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Abstract: In the ring-architecture-based federated learning framework, security and fairness are
severely compromised when dishonest clients abort the training process after obtaining useful
information. To solve the problem, we propose a Ring- architecture-based Fair Federated Learning
framework called RingFFL, in which we design a penalty mechanism for FL. Before the training
starts in each round, all clients that will participate in the training pay deposits in a set order and
record the transactions on the blockchain to ensure that they are not tampered with. Subsequently,
the clients perform the FL training process, and the correctness of the models transmitted by the
clients is guaranteed by the HASH algorithm during the training process. When all clients perform
honestly, each client can obtain the final model, and the number of digital currencies in each client’s
wallet is kept constant; otherwise, the deposits of clients who leave halfway will be compensated
to the clients who perform honestly during the training process. In this way, through the penalty
mechanism, all clients either obtain the final model or are compensated, thus ensuring the fairness
of federated learning. The security analysis and experimental results show that RingFFL not only
guarantees the accuracy and security of the federated learning model but also guarantees the fairness.

Keywords: federated learning; fairness; blockchain; ring architecture

1. Introduction

With the development of IoT and the widespread adoption of mobile devices, artificial
intelligence (AI) technology is widely used in many aspects of daily life [1,2]. Considering
security issues, federated learning (FL) comes into being, which enables collaborative
training by exchanging local model parameters instead of raw data among devices [3,4].
The training data are kept locally during the training process, thus effectively protecting
users’ privacy [5,6]. This advantage in turn motivates more users to participate in FL, which
leads to more accurate global models [7,8].

Traditional FL typically uses a central server to coordinate the collaboration of clients,
which is called star architecture [9,10]. Specifically, in each training round, the server
updates the global model by aggregating the local model parameters generated by the
clients from their respective local models. The server broadcasts the updated global
model to the clients. As a result, most of the clients participating in the training will
make simultaneous transmissions in a short period. However, the explosive growth in
traffic can have a severe impact on the network, thus limiting the number of clients that
can participate in FL [11,12]. At the same time, the trustworthiness of the clients and
vulnerability to single-point attacks pose hidden risks to the security and reliability of
FL [13,14].

Some scholars start by changing the traditional star architecture of FL to solve the
above problems and propose distributed FL architectures [15,16]. At present, distributed FL
architectures are mainly divided into two categories: fully connected architectures [17–19]
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and ring architectures [20–23]. Under the fully connected architecture, clients form a P2P
network, in which each client transmits local model parameters to neighboring clients,
receives local model parameters transmitted from neighbors to complete model aggregation,
and continues to transmit until the models finally converge. However, this approach brings
a large amount of redundant communication, and it is difficult to guarantee the convergence
of the model because each client performs aggregation locally [24]. In the ring architecture,
clients are connected in a ring communication network in a certain order, and during the
training process, each client only needs to transmit the local model parameters to the next
client. The next client will either continue training based on the model received or transmit
to the next client after aggregating it with its local model. Through multiple rounds of loop
transmission, the converged global model is finally obtained. The ring structure achieves
better results due to its more efficient communication efficiency and better convergence.

In the above scenario, it is usually assumed that all clients are honest, that is, all clients
participate in the training process in its entirety [25]. In fact, a client may maliciously
abandon the subsequent training after obtaining a result in their favor or leave midway
unintentionally for technical reasons such as unstable network conditions, and the impact
of such dishonest behavior (called escape attack) on the ring structure is catastrophic [26].
Firstly, the model training may be unsustainable due to a break in the ring communication
at a certain point, which will lead to low accuracy of FL. Secondly, the intermediate result
obtained by the dishonest client contains data contributions from honest clients, but honest
clients did not obtain any benefit, which is unfair to them. Therefore, the escape attack
needs to be avoided as much as possible to ensure the fairness of all clients participating in
the model training.

Motivated by the above analysis, we propose a Ring-architecture-based Fair Federated
Learning framework (RingFFL), in which we design a penalty mechanism to guarantee
the fairness of FL, that is, the client either obtains the model that is transmitted correctly or
is compensated with a certain amount of digital currency. The HASH comparison guar-
antees the correctness of the models transmitted during the training process. Meanwhile,
blockchain is introduced in the training process to guarantee the immutability of the clients’
deposits and compensation operations. Finally, the security analysis and experimental
evaluation are carried out. The main contributions of this paper are as follows:

• To ensure the fairness of FL training, we propose a penalty mechanism where clients
need to pay deposits in a given order before participating in the training. If all clients
perform honestly, they will all obtain the final global model, otherwise, deposits of
dishonest clients will be compensated to the honest clients. In other words, clients
either obtain the final global model or are compensated, thus ensuring fairness.

• To enhance the security of FL training, we propose the HASH comparison mechanism
and introduce the blockchain. Through HASH comparison, the correctness of the
models transmitted by the clients during the training process is guaranteed. With
the immutability of the blockchain, the security of the client’s deposit payment and
compensation operations is guaranteed.

• To evaluate the performance of our mechanism, we perform a security analysis of
the proposed mechanism and conduct experiments using MNIST and CIFAR10 data
sets. The security analysis and experimental results show that our mechanism ensures
security and fairness while maintaining high accuracy.

The rest of the paper is organized as follows. In Section 2, the related work is reviewed.
In Section 3, the scenario, threat and adversary model, as well as the work flow of RingFFL
are introduced. In Section 4, the proposed penalty mechanism is specifically described. In
Section 5, the security analysis and numerical results are presented. Section 6 concludes the
paper with a summary and points out the future directions.

2. Related Works

In this section, we briefly describe the challenges of FL first. For the challenges of poor
scalability and vulnerability to single-point attacks of star architectures in FL, we provide a
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detailed description of the distributed FL framework based on fully connected architecture
and ring architecture.

2.1. Challenges of FL

Federated learning, a pioneering technique to protect data privacy, which enables
training machine learning models on distributed data sets, has been widely used in various
fields such as IoT, IoV, and Data Access [27]. However, FL still faces many challenges, such
as expensive communication costs, systems heterogeneity, statistical heterogeneity, and
privacy concerns [28]. To address the problem of expensive communication costs, Paragliola
et al. proposed a new learning strategy that reduced the total number of parameters
shared in the FL process and evaluated the trade-off between the requirement to reduce
communication costs and the need to guarantee the highest classification performance [29].
To address the problem of system heterogeneity, Lin et al. proposed an ensemble refinement
scheme for model aggregation, where a central classifier was trained from unlabeled data
of the clients’ model output, a technique that allowed flexible aggregation of heterogeneous
client models [30]. To address the statistical heterogeneity problem, Liu et al. proposed a
client–edge–cloud hierarchical FL system supported by the HierFAVG algorithm for better
communication–computation tradeoffs [31]. To address the problem of data heterogeneity,
Paragliola et al. investigated and evaluated the performance and behavior of a federated
model in the presence of catastrophic forgetting events in the context of nonstationary
data [32]. Huang et al. illustrated how data skewing could affect the performance of
FL algorithms and then proposed a new algorithm, FedMix, which adapted existing FL
algorithms and achieved better performance [33]. For security issues, Li et al. proposed
q-Fair Federated Learning (q-FFL) for fairer accuracy allocation among devices, which
outperformed the existing baseline in terms of fairness, flexibility, and efficiency [34]. Fang
et al. proposed a multiparty privacy-preserving machine learning framework (PFMLP)
based on partial homomorphic encryption and FL to achieve protection of data and model
parameters during training [35].

2.2. Distributed FL Framework

The distributed FL framework based on fully connected architecture completes model
training through P2P model transmission between clients, and the implementation of
the architecture often requires the support of blockchain, Device-to-Device (D2D), and
so on [17–19]. Samarakoon et al. proposed a novel method based on distributed FL to
estimate the tail distribution of vehicle formation lengths, approaching the accuracy of
the centralized solution while reducing the amount of data exchanged by 79% [17]. Li
et al. proposed a decentralized blockchain-based FL framework called the Blockchain-
based Federated Learning framework with Committee consensus (BFLC), which avoided
attacks by malicious central servers on global models and users’ private data, and designed
an innovative committee consensus mechanism for BFLC that could effectively reduce
consensus computation and malicious attacks [18]. Qu et al. proposed a novel blockchain-
based FL scheme called FL-Block that balanced the privacy protection of fog computing
with the attendant inefficiencies, excelling in privacy protection, efficiency, and resistance
to poisoning attacks [36]. Xing et al. proposed distributed stochastic gradient descent
(DSGD) to achieve large-scale deployment of FL in wireless communication scenarios [37].
Zhang et al. proposed an FL scheme using D2D communication (D2D-FedAvg), where
D2D grouping, primary UE selection, and D2D exit were implemented in the learning
process, resulting in a complete D2D-assisted FL averaging algorithm [19]. Although the
problem of poor scalability and vulnerability to single-point attacks of star architectures is
solved to some extent by using fully connected architecture, it brings a lot of redundant
communication consumption, and it is difficult to guarantee the convergence of the model
due to the lack of global aggregation.

Some scholars have designed a ring architecture to complete the training through the
ring transmission of models while ensuring lower communication redundancy and higher
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convergence [20–23]. Xu et al. proposed an optimization method to minimize FL uplink
transmission time in wireless networks and designed a ring all-reduce architecture based on
D2D, which significantly reduced the transmission time [20]. Wang et al. proposed a ring-
topology-based distributed FL (RDFL) scheme for deep generative modeling (DGM), which
provided communication efficiency and maintained training performance to boost DGMs
in target tasks compared with existing FL works [21]. Lee et al. designed a cyclic learning
scheme based on the ring topology to reduce the number of FL training iterations and
improve the performance without adding any additional computational cost [22]. Lee et al.
proposed a new algorithm called TornadoAggregate to improve FL accuracy and scalability
by promoting a ring architecture. Experimental results show that TornadoAggregate
improved test accuracy by 26.7% and achieved near-linear scalability [23].

The above schemes usually assume that the clients are honest. However, the assump-
tion is difficult to be satisfied in realistic situations. A malicious client sending escape
attacks during the training process can be fatal to FL based on the ring architecture. There-
fore, we propose a fair FL framework to solve the problem. With the proposed penalties
mechanism, clients are effectively prevented from escaping from the training after obtaining
valid information.

3. Framework Overview

In this section, we focus on the scenario, threat, and adversary model and workflow of
the proposed RingFFL.

3.1. The Scenario of RingFFL

We consider the scenario where a ring architecture is formed among different clients
to perform FL and no server exists. Without loss of generality, we assume that there are N
clients. All clients involved in FL first agree on the order of the ring architecture. As shown
in Figure 1, the black dashed line indicates the communication link between clients. The
whole training process is divided into two phases, in which one is the deposit payment
phase (red dashed line) and the other is the model transmission phase (blue solid line). In
the deposit payment phase, all clients will prepay the deposits according to the proposed
mechanism. In the model transmission phase, the local model parameters of the previous
client are sent to the next client. After all clients obtain the global model for one round of
FL, they will continue training according to the same rules until a predefined number of
rounds or a loss function convergence threshold is reached.

3.2. Threat and Adversary Model

Threat Model: In our mechanism, there are N clients cooperating to train the FL
model. We assume that all clients train local models honestly, and a subset of them are
malicious or are potentially corrupted by a malicious adversary when transmitting local
model parameters.

Adversary Goal: The adversary has two goals. One is to manipulate clients to send
false local model parameters to mislead the global model of FL. The other is to abort during
training to obtain useful intermediate information without effort, which can lead to some
clients’ contributing but no benefit, and some clients cannot obtain the FL model. Both
threats will not only reduce the accuracy of FL but also destroy the fairness.

3.3. The Work Flow of RingFFL

The work flow of RingFFL is shown in Figure 2. Suppose there are N distributed
clients participating in the FL. In order to ensure the fairness, RingFFL is designed based
on the blockchain. It is divided into four steps.
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Figure 1. The scenario of RingFFL.

Step 1 Initialization

Each client generates a random number to form a private key, computes the corre-
sponding public key, and produces a digital currency wallet address. Apart from this, they
perform data preprocessing on their own data sets.

Step 2 Local Training

Each client trains a local model based on its private data set. Since all clients do not
want to reveal their sensitive information, we use FL to protect the clients’ raw data. The
local model parameters sent by the clients during the FL process can be protected using
many methods, such as differential privacy [13]. It is not the focus of our approach and is
not described in detail.

Step 3 Transactions on the blockchain

Transactions on the blockchain phase are divided into three parts: roof deposits, ladder
deposits, and acknowledgment. We introduce them below.

(3.1) Roof deposits

According to the topology of the ring structure, all clients agree on a sequence. Except
for the last client, all the others make the same amount of deposits to it and broadcast all
transactions to the network.

(3.2) Ladder deposits

Each client pays some deposits according to the predetermined rule to its previous
client. All transactions will be broadcasted to the network.

(3.3) Acknowledgement

All clients will provide their local model parameters to acknowledge digital currencies
deposited in (3.1) and (3.2). Successful transactions will be recorded on the blockchain.
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Step 4 Output

All local model parameters will be aggregated to generate the global model in a round
and shared among all clients. The process will be repeated until a predetermined number
of training rounds or a convergence threshold is reached. If all clients behave honestly,
each client’s digital currencies will neither increase nor decrease in the end. Otherwise,
dishonest clients’ deposits will be used to compensate for every honest client that does not
obtain the final model of the FL.

Figure 2. The work flow of RingFFL.

4. Penalty Mechanism in RingFFL

In FL, each distributed client trains a local model according to its data set locally. Then,
all the local model parameters can be safely aggregated into a global model to be used for
more accurate prediction. However, each client may be corrupted and does not share their
local model with other clients. In this case, they can synthesize a more accurate model to
improve their prediction accuracy, while other clients cannot, although they share their
local models.

To deal with this, we put forward RingFFL to ensure that if a dishonest client refuses to
send their local model to honest clients after receiving others’ local models, the honest ones
who do not obtain the results will obtain a certain amount of digital currency compensation
provided by the dishonest ones. The proposed mechanism is applicable to FL with ring
architecture, and clients that can form the ring topology can participate in FL, such as
mobile devices, IoT terminals, and self-driving vehicles. In the paper, we deal only with
the static adversaries and assume that all clients will honestly train their local models. The
main notations used are shown in Table 1.
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Table 1. Summary of main notations.

Parameters Description

Pi The i-th client
N The number of all clients
Ti Client i’s private data set
Mi Client i’s local model parameters
C Conditions for obtaining digital currencies
E Evidence needed to obtain digital currencies

Mint Initial model of FL
MAX Maximum communication rounds of FL

To gain a better understanding of the mechanism, motivated by [38,39], we introduce
the process of digital currency changing on the blockchain. Firstly, sender S of the deposits
broadcasts a transaction to the network. The transaction involves the number of deposits
coins(b), a boolean circuit C(·), and the time limit t. Secondly, the recipient R of the deposits
provides evidence e in time t. Finally, if e satisfies C(e) = 1, the transaction will be recorded
on the blockchain, and coins(b) will be sent to R’s wallet. If R cannot provide e or C(e) = 0
in time t, then the transaction will not be recorded, and coins(b) will be returned to S’s
wallet. The penalty mechanism is detailed below.

Step 1 Initialization

At first, each client uses the SHA256 algorithm [40] to generate a 256-bit random
number as the private key, which is used to generate the corresponding public key and
used for digital signatures in the transactions. Next, they calculate the corresponding public
key according to the Elliptic Curve Cryptography algorithm [41]. Once more, based on the
RIPEMD160 [42] and SHA256 algorithms [40], each client generates a digital currency wallet
address. Each client must use their private key for signature authentication to transmit the
digital currencies in their wallet. At last, each client performs data preprocessing on their
own data set, which mainly includes data cleaning and data integration.

Step 2 Local training

The data sets of the clients Pi are Ti(i = 1, 2, · · · , N), respectively. In the local training
phase, all Pi(i = 1, 2, · · · , N) construct local model parameters Mi(i = 1, 2, · · · , N) accord-
ing to Ti. Then, each client calculates

Hi = Hash(Mi) (1)

and outputs {Hi}i∈[N] to Pi(i = 1, 2, · · · , N).

Step 3 Transactions on the blockchain

In our mechanism, paying deposits is a necessary condition for clients to participate
in the FL, even for honest clients. It is believed that the more digital currency clients hold,
the more reliable they are. Clients who leave frequently midway will hold less and less
digital currency and cannot even meet the deposit amount required to participate in the FL,
and thus cannot participate in the training. Transactions on the blockchain phase consist of
three parts, which are introduced in detail below.

(3.1) Roof deposits

We introduce the roof deposits phase in two cases: normal and abnormal situations.
The normal situation is the case that all clients perform honestly as required, and the
abnormal situation is the case that there are clients who do not perform the corresponding
process as required during the training. The situations are presented in detail below.

(a) Normal situation.

Each client Pi(i = 1, · · · , N − 1) simultaneously deposits coins(b) to PN under the con-
dition CN , and the deadline is tN . The detail is that each Pi(i = 1, 2, · · · , N − 1) broadcasts
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a transaction
(

deposit, Tid, T
′
id, Pi, PN , CN , tN , b

)
to the network, in which Tid is the session

identifier and T
′
id is the transaction identifier. Ignore other transactions with the same T

′
id

sent by Pi(i = 1, 2, · · · , N − 1) to PN before the end of RingFFL. The process is denoted as

Acki,N : Pi
CN−−→
b,tN

PN (2)

(b) Abnormal situation.

If the transaction
(

deposit, Tid, T
′
id, Pi, PN , CN , tN , b

)
is not recorded on the blockchain

for any one of Pi(i = 1, · · · , N − 1), all Pi(i = 1, · · · , N − 1) wait until time tN+1 to receive
Acki,N ’s reimbursement message

(
reimburse, Tid, T

′
id, Pi, PN , CN , tN , coins(b)

)
to Pi’s wallet,

and the RingFFL stops, in which i = 1, · · · , N − 1.

(3.2) Ladder deposits

Like roof deposits, we introduce the ladder deposits phase in two cases: normal and
abnormal situations.

(a) Normal situation.

After the clients, except PN , complete the roof deposits, all clients perform the process of

ladder deposits in turn. First, PN broadcasts a transaction
(

deposit, Tid, T
′
id, PN , PN−1, CN−1,

tN−1, (N − 1)b
)

to the network as a deposit to PN−1 under condition CN−1 with deadline

tN−1. Similarly, PN−1 deposits coins((N − 2)b) to PN−2 under condition CN−2. It continues
until P2 deposits coins(b) to P1 under condition C1. For i = N − 1 down to i = 1, the
process is denoted as

Acki+1,i : Pi+1
Ci−−→

i·b,ti
Pi (3)

(b) Abnormal situation.

If there is no transaction within the network that client Pi+1 sends deposits to Pi
(i = 1, · · · , N − 1) as described above, all Pj(j ≤ i) do not perform the ladder deposits and
wait for Acki,N ’s reimbursement according to Equation (2). All Pj(j > i) need to wait until
the end of the RingFFL to judge whether their ladder deposits are acknowledged.

(3.3) Acknowledgment

Like roof deposits, we introduce the acknowledgment phase in two cases: normal and
abnormal situations.

(a) Normal situation.

In the acknowledgment phase, we define Ei+1 and Ci as follows:

Ei+1
∆
= Expand(i + 1, Ei; Mi+1) = Ei‖Mi+1 (4)

Ci

(
M
′
1

∥∥∥· · · ∥∥∥M
′
i ; {H1, H2, · · · , Hi}

)
=
[

Hash
(

M
′
1

)
?H1

]
∩ · · · ∩

[
Hash

(
M
′
i

)
?Hi

]
(5)

in which Hi is associated with Equation (1), M
′
i is the model parameters received from

neighboring client, and A‖B denotes a connection between A and B.
P1 first provides evidence E1 = Expand(1,⊥; M1) according to Equation (4) to ac-

knowledge Ack2,1 from P2. When P1 provides the acknowledgment message(
acknowledge, Tid, T

′
id, P2, P1, C1, t1, b, E1

)
, miners will verify whether the transaction(

deposit, Tid, T
′
id, P2, P1, C1, t1, b

)
exists and that C1(E1; H1) = 1 is true according to Equa-
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tion (5). If the verification passes, the message
(

acknowledge, Tid, T
′
id, P2, P1, C1, t1, b, E1

)
is

made public to the network, and the transaction
(

deposit, Tid, T
′
id, P2, P1, C1, t1, b

)
is recorded

on the blockchain later. The coins(b) in
(

acknowledge, Tid, T
′
id, P2, P1, C1, t1, coins(b)

)
is sent

to P1’s wallet. Afterwards, P2 acknowledges Ack3,2 from P3, similarly. It continues in
turn until PN−1 acknowledges AckN,N−1 from PN using evidence EN−1 according to
Equations (4) and (5). At last, PN uses EN to acknowledge Acki,N (Equation (2)) from
all Pi(i = 1, 2, · · · , N − 1).

(b) Abnormal situation.

For i = 1, 2, · · · , N − 1, if Pi does not acknowledge Acki+1,i according to Equation (3),
then Pi+1 will end the RingFFL and wait for reimbursement from Acki+1,i. Furthermore,
when i + 1 6= N, Pi+1 waits for reimbursements from Acki+1,N according to Equation (2).

Step 4 Output

Like roof deposits, we introduce the output phase in two cases: normal and abnormal
situations.

(a) Normal situation.

In the output phase, if PN acknowledges Acki,N according to Equation (2)), then
EN (Equation (4)) is made public, which is the evidence that meets CN(Equation (5)).
Each Pi(i = 1, · · · , N) outputs M1‖· · · ‖MN , uses the FedAvg algorithm [43] for model
aggregation to obtain the current round of global model Mglob

Round = 1
N ∑N Mi, and continues

to the next round of training.
In the RingFFL, for i = 1, · · · , N − 1, Acki,N (Equation (2)) locks coins(b) of Pi. If

Pi−1 successfully executes Acki,i−1’s acknowledgment (Equation (3)), then Pi will give Pi−1
coins((i− 1)b) and the condition Ci−1 (Equation (5)) provided by Pi−1 will be made public.
According to the model parameters Mi of Pi and Ci−1, Pi can successfully execute Acki+1,i’s
acknowledgment (Equation (3)) and obtain coins(ib) from Pi+1. That is, if all clients execute
the RingFFL honestly, the number of each client’s digital currencies neither increase nor
decrease.

(b) Abnormal situation.

If PN does not acknowledge any Acki,N (Equation (2)), then each client outputs ⊥.
For i = 1, · · · , N, suppose Pj(j ∈ [i− 1]) are honest clients. If Pi terminates the

RingFFL after obtaining M1‖M2 ‖· · · ‖Mi−1 , then Pi−1 can successfully acknowledge
coins((i− 1)b) from Pi’s ladder deposits, and Pk’s coins((k− 1)b) in the ladder deposits
will be reimbursed, in which k = i + 1, i + 2, · · · , N. Since PN cannot provide CN (Equa-
tion (5)), each client’s roof deposits will be reimbursed. As a result, the total number of
Pk’s digital currencies is unchanged, in which k = i + 1, i + 2, · · · , N. The number of each
Pj’s digital currencies increases by b, and the number of Pi’s digital currencies decreases by
(i− 1)b. Thus, the RingFFL guarantees the fairness of FL. The overall process of RingFFL is
illustrated in Algorithm 1.

To better understand the whole process, we take 5 clients as an example to demonstrate
the penalty mechanism in RingFFL, which is shown in Figure 3.
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Algorithm 1 The proposed RingFFL

Input: {T1, T2, · · · , TN}, Mint, MAX.
Output: Federated Learning Model M.
1: Set Round = 1
2: for i = 1 : N do
3: Pi trains local models Mi based on initial model Mint, calculates Hi, and broadcasts

{Hi}i∈[N] to Pi.
4: end for
5: for i = 1 : N − 1 do
6: Pi deposits coins(b) to PN under the condition CN , which is denoted as Acki,N .
7: if Pi is honest then
8: Process Acki,N is executed.
9: else

10: Transaction
(

deposit, Tid, T
′
id, Pi, PN , CN , tN , b

)
is not recorded on the blockchain.

11: for i = 1 : N − 1 do
12: Pi waits to receive Acki,N’s reimbursement message

(
reimburse, Tid, T

′
id, Pi,

PN , CN , tN , coins(b)
)

.
13: End RingFFL
14: end for
15: end if
16: end for
17: for i = 1 : N − 1 do
18: Pi+1 deposits coins(i · b) to Pi under the condition Ci, which is denoted as Acki+1,i.
19: if Pi is honest then
20: Process Acki+1,i is executed.
21: else
22: for j = 1 : i− 1 do
23: Pj does not perform the ladder deposits and wait for Acki,N’s reimbursement.
24: end for
25: for j = i + 1 : N − 1 do
26: Pj wait for the end of RingFFL to judge whether its ladder deposit is acknowl-

edged.
27: end for
28: end if
29: end for
30: for i = 1 : N do
31: if Pi is honest then
32: Pi outputs Mglob

Round = 1
N ∑N Mi

33: else
34: Pi outputs ⊥
35: End RingFFL
36: end if
37: end for
38: if Round<MAX then
39: Round = Round + 1
40: Return 2
41: else
42: for i = 1 : N do
43: Pi outputs M = Mglob

Round
44: End RingFFL
45: end for
46: end if
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(a) All steps are performed normally (b) Roof deposits step is abnormal

(c) Ladder deposits step is abnormal (d) Acknowledgment step is abnormal

Figure 3. An example of the penalty mechanism in RingFFL.

5. Security Analysis and Numerical Results

In the section, we focus on the security analysis and numerical results of the proposed
RingFFL.

5.1. Security Analysis

In this paper, we use blockchain in the ring-architecture-based FL to address the
aforementioned security threats.

(1) Guaranteeing the data security of the clients: We use FL with ring architecture to train
the model, and the local model parameters instead of the raw data are transmitted
during the training process. The raw data are stored locally from start to finish, thus
ensuring the security of the clients’ data.

(2) Guaranteeing the security of the clients’ deposits: In the process of deposit payment and
deposit refund, we use blockchain to guarantee the security of the transactions. The
security mechanism based on consensus can avoid security attacks such as double
spending, thus ensuring the security of clients’ deposits during the training process.

(3) Guaranteeing the correctness of the transmitted local model parameters: To prevent the
dishonest clients from transmitting false local model parameters, the acknowledgment
process needs to validate the hash values of the model parameters, and only the correct
ones will pass the validation. The client will then receive the corresponding amount
of digital currencies.

(4) Guaranteeing the fairness of the FL: To avoid dishonest clients from aborting during the
FL process, the penalty mechanism can deduct the digital currency deposits of the
aborting clients to compensate clients with additional information loss. In this way,
the fairness of FL is guaranteed.
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5.2. Numerical Results

We perform experiments using two well-known data sets MNIST [44] and CIFAR10 [45]
to verify the effect of RingFFL, which are widely used in FL. MNIST is a handwritten digit
data set, containing 60,000 training samples and 10,000 test samples, in which each image is
a single digit from 0 to 9. The CIFAR10 data set consists of 60,000 color images of 10 classes,
which contains 50,000 training images and 10,000 test images and each image is 32 × 32 in
size. According to the distribution of data among clients, we conducted experiments for the
cases where the data sets of clients are independent and identically distributed (IID) [46]
and nonindependent and identically distributed (non-IID) [47], respectively. Whether
clients behave honestly or dishonestly in FL is independent of the distribution of their data
sets. When simulating the case of IID, we uniformly sample the data with labels 0–9 as
the data set for each client, and the distribution of clients’ training data obeys a uniform
distribution. In the case of simulating the situation of non-IID, we first preprocess the data
by dividing the original data into 20 parts, in which each containing half of all the data in a
particular category. Then, we put every 2 parts together as a client’s data set according to
(i, j) categories, where i 6= j, which is a common method to simulate non-IID in FL.

To demonstrate the accuracy of RingFFL for MNIST and CIFAR10 data sets in IID and
non-IID cases, respectively, Figures 4 and 5 are given.
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Figure 4. Accuracy comparison of FL for MNIST data set in IID and non-IID cases.
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Figure 5. Accuracy comparison of FL for CIFAR10 data set in IID and non-IID cases.

Figures 4 and 5 compare the accuracy with the communication round for the central-
ized algorithm (Central Data in the figures) and our approach in the case of IID and non-IID
experimented with MNIST and CIFAR10 data set, respectively. It can be seen that the
accuracy of RingFFL gradually increases as the number of communication rounds increase.
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After reaching a certain number of communication rounds, the accuracy tends to be stable
and close to the accuracy of the centralized algorithm. Since CIFAR10’s images are derived
from the real world, the scale, features, and colors of objects are different in addition to
having a lot of noise, which greatly increases the difficulty of recognition. Nevertheless,
the accuracy of the experiments conducted by CIFAR10 is close to the accuracy of the
centralized algorithm both in the IID and non-IID cases, which meets the requirements
of FL.

To demonstrate the effect of escape attacks on the FL, Figures 6 and 7 are given. In our
experiments, we assume that there are clients left in the 5th communication round of FL.
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Figure 6. Accuracy comparison of FL for MNIST data set in IID and non-IID cases with clients leaving.
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Figure 7. Accuracy comparison of FL for CIFAR10 data set in IID and non-IID cases with clients leaving.

Figures 6 and 7 compare the accuracy of the experiments using the MNIST and
CIFAR10 data sets in normal and abnormal (with clients leaving) situations in IID and
non-IID cases, respectively. It can be seen that the accuracy of the experiments using
the MNIST and CIFAR10 data sets decreases substantially when there are clients leaving
during the FL process, both in the IID and non-IID cases. For example, in the IID case of the
experiment using the MNIST data set, the accuracy of FL in the normal situation is 96.29%,
while the accuracy of FL in the abnormal situation with clients leaving is 81.31%. Similarly,
in the non-IID case of the experiment using the CIFAR10 data set, the accuracy of FL in the
normal situation is 85.13%, while the accuracy of FL in the abnormal situation with clients
leaving is 45.56%.

To demonstrate the fairness of the RingFFL, we performed simulation experiments.
Suppose there are 5 clients participating in the FL. The situation where all clients are honest
is shown in Figure 8a. The situations where a client leaves during the roof deposit and
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ladder deposit are shown in Figure 8b,c, respectively. The situation where a client leaves
after obtaining useful information is shown in Figure 8d.

(a) When all clients are honest (b) When a client leaves during roof deposit

(c) When a client leaves during ladder deposit (d) When a client leaves after obtaining useful infor-
mation

Figure 8. The circulation of digital currencies when there are 5 clients participating in FL.

As shown in Figure 8a, when all clients behave honestly, the number of digital cur-
rencies in each client’s wallet neither increases nor decreases at the end of FL. Client 1’s
reimbursement comes from client 2’s ladder deposits of b, and similarly, client 2, client 3,
and client 4’s reimbursement come from client 3, client 4, and client 5’s ladder deposits of
2b, 3b and 4b, respectively. Client 5’s reimbursement comes from client 1–client 4’s roof
deposits of b× 4 = 4b.

The situation where a client aborts during the roof deposit is shown in Figure 8b.
Suppose that client 3 leaves. After client 3 aborts during the roof deposit, RingFFL stops and
does not continue the following process. Since no local model parameters are transmitted,
client 1, client 2, and client 4’s roof deposits of b will be fully refunded.

The situation where a client aborts during the ladder deposit is shown in Figure 8c.
Suppose that client 3 leaves. As can be seen from Figure 8c, after client 3 aborts during the
ladder deposit, client 1 and client 2 will also not start the ladder deposit phase. Because no
local model parameters are transmitted, ladder deposits for client 4 of 3b and client 5 of 4b
and roof deposits for client 1–client 4 of b will be refunded.

The situation where a client aborts during the ladder deposit is shown in Figure 8d.
Suppose that client 3 leaves after obtaining useful information. It can be seen from Figure 8d
that, in the case where client 3 aborts after obtaining useful information, since client 3 does
not transmit the model parameters to client 4, they do not obtain the number of ladder
deposits of 3b from client 4, which will be returned to client 4. Similarly, the number
of ladder deposits of 4b from client 5 to client 4 will also be returned to client 5. Client
1–client 4’s roof deposits to client 5 will also be returned in full. However, client 1 correctly
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transmitted the model parameters to client 2, so client 1 received both client 2’s ladder
deposits of b and client 5’s returned roof deposits of b. That is, the number of digital
currencies of client 1 eventually increases by b. Similarly, client 2 correctly transmits the
model parameters to client 3, so client 2 obtains both the ladder deposits of 2b from client 3
and the roof deposits of b refunded from client 5. After subtracting the number of ladder
deposits of b given by client 2 to client 1, the number of digital currencies in client 2’s
wallet also increases by b in the end. In addition, as can be seen in Figure 8d, client 3’s
digital currencies are reduced by 2b, while the digital currencies of client 1 and client 2,
who trained honestly and transmitted the local model parameters to the next client, are
both increased by b. This corresponds to client 3’s deposits being used to compensate for
the losses of client 1 and client 3. Client 4 and client 5 receive neither the model parameters
nor the additional digital currencies. Thus, the fairness of FL is achieved.

To illustrate the universality of the proposed mechanism to the number of clients, we
increased the number of clients and reconduct the experiments. As is shown in Figures 9–11,
similar results are obtained with 10 clients, 15 clients, and 20 clients participating in FL
training, respectively, in which we assume that client 8 leaves halfway.

(a) When all clients are honest (b) When a client leaves during roof deposit

(c) When a client leaves during ladder deposit (d) When a client leaves after obtaining useful infor-
mation

Figure 9. The circulation of digital currencies when there are 10 clients participating in FL.



Future Internet 2023, 15, 68 16 of 20

(a) When all clients are honest (b) When a client leaves during roof deposit

(c) When a client leaves during ladder deposit (d) When a client leaves after obtaining useful informa-
tion

Figure 10. The circulation of digital currencies when there are 15 clients participating in FL.

Figures 8–11 show the case where one client leaves halfway. When more than one
client leaves, the penalty mechanism still works. We conducted a simulation experiment
with three clients leaving midway (client 8, client 14, and client 18), and the experimental
results are shown in Figure 12.

It can be seen from Figure 12a that when three clients do not execute roof deposits,
all roof deposits of other clients will be refunded. As can be seen from Figure 12b, since
client 18 should make ladder deposits first among the three leaving clients, when client
18 discontinues ladder deposits, all the remaining clients will no longer perform ladder
deposits and wait for the refund of their respective roof deposits. From Figure 12c, it
can be seen that since client 8 performs the acknowledgment step first among the three
leaving clients, after client 8 leaves with useful information, their ladder deposits will be
used to compensate for the loss of client 1–client 7. Although client 14 and client 18 also
leave midway, they do not obtain additional useful information, so all their deposits are
returned. The fairness of FL is still guaranteed when multiple clients leave in the middle of
the process.

To demonstrate the effect of including blockchain on training time, we give Figures 13
and 14.
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(a) When all clients are honest (b) When a client leaves during roof deposit

(c) When a client leaves during ladder deposit (d) When a client leaves after obtaining useful informa-
tion

Figure 11. The circulation of digital currencies when there are 20 clients participating in FL.

(a) When three clients leave during
roof deposit

(b) When three clients leave during
ladder deposit

(c) When three clients leave after ob-
taining useful information

Figure 12. The circulation of digital currencies when there are 20 clients participating in FL and three
leave halfway.

It can be seen from Figures 13 and 14 that including blockchain will take a little longer
than excluding blockchain experiments with the MNIST and CIFAR10 data sets in both the IID
and non-IID cases. If blockchain is not included, the time consumption mainly consists of the
models’ local training time, model transmission, model validation, and model aggregation time.
In the case of including blockchain, the transaction confirmation time for paying deposits and
deposit acknowledgment is increased, in which the confirmation operation of paying deposits
and the models’ local training can be executed in parallel. So, the increased time consumption
mainly lies in the extra time for the confirmation operation of paying deposits over local training
and the confirmation time of deposit acknowledgment. In the experiment, we use Ethereum 2.0,



Future Internet 2023, 15, 68 18 of 20

which has a transaction confirmation time of 12–14 s. If a blockchain with a shorter consensus
time such as Fabric is used, it can reduce the time consumption even more.
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Figure 13. Comparisons of training time including and excluding blockchain of FL for MNIST data
set in IID and non-IID cases.
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Figure 14. Comparisons of training time including and excluding blockchain of FL for CIFAR10 data
set in IID and non-IID cases.

6. Conclusions

In this paper, we propose a ring-architecture-based fair federated learning framework
RingFFL. The penalty mechanism is designed to ensure the fairness of FL in the case that
the clients launch an escape attack during the FL process. That is, either all clients obtain
the FL model, or clients who have suffered losses will be compensated with the digital
currencies from the clients that launched escape attacks. Specifically, each client trains a
local model based on its data and then transmits the local model parameters to other clients
according to the rules designed in this paper. When dishonest clients obtain other clients’
model parameters and abort, the honest clients who do not obtain the models will obtain a
certain amount of digital currencies provided by dishonest clients using blockchain as a
compensation, thus achieving the fairness of FL.

In the future, we plan to study the fairness of FL in the presence of more attacks. For
example, when considering a poisoning attack in which the corrupted client manipulates
the distribution of training data by inserting carefully crafted samples in the training
set in order to change the model behavior and degrade the model performance; how to
achieve fairness while guaranteeing the performance of FL is a question worth studying. In
addition, taking asynchronous FL into account and investigating the case where there are
clients who can join the training at any time may also be an interesting future direction.
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27. Śmietanka, M.; Pithadia, H.; Treleaven, P. Federated Learning for Privacy-Preserving Data Access. 2020. Available online:

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3696609 (accessed on 15 September 2020).
28. Li, T.; Sahu, A.K.; Talwalkar, A.; Smith, V. Federated learning: Challenges, methods, and future directions. IEEE Signal Process.

Mag. 2020, 37, 50–60. [CrossRef]
29. Paragliola, G. Evaluation of the trade-off between performance and communication costs in federated learning scenario. Future

Gener. Comput. Syst. 2022, 136, 282–293. [CrossRef]
30. Lin, T.; Kong, L.; Stich, S.U.; Jaggi, M. Ensemble distillation for robust model fusion in federated learning. Adv. Neural Inf. Process.

Syst. 2020, 33, 2351–2363.
31. Liu, L.; Zhang, J.; Song, S.; Letaief, K.B. Client-Edge-Cloud Hierarchical Federated Learning. In Proceedings of the ICC 2020-2020

IEEE International Conference on Communications (ICC), Dublin, Ireland, 7–11 June 2020; pp. 1–6. [CrossRef]
32. Paragliola, G. A federated learning-based approach to recognize subjects at a high risk of hypertension in a non-stationary

scenario. Inf. Sci. 2023, 622, 16–33. [CrossRef]
33. Huang, Y.; Hu, C. Toward Data Heterogeneity of Federated Learning. arXiv 2022, arXiv:2212.08944.
34. Li, T.; Sanjabi, M.; Beirami, A.; Smith, V. Fair resource allocation in federated learning. arXiv 2019, arXiv:1905.10497.
35. Fang, H.; Qian, Q. Privacy preserving machine learning with homomorphic encryption and federated learning. Future Internet

2021, 13, 94. [CrossRef]
36. Qu, Y.; Gao, L.; Luan, T.H.; Xiang, Y.; Yu, S.; Li, B.; Zheng, G. Decentralized privacy using blockchain-enabled federated learning

in fog computing. IEEE Internet Things J. 2020, 7, 5171–5183. [CrossRef]
37. Xing, H.; Simeone, O.; Bi, S. Decentralized federated learning via SGD over wireless D2D networks. In Proceedings of the 2020

IEEE 21st International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Atlanta, GA, USA,
26–29 May 2020; pp. 1–5. [CrossRef]

38. Kumaresan, R.; Vaikuntanathan, V.; Vasudevan, P.N. Improvements to Secure Computation with Penalties. In Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna, Austria, 24–28 October 2016; ACM: New
York, NY, USA, 2016; pp. 406–417. [CrossRef]

39. Desai, H.B.; Ozdayi, M.S.; Kantarcioglu, M. Blockfla: Accountable federated learning via hybrid blockchain architecture. In
Proceedings of the Eleventh ACM Conference on Data and Application Security and Privacy, Virtual Event, 26–28 April 2021;
pp. 101–112. [CrossRef]

40. Courtois, N.T.; Grajek, M.; Naik, R. Optimizing sha256 in bitcoin mining. In Proceedings of the International Conference on
Cryptography and Security Systems, Lublin, Poland, 29 August 2014; pp. 131–144. [CrossRef]

41. Hankerson, D.; Menezes, A. Elliptic Curve Cryptography; Springer: Berlin, Germany, 2011.
42. Suhaili, S.; Watanabeb, T. Design of Optimized Pipelined RIPEMD-160 with High Frequency and Throughput. J. Adv. Res.

Comput. Appl. 2016, 3, 17–27.
43. McMahan, B.; Moore, E.; Ramage, D.; Hampson, S.; Arcas, B.A.Y. Communication-Efficient Learning of Deep Networks from

Decentralized Data. In Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, Fort Lauderdale,
FL, USA, 20–22 April 2017; Volume 54, pp. 1273–1282.

44. Deng, L. The MNIST Database of Handwritten Digit Images for Machine Learning Research [Best of the Web]. IEEE Signal
Process. Mag. 2012, 29, 141–142. [CrossRef]

45. Ho-Phuoc, T. CIFAR10 to Compare Visual Recognition Performance between Deep Neural Networks and Humans. arXiv 2018,
arXiv:1811.07270.

46. Bonawitz, K.; Eichner, H.; Grieskamp, W.; Huba, D.; Ingerman, A.; Ivanov, V.; Kiddon, C.; Konečný, J.; Mazzocchi, S.; McMahan, B.;
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