packets are usually sent to neighbour nodes based on their communication range 
(within range of neighbouring nodes) until they reach the sink. Thus, the nearest node to 
the sink will receive different requests, which causes it to deplete its energy faster (hole 
energy issue), as shown in Figure 1. In the simplest scenario, each node sends packets to 
the neighbouring nodes, which may be along the longest path. Consequently, this kind of 
scenario can eventually cause many nodes to run out of energy. In the second case, the 
nodes are grouped into clusters, and each specified CH node transmits data from its clus-
ter members to the sink; this reduces their energy consumption but has a heavy toll on 
CHs. 

 
Figure 1. Data transmission using neighbouring nodes. 
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Figure 2 illustrates this scenario. Furthermore, all nodes have to relate to a single CH 
by communicating outside the conventional radio range. As a result of the formal scheme, 
service quality and performance suffer a severe degradation. For this purpose, the nodes 
are either clustered physically or virtually, which enables a comprehensive visualisation 
of the study environment and better control of environmental variables. Moreover, a spe-
cific node is designated as the Cluster Head based on a selection factor, in addition to 
placing a sink in the cluster’s centre, which aims to minimize energy consumption and 
lengthen the network’s lifetime. 

 
Figure 2. Data transmission using cluster head. 

The network is depicted as a graph G (S, A), where S = {n1,n2, … ,nN+M} nodes, and 
A represents wireless connections. Table 3 describes the notations used in the remainder 
of this paper. 

Table 3. Symbol denotation. 

Notation Description  
N Number of sensor nodes 
M Number of sinks 
Si The sensor i 

d(Si,Sj) Distance between the sensor Si and the sensor Sj. 
min_d(S୧ , S୨) Minimum Distance between the sensor Si and the sensor Sj. 

CHs All cluster head nodes in the network. 
BS Base station/Sink. 

CHj Cluster head of the jth cluster. 
Cpi Chance of picking a node i factor. 

Crange( Si,CHj) Communication range between a node Si  and the CHj node. 
clusti The ith cluster. 

|clusti| Number of nodes in the cluster i. 
S(i) A set of alive neighboors of node i. 

MNC The most neighbors clusters. |MNC| Number of nodes in the cluster MNC. 
Rj The jth multi path route. 

BR 
The route between CH and a node with minimum cost value (Best 
Route). 

Renergy The residual energy. 
min_Renergy        The minimum residual energy in the considering network. 
max_Renergy     The maximum residual energy in the considering network. 

ER The energy required for reception data. 
ET The energy required for transmission data. 

   Emp The energy required in multi path model. 
 ED The energy required in Direct path model. 
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Nant Number of ants 
NIteration Number of iterations 

3.2. Ant Clustering Algorithm 
This sub-section provides a general summary of the ant clustering algorithm; later 

we will propose an improved version for the WSN context. The ant clustering algorithm 
was introduced by [62], and it is a swarm-intelligent approach for clustering issues in-
spired by the ant-like behaviour exhibited [63]. The algorithm is based on the foraging 
behaviour of real ants hunting for food. The method uses the ants to deposit an amount 
of pheromone that reflects the problem to be grouped during their movements. Hence, an 
ant is placed at each data point site, and the ants are free to move about the search space 
in order to identify locations with high pheromone density. The quantity of pheromone 
deposited at various locations across the search space controls the movements of the ant. 
The introduction of a pheromone function to the grid enhances the reward for dropping 
objects in more dense areas of the grid. Therefore, the more pheromone is deposited, the 
more ants congregate. This results in the formation of homogeneous clusters of data. 

The grid size is proportional to the number of objects. The agent ants are free to travel 
around the grid, picking up or discarding objects based on their resemblance to other ob-
jects, and the density of the objects in their current local area, as well as the status of the 
agent ant (whether it is loaded or not). Low-density neighbourhoods (low amounts of 
pheromones) increase the likelihood of an ant picking up an object, but a remarkable re-
semblance between things in the neighbourhood area (high amount of pheromone) de-
creases it. On the other hand, high-density communities increase the chances of dropping 
an object. The grid’s agent ants and objects can be in one of two states: (a) the agent ant is 
holding an object i and calculating the dropping probability at its current location; (b) 
another agent ant is unloading and calculating the probability of picking up an object. 
Finally, the agent ants aggregate the objects on the grid into heaps containing objects sim-
ilar to one another.  

The density distribution function for an object i, at a specific grid position d, is given 
by the Equation: 

f(i)= ൞ 1
S2 ෍ 1-

d൫i,j൯
α            if f(i)>0 

j

0                                          otherwise

 (1)

where S2 is the number of cells in a general neighbourhood area, d൫i,j൯ is the distance 
between i and j, which is commonly based on Euclidean distance, and α is a constant that 
describes the scale for dissimilarity among objects. Once similar or equivalent things hold 
all the sites nearby, the f(i) may achieve its maximum value. The picking up and drop-
ping probability of an object is given by of Equations (2) and (3), respectively. 

Ppicki
=(

K1

K1+f(Si ) )
2

 (2)

Pdropi
=(

f(Si )
K2+f(Si ) )

2

 (3)

where K1, and K2 are two constants. 

3.3. Energy Model 
The energy consumption of constrained nodes is a crucial criterion for evaluating IoT 

solutions. During the design and operation of the proposed approach, a radio model is 
utilized to study the parametric effect. In this approach, a sensor node consists of seven 
parts: transmission and reception electrical equipment; transmission and reception anten-
nas; transmission amplifiers; and data processors. Energy is consumed according to the 
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number of operations of data transmission, data reception, and data compression. We as-
sumed the energy model from [15]. Their version incorporates free space and multi-path 
fading channels relying on source and destination distances. In radio and amplifier elec-
tronics, the transmission phase consumes energy as follows: 

ET(b,D)= ቊ b×EElec+b×ED×D2      if  D<Dthreshold

b×EElec+b×Emp×D4      if  D≥Dthreshold
 (4)

where b is the number of bits (data) sent across a given distance D, EElec is the entire 
amount of electrical energy required to send or receive one bit of data using modulators, 
digital coding, and other electronic circuits, ED is the amount of power required by the 
amplifier to send data to the receiver directly, Emp is the amount of energy required by 
the amplifier to convey data through multiple nodes in a multi-hop network, and 
Dthreshold is the threshold distance, which is calculated as follows: 

Dthreshold=ඨ ED

Emp
 (5)

The receiving phase consumes the following to receive data: 

ER(b,D)= b×EElectrical (6)

4. Our Proposal 
This research proposes a new strategy for placing multiple sinks in the best positions, 

and for transmitting and conveying data through an optimal short path that minimizes 
energy consumption, maximizes the network’s lifetime, and reduces data transmission 
delay. 

4.1. Deployment Sensors 
In our model, we assumed that N nodes are spread randomly throughout the envi-

ronment and that each node i has a unique identity (ID). S(i) is the set of node i’s neigh-
bours. Each node i can adopt one of the two types of communication: single-hop, in which 
a node near the sink sends its data directly as a direct node, and multihop, in which a 
distant node uses intermediate nodes to send its data to the sink. Below are the assump-
tions made in our model: 

Assumptions: 
1. Sensor nodes are stationary and are deployed randomly in the environment. 
2. Multiple sinks (base stations) should be in fixed positions. 
3. The sensor nodes in the base station’s communication range transmit data directly to 

the sink. 
4. The sensor nodes are aware of their neighbours’ node locations. 
5. The sensor nodes can send and receive data from nodes in the communication range. 
6. Each sensor node’s total energy consumption cannot exceed its initial energy. 
7. All sensor nodes have different energies, communications, and sensing ranges. 

4.2. Improving the Ant Clustering Algorithm for Sensor Node Clustering 
To improve and facilitate communication between each node and the sink utilizing 

an optimal path, we offer a metaheuristic strategy for forming clusters via the CH. The 
CH are determined by the SNs with the highest chance of picking factor. Finally, clusters 
are formed by the improved ant-clustering algorithm (IAC). Some nodes use a multihop 
routing mechanism inside clusters to interact with the cluster head, and once all of the 
cluster members receive data packets, the data along the precomputed path are trans-
ferred to the sink. 
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Our approach improves the ant clustering algorithm by adding three elements that 
increase the quality and speed of clustering. Algorithms 1 and 2 depict the suggested IAC 
algorithm in two steps: initialization and main clustering steps, respectively. In the initial-
ization step, clustering is performed based on the communication range and the distance 
between each sensor and the most similar cluster head. At the end of this step, we obtain 
k clusters and other nodes (outliers) that are not yet assigned to any cluster. The main 
clustering step continues to formulate clusters by using the pick-up and dropping proba-
bilities and the ant’s short memory to ameliorate the clusters’ formation and assign each 
outlier node to the most similar cluster head. Therefore, this memory is checked upon 
selecting a new sensor (including the outlier node) to determine the ant’s movement bias. 
Accordingly, the ant tends to move towards the site of the last similar cluster head it vis-
ited. We assume that each sensor can remember the CH relaying to the cluster and the 
number of clusters (CN) in which it is situated. The CN and CH are established in the 
initialization step, and the CN is later updated during the main clustering procedure, as 
described below. 

4.2.1. Initialization Step 
Firstly, sensors are randomly deployed on a grid with a maximum of one sensor al-

lowed in each cell. In our solution, the grid is represented by a two-dimensional array, 
where each element contains a number of sensors. Furthermore, empty cells can be as-
signed to the corresponding element in the array with a predefined value (such as 0). 
Sparse matrices are effectively utilized to represent the two-dimensional array when the 
size of the grid is very large. Next, we calculate the chance of picking a cluster head node 
for each node and then choose k cluster heads using Equation (7), which is defined as 
follows: 

Cpi=(
Renergy (Si)

max_Renergy )×(
Crangei

max_Crange
) (7)

where Cpi is the chance of picking cluster head node i, and Renergy (Si) and Crangei
 are 

the residual energy and communication range of   Si , respectively. max_Renergy  and 
max_Crange are the maximum values of the residual energy and the network’s maximum 
communication range, respectively. 

We determine the optimum number of clusters, k, using one of the widely-used per-
formance measures in cluster analysis, the Silhouette index (SI) [64]. A higher SI value 
indicates that data points are less similar to other clusters and more similar to their own 
cluster. The Silhouette index used in distributed clustering is determined as follows: 

SIK= ൬ 1
NK൰ ෍ ෍ SI(Si)N

n=1

K

k=1

 (8)

SI(Si)=
b(Si)-a(Si)

max(a(Si),b(Si)) (9)

where K is the number of clusters in each experiment, a(Si) is the average dissimilarity of 
the ith object to all objects in the same cluster, and b(Si)- is the average dissimilarity of 
the ithobject with all objects in the closest cluster. 

Algorithm 1: Initialization phase (IAC) 
1. For each sensor node Si  do 
2.      Calculate Cpi  factor using Equation (7) 

3. End for 
4. Sort all the SNs in descending order based on Cp 
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5. Select the k first SNs that have a maximum value of Cp as CH using Equation (8) 
6. CHs = ∑ CHj

k
j=1  

7. ST = ST ‒ CHs 
8. for each Si  in ST do 
9.      for each CHj in CHs do 
10.           Calculate  d(Si , CHj) using Equation (10) 
11.      End for 
12.      Select  min_d((Si , CHj) 
13.      if  Crange(Si , CHj)≥ min_d((Si , CHj) then 
14.                Put Si  near CHj 
15.                Si .CN←, CHj.CN 
16.      else           //   Crange൫Si,CHj൯<min _d(Si , CHj)   
17.                Drop Si in a free cell in the grid 
18.                Si .CN ← CHj.CN 

19. //NewNumber=total number of clusters +1 
20.      End if 
21. End for 

Initialized clusters with a most similar cluster head (MSCH) are formulated by se-
lecting the minimal distance min_d(Si , CHj) between each sensor node Si and each clus-
ter head CHj. Each node’s property is represented by the Euclidean distance of the sen-
sors, which is defined as follows: 

d(Si , CHj) =ඩ( ෍ (
Natt

L=1

Si .attL-CHj.attL)

2

 (10)

where d൫Si , CHj൯ is the distance between the sensor  Si and the CHj, Si .attLis the Lth at-
tribute of sensor Si, and CHj.attL is the Lth attribute of the jth Cluster Head. 

Node  Si  with a distance to  CHj less than their communication range Crange(Si, 
CHj) is assigned to the cluster via  CHj. The CN of  Si is changed to CHj’s CN. Alterna-
tively, the  Si that failed to be assigned to any cluster is placed in a random free grid cell, 
and  Si

’CN is updated. The main clustering step then begins after the initialization pro-
cess. 

4.2.2. Main Clustering 
Once the previous phase is complete, we will have obtained k clusters with their CHs 

and other nodes that were not yet assigned to any clusters (free clusters). We apply Algo-
rithm 2. The ant moves randomly around the grid, calculating the dropping probability 
function for empty cells along the way after verifying the pick-up probability. If a sensor’s 
drop probability in an empty cell exists, the ant will drop it, and the CN of  𝑆௜ will be 
replaced by the CN of the closest CH in the ant’s neighbourhood while verifying the com-
munication range. Otherwise, the ant will randomly place  𝑆௜  in a grid cell (without 
changing the CN of 𝑆௜), which is considered a cluster. 
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Algorithm 2: main clustering (IAC) 
1. /*Main loop*/ 
2. for t = 1 to tmax do 
3.      for all ants do 
4.           If (ant unladen) then 
5.           Compute Ppick(Si ) using Equation (13) 

6.           Select a random real number Prͼ[0,1] 
7.                If (Pr ≼ Ppick(Si )) then 

8.                     Pick up Si  
9.                End if 
10.           Else 
11.                If (ant carrying object Si ) then 
12.                     Find MSCH 
13.                     Compute Pdrop(Si ) using Equation (14) 
14.                     If (Pr ≼ Pdrop(Si )) then 

15.                          Try to drop Si  near  MSCH 
16.                          Si  .CN ←  MSCH .CN  
17.                          refreshed_memory(ant)  
18.                     end if 
19.                End if 
20.                if UnsuccessfulTries > δ then  //δ is a predefined threshold 
21.                      α ← α + ∆α  
22.                 end if  
23.            end for  
24.  end for 

In addition, as mentioned below, we applied several modifications to the ant cluster-
ing algorithm to boost its performance. We used short-term memory for each ant to im-
prove the speed and the quality of clustering [23]. As a result, each ant can remembering 
a few sites where it has effectively dropped a sensor. Then, upon selecting a new sensor, 
this memory is checked to bias the ant’s direction movement. Eventually, the ant returns 
to the location where it last dropped a comparable sensor. 

During the pick-up/dropping function, the extent of similarity between sensor  𝑆௜ 
and its neighbours is calculated as follows (we have changed the fundamental notion of 
this formula offered by [23] with our clustering problem): 

f(Si ) = max(0;
1
S2 ෍ [1-

Sj ∈S(i) ቆd(Si , Sj)×Crange(Si , Sj)
αµ ቇ ] (11)

S(i) signifies the local neighbourhoods surrounding the site of the communication range, 
and d൫Si , Sj൯ specifies the distance between sensors Si and Sj, where d is the Euclidean 
distance and α is a factor of the scale for dissimilarity. α is chosen to be very small to 
prevent the creation of clusters; otherwise, the individual clusters merge. The value of µ, 
which is the average of the total sum of the distances between the sensors, is calculated 
by the following formula: 
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µ=
2

N(N-1) ෍ ෍ d(Si , Sj)×Crange(Si , Sj)
i-1

j=1

N

i=1

 (12)

where N denotes the total number of sensors in the system.  
The probability of an ant picking up or dropping the object is computed when the 

similarities are assessed as follows: 

Ppick(Si )=(
K1

K1+f(Si ) )
2

 (13)

Pdrop(Si )=(
f(Si )

K2+f(Si ) )
2

 (14)

Choosing the appropriate values for K1 and K2 significantly impacts the probabil-
ity of the sensors being picked up or dropped. The pattern of the pick-up function in-
creases as the value of K1 increases, but the dropping probability decreases as the value 
of K2 increases. We chose the most relevant K1and K2 during our experiment to achieve 
the best outcomes. 

In our contribution, we assigned the pheromone concept to the density function, as 
named in our paper, and the function of similarity is illustrated in Equation (11). This 
function defines the similarity between a sensor and its neighbours. Hence, a high simi-
larity value signifies a high pheromone value in the context of ant behaviour. The quantity 
of pheromones (similarity between a sensor and its neighbours) controls how an ant 
moves. In more detail, the updating pheromone mechanism is defined by computing the 
pick-up and dropping probabilities concerning removing and inserting a sensor from a 
cluster, as illustrated in Equations (13) and (14). The calculation of the pick-up and drop-
ping probability functions is based on the similarities between a sensor and its neighbour-
ing sensors. If the pick-up probability value of a sensor in a given field is high, the simi-
larity function (pheromone) between the remaining sensors in this field becomes higher 
when this sensor is removed. Similarly, when the dropping probability value of a sensor 
in a new field is higher, the similarity function in this new field (cluster) increases after it 
is added, which means that the pheromone concentration increases, which indicates con-
vergence to the solution (cluster). 

4.3. Sink Placement 
As the nodes are clustered, the fundamental goal is to locate multiple sinks to achieve 

the longest lifespan, more energy efficiency, and the fastest data delivery to each sink. As 
a result, a sink placement strategy was required to accomplish the predicted goals for each 
cluster, where all of these clusters would collectively achieve the large-scale WSN goals. 
If the sink is situated in a location with a small number of neighbour nodes, they would 
be regularly used to relay packets to the sink. As a result, these nodes consume more en-
ergy, causing the WSN’s lifetime to be shortened. Figure 3 represents a scenario in which 
the sink has a small number of communication neighbours. 

For this situation, we propose a strategy that places the sinks in the appropriate loca-
tions so that the number of nodes surrounding the sink is as high as possible. Therefore, 
we suggest placing the sink in the barycentre of the cluster with a number of nodes greater 
than a predetermined number (𝑁௧௛௥௘௦௛௢௟ௗ) and in the barycentre of multiple groups that 
have the fewest number of nodes. In Figure 4, two possible sink locations are in the bary-
centre of a cluster with more nodes than the threshold using Equation (15) or in the bary-
centre of the most neighbour clusters (MNC) using Equation (16). The details are formally 
described as a flowchart in Figure 5, which depicts the network construction in addition 
to two possible sink locations. 
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Figure 3. Sink location in low-neighbour area. 

 
Figure 4. WSN construction with our proposed strategy. 

 
Figure 5. Flow chart of sink placement. 

The coordinates of sink k are denoted as 𝑠𝑖𝑛𝑘௞(𝑥௞, 𝑦௞) and determined according to 
the possible location as follows: 

1. When sink k is located in the barycentre of cluster j: 

⎩⎪⎪⎨
⎪⎪⎧xk=

∑ Crangei
xi

Nj
i=1∑ Crangei

Nj
i=1

yk=
∑ Crangei

yi
Nj
i=1∑ Crangei

Nj
i=1

 (15)

where xi and yi are the coordinates of sensor i, which exists in cluster j, Crangei
 is the 

range communication of sensor i, and 𝑁௝ is the number of sensors in cluster j. 
2. When sink k is located in the barycentre of p neighbour clusters: 

⎩⎪⎨
⎪⎧xk=

∑ Crangei
xCHi

p
i=1∑ Crangei

p
i=1

yk=
∑ Crangei

yCHi

p
i=1∑ Crangei

p
i=1

 (16)
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where (CH1,…,CHi,…,CHp) is the set of p cluster heads of these neighbours’ clusters 
with communication range (r1,…,ri,…,rp), xCHi  and yCHi

 are the coordinates of cluster 
head CHi that exists in cluster i, and p is the number of clusters. 

4.4. Data Routing and Transmission 
A sink creates pathways between CHs and itself once the CHs are picked. Since the 

BS includes comprehensive topology information, it chooses the best path in such a way 
that the routing path’s overall energy consumption is as low as possible. Then, before 
constructing any paths, it classifies the routes into Direct_path, Direct_nodes_CH, and 
Multi_path_R. 

Direct_path is a path over which nodes communicate directly to the sink without any 
intermediaries, and those nodes are named Direct_nodes_sink. Direct_nodes_CH is a path 
of all nodes that use only CHs as intermediate nodes to the sink, and Multi_path_R is a 
path consisting of multiple intermediate nodes excluding CH. During the transmission 
phase, the sink verifies whether the CH has sufficient remaining energy to participate. 
Otherwise, it is replaced by another node in the same cluster as the new CH. However, if 
its distance from the previous CH is not in the communication range of the old CH or the 
sink (assigned to this cluster), it will not be considered, and the following node with the 
next-highest Cp value would be considered instead. This process is successfully executed 
following Algorithm 3. 

Algorithm 3: Cluster Head Adjustment 
Input: Old_CH 
Output: New_CH 
for each SN in a cluster do 

calculate Cp 

select node with max Cp 
if Crange(oldCH,Si )≺ d(oldCH,Si ) 

     select the following nodes with max Cp 

Else  

     Select Si as New_CH 

End for 

The sink constructs a Route Set (Multi_path_R) for each CH representing all possible 
paths to the CH. It already generates a Legitimate Route Set (Multi_path_LR), which in-
cludes all of the routes with remaining energy over the threshold energy (Ethreshold). We 
calculate Ethreshold using Equation (17). A path constitutes several SNs that use multihop 
communication to send packets from the CH to the sink. Any path with a sensor node 
with residual energy below a predetermined  Ethreshold  is excluded from the 
Multi_path_LR set. 

Ethreshold= ∑ Renergy(Si)
ni

 (17)

where ∑ Renergy(Si) is the sum of all nodes’ residual energies of cluster i, and ni is the 
number of existing sensors in cluster i. 

Then, for all Multi_path_LR, the sink computes the cost of energy, which is the sum 
of the cost of energy of each node on that path. The optimal path between the CH and sink 
is thought to be that with the lowest energy cost. We calculate the cost of any route by 
using Equation (18), which is defined as follows: 
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cost൫LRj൯= ෍ d(Si,Si+1)
Renergy(Si)∀x∈LRj

x=0
 (18)

where Renergy(Si) is the residual energy of node Si, and d(Si,Si+1) is the distance between 
Si and the next node Si+1. 
Algorithm 4: Repacking _CH_ Route 

Declare  
Drect_nodes_sin
k ={} 

 

Direct_nodes_CH = {}  

Multi_path_R = {}  

Multi_path_LR = {}   
Multi_path_BR = {} //represents the set of best routes to CH 
for each  𝑆௜  in nodes 
     if d(Si , sink)< d(Si , CH) & Crange(Si ,sink)> d(Si , sink) then 

          Add Si to Direct_nodes_sink 

     Else  

          for each CH do 

                    if(Eres (CH)<Ethreshold) then 

                         select new CH using Algorithm 3 
                         If Si ͼN(CH) & Crange(Si , CH)> d(Si , CH) then 

                              Add Si to Direct_nodes_CH 

                         Else 

                              for each route Rj ∈ Multi_path_R do 

                                   if ∀ Si ∈ Rj : d(Si,Si+1) < Dthreshold  || ER(Si) < 

Ethresholdthen 

                                        Multi_path_LR = Multi_path_LR ∪ Rj 

                                    End if 

                               End for 

                              for each route LRj ∈ Multi_path_LR  

                                    Calculate cost(LRj) using Equation (18) 

                              end for  

                                BR  = min(cost(LR))     

                               Multi_path_BR = Multi_path_BR ∪  BR 

                       End if 

                   End if 

              End for 

         End if 

end for 

After selecting all of the cluster heads and constructing the paths, the sink broadcasts 
the associated CHs (IDs, location). Upon receiving information about the CHs, the nodes 
submit a join request to the closest CH, while their neighbour nodes store the inf_Table 



Future Internet 2023, 15, 75 19 of 27 
 

 

(Cluster Head ID, CH Residual Energy CH_Eres, Neighbours ID, Neighbours location 
Nb_Loc, Neighbours Residual Energy Nb_Eres). As a result, each node has full infor-
mation about its neighbours, including their position, remaining energy, and CH IDs, and 
each CH is aware of every cluster member. 

Now, each node sends the sensed data to the sink, while employing the proposed 
routing system shown in Algorithm 4. Each node has a complete info_Table, and each 
member of the cluster iterates through its inf_Table, shortlisting their neighbour nodes, 
which are called next_hop_Set. All of the nodes between node i and CH from the 
shortlisted candidates are recorded in next_hop_Set if the following condition is verified: 
Consider node i, and j, k, l are i‘s neighbours. Nodes j and l are input into next_hop_Set if 
their distances to the sink are lower than the distance of node i to the sink d(i,CH) ≻
d൫j,CH൯ and d(i,CH) ≻ d(l,CH). 

A cluster member directly determines its next hop by selecting the nearest node to 
the transmitting one verifying d(Si,Si+1) < Dthreshold, on top of possessing a higher remain-
ing energy than Ethreshold. Moreover, our proposed model can provide a way to continue 
operating when a first node is depleted, where each one of its neighbours deletes all in-
formation about it from their inf_Table. 

5. Simulation and Evaluation 
5.1. Simulation Setup 

In this section, we describe our relevant simulation tests, which demonstrate the high 
efficiency and scalability of the suggested approach. The simulation was performed using 
the network simulator OMNeT++ for the proposed routing protocol in each case (measur-
ing energy consumption and WSN lifetime) over large scale networks, and python scripts 
were written to implement the corresponding algorithm of clustering. The simulation was 
conducted on a Dell Inspiron 155,567 computer with an Intel i7 CPU running at 2.4 GHz, 
Windows 7 (64-bit), and 8 GB of RAM. We used network settings that are identical to those 
indicated in Table 4 throughout our simulations. 

To develop our contribution, we used data from the Stanford Large Network Dataset 
Collection’s Brightkite dataset, a location-based online social network [65]. There are 5000 
nodes in the retrieved dataset, each with its coordinates. We deployed 13 BSs in the net-
work, and we set up the nodes with varied residual energies ranging from 0.3 to 0.9. 

As known in the literature, hierarchical protocols and methods are state-of-the-art 
and based on clustering algorithms such as LEACH [57], DP clustering [61], and HEEMP 
[39]. We then compared the previous algorithms with our contribution to demonstrate the 
proposed technique’s performance. LEACH randomly selected and updated the CHs after 
a fixed amount of time. It also managed to send data from a CH to a specific BS in a ran-
dom way. In the DP Clustering approach, the CHs are chosen based on the coordinate 
location of these nodes. The residual energy and node degree are considered while choos-
ing the CHs in the HEEMP. The shortest path is used in all approaches to send the data 
from the nodes to a specific BS. 

Table 4. Setting Considered For Our Simulations. 

Parameters Values 
N 1000 
M 13 

CH 30 
Nant 500 
α 0.5 
S 30 m × 30 m 
∆α 0.05 
K1 0.1 
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K2 0.15 
NIteration 500 

min_Renergy 0.3 J 
max_Renergy 0.9 J 

ER-elec 20 nJ/bit 
ET-elec 45 nJ/bit 

Efs 10 Pj/bit/mଶ 
Emp 0.0013 Pj/bit/mସ 

Crange [10 m, 30 m] 
Dthreshold 30 m 

Initial_ Ethreshold 0.2J 

5.2. Simulation Results 
Table 5 illustrates the fundamental differences relative to the number of hops and 

clusters. The IAC algorithm is compared to LEACH, HEEMP, and DP clustering to obtain 
the cluster heads. Our technique shows fewer nodes and clusters with multiple hops than 
the compared algorithms. Moreover, the maximum number of hops required to reach CH 
is 3. However, LEACH’s, HEEMP’s, and DP’s clustering are 5, 4, and 4, respectively, since 
the IAC clustering algorithm is more effective than other clustering techniques on a large 
scale. 

Table 5. Comparison of the efficiency of sensors affectations for different clustering algorithm. 

Approach 
Number of 
Nodes with 
1-Hop (%) 

Number of 
Nodes with 
2-Hop (%) 

Number of 
Nodes with 
3-Hop (%) 

Number of 
Nodes with 
4-Hop (%) 

Number of 
Nodes with 
5-Hop (%) 

LEACH [57] 87.2 4.8 3.5 2.5 2 
HEEMP [39] 92.5 3.5 2.5 1.5 0 

DP clustering [61] 93.5 3.5 2.8 0.2 0 
Our proposed 96.5 2 1.5 0 0 

5.2.1. Statistical Results over The Lifetime Based on Various Methods 
In this study, we defined the first node’s energy consumption (FEC) that ultimately 

reaches their initial energy (FEI) while transmitting the data as a metric to measure the 
network lifetime t as follows: 

t = tf-ti (19)

where tf is the instance t when FEC- FEI = 0, and ti is the instance when the network 
starts.  

The LEACH, HEEMP, DP clustering and the proposed approach were used to inves-
tigate the effect of a variable number of sensor nodes on the network’s lifetime. The net-
work’s lifetime was evaluated according to the number of sensors, which ranged from 200 
to 1500, as shown in Figure 6a. It is worth noting that the network’s lifetime diminishes as 
the overall number of sensors grows; this phenomenon occurs mainly because by increas-
ing the number of sensors in the same cluster, the considered sink covers a significant 
number of nodes’ packets. Our proposed approach shows two possible sink placements: 
the barycentre of the weighted cluster and the barycentre of the neighbours’ clusters, the 
Cp factor, and the data routing technique; all of these factors improve the network’s life-
time. 

The network’s lifetime obtained by LEACH, HEEMP, and DP clustering, in addition 
to our proposed approach, is between 114 s and 95 s, 130 s and 118 s, 145 s and 124 s, and 
160 s and 132 s, respectively, as the total number of sensors grows between 200 and 600. 
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The network’s lifetime decreases as the number of sensors grows for all of the com-
pared algorithms. Nevertheless, in all cases, our proposed method has achieved a more 
extended network lifetime than the other techniques. 

Furthermore, in Figure 6a, we note that by increasing the number of sensors, the life-
time lowers (the first node depletes its energy). We can relate that to different assump-
tions, e.g. that which nodes are depleted first depends on a set of parameters, such as the 
initial energy (the energy consumption will increase by increasing the number of sensors, 
and nodes that have lower initial energy probably deplete its energy first), the location 
(direct or indirect to sinks), the degree (number of sensors in communication range in-
creases by increasing number of sensors), etc. Using the experimental parameters shown 
in Table 4, the influence of a variable number of clusters on the network’s performance is 
investigated in this scenario. The number of clusters increases from 10 to 50. The results 
are depicted in Figure 6b, where it is clear that the network’s lifetime extends as the num-
ber of clusters grows, causing each cluster’s size to diminish. Hence, the number of intra-
cluster communications is reduced. On the other hand, the network’s number of CHs in-
creases as the distance between nodes decreases. Therefore, each CH sends its measure-
ments via a shorter link. This criterion, according to the suggested model, indeed increases 
the network’s lifetime. 

The proposed approach, with all of the algorithms, efficiently balances the residual 
energy among the sensors of each cluster by increasing the number of groups and decreas-
ing their sizes. Thus, the network’s lifetime is increased. Above all, our proposed ap-
proach notably provides the best results. 

This scheme evaluates the network lifetime performance of four algorithms by fixing 
the number of sensors and varying the number of sinks, where Figure 6c depicts a scenario 
in which the number of sensors is N = 500 and the number of sinks ranges from 5 to 15, 
and Figure 6d depicts a scenario in which the number of sensors is N = 1000 and the num-
ber of sinks ranges from 5 to 15. It is obvious that the network’s lifetime increases as the 
number of sinks increases, resulting in most of the sensor nodes adopting direct transmis-
sion to the sink. Therefore, the number of intracommunications is diminished. Overall, 
Figure 6c,d indicate how the network’s lifetime improves as the number of sinks increases 
according to the suggested model. 

As the total number of sinks grows, the overall number of sensors that communicate 
directly to the sink increases, implying that the load on the sensors is reduced, the effect 
of the energy hole phenomena is diminished, and the network’s lifetime is extended. As 
an outcome, expanding the number of sinks for a given number of sensors extends the 
sensor’s lifetime. Conversely, compared to our proposed method, the network’s lifetime 
acquired by the LEACH, HEEMP, and DP clustering approaches is poor in each case. The 
proposed approach provides the most extended lifetime. It outperforms the results of 
other algorithms by at least 4%. 
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Figure 6. Network lifetime vs. (a) number of sensors, (b) number of cluster heads, varying the num-
ber of sinks from 5 to 15 when fixing the number of sensors (N)., (c)-N = 500, (d)-N = 1000. 

5.2.2. Statistical Results on Average Residual Energy Based on Various Methods 
We define the average residual energy (ARE) as the difference between the average 

initial energy (AIE) and the average energy consumed (AEC) by all nodes. The total aver-
age residual energy (ARE) is expressed as follows: 

ARE = AIE-ASEC (20)

AIE=
1
N ෍ IE

N

i=0

 (21)

AEC=
1
N ( ෍ ET(i)+ER(i))

N

i=1

 (22)

where IE is the initial energy of node i, and ET(i) and ER(i) are the consumption energy for 
transmission and reception by node i, respectively. 

In this section, we study the performance of the algorithms by measuring their aver-
age residual energy. In Figure 7, we evaluate the average residual energy performance of 
four algorithms with the following number of sensors (N): 200, 400, 600, 800, 1000, and 
1500. In Figure 8a,b, we evaluate the network-lifetime performance of four algorithms by 
fixing the number of sensors and varying the number of sinks. Figure 8a depicts a scenario 
in which the number of sensors is N = 500 and the number of sinks ranges from 5 to 15; 
Figure 8b depicts a scenario in which the number of sensors is N = 1000 and the number 
of sinks ranges from 5 to 15. As a result, the outcomes of Figures 7 and 8a,b validate the 
observation shown in Figure 6a. 
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In Figure 7, as the total number of sensors grows, the average residual energy of the 
previous four methods increases significantly. However, the network lifetime generated 
by our proposed approach remains the longest; thus, it produces the highest average re-
sidual energy out of all of the methods. 

 
Figure 7. Average residual energy with a wide-ranging number of sensors N. 

 
Figure 8. Average residual energy when fixing the number of sensors (N) and varying the number 
of sinks (M) from 5 to 15. (a)-N = 500, (b)-N = 1000. 

The scenarios with varying total numbers of sinks are depicted in Figure 8a,b. The 
average residual energy produced by the four algorithms falls significantly as the number 
of sensors grows. Similarly, when the overall number of sinks increases, the overall num-
ber of SNs reaching the CH directly in each cluster increases. Consequently, the average 
residual energy increases as well. Compared to other methods, our approach achieved a 
higher average residual energy. 

5.2.3. Statistical Results for Hops Based on Various Methods 
The performance of the routing methods is the main purpose of this section. Figure 

9a,b show the equivalent results of the approaches in terms of the average number of hops. 
It is widely understood that the more prolonged the data transmission path is, the more 
extended the data transmission delay remains. As a result, reducing the number of hops 
is a standard network planning method. 
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This approach’s average number of hops decreases as the total number of sinks 
grows, as seen in Figure 9a,b. When the overall number of sinks increases, the clusters’ 
cover ranges decrease. The proposed model has a minimum number of hops in each situ-
ation, with an average number of hops less than two, as shown in Figure 9a. As the num-
ber of sinks increases to 11, the average number of hops is lowered to between 1.559 and 
1.423. Since our suggested technique has established pathways from the sensors to the 
sinks using the Repacking _CH_ Route algorithm, the sensors were connected to their 
associated CH and sinks. Even though other algorithms have used the clustering strategy, 
they have not produced superior outcomes to our proposed study achievement. 

 
Figure 9. Average hops with a variable number when fixing the number of sensors (N) and varying 
the number of sinks (M) from 5 to 15. (a)-N = 500, (b)-N = 1000. 

6. Conclusions 
This paper has dealt with the prevalent issues of high energy consumption, short 

network lifetime, and data transmission delay in a constrained IoT network. It has notably 
offered a complete analytical model that combines and resolves all mentioned issues using 
three aspects: clustering optimization, multiple sink placement, and data routing in het-
erogeneous WSNs. 
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We have proposed a practical approach that computes Cp factors to select CHs and 
then constructs referred clusters, where each cluster has been assigned a specific sink ac-
cording to a proposed architecture. Unlike existing methods that force each cluster to 
maintain one unchangeable CH, eventually leading to an enormous energy depletion of 
the CH nodes given the considerable distance between the cluster members’ nodes and 
the CH, our suggested method ensures that no CH or intermediate node participates or 
transmits their data packets with less than an energy threshold and more than a distance 
threshold. Furthermore, the simulation results have showed that our proposed analytical 
model reduces the number of hops by more than 4% and increases the residual energy by 
more than 3% compared to other state-of-the-art algorithms. As a result, it outperforms 
them in terms of increasing the network’s lifetime, decreasing energy consumption, and 
reducing data transmission delay using different amounts of sensor nodes. 

The proposed work can help researchers and developers build and create applica-
tions for highly compressed networks. In addition, applications such as smart farming, 
smart industry, and smart grids can leverage the data produced by the deployed sensors 
to develop new applications and services for users. 

To increase the extent of our contribution to sink placement, we plan to apply our 
approach in different environments, such as underwater wireless sensor networks 
(UWSNs). In this regard, we intend to resolve the fixed sink issue by investigating mobile 
sinks and to highlight potential trade-offs between performance and cost by corroborating 
the performance results with some further computational complexity analyses. 
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