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Abstract: Homomorphic encryption (HE) has emerged as a pivotal technology for secure neural net-
work inference (SNNI), offering privacy-preserving computations on encrypted data. Despite active
developments in this field, HE-based SNNI frameworks are impeded by three inherent limitations.
Firstly, they cannot evaluate non-linear functions such as ReLU, the most widely adopted activation
function in neural networks. Secondly, the permitted number of homomorphic operations on cipher-
texts is bounded, consequently limiting the depth of neural networks that can be evaluated. Thirdly,
the computational overhead associated with HE is prohibitively high, particularly for deep neural
networks. In this paper, we introduce a novel paradigm designed to address the three limitations
of HE-based SNNI. Our approach is an interactive approach that is solely based on HE, called iLHE.
Utilizing the idea of iLHE, we present two protocols: ReLU, which facilitates the direct evaluation of
the ReLU function on encrypted data, tackling the first limitation, and HeRefresh, which extends the
feasible depth of neural network computations and mitigates the computational overhead, thereby
addressing the second and third limitations. Based on HeReLU and HeRefresh protocols, we build a
new framework for SNNI, named HeFUN. We prove that our protocols and the HeFUN framework are
secure in the semi-honest security model. Empirical evaluations demonstrate that HeFUN surpasses
current HE-based SNNI frameworks in multiple aspects, including security, accuracy, the number
of communication rounds, and inference latency. Specifically, for a convolutional neural network
with four layers on the MNIST dataset, HeFUN achieves 99.16% accuracy with an inference latency
of 1.501 s, surpassing the popular HE-based framework CryptoNets proposed by Gilad-Bachrach,
which achieves 98.52% accuracy with an inference latency of 3.479 s.

Keywords: privacy-preserving machine learning; secure neural network inference; homomorphic
encryption

1. Introduction

Over the last decade, the field of machine learning (ML), particularly deep learning
(DL), has witnessed a tremendous rise, achieving superhuman-level performance in many
areas, such as image recognition [1,2], natural language processing [3,4], and speech recog-
nition [5,6]. The success of deep neural networks (DNNs) relies on training large-scale
models encompassing billions of parameters and fed with extensive datasets. For instance,
ChatGPT [7], a famous large language model, was trained on the diverse and wide-ranging
dataset derived from books, websites, and other texts, containing a total of 175 billion
parameters. Therefore, training DNNs can be time-consuming and requires huge training
samples. For such reasons, it is challenging for individual users to build DNNs of this scale.
In response to this challenge, Machine Learning as a Service (MLaaS) has been proposed,
enabling individual users to perform inference on their data without the necessity of local
model training.
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The MLaaS paradigm can be described in more detail as follows. A pre-trained neu-
ral network (NN), denoted by F, is deployed on a remote cloud server. In this setup,
a client transmits a data sample, denoted by x, to the server for inference. After receiving x,
the cloud server performs neural network inference on x to obtain the output F(x), which
will be returned to the user as the prediction result. Although MLaaS has clear benefits, it
also raises serious privacy concerns for the client and the server. Firstly, from the client’s
perspective, the data x and the prediction result F(x) may contain sensitive personal infor-
mation, e.g., in healthcare applications, data x can be a medical record and the prediction
F(x) is whether the client has contracted a certain disease. Therefore, the client may hesi-
tate to share x with the server and want to hide F(x) from the server. Secondly, from the
server’s perspective, the pre-trained NN, F, represents the service provider’s intellectual
property and has great commercial advantages. Hence, the server does not want to share
F with clients. Furthermore, the NN may leak information about the training data [8].
Consequently, it is very desirable and of great practical importance to design secure MLaaS
frameworks, where the client should learn F(x) but nothing else about the server’s model
F, while the server should not learn anything about the client’s input x or the prediction
result F(x). Throughout this paper, we refer to this goal as secure neural network inference
(SNNI) (other names sometimes used in the literature include privacy-preserving inference
and oblivious inference).

Existing approaches to the SNNI problem naturally rely on privacy-preserving tech-
niques of modern cryptography, in particular, multi-party computation (MPC) and fully
homomorphic encryption (HE). In secure two-party computation (2PC), a special case
of MPC with two parties, the client and the server interact with each other to securely
compute the prediction result without revealing any individual values. After three decades
of theoretical and applied work improving and optimizing 2PC protocols, we now have
very efficient implementations, e.g., refs. [9–13]. The main advantage of 2PC protocols is
that they are computationally inexpensive and can evaluate arbitrary operators. However,
2PC protocols require the structure (e.g., the boolean circuit) of the NN to be public and
involve multiple rounds of interaction between the client and the server. On the other
hand, HE-based SNNI is a non-interactive approach (the client and the server are not
required to involve any communication during the inference process) and keeps all NNs’
information secret from the client. The main bottlenecks of HE-based SNNI frameworks
are their computational overhead and they cannot evaluate non-linear operators, e.g., the
comparison operator. If prioritizing accuracy and inference time, 2PC is the better candi-
date. For prioritizing security and optimizing communication, HE is the better candidate.
Our motivation is to design a novel framework that achieves the best of both worlds: the
security and low communication cost characteristic of the HE-based approach, coupled
with the computational efficiency and ability to evaluate non-linear functions inherent in
the 2PC-based approach.

In this paper, we focus on the HE-based approach to SNNI. HE is a cryptographic
technique that allows computations to be performed on encrypted data without decrypting
it. HE-based SNNI can be described as follows. The client encrypts x and sends the
encrypted data [x] to the server. The server evaluates F on [x] and sends the result F([x])
to the client, where F([x]) = [F(x)] (homomorphic property). Finally, the client decrypts
the ciphertext and obtains F(x). The main contribution of our paper is to propose a novel
interactive approach for SNNI solely based on HE that overcomes the aforementioned issues
in 2PC and HE. The novelty of our approach is that it is only based on HE, while the existing
interactive approach combines HE with 2PC protocols. Hence, we reduce communication
complexity caused by 2PC protocols.

Existing (non-interactive) HE-based SNNI frameworks face three inherent drawbacks,
which our approach will address.

• Firstly, existing HE schemes only support addition and multiplication, while other
operators, such as comparison, are not readily available and are usually replaced by
evaluating expensive (high-degree) polynomial approximation [9,10]. Hence, cur-
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rent HE-based SNNI frameworks cannot practically evaluate non-linear activation
functions, e.g., ReLU function, which are widely adopted in NNs.

The solution for this issue is to replace these activation functions with (low-degree)
polynomial approximations, e.g., square function. However, this replacement degrades
the accuracy of the NN [11] and requires a costly re-training of the NN. Moreover, training
NNs using the square activation function can lead to strange behavior when running the
gradient descent algorithm, especially for deep NNs. For example, gradient explosion or
overfitting phenomena may occur [12]. This is because the derivative of the square function,
unlike the ReLU function, is unbounded. This paper proposes a novel protocol to evaluate
the ReLU function, HeReLU, which addresses the challenge of evaluating ReLU in current
HE-based SNNI frameworks.

• Secondly, in all existing HE schemes, ciphertexts contain noise, which will be accu-
mulated after running homomorphic operations, and at some point, the noise present
in a ciphertext may become too large, and the ciphertext is no longer decryptable.
A family of HE supporting a predetermined number of homomorphic operators is
called leveled HE (LHE). LHE is widely adopted in SNNI frameworks (LHE-based
SNNI frameworks). Therefore, an inherent drawback of existing LHE-based SNNI
frameworks is that they limit the depth of NNs.

The bootstrapping technique, an innovative technique proposed by Gentry [13], can
address this issue. The bootstrapping technique produces a new ciphertext that encrypts
the same message with a lower noise level so that more homomorphic operations can
be performed on the ciphertext. Roughly speaking, bootstrapping homomorphically de-
crypts the ciphertext using encryption of the secret key, called the bootstrapping key, then
(re-)encrypts the message with the bootstrapping key. This requires an extra security pre-
requisite, termed the circular security assumption. The assumption implies that disclosing
the encryption of the secret key is presumed to be secure.

The circular security assumption remains poorly studied and poorly understood.
Proving circular security for the HE schemes remains an open problem. Furthermore,
bootstrapping is generally considered an expensive operation, so one usually tries to avoid
it as much as possible [14]. This paper proposes a novel protocol to refresh ciphertext in
HE schemes, HeRefresh, to address the noise growth issue in HE schemes. Our protocol is
much faster than bootstrapping (the empirical comparison results are shown in Section 5.2)
and does not require circular security.

• Thirdly, LHE-based SNNI suffers from huge computational overhead. The compu-
tational cost of LHE, for example, grows dramatically with the number of levels of
multiplication that the scheme needs to support. This means LHE-based SNNI is
impractical in the case of deep NNs (equivalent to a very large multiplication level).
Interestingly, HeRefresh naturally reduces the size of LHE schemes’ parameters, hence
significantly reducing computational overhead (details in Section 5.3).

The non-interactive LHE-based SNNI approach cannot efficiently address the three
above challenges. A natural approach that appears in the literature is interactive LHE-
based approaches [11,15,16]. There are two branches in interactive LHE-based approaches.
The first branch is solely based on LHE, which we call iLHE, and the second branch combines
HE and 2PC protocols, known as the HE-MPC hybrid approach in the literature.

n-Graph-HE2 [11] is the only iLHE-based SNNI framework. n-Graph-HE2 adopted
client-aided architecture where the server sends encrypted values (before the non-linear
activation function) of intermediate layers to the client, and the client decrypts those
encrypted values and then evaluates the activation function on intermediate layers’ values;
finally, the client encrypts those intermediate layers’ values (after non-linear activation
function) and sends it to the server. It is worth noting that the process of decryption-
then-encryption can be considered as a noise refresher. This solution addresses the three
mentioned issues of non-interactive LHE-based SNNI. However, nGraph-HE2 leaks the
network’s information, namely NNs’ architecture and all intermediate layers’ values.
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Recent studies have illuminated the potential risks of this information leakage; a malicious
client could feasibly reconstruct the entire neural network parameters by exploiting these
intermediate values [17,18]. nGraph-HE2 is an ad hoc solution to address issues of LHE-
based SNNI frameworks and is not considered as a separate approach to SNNI in the
literature. This paper proposes a novel iLHE-based SNNI framework that addresses the
drawbacks of existing non-interactive LHE-based SNNI frameworks while preserving NNs’
architecture and not leaking information about intermediate layers’ values. We argue that
the iLHE-based approach deserves more attention from the research community.

The second branch of interactive LHE-based SNNI is the HE-MPC hybrid approach,
which wisely combines HE and MPC. In particular, HE schemes were used to compute
linear layers, i.e., fully connected layer and convolution layer, while 2PC protocols, e.g.,
garbled circuit (GC) [19] and ABY [20], were used to compute an exact non-linear activation
function. The major bottleneck of the approach is the communication complexity caused
by 2PC protocols. On the other hand, our framework is an iLHE-based approach, which is
solely based on HE. Hence, we naturally avoid expensive 2PC protocols.

To address the three challenges faced by non-interactive LHE-based SNNI, this pa-
per designs two novel iLHE-based protocols. Firstly, we design the HeReLU protocol to
evaluate the ReLU activation function, an essential non-linear function widely adopted
in NNs. This protocol addresses the first challenge of non-linear function evaluation in
HE-based SNNI. Compared to current LHE-based SNNI frameworks, our protocol can
exactly evaluate the ReLU function. Compared to existing HE-MPC hybrid frameworks,
i.e., Gazelle [15] and MP2ML [16], our protocol achieves fewer communication rounds (we
detail this in Section 5.1). Secondly, we design HeRefresh to refresh HE ciphertexts, which
enable further homomorphic operators. This protocol addresses the second challenge
of noise accumulation in HE-based SNNI. By using HeRefresh, rather than selecting HE
parameters large enough to support the entire NN, the HE’s parameters must now only
be large enough to support the computation on linear layers between ReLU activation
function layers. For instance, to perform secure inference on a seven-layer NN, which
contains convolution layers, fully connected layers followed by ReLU activation function
layers, our framework (with HeRefresh) requires L = 3� 7, while current non-interactive
LHE-based SNNI frameworks (without HeRefresh) require L = 7 (details in Section 5.3).
Therefore, HeRefresh can address the third challenge of computational overhead due to
large multiplication depth in LHE-based SNNI. In the HE scheme, HeRefresh plays the
role of a bootstrapping procedure, which aims to reduce the noise in ciphertexts. Our
experiment showed that HeRefresh outperforms bootstrapping by 300× in running time
(we detail this in Section 5.2). Interestingly, HeRefresh and HeReLU can run in parallel.
Hence, we can save communication rounds.

Our contribution. In this paper, we first design two novel protocols, i.e., HeReLU
and HeRefresh, to address the drawbacks of existing LHE-based SNNI frameworks. Then,
we leverage HeReLU and HeRefresh to build a new framework for SNNI called HeFUN.
The idea of HeFUN is to use HeReLU to evaluate the ReLU activation function and use
HeRefresh to refresh intermediate neural network layers. The benefits of our proposed
method are twofold. Firstly, compared to current HE-based frameworks, our approach
significantly accelerates inference time while achieving superior accuracy. Secondly, com-
pared to current 2PC-based frameworks, our methodology reduces communication rounds
and safeguards circuit privacy for service providers. We highlight the superiority of our
approach compared to current approaches in Section 2. A comparison summary is shown
in Table 1. The contribution of this paper is as follows:

• We proposed a novel iLHE-based protocol, HeReLU, that can exactly evaluate the
ReLU function solely based on HE, which achieves better communication rounds than
current HE-MPC hybrid frameworks. The analysis is presented in Section 5.1.

• We proposed a novel iLHE-based protocol, HeRefresh, that refreshes noise in cipher-
texts to enable arbitrary depth of the circuit. HeRefresh also reduces HE parameters’
size, hence significantly reducing computation time. Considering the ciphertext
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refreshing purpose, HeRefresh outperforms bootstrapping 300× in relation to compu-
tation time (we detail this in Section 5.2). Furthermore, our protocol deviates from
Gentry’s bootstrapping technique, so we bypass the circular security requirement.

• We build a new iLHE-based framework for SNNI, named HeFUN, which uses HeReLU
to evaluate the ReLU activation function and use HeRefresh to refresh intermediate
neural network layers.

• We provide security proofs for the proposed protocols. All proposed protocols,
i.e., HeReLU and HeRefresh, are proven to be secure in the semi-honest model us-
ing the simulation paradigm [21]. Our framework, HeFUN, is created by composing
sequential protocols. The security proof of the HeFUN framework is provided based
on modular sequential composition [22].

• Experiments show that HeFUN outperform previous HE-based SNNI frameworks.
Particularly, we achieve higher accuracy and better inference time.

Table 1. Comparison of SNNI frameworks.

Approach Framework
Security Accuracy Efficiency

Circuit
Privacy

Comparable
Accuracy a Non-Linear Unbounded Non-Interactive b SIMD Small

HE Params c

LHE

CryptoNets 3 3 7 7 3 3 7
CryptoDL 3 3 7 7 3 3 7

BNormCrypt 3 3 7 7 3 3 7
Faster-CryptoNets 3 3 7 7 3 3 7

HCNN 3 3 7 7 3 3 7
E2DM 3 3 7 7 3 3 7
LoLa 3 3 7 7 3 3 7
CHET 3 3 7 7 3 3 7

SEALion 3 3 7 7 3 3 7
nGraph-HE 3 3 7 7 3 3 7

FHE
FHE-DiNN 3 7 3 3 3 7 3

TAPAS 3 7 3 3 3 7 3
SHE 3 7 3 3 3 7 3

MPC

DeepSecure 7 7 3 3 7 - -
XONN 7 7 3 3 7 - -

GarbledNN 7 7 3 3 7 - -
QUOTIENT 7 3 3 3 7 - -
Chameleon 7 3 3 3 7 - -

ABY3 7 3 3 3 7 - -
SecureNN 7 3 3 3 7 - -
FalconN 7 3 3 3 7 - -

CrypTFlow 7 3 3 3 7 - -
Crypten 7 3 3 3 7 - -

HE-MPC
hybrid

Gazelle 3 3 3 3 7 3 3
MP2ML 3 3 3 3 7 3 3

iLHE nGraph-HE2 7 3 3 3 7 3 3
HeFUN (this work) 3 3 3 3 7 3 3

a Among frameworks considered having comparable accuracy with plain model, LHE-based frameworks are less
accurate than others because they approximate non-linear function by polynomial, while MPC-based, HE-MPC
hybrid-based, and iLHE-based approaches achieve the same accuracy as the plain model (details in Section 5.3).
b HeFUN requires less communication rounds than HE-MPC hybrid-based approach (details in Section 5.1).
c The size of HE parameters directly impacts the inference time of SNNI frameworks. HeFUN uses smaller
HE parameters than current LHE-based frameworks, hence significantly accelerating inference time (details in
Section 5.3).

The rest of the paper is organized as follows. Section 2 reviews current SNNI frame-
works, Section 3 provides the necessary cryptographic background, Section 4 presents our
proposed approach, Section 5 presents our implementation and evaluation results, Section 6
provides some discussions and potential future works, and Section 7 concludes our work.
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2. Related Works

This section provides a summary of current approaches for SNNI. Existing solutions
for SNNI can be categorized into four main approaches: LHE-based (Section 2.1), TFHE-
based (Section 2.2), MPC-based (Section 2.3), and HE-MPC hybrid approach (Section 2.4).
We now overview those approaches. Table 1 summarizes the comparison between existing
SNNI approaches.

2.1. LHE-Based SNNI

This approach utilizes leveled homomorphic encryption (LHE) schemes, e.g., BFV [23]
and CKKS [24]. Such schemes allow a limited and predefined number of operations (e.g.,
additions and multiplications) that can be performed on encrypted data. The computational
cost of LHE-based SNNI frameworks grows dramatically with the number of layers in NNs.
CryptoNets [12] by Microsoft Research is the initial work for LHE-based SNNI. In this paper,
the authors first presented an SNNI framework for a five-layer NN on the MNIST dataset.
CryptoNets triggered significant interest in using LHE for SNNI. Based on the idea of
CryptoNets, many subsequent works were proposed to improve the performance, scaled to
deeper networks, and integrated with deep NN compiler technologies, e.g., CryptoDL [25],
BNormCrypt [26], Faster-CryptoNets [27], HCNN [28], E2DM [29], LoLa [30], CHET [31],
SEALion [32], nGraph-HE [33], and nGraph-HE2 [11]. An essential feature of LHE schemes
is that they offer the Single-Instruction-Multiple-Data (SIMD) technique [34], where we can
pack multiple plain data into a single ciphertext and performing homomorphic operations
on the ciphertext corresponds to simultaneously performing operations on multiple plain
data. This feature helps amortize the cost of homomorphic operations, so it increases the
throughput of the inference process. However, LHE-based SNNI frameworks have three
inherent shortcomings.

Firstly, LHE-based SNNI frameworks cannot evaluate the ReLU function, commonly
used in deep learning. This is because existing LHE schemes do not support the comparison
operation, which is required in computing the ReLU function. One solution widely adopted
to address the issue is to replace the ReLU function with a polynomial approximation,
e.g., CryptoNets replaces the ReLU function with the square function ( f (x) = x2). However,
this solution compromises the accuracy of the NN [11]. Additionally, it requires re-training
the entire NN, which is a costly procedure. Furthermore, training an NN with polyno-
mial approximation, e.g., square function, unlike the ReLU function, may lead to strange
behavior, as the derivative of the square function is unbounded.

Secondly, LHE-based SNNI restricts the depth of the NNs, as LHE schemes allow
only a limited number of operations that can be performed on the encrypted data. Thus,
this method is not scalable and suitable for deep learning, where NNs can contain tens,
hundreds, or sometimes thousands of layers [35,36]. These issues can be addressed by
using the bootstrapping technique [13]. However, the bootstrapping technique requires
circular security and is a costly procedure. So one usually tries to avoid it as much as
possible [14].

Thirdly, and perhaps more importantly, even with many efforts to improve the per-
formance, the computational cost of LHE-based SNNI frameworks is prohibitively large.
This is because inference on deep NNs requires a large multiplicative level, leading to large
LHE schemes’ parameters.

HeFUN addresses all three mentioned drawbacks of LHE-based SNNI thanks to two
novel protocols. That is, the HeReLU protocol can exactly evaluate the ReLU function, which
addresses the first drawback, and HeRefresh can refresh ciphertexts, which addresses the
second and third drawbacks.

2.2. TFHE-Based SNNI

TFHE [37] is an HE scheme that represents ciphertexts in the torus modulo 1. TFHE
can execute rapid binary operations on encrypted binary bits. Furthermore, TFHE is
equipped with a fast bootstrapping technique. Compared to LHE schemes, TFHE has
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two advantages. Firstly, unlike the LHE schemes approximating the ReLU by expensive
polynomial operations, TFHE can exactly evaluate the ReLU function by boolean operations.
Secondly, TFHE allows unbounded homomorphic operators that can be performed on
ciphertext, thanks to the fast bootstrapping technique. However, TFHE only works on
binary gates, and current TFHE-based SNNI frameworks work with binarized neural
networks (BNNs) [38]. BNNs restrict the weights and inputs of their linear layers to the
set {−1, 1}. It employs the activation function sign, which is straightforward to implement
in boolean circuits. FHE-DiNN [39] is the first TFHE-based SNNI framework. While
FHE-DiNN performs inference on MNIST faster than CryptoNets, its accuracy is notably
lower than CryptoNets because it is limited to supporting smaller BNNs.

Subsequent works, i.e., TAPAS [40] and SHE [41], improved the efficiency of FHE-
DiNN, but their core idea was merely based on FHE-DiNN, i.e., using TFHE over BNN.
Due to the limitation of operating with BNN, the accuracy of TFHE-based frameworks falls
short when compared to the plain NN (running inference on the original NN). For example,
ref. [42] evaluated the most prevalent HE schemes for SNNI, namely CKKS, BFV, and TFHE;
while CKKS and BFV achieve comparable accuracy with the plain NN (96.34%), TFHE’s
accuracy was significantly lower (82.70%). As shown in Table 1, while other approaches
achieve comparable accuracy with the plain NN, the TFHE-based approach falls short
in accuracy. Furthermore, since the packing technique does not easily align with the
TFHE scheme, it might introduce extra inefficiencies in terms of running time and memory
overhead when we want to process large amounts of data concurrently.

Compared to the TFHE-based approach, HeFUN is more accurate (we achieve the
same accuracy with the plain NN) and efficient (supports SIMD). Furthermore, HeFUN also
achieves unbounded depth and can exactly evaluate the ReLU activation function.

2.3. MPC-Based SNNI

MPC is a cryptographic technique that enables two or more parties to jointly compute
a function f over their respective secret inputs without revealing their secret inputs to each
other. SNNI is a special case of MPC, i.e., secure two-party computation (2PC), where the
client and the server jointly evaluate the prediction function on private data (held by the
client) and the NN’s parameters (held by the server). GC is an MPC protocol commonly
used in MPC-based SNNI frameworks. In the context of SNNI, when the bit length of the
numbers in use is fixed, all the operations in an NN can be represented using a boolean
circuit. This means the entire NN can be translated into one (likely extensive) boolean
circuit. The GC protocol [19] provides a method to evaluate such a boolean circuit securely.
DeepSecure [43] was pioneered as the first SNNI framework that purely relied on GC.
Following this, XONN [44] and GarbledNN [45] are other frameworks that follow this
purely GC approach. Such purely GC frameworks suffer from three drawbacks. Firstly,
the boolean circuits are unsuitable for performing arithmetic operations (used in NN).
Hence, all these frameworks require some modification on NN to make them compatible
with boolean circuits, e.g., XONN works on BNNs. This modification significantly drops
the accuracy of the NN. Secondly, the purely GC-based approach is bulky and incurs a large
overhead [46]. This is considered as the major hurdle of the purely GC-based approach.
Thirdly, it leaks the entire NN architecture to the client, i.e., the number of layers, type of
layers, and the number of neurons in each layer.

Secret Sharing (SS) [47] and Boolean SS (also known as GMW) [48] are other common
MPC protocols used in MPC-based SNNI. Many SS/GMW-based frameworks have been
proposed to address SNNI, e.g., SecureML [49], ABY2 [50], QUOTIENT [51], Chameleon [52],
ABY3 [20], SecureNN [53], FalconN [54], CrypTFlow [55], and Crypten [56]. These frame-
works are highly efficient. Typically, they exhibit superior performance compared to
existing SNNI approaches [46]. It is worth noting that many of them support private
training (not only SNNI). Although SS/GMW-based frameworks offer many benefits, such
as the fact that they can evaluate any function, including ReLU, and they are very efficient,
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they suffer from a serious security issue similar to the purely GC-based approach, namely,
they leak the entire network architecture to the client.

Overall, MPC-based SNNI frameworks provide a lower level of security than other
SNNI approaches (including HeFUN), as they leak the entire NN’s architecture.

2.4. HE-MPC Hybrid SNNI

HE-MPC Hybrid SNNI judiciously combines HE and MPC. In particular, HE-MPC
Hybrid SNNI frameworks compute linear layers, e.g., fully connected and convolutional
layers, using HE and non-linear activation functions, e.g., ReLU using MPC. Gazelle [15]
was the first work to combine an LHE scheme, i.e., BFV, to compute linear layers with GC
to compute non-linear layers. Gazelle [15] opened a new approach, which outperformed
other approaches, i.e., LHE-based, TFHE-based, and MPC-based, at the time of publica-
tion (2018). Based on the idea of Gazelle, MP2ML [16] was proposed, which combines
the CKKS scheme with ABY [57] (BFV was replaced by CKKS and GC was replaced by
ABY). Although Gazelle and MP2ML can evaluate the ReLU function, offer efficient solu-
tions, and keep the NN architecture secret from the client, the main bottleneck of these
frameworks is the GC/ABY block, where the client and the server have to interact to
jointly compute non-linear functions. Additionally, HE-MPC hybrid frameworks require
converting between HE ciphertexts and MPC values.

On the other hand, our framework, HeFUN, is an MPC-free interactive SNNI frame-
work where we use HE only as the cryptographic primitive. Compared to HE-MPC hybrid
frameworks, HeFUN is simpler and requires fewer communication rounds, as HeFUN
escapes from the main bottleneck block, i.e., GC/ABY. We detail this in Section 5.1.

Our protocol, HeFUN, overcomes the shortcomings of previous approaches by intro-
ducing two novel protocols for evaluating the ReLU function (HeReLU) and refreshing
ciphertext (HeRefresh). Table 1 shows a comparison between HeFUN and existing ap-
proaches. HeFUN satisfies security, accuracy, and efficiency criteria. Notably, HeFUN is the
first framework that meets all criteria only using LHE. The idea is that we allow the client
and the server to interact solely based on HE (without the need for any MPC protocols). We
call this approach interactive LHE (iLHE).

3. Cryptographic Preliminaries
3.1. Notation

We denote a scalar value in lower-case letters, e.g., x. We denote vectors in lower-case
bold letters, e.g., x, and we refer to the ith element of a vector as xi, with indexing starting
from one. For any two vectors u, v ∈ Rn, u + v and u× v signify component-wise addition
and multiplication, respectively, while u · v denotes the dot product between u and v.
We use 〈u〉r to denote the cyclically leftward-shifted (rotation) vector of u by r positions,
with the understanding that a negative r corresponds to a rightward shift. We denote a
matrix in capital bold letters, e.g., W , and we refer to the ith column of a vector as Wi.
We let x ·W denote vector–matrix multiplication. Additionally, we use R to denote the
cyclotomic ring Z[X]/

〈
XN + 1

〉
, where N is a power of two, andRq = R/qR.

3.2. Homomorphic Encryption

Homomorphic encryption (HE) is a distinctive form of encryption that permits compu-
tation on ciphertexts without the need for decryption, thereby ensuring data confidentiality,
even within untrusted environments. Current HE schemes vary, particularly concerning
the data types they accommodate. For instance, integer-based HE schemes facilitate opera-
tions on integer vectors, whereas real number-based HE schemes cater to computations
involving real vectors. Although our proposed frameworks are compatible with both types,
our primary focus is on the CKKS scheme [10], which is prevalent in SNNI due to its
inherent compatibility with real numbers.

In CKKS, a ciphertext takes the form of (b, a) ∈ R2
q, with q being a prime number.

The scheme enables the encryption of a vector consisting of N/2 real numbers into N/2 slots
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of a single ciphertext, thanks to the batching technique [10]. CKKS facilitates homomorphic
operations, applying identical computations to each slot concurrently. In particular, if we
represent the ciphertext of a vector x ∈ RN/2 as [x], we can describe homomorphic operators
as follows: [x] ⊕ [y] = [x + y], [x] ⊕ y = [x + y], [x] ⊗ [y] = [x× y], [x] ⊗ y = [x× y],
and Rotate([x], r) = [〈x〉r].

LHE-based SNNI. Leveraging the operators supported by homomorphic encryption,
numerous LHE-based SNNI frameworks have been developed (as can be seen in Table 1).
In NNs, two common operators that can be efficiently evaluated using HE schemes are
matrix multiplication and convolution. A comprehensive explanation of these methods
is beyond the scope of this paper; for detailed insights, we direct readers to [58–61]. We
briefly overview the operators that we used in this paper.

Given a vector x and a matrix W , the vector–matrix multiplication can be efficiently
evaluated in the HE scheme, i.e., [x] �W = [x ·W ], where � denotes homomorphic
(encrypted) vector and (plain) matrix multiplication. In the context of convolution, given an
input image x (we repurpose the symbol x, typically used for vectors, to represent images
in this context) and a filter W (for clarity, we presume the filter W possesses a singular
map; in scenarios with multiple maps, the operation can be repeated accordingly), we have
[x]~ W = [x ∗W ], where ∗ and ~ denote convolution and homomorphic convolution,
respectively. In this paper, we employ convolution based on [60], in which convolution
between an encrypted vector and a plain matrix can be computed based on element-wise
operators in HE schemes. Additionally, it is noteworthy that the dot product is essentially
a specific instance of matrix multiplication, illustrated as [x]� y = [x.y].

LHE. In CKKS, each ciphertext has a non-negative integer, termed as level, represent-
ing the capacity for homomorphic multiplication operations. After each homomorphic
multiplication, the level is reduced by one through the rescaling procedure. After several
multiplications, if the level ` reduces to zero, the ciphertext can no longer support further
multiplication operations. The initial setting of ` is crucial and is determined based on the
expected number of multiplications. For deep NN, ` is large, resulting in a corresponding
increase in the CKKS parameters, which subsequently leads to computational overheads.
Another solution to expend ciphertext’s computational capacity is the bootstrapping proce-
dure [13] that turns the zero-level ciphertext into a higher-level ciphertext, thereby enabling
further homomorphic multiplications. However, bootstrapping is commonly considered as
a costly procedure, so one usually tries to avoid it as much as possible [14].

Security of HE. An essential attribute of the CKKS is its semantic security. This
ensures that a computationally bounded adversary cannot distinguish whether a given
ciphertext corresponds to the encryption of one of two different messages. Intriguingly,
even if two messages are identical (i.e., x = y), their respective ciphertexts will differ
(i.e., [x] 6= [y]). This is due to random noise introduced during the encryption process.
The robustness of CKKS’s semantic security is based on the Ring Learning with Errors
(RLWE) assumption [62]. The RLWE problem has undergone extensive scrutiny within
the cryptographic community. Significantly, it is deemed a computationally hard problem,
resistant to quantum attacks, thereby positing RLWE-based schemes like CKKS as viable
options in the quantum era.

3.3. Threat Model and Security

We prove the security of our proposed protocols against a semi-honest adversary
by following the simulation paradigm in [21]. We consider two parties, C and S , and
jointly compute a function f = ( fC, fS) by running a protocol Π. A computationally
bounded adversary A corrupts either C or S at the beginning of the protocol Π and follows
the protocol specification honestly but attempts to infer additional sensitive information
(e.g., information about the input of the other party) from the observed messages during
protocol execution. We now give the formal definition of security within the semi-honest
model. Intuitively, the definition guarantees that everything a party observes from the
received message of a legitimate execution is essentially inferred from its output (coupled
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with its corresponding input). In other words, any knowledge the party acquires from the
protocol execution is fundamentally implied in the output itself, leaving the party with
only the output as new knowledge.

Definition 1. A protocol Π between a party C and a party S is said to securely compute a function
f in semi-honest model if it satisfies the following guarantees:

• Correctness: For any C’s input x and S ’s input y, the probability that, at the end of the
protocol, C outputs fC(x, y) and S outputs fS(x, y) is 1.

• Security:

– Corrupted C: For C that follows the protocol, there exists a simulator SimC such that
ViewC ≈c SimC(x, fC(x, y)) where ViewC denotes the view of C in the execution of Π
(the view includes the C’s input, randomness, and the message C received during the
protocol), and fC(x, y) denotes the ultimate output C received at the end of Π.

– Corrupted S : For S that follows the protocol, there exists a simulator SimS such that
ViewS ≈c SimS (x, fS (x, y)) where ViewS denotes the view of S in the execution of Π,
and fS (x, y) denotes the ultimate output S received at the end of Π.

Our framework (Section 4) is created by composing sequential secure protocols.
To prove the security of our framework, we invoke modular sequential composition,
as introduced in [22]. The details of the modular sequential composition are out of the
scope of this work. Please refer to [22] for details. We now briefly describe the idea of
modular sequential composition, which we used to prove security for our framework.
The idea is that two parties C and S run a protocol Π and use calls to an ideal functionality
F to compute a function f (e.g., C and S may privately compute f by transmitting their
inputs to a trusted third party and subsequently receiving the output) in Π. If we can
prove that Π is secure in the semi-honest model and if we have a protocol ρ that privately
computes f in the same model, then we can replace the ideal calls to F by the execution of
ρ in Π; the new protocol denoted Πρ is then secure in the semi-honest model.

4. HeFUN: An iLHE-Based SNNI Framework

This section provides a detailed description of our proposed framework. We first state
the problem we try to solve throughout this section (Section 4.1). Secondly, we present a
protocol to homomorphically evaluate the ReLU function, i.e., HeReLU (Section 4.2). Thirdly,
we present a protocol to refresh ciphertexts, i.e., HeRefresh (Section 4.3). Fourthly, we
present a naive framework for SNNI, i.e., HeFUNnaive, that straightforwardly applies the
HeReLU and HeRefresh, but it leaks some unexpected information to the client (Section 4.4).
Then, we revise HeFUNnaive to prevent the potential information leakage, which results in
our “ultimate” framework, i.e., HeFUN (Section 4.5). Throughout this section, we denote
the client by C and the server by S .

4.1. Problem Statement

We consider a standard scenario for cloud-based prediction services. In this context, S
possesses an NN, and C sends the data to S and subsequently obtains the corresponding
prediction. The problem is formally defined as:

z := aL

(
fL

(
W (L), aL−1

(
fL−1

(
. . . a1

(
f1

(
W (1), x, b(1)

))))
, b(L)

))
where x is the input data, fi is the linear transformation applied in the ith layer, ai is
(usually non-linear) activation functions, and W (i) and b(i) are the weight and bias in
the i-th layer of the NN. The problem we address is SNNI. That is, after each prediction,
C obtains the prediction z, while S learns nothing about x and z, and C learns nothing
about W (i) and b(i) with i = 1, n except z. In this paper, we focus on the ReLU function,
i.e., ai = ReLU(). The final activation function, i.e., aL, can be omitted in the inference stage
without compromising the accuracy of predictions. This is because NN predictions rely
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on the index with the maximum value in its output vector, and since the aL is monotone
increasing, whether or not we apply it will not affect the prediction. The following sections
elaborate on how to homomorphically evaluate layers in NNs in the HeFUN framework.

Linear layers ( fi). These layers apply a linear transformation on input. In NNs, there
are two common linear transformations, i.e., fully connected layers and convolution layers.

Fully connected layer. The fully connected layer can be considered as the multiplication
between an encrypted vector ([x]) and a plain weight matrix ([W ]) and addition with a bias
vector (b). Based on operators supported by the CKKS scheme (as described in Section 3.2),
the fully connected layer can be efficiently evaluated in the ciphertext domain. In particular,
[x]�W ⊕ b = [x ·W ]⊕ b = [x ·W + b].

Convolution layer. A convolutional layer consists of filters that act on input values.
Convolutional layers aim to extract features from the given image. Every filter is an n× n
square that moves with a certain stride. By convolving the image pixels, we compute the
dot product between filter values and the values adjacent to a particular pixel. Similar to
the fully connected layer, the convolution layer can be efficiently evaluated in the ciphertext
domain, i.e., [x]~W ⊕ b = [x ∗W + b].

After linear layers, a non-linear activation function (ai) is usually applied. Unfortu-
nately, the activation function cannot be evaluated in the ciphertext domain. The next
section presents our method to address this problem.

4.2. HeReLU: Homomorphic ReLU Evaluation Protocol

After a linear layer, a non-linear activation function is applied to introduce non-
linearity into the NN and allow it to capture complex patterns and relationships in the data.
In this paper, we focus on the ReLU function.

ReLU(x) =

{
x if x > 0
0 otherwise

(1)

Evaluating ReLU requires the comparison operator, which is not natively supported
by existing HE schemes. Hence, the ReLU activation function layer cannot be directly
computed in the ciphertext domain. To address this issue, we propose a protocol, HeReLU,
in which S interacts with C to perform ReLU computation.

Homomorphic ReLU evaluation problem. C holds secret key sk, the server has public
key pk but can not access to sk. S holds ciphertext [x] (x ∈ Rn) encrypted under sk.
S obtains [ReLU(x)] without leaking x to C and S .

We now present our protocol that solves the homomorphic ReLU evaluation problem
described above. Here, ReLU(x) means applying the ReLU function on each element
of x, i.e., ReLU(x) = (ReLU(x1), . . . ,ReLU(xn)). Our protocol (HeReLU) is described in
Protocol 1. We now give the intuition behind the protocol and then present the proof for
the correctness and security of the protocol (as illustrated in Lemma 1).

Intuition. We based this on the fact that evaluating the ReLU function is essentially
equivalent to evaluating the sign function. In particular, given sign(x), ReLU(x) can be
implemented as follows:

ReLU(x) =
1
2
(x + x.sign(x)) (2)

where sign(x) = 1 if x > 0, = 0 if x = 0, and = −1 if x < 0. It is noteworthy that
the sign function as defined in this paper is consistent with the standard interpretation
found in the literature [9,10,63,64]. This sign is widely employed in various real-world
applications, including machine learning algorithms, such as support vector machines [65],
cluster analysis [66], and gradient boosting [67].

Therefore, the fundamental question now is as follows: How can S (holds [x]) securely
evaluate [sign(x)]? We start from a trivial (non-secure) solution to evaluate [sign(x)] as
follows: S sends [x] to C; C decrypts the ciphertext (using sk) and obtains x, then obtains
sign(x); C encrypts the result and sends the ciphertext [sign(x)] to S . Obviously, this trivial
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solution reveals the entire x to C. To hide x from C, S first homomorphically multiplies
[x] with a random vector r 6= 0 (line 2), then sends [x× r] to C (line 3). After that, C can
decrypt [x× r] and obtain x× r, which hides x from C in an information-theoretic way (it
is a one-time pad). At S ’s side, based on the sign of x× r and sign of r, this allows S to
obtain the sign of x. In particular, as r 6= 0, sign(x) = sign(x× r)× sign(r) (illustrated in
Table 2). Using [sign(x)], C can homomorphically compute [ReLU(h)] based on Formula (2).
The correctness and security of Protocol 1 is shown in Lemma 1.

Protocol 1 HeReLU: Homomorphic ReLU evaluation protocol
Input C: Secret key sk
Input S : Public key pk, ciphertext [x]
Output S : [ReLU(x)]
S runs following steps:

1: Picks r ← Rn/{0}
2: [x× r]← [x]⊗ r
3: Sends to C: [x× r]
C runs following steps:

4: x× r ← Decrypt([x× r], sk)
5: Sends to S : [sign(x× r)]
S runs following steps:

6: [sign(x)] = [sign(x× r)]⊗ sign(r)
7: [ReLU(x)] = 1

2 ⊗ ([x]⊕ [x]⊗ [sign(x)])

Lemma 1. HeReLU protocol is secure in the semi-honest model.

Table 2. Logic table for sign() function.

sign(r) sign(x× r) sign(x)

1 1 1
1 0 0
1 −1 −1

−1 1 −1
−1 0 0
−1 −1 1

Proof. We prove that the security of our protocol follows Definition 1. We first prove the
correctness and then analyze the security of the protocol.

Correctness. The correctness of the protocol is straightforward. We first prove the
correctness of computing [sign(x)]. At line 6, we have:

[sign(x× r)]⊗ sign(r) = [sign(x× r)× sign(r)] = [sign(x)].
Now, we prove the correctness of computing [ReLU(x)]. At line 7, we have:
1
2 ⊗ ([x]⊕ [x]⊗ [sign(x)]) =

[
1
2 (x + x× sign(x))

]
= [ReLU(x)] (Formula (2)).

Security. We now consider two cases as following Definition 1, i.e., corrupted C and
corrupted S .

Corrupted C: C’s view is ViewC = (sk, [x× r]). Given (sk), we build a simulator SimC
as below:

1. Pick x′ ← Rn;
2. Output (sk, [x′]).

Even C can decrypt [x× r] and obtain x× r, because r was randomly chosen by S ;
hence, from the view of C: x× r ≈c x′ ⇔ (sk, [x× r]) ≈c (sk, [x′])⇔ ViewC ≈c SimC .

Corrupted S : S ’s view is ViewS = (pk, [x], [sign(x× r)]). Given (pk, [x], [ReLU(x)]),
we build a simulator SimS as below:

1. Pick s← {−1, 0, 1}n;
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2. Output (pk, [x], [s]).

Based on the semantic security of HE schemes, it is obvious that (pk, [x], [sign(x× r)])
≈c (pk, [x], [s])⇔ ViewS ≈c SimS .

The idea of computing the ReLU function is based on Equation (2), i.e., ReLU(x) =
1
2 (x + x.sign(x)). This equation requires a division by 2, which is equivalent to multiplying
by 0.5 in CKKS. However, the division is not supported by almost all other schemes
that work on integers in the ring Zn, such as BFV [23] and BGV [68]. In those schemes,
the division by 2 can be replaced by multiplying by 2−1, where 2−1 is the inverse of 2 in Zn.
By doing so, our protocol can be compatible with both CKKS and other integer HE schemes.

HeReLU allows S to obtain [ReLU(x)] without leaking x to S and C. However, it leaks
some unexpected information about x to C, namely, it leaks whether the ith slot in x is zero

or not (we denote it by x ?
= 0). This leakage occurs at line 4 in Protocol 1. In particular,

C knows a slot xi = 0 if the ith slot in x× r is 0 (as r 6= 0). We address the information
leakage by proposing a novel NN permutation. We detail this in Section 4.5.

4.3. HeRefresh: Refreshing Ciphertexts

LHE schemes limit the depth of the circuit that can be evaluated. Furthermore, in the
case of deep NNs, the multiplicative depth of the HE scheme must be a big value that causes
computation overhead (as mentioned in Section 3.2). To address these issues, we design
a simple but efficient protocol to regularly refresh intermediate layers in NNs, HeRefresh.
In this section, we use [x, `] to denote the ciphertext [x] is at the level `, i.e., ` multiplications
can be performed on this ciphertext).

Ciphertext refreshing problem. C holds secret key sk, the server has public key pk
but can not access to sk. S holds ciphertext [x, `] (x ∈ Rn) encrypted under sk. S obtains
[x, L], s.t. L > `, without leaking x to C and S .

We now present our protocol that solves the ciphertext refreshing problem described
above. The protocol is shown in Protocol 2. We now give the intuition behind the protocol
and then present the proof for the correctness and security of the protocol (as illustrated in
Lemma 2.

Protocol 2 HeRefresh: Ciphertext refreshing protocol
Input C: Secret key sk
Input S : Public key pk, [x, `]
Output S : [x, L]
S runs following steps:

1: Picks r ← Rn

2: [x + r, `]← [x, `]⊕ r
3: Sends to C: [x + r, `]
C runs following steps:

4: x + r ← Decrypt([x + r, `], sk)
5: Sends to S : [x + r, L]
S runs following steps:

6: [x, L] = [x + r, L]	 r

Lemma 2. HeRefresh protocol is secure in the semi-honest model.

Intuition. The idea of the protocol is as follows. First, S additively blinds [x] with
a random mask r (line 2) and sends the masked ciphertext [x + r] to C (line 3). Then, C
decrypts the ciphertext and obtains masked message x + r, which perfectly hides x from
C in an information-theoretic way (it is a one-time pad). Then, C encrypts the masked
message the [x + r]. This ciphertext is at the highest level L, as it has not undergone any
multiplication. Obviously, the encryption–decryption procedure can be considered as the
ciphertext refresher. Finally, S homomorphically subtracts r and obtains a new ciphertext,
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which is an L-level ciphertext. HeRefresh is essential to enable continued computation
without increasing the encryption parameters. Rather than selecting encryption parameters
large enough to support the entire NN, we must now only be large enough to support the
linear layers and computation in the HeReLU protocol.

Proof. We first prove the correctness and then analyze the security of the protocol based
on Definition 1.

Correctness. The correctness of the protocol is straightforward. We first consider the
level of the ciphertext. At line 5, C encrypts the plain message x + r into [x + r]. This new
ciphertext has not undergone any computation; hence, it is at the highest level of the HE
scheme, i.e., L. In line 6, the ciphertext involves one homomorphic subtraction; hence,
the resulting ciphertext remains at the level L.

From now on, for the sake of simplicity, we remove the level notion in ciphertexts.
At line 6 of the protocol, [x + r]	 r = [x + r− r] = [x].

Security. We now consider two cases as following Definition 1, i.e., corrupted C and
corrupted S .

Corrupted C: C’s view is ViewC = (sk, [h× r]). Given (sk), we build a simulator SimC
as below:

1. Pick h′ ← Rn;
2. Output (sk, [h′]).

Even C can decrypt [h× r], and obtain h× r, because r was randomly chosen by S ;
hence, from the view of C: h× r ≈c h′ ⇔ (sk, [h× r]) ≈c (sk, [h′])⇔ ViewC ≈c SimC .

Corrupted S : S ’s view is ViewS = (pk, [h], [sign(h× r)]). Given (pk, [h], [ReLU(h)]),
we build a simulator SimS as below:

1. Pick s← {−1, 0, 1}n;
2. Output (pk, [h], [s]).

Based on the semantic security of HE schemes, it is obvious that (pk, [h], [sign(h× r)])
≈c (pk, [h], [s])⇔ ViewS ≈c SimS .

We now leverage HeReLU and HeRefresh to design an SNNI framework. We start
from a simple framework, HeFUNnaive, which straightforwardly applies HeReLU in SNNI
(Section 4.4). HeFUNnaive almost satisfies the requirements of SNNI, except that it leaks

m ?
= 0 to C. We then improve to HeFUNnaive to prevent such information leakage, which

results in the HeFUN protocol (Section 4.5).

4.4. HeFUNnaive Protocol

This section presents our method to solve the SNNI problem, which uses HE to
evaluate linear layers (as described in Section 4.1), uses the HeReLU protocol to evaluate the
ReLU activation function, and uses the HeRefresh protocol to refresh intermediate layers.
Interestingly, HeRefresh and HeReLU can be run in parallel on the same input x(i). By doing
so, we preserve communication rounds. The protocol is shown in Protocol 3. HeFUNnaive
straightforwardly applies the HeReLU protocol to compute the ReLU activation function.

As shown in Section 4.2, it leaks x(i) ?
= 0 to C when C and S run HeReLU (line 4). In the

next section, we present a mature version of HeFUNnaive, i.e., HeFUN, which overcomes such
data leakage.
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Protocol 3 HeFUNnaive framework
Input C: Data x, secret key sk
Input S : public key pk, trained weights and biases (Wi, bi) with i = 1, n
Output C: z := fL(WL, aL−1( fL−1(. . . a1( f1(W1, x, b1)))), bL), where fi is ReLU function.

1: C encrypts data x and send [x] to server
2: S computes

[
x(1)

]
= f1([x], W (1), b(1))

3: for i = 1 to L− 1 do
4: S obtains refreshed

[
x(i)
]

. C and S run Protocol 2 on
[

x(i)
]

5: S obtains
[

h(i)
]
=
[
ReLU(x(i))

]
. C and S run Protocol 1 on

[
x(i)

]
6: S compute

[
x(i+1)

]
= fi+1(

[
h(i)
]
, W (i+1), b(i+1))

7: S sends
[

x(L)
]

to the C

8: C obtains z← Decrypt(
[

x(L)
]
, sk)

4.5. HeFUN

We first present the intuition behind how can we hide x(i) ?
= 0 from C.

Intuition. To tackle the issues of leaking x(i) ?
= 0 to C, S implements a random

permutation on x(i) prior to executing the HeReLU protocol. Then, x(i) cannot determine
the original position of a value, concealing whether the actual value of a particular slot is
zero. Thus, C only learns the number of zero values, which can be obscured by adding
dummy elements. However, in SNNI, x(i) is in encrypted form, i.e.,

[
x(i)
]
. Unfortunately,

permutation on
[

x(i)
]

is a challenging task. This is because the permutation requires
swapping slots in the ciphertext, which requires numerous homomorphic rotations—a
costly operator [11,15].

This approach is not practical when the number of neurons in NN layers is large. The
section below describes how we can overcome this challenge.

Given a vector x ∈ Rn, and π is a permutation over {1, . . . , n}, let π(x) denote the
permutation x’s slots according to π, i.e., the ith slot in the permuted vector (π(x)) is xπ(i)
(instead of xi). Given a matrix W , we use π(W) to denote permutation of W by columns,
i.e., the ith column in the permuted matrix (π(W)) is Wπ(i) (instead of Wi). Here are some
obvious facts:

• Permuting two vectors with the same permutation preserves element-wise addition:

π(x) + π(y) = π(x + y) (3)

• Permute two vectors with the same permutation and preserve their dot product:

π(x) · π(y) = x · y (4)

• Permute a vector, and every column in a matrix with the same permutation preserves
the vector–matrix product:

π(x).π(W , col) = x.W (5)

where π(W , col) denotes that we apply the permutation π to every column of W .
• In vector–matrix multiplication, (only) permutation of a matrix by column leads to the

same permutation on the result.

x.π(W) = π(x.W) (6)

Proof. Proof of Property (3): π(x) + π(y) = (xπ(1) + yπ(n), . . . , xπ(n) + yπ(n)) = π(x + y)
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Proof of Property (4):

π(x) · π(y) =
n

∑
i=1

xπ(i).yπ(i)

=
n

∑
i=1

xi.yi

= x · y

Proof of Property (5):

π(x).π(W , col) = [ π(x) ] ·

π(W1)
... π(Wn)


= (π(x) · π(W1), . . . , πx · π(Wn))

= (x ·W1, . . . , x ·Wn) (Property (4))

= x ·W

Proof of Property (6):

x · π(W) = x
(

W T
π(1), . . . , W T

π(n)

)
=
(

x ·W T
π(1), . . . , x ·W T

π(n)

)
= π

(
x ·W T

1 , . . . , x ·W T
n

)
= π(x ·W)

Based on Property (6) and the fact that x = x · I, where I is the identity matrix, we can
achieve permutation of x by just permuting identity matrix I, namely x · π(I) = π(x · I) =
π(x). Based on this observation, we propose a novel algorithm, i.e., HePerm, to permute
slots inside a ciphertext without the rotation operator. The algorithm is shown in Protocol 4.
The correctness of the protocol is straightforward, as below.

[x]� π(I) = [x · π(I)] (Homomorphic property)

= [π(x · I)] (Property (6))

= [π(x)]

Protocol 4 HePerm: Homomorphic permutation
Input: ciphertext [x], permutation π
Output: [π(x)]

1: [π(x)] = [x]� π(I)
2: return x

The HePerm algorithm allows us to permute any (encrypted) intermediate layers,

i.e.,
[

x(i)
]
, prior to executing the HeReLU protocol. Hence, we can hide x(i) ?

= 0 from C.

Suppose each intermediate layer
[

x(i)
]

(before the ReLU layer) is permuted by a permuta-
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tion π(i). Then, the value obtained by S (after running HeReLU) is
[
πi(h(i))

]
(not

[
h(i)

]
).

This value will be the input for the next linear layer. Therefore, to compute the next linear
layer, S first needs to unpermute

[
πi(h(i))

]
. To do so, S runs HePerm on

[
πi(h(i))

]
and

π(i)−1
, which results in

[
π(i)−1

(π(i)(h(i)))
]
=
[

h(i)
]
. Then, S can homomorphically evalu-

ate the next linear layer on
[

h(i)
]
, which results in

[
x(i+1)

]
. Finally, S can run HePerm to

permute
[

x(i+1)
]

using permutation π(i+1). Interestingly, for a fully connected layer, we can
achieve permutation without the need of HePerm. This is because the fully connected layer
can be homomorphically evaluated directly on

[
π(i)(h(i))

]
by permuting each column in

W (i+1) by π(i) (based on Property (5)), namely
[
π(i)(h(i))

]
� π(i)(W (i+1), col)⊕ b(i+1) =[

π(i)(h(i)) · π(i)(W (i+1), col) + b(i+1)
]
=
[

h(i) ·W (i+1) + b(i+1)
]
. Therefore, we achieve

permutation for free in fully connected layers.
Assume that S chooses L random permutations π(1), . . . , π(L) corresponding to layer

1 to layer L, respectively. Notably, π(1), . . . , π(L) can be chosen offline by S before the
inference process. Hence, we can save the inference time. The details of HeFUN are shown
in Protocol 5, in which FC means fully connected layer and Conv means convolution layer.
HeFUN’s security follows Lemma 3. We now provide an analysis of the correctness and
security of the protocol.

Protocol 5 HeFUN framework
Input C: Data x, secret key sk
Input S : public key pk, trained weights and biases (Wi, bi) with i = 1, n
Output C: z = fL(WL, fL−1(. . . f1(W1, x, b1)), bL), where fi is ReLU function.

1: C encrypts data x and send [x] to server
S runs following steps:

2: S chose π(1), . . . , π(L) . Can be done offline
3: if f1 = FC then
4:

[
π(1)(x(1))

]
= [x]� π(1)(W (1))⊕ π(1)(b(1))

5: else if f1 = Conv then
6:

[
x(1)

]
= [x]~W (1) ⊕ b(1)

7:
[
π(1)(x(1))

]
← HePerm(

[
x(1)

]
, π(1))

8: for i = 1 to L− 1 do
9: S obtains refreshed

[
π(i)(x(i))

]
. C and S run Protocol 2 on

[
π(i)(x(i))

]
10: S obtains

[
π(i)(h(i))

]
=
[
ReLU(π(i)(x(i)))

]
. C and S run Protocol 1 on[

π(i)(x(i))
]

11: if fi+1 = FC then
12:

[
π(i+1)(x(i+1))

]
=
[
π(i)(h(i))

]
� π(i+1)(π(i)(W (i+1), col))⊕ π(i+1)(b(i+1))

13: else if fi+1 = Conv then

14:
[

h(i)
]
← HePerm(

[
π(i)(h(i))

]
, π(i)−1

)

15:
[

x(i+1)
]
=
[

h(i)
]
~W (i+1) ⊕ b(i+1)

16:
[
π(i+1)(x(i+1))

]
← HePerm(

[
x(i+1)

]
, π(i+1))

17: S sends π(L) and
[
π(L)(x(L))

]
to the C

C runs following steps:

18: π(L)(x(L))← Decrypt(
[
π(L)(x(L))

]
, sk)

19: C obtains x(L) = π(L)−1
(π(L)(x(L)))



Future Internet 2023, 15, 407 18 of 28

Lemma 3. HeFUN protocol is secure in the semi-honest model.

Proof. Correctness. We first consider the fully connected layers. At line 12, we have:[
π(i)(h(i))

]
� π(i+1)(π(i)(W (i+1), col))⊕ π(i+1)(b(i+1))

=
[
π(i)(h(i)) · π(i+1)(π(i)(W (i+1), col)) + π(i+1)(b(i+1))

]
(Homomorphic property)

=
[
π(i+1)(π(i)(h(i)) · π(i)(W (i+1), col)) + π(1)(b(1))

]
(Property (6))

=
[
π(i+1)(h(i) ·W (i+1)) + π(i+1)(b(i+1))

]
(Property (5))

=
[
π(i+1)(h(i) ·W (i+1) + b(i+1))

]
(Property (3))

=
[
π(i+1)(x(i+1))

]
We now consider convolution layers, i.e., lines 14, 15, and 16. The correctness of

convolution layers is straightforward based on the correctness of the HePerm algorithm
and the homomorphic property.

The above process, i.e., computing the linear layer then computing the ReLU activation
function, is repeated through layers. At the end, C obtains π(L)(x(L)) (line 18). Because S
sends to C the permutation of the last layer, i.e., π(L) (line 17), C can unpermute π(L)(x(L)),
and obtains x(L) = z.

Security. We prove the security using modular sequential composition introduced
in [22]. We first construct framework HeFUN′, in which C and S call ideal functionalities
FRe f resh andFReLU to refresh ciphertext and evaluate the ReLU function. We have HeRefresh
and HeReLU such that they are already secure in the semi-honest model (according to
Lemma 2 and Lemma 1, respectively). Now, we need to prove that HeFUN′ (with the calls
to FRe f resh and FReLU) is secure in the semi-honest model. Then, we can replace the calls to
ideal functionalities FRe f resh and FReLU by protocols HeRefresh and HeReLU, respectively,
and conclude the security of HeFUN by invoking modular sequential composition (as
presented in Section 3.3). We now consider two cases as follows Definition 1, i.e., corrupted
C and corrupted S. Considering corrupted C, it is obvious that C receives nothing from
ideal calls FRe f resh and FReLU . Hence, we just need to consider the case of corrupted S ,
as below:

Corrupted S : S ’s view is

ViewS =
(

pk, f1, . . . , fn, W (1), . . . , W (n), b(1), . . . , b(n);
[

x(1)
]
, . . . ,

[
x(L)

])
.

Given (pk, f1, . . . , fn, W (1), . . . , W (n), b(1), . . . , b(n)), we build a simulator SimS as below:

1. Pick si ← {−1, 0, 1}n with i = 1, n;
2. Output (pk, f1, . . . , fn, W1, . . . , Wn, B1, . . . , Bn; [s1], . . . , [sL]).

Given the semantic security guaranteed by the HE scheme, coupled with the entropic
uncertainty introduced by our homomorphic permutation algorithm, it naturally follows
that

[
x(i)
]
≈c [si]. Hence, ViewS ≈c SimS .

5. Experiments

In the evaluation of SNNI, we consider three critical criteria: security, accuracy, and effi-
ciency. The comparative analysis outlined in Table 1 leads to several observations. (1) MPC-
based frameworks fail to meet the security criterion, as they disclose the entire architecture
of NNs; (2) TFHE-based frameworks fall short on accuracy, since they are limited to BNNs;
and (3) LHE-based frameworks, HE-MPC hybrid frameworks, and our proposed HeFUN
framework appear to fulfill all three criteria (it should be noted that the fulfillment of these
requirements is not absolute, and some issues still persist, as outlined in Table 1). Hence,
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in this section, we compare our proposed approach, HeFUN, with HE-MPC hybrid-based
frameworks and LHE-based frameworks. The core architecture of both HeFUN and prevail-
ing HE-MPC hybrid frameworks encompasses two fundamental components: linear layer
evaluation and the evaluation of the non-linear function, specifically the ReLU function.
While the linear layer evaluation in these frameworks uniformly employs homomorphic
encryption, the difference arises in the treatment of non-linear layer evaluation, namely,
HeFUN implements HeReLU, whereas HE-MPC hybrid-based frameworks opt for either
the GC or ABY protocol. This section delves into the communication complexity inherent
in the ReLU evaluation within HeFUN as compared to that within existing HE-MPC hybrid
frameworks (Section 5.1). HeReLU serves as a potential alternative to the GC/ABY proto-
cols in HE-MPC hybrid-based frameworks, which reduces the communication complexity
in SNNI. To compare HeFUN with LHE-based frameworks, we first compare the cipher-
text refreshing component. In particular, we compare HeRefresh with the bootstrapping
technique in the existing HE schemes (Section 5.2). Subsequently, we benchmark HeFUN
alongside the prevalent LHE-based frameworks using a real-world dataset (Section 5.3).
All experiments are run on a PC with a single Intel i9-13900K running at 5.80 GHz and
64 GB of RAM, running Ubuntu 22.04. Overall, the results presented below show that:

• Compared to current HE-MPC frameworks, HeFUN requires less communication
rounds in evaluating the ReLU activation function (Section 5.1).

• Compared to existing bootstrapping procedures, HeRefresh is much faster (Section 5.2).
• Compared to current LHE-based frameworks, HeFUN outperforms the current LHE-

based approach in terms of accuracy and inference time (Section 5.3).

5.1. Comparison with Hybrid HE-MPC Approach

The current state-of-the-art HE-MPC hybrid-based approach is Gazelle [15]. Within
Gazelle’s framework, the server directly computes linear layers using HE operators of the
LHE scheme in an offline phase. To evaluate non-linear layers, Gazelle leverages GC [19] to
handle the bitwise operations required by ReLU (online phase). Finally, because each layer
in an NN consists of alternating linear and non-linear layers, Gazelle also elaborates on
an efficient method to switch between the two aforementioned primitives using a novel
technique based on additive secret sharing. Gazelle’s primary bottleneck is the cost of
evaluating GC for the ReLU activation function [15,69]. Compared to Gazelle, HeFUN can
evaluate the ReLU function solely based on an HE scheme, hence avoiding the expensive
GC protocol that significantly reduces communication rounds and communication cost.
We now compare the procedure of evaluating the ReLU function between HeFUN and
Gazelle regarding communication rounds and communication cost. In both frameworks,
i.e., HeFUN and Gazelle, after computing the linear layers homomorphically or receiving
the client’s encrypted input, the server holds an encrypted vector [x]. The objective for both
HeFUN and Gazelle is to enable the server to obtain [ReLU(x)]. In Gazelle, the server and
the client perform the following steps:

• Conversion from HE to MPC: The server additively blinds [x] with a random mask r1
and sends the masked ciphertext [x + r1] to the client.

• MPC circuit evaluation: The client decrypts [x + r1]. Then, the client (holds x + r1) and
the server (holds r1 and a randomness r2) run GC to compute ReLU(x+ r1− r1) + r2 =
ReLU(x) + r2 without leaking x + r1 to the server and r1 and r2 to the client. Finally,
the client sends [ReLU(x) + r2] to the server.

• Conversion from MPC to HE: The server homomorphically subtracts r2 and obtains
[ReLU(x)].

The main bottleneck of Gazelle is step 2, i.e., the client and the server run GC, which
requires a huge communication [15]. The comparison shown in Figure 1 illustrates that
HeFUN surpasses Gazelle by reducing both communication rounds and costs. Specifically,
HeFUN performs ReLU evaluation in just two rounds, whereas Gazelle requires more com-
munication rounds, namely two rounds (to convert between HE and MPC and vice versa)
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and communication rounds required by GC. In HeFUN, two ciphertexts are transmitted
between the client and the server, while the number of messages exchanged in Gazelle is
larger, namely two ciphertexts ([x + r1] and [ReLU(x) + r2]) and a huge number of messages
exchanged in the GC protocol.

Figure 1. Comparison between Gazelle [15] and HeFUN. The main bottleneck of Gazelle is GC.
HeFUN is solely based on HE, hence avoiding expensive GC procedure. HeFUN outperforms Gazelle
in terms of communication rounds and communication cost.

In Gazelle, the client needs to involve the GC procedure, which is undesirable in SNNI.
In contrast, for HeFUN, the client only needs to perform decryption and encryption, which
are simple algorithms in the HE scheme, while other heavy computation takes place in
the server.

One should acknowledge that in Gazelle, the server’s operations include homomor-
phic addition and subtraction; conversely, in HeFUN, the server performs homomorphic
multiplication (as delineated in line 7, Protocol 1), which necessitates an LHE scheme with
larger parameters due to the additional multiplications required. Where Gazelle operates
with a multiplicative depth of 1, HeFUN requires a depth of 3.

Another HE-MPC hybrid-based SNNI framework is MP2ML [16], which incorporates
the ABY protocol [20] for the evaluation of the ReLU function, as opposed to the utilization
of GC. In the comparative analysis (see Figure 1), the GC component is substituted with an
ABY component. It is obvious that HeFUN demonstrates superior performance over MP2ML
in terms of both the number of communication rounds and communication costs. Overall,
HeFUN outperforms the current HE-MPC hybrid-based approach in evaluating ReLU in
terms of communication complexity. This is primarily attributed to HeFUN’s elimination of
the necessitated communication-intensive GC or ABY protocols. However, HeFUN presents
an elevated multiplicative depth requirement of 3, in contrast to the multiplicative depth of
1 required by Gazelle and MP2ML.

5.2. HeRefresh Experimental Results

In the HE scheme, HeRefresh is equivalent to the bootstrapping procedure, which
both aim to reduce the noise in ciphertexts. We compare HeRefresh with the bootstrapping
technique for CKKS [70], implemented in OpenFHE. We report the result for refreshing
noise for one ciphertext. To ensure the reliability of the results, we repeat the experiment
1000 times and take the average result. The comparison results are shown in Table 3.
The depth is the number of expected homomorphic multiplications performed before noise
refreshing, N is the degree of the polynomial used in the CKKS scheme, and the level is
the multiplicative level required for noise refreshing. Bootstrapping homomorphically
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computes the decryption equation in the encrypted domain. The procedure consumes
an amount of homomorphic multiplication, so the level of the CKKS scheme needs to be
big enough for this procedure. The details of the bootstrapping procedure are out of the
scope of this work. Please refer to [70] for details. While DoubleR (Protocol 2) only requires
simple computation, i.e., encryption, decryption, addition, and subtraction, we do not need
to increase the level of CKKS. The larger level of CKKS leads to a bigger value of N to meet
the security requirement. With simpler operators and smaller parameters, DoubleR is much
faster than bootstrapping. For example, with a depth of 1, DoubleR is nearly 300 times
faster than bootstrapping. For a depth of 4, with the same N, HeRefresh is nearly 225 times
faster than bootstrapping.

Table 3. Comparison between Double-CKKS protocol and bootstrapping.

Depth
Runtime (s) N Level

DoubleR-CKKS Bootstrapping DoubleR-CKKS Bootstrapping DoubleR-CKKS Bootstrapping

1 0.04 11.85 16,384 65,536 1 22
2 0.05 12.71 16,384 65,536 2 23
4 0.07 14.69 16,384 65,536 4 25
8 0.10 17.39 32,768 65,536 8 29

16 0.19 22.51 65,536 65,536 16 37

5.3. Comparison between HeFUN and LHE (CryptoNets)

This section aims to compare HeFUN with the LHE-based approaches. The founda-
tional concept for LHE-based approaches originates from the landmark study presented in
CryptoNets [12], which utilizes an LHE scheme with a predetermined depth that aligns
with the NN’s architecture. For the purposes of this analysis, the term ‘CryptoNets’ will be
used to refer to the conventional LHE-based approach.

5.3.1. Experimental Setup

The NNs in this section were trained using PyTorch [71]. To implement HE, we
employed TenSEAL [60], with CKKS as instantiation. All parameters in the following
sections are chosen to comply with the recommendations on HE standards [72], which
satisfies 128 bits of security.

5.3.2. Dataset and NN Setup

We evaluated the performance of NN inference on two distinct datasets, i.e., MNIST [73]
and AT&T faces datasets [74]. The MNIST dataset has a standard split containing
28 × 28 grayscale images of Arabic numerals 0 to 9 of 50,000 training images and 10,000 test
images. MNIST is the standard benchmark for homomorphic inference tasks [11,12,25,33].
The AT&T faces dataset includes 92× 112 grayscale images of 40 individuals, with 10 differ-
ent images of each individual. The dataset is considered a classic dataset in computer vision
for experimenting with techniques for face recognition. It offers a more realistic scenario
for SNNI, allowing for the recognition of faces while maintaining the confidentiality of the
individual images.

The neural networks (NNs) under consideration are composed of convolutional layers,
activation functions, and fully connected layers. For the HeFUN framework, the activation
function employed is the ReLU function, while LHE-based secure neural network inference
(SNNI) typically utilizes the square function as the activation mechanism, as extensively
documented in the literature [12,25,26]. To introduce diversity into our experimental
evaluation, we have selected two distinct NN architectures, i.e., a small NN and a large
NN (the term “large NN” refers to an NN with more complexity than our “small NN”,
but its size is tailored to stay within the operational limits of LHE-based frameworks for
meaningful comparisons). The details of the NNs’ architectures for the MNIST dataset are
detailed below.

• Small NN:
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– Convolution layer: The input image is 28× 28. 5 kernels, each 3× 3 in size, with a
stride of 2 and no padding. The output is a 5× 13× 13 tensor.

– Activation function: This layer applies the approximate activation function to
each input value. It is a square function in CryptoNets, and the ReLU function in
HeFUN.

– Fully connected layer: It connects the 845 incoming nodes to 100 outgoing nodes.
– Activation function: It is the square function in CryptoNets, and the ReLU func-

tion in HeFUN.
– Fully connected layer: It connects the 100 incoming nodes to 10 outgoing nodes

(corresponding to 10 classes in the MNIST dataset).
– Activation function: It is the sigmoid activation function.

• Large NN:

– Convolution layer: It contains 5 kernels, each 33 in size, with a stride of 2 and no
padding. The output is a 5× 13× 13 tensor.

– Activation function: It is the square function in CryptoNets, and the ReLU func-
tion in HeFUN.

– Fully connected layer: It connects the 845 incoming nodes to 300 outgoing nodes.
– Activation function: It is the square function in CryptoNets, and the ReLU func-

tion in HeFUN.
– Fully connected layer: It connects the 300 incoming nodes to 100 outgoing nodes.
– Activation function: It is the square function in CryptoNets, and the ReLU func-

tion in HeFUN.
– Fully connected layer: connects the 100 incoming nodes to 10 outgoing nodes.
– Activation function: It is the sigmoid activation function.

In the case of the AT&T faces dataset, the neural network retains a similar layer
structure as used with the MNIST dataset. However, adjustments are made to the neuron
count per layer to accommodate the dataset’s structure. For instance, the output layer
features 40 neurons, corresponding to the 40 distinct classes represented in the dataset,
in contrast to the 10-neuron configuration used for datasets like MNIST.

As we mention in Section 4.1, the last sigmoid activation function can be removed in
the inference phase without interfering with prediction accuracy.

5.3.3. HE Parameter

The main parameters defining the CKKS scheme [24] are the degree N of the polyno-
mial modulus XN + 1, the coefficient modulus q, and multiplicative depth L. The multiplica-
tive depth L of the CKKS scheme was chosen to align with the NN’s depth. Subsequently,
the modulus q is carefully chosen to meet the security criterion of 128 bits, taking into
account the specified multiplicative depth L. Within the HeFUN framework, the HeRefresh
protocol is employed to refresh the outputs of intermediate layers, thereby facilitating
additional multiplications. Table 4 details the parameters. CryptoNetss (HeFUNs) and
CryptoNetsl (HeFUNl) stand for CryptoNets (HeFUN) on small NN and large NN, respec-
tively. We choose N = 16,384 in both frameworks. Notably, in the case of CryptoNets,
an escalation in NN depth from a small to a large model necessitates an increase in L (from
5 to 7), consequently requiring an increase in modulus q to preserve the desired security
level. Conversely, HeFUN maintains a constant and reduced multiplicative depth regardless
of NN depth increments—specifically 3 as per Table 4—thanks to its intermediate ciphertext
refreshing mechanism. It is imperative to recognize that elevated values of L and q slow
down inference time.
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Table 4. LHE’s parameters of CryptoNets and HeFUN. The best results are in bold font.

Security Level N L q (Bit Length)

CryptoNetss 128 16,384 5 420
HeFUNs 128 16,384 3 320

CryptoNetsl 128 16,384 7 520
HeFUNl 128 16,384 3 320

5.3.4. Experimental Results

Tables 5 and 6 present the experimental results on the MNIST and AT&T faces datasets,
respectively, upon which we base our analysis of the accuracy and inference time associated
with HeFUN and CryptoNets.

Table 5. Comparison between HeFUN frameworks and CryptoNets1 on MNIST dataset. The best
results are in bold font.

CryptoNetss HeFUNs CryptoNetsl HeFUNl

Accuracy (%) 98.15 98.31 98.52 99.16

In
fe

re
nc

e
ti

m
es

(s
)

Encoding+Encryption 0.008 0.007 0.011 0.007
Convolution 0.503 0.395 0.829 0.395
Activation 1 a 0.008 0.028 0.012 0.028
Fully connected 1 1.121 0.812 2.138 0.812
Activation 2 0.008 0.029 0.012 0.029
Fully connected 2 0.065 0.102 0.408 0.102
Activation 3 - - 0.011 0.029
Fully connected 3 - - 0.073 0.098
Decryption + Decoding 0.002 0.001 0.003 0.001

Total 1.715 1.374 3.497 1.501
a Activation function is the square function in CryptoNets and is ReLU function in HeFUN.

Table 6. Comparison between HeFUN frameworks and CryptoNets1 on AT&T faces dataset. The best
results are in bold font.

CryptoNetss HeFUNs CryptoNetsl HeFUNl

Accuracy (%) 95.19 96.66 96.87 97.43

In
fe

re
nc

e
ti

m
es

(s
)

Encoding+Encryption 0.009 0.007 0.013 0.007
Convolution 0.695 0.425 0.991 0.435
Activation 1 a 0.008 0.027 0.012 0.028
Fully connected 1 1.583 1.115 3.171 1.115
Activation 2 0.009 0.030 0.012 0.030
Fully connected 2 0.065 0.102 0.408 0.102
Activation 3 - - 0.011 0.029
Fully connected 3 - - 0.081 0.102
Decryption + Decoding 0.002 0.001 0.003 0.001

Total 2.361 1.707 5.248 1.849
a Activation function is the square function in CryptoNets and is ReLU function in HeFUN.

Accuracy. It can be seen that HeFUN outperforms CryptoNets in accuracy. For the
MNIST dataset, HeFUNl and HeFUNs achieve accuracy of 99.16% and 98.31%, respectively,
while CryptoNetl and CryptoNets achieve accuracy of 98.52% and 98.15%, respectively.
The difference is caused by the activation used in the frameworks, namely, HeFUN used the
ReLU activation function, whereas CryptoNets used the square function. Similarly, for the
AT&T faces dataset, HeFUNl and HeFUNs achieve accuracy of 97.43% and 96.66%, respectively,
while CryptoNetl and CryptoNets achieve accuracy of 96.87% and 95.19%, respectively.

Inference. The timing results reported in Tables 5 and 6 are the total running time
at the client and server. As shown in Tables 5 and 6, HeFUN is faster than CryptoNets for
both the small NN and large NN. This acceleration is because LHE parameters in HeFUN



Future Internet 2023, 15, 407 24 of 28

are smaller than CryptoNets. For instance, in Table 5, with an increase in NN depth from
5 to 7, CryptoNets shows a significant jump in inference time—from 1.715 s to 3.497 s. This
increase is due to the escalated complexity of LHE parameters necessitated by a deeper
network. Conversely, HeFUN benefits from the HeRefresh protocol, which mitigates noise
accumulation at intermediate layers and allows for consistent LHE parameters regardless
of NN depth. Consequently, in HeFUN, a similar increase in NN depth results in a modest
increase in inference time, from 1.374 s to 1.501 s. Interestingly, in HeFUN, the computation
time at the same layers almost remains unchanged, regardless of the depth of NN, due
to its invariable LHE parameter requirements. On the other hand, in CryptoNets, deeper
NNs require an increase in the LHE’s parameters, which slows down the computation time.
For instance, the layer Fully connected 1 takes 0.812 s in both HeFUNs and HeFUNl , while it
takes 1.121 s in CryptoNets, and takes 2.138 s in CryptoNetl . This observation reinforces
the scalability of HeFUN in terms of computation time when compared to CryptoNets as
NN complexity increases.

We now analyze the running time at the activation function layers. The evaluation
of activation function layers’ running times, as shown in Table 1, reveals that HeFUN
exhibits slower performance compared to CryptoNets. This difference stems from the
intrinsic complexity of the activation functions utilized; CryptoNets employs a square
function as the activation, which is a single homomorphic multiplication of two cipher-
texts, whereas HeFUN utilizes the more complex HeReLU protocol for evaluating the ReLU
function, as detailed in Table 7.

Table 7. Comparison between HeReLU protocol and square function evaluation in CryptoNets.

Depth Encryption Decryption
Multiplication Addition

Ciphert-Plain Cipher-Cipher Ciphert-Plain Cipher-Cipher

CryptoNets L a 0 0 0 1 0 0
HeReLU 3 1 1 3 1 0 1

a Depend on the NN’s depth.

Despite this, HeFUN has an advantage in terms of its independence from the neural
network’s (NN) depth. Specifically, HeFUN maintains a constant multiplicative depth of
3, regardless of the NN’s depth, which avoids the escalation of LHE parameters—and
consequently, inference times—that is seen with CryptoNets as the NN becomes deeper.
To illustrate, the Activation 1 layer in HeFUN consistently requires 0.028 s for both small
and large NNs (HeFUNs and HeFUNl), in contrast to CryptoNets, which records 0.008 s for
a small NN (CryptoNets) and increases to 0.012 s for a large NN (CryptoNetl). This obser-
vation reinforces the scalability of HeFUN in terms of computation time when compared to
CryptoNets as NN complexity increases.

6. Discussion on Security of HeFUN

6.1. Model Extraction Attack

While HeFUN ensures security against semi-honest adversaries by protecting client
data and the model’s parameters, it remains vulnerable to model extraction attacks. Adver-
saries can potentially exploit a series of inference queries to reverse-engineer the model’s
parameters [75,76], reconstruct training samples [77,78], or deduce the presence of specific
samples in the training set [8]. Indeed, all the frameworks in Table 1 remain vulnerable
to such attacks. We acknowledge that addressing model extraction is a distinct challenge
from SNNI and is not the primary focus of our current work.

6.2. Fully Private SNNI

HeFUN hides all the NN’s parameters from the client and hides clients’ data from the
server. However, HeFUN does not completely hide the network architecture. Our protocol
leaks the number of layers and the number of neurons in each layer to the client. To further
enhance privacy, we can adopt the padding technique used in the Gazelle framework, which
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involves adding dummy layers and neurons to conceal the network’s true architecture
at the cost of additional computational resources. Furthermore, our protocol obviously
leaks the type of activation function used in the NN to the client. It should be noted
that all frameworks in the MPC-based and HE-MPC hybrid-based approaches (in Table 1)
leak such information. Among current SNNI approaches, LHE-based and FHE-based
approaches do not expose any details about the NN, thereby providing a superior level of
security. Despite this, such methods are constrained by their inability to efficiently compute
certain functions like ReLU, their limitation in handling deep NNs, and the significant
computational overhead involved. These limitations reduce their scalability and practical
applicability in complex SNNI tasks.

7. Conclusions and Future Works

This paper introduces iLHE, a novel interactive LHE-based approach for SNNI. Build-
ing upon iLHE, we developed two innovative protocols that address the limitations of
current HE-based SNNI methods. Our HeReLU protocol enables the evaluation of the ReLU
activation function with reduced communication rounds compared to existing HE-MPC
hybrid solutions. We also introduce HeRefresh, a refreshing framework that facilitates
deep computation by allowing additional homomorphic operations without increasing HE
parameters, thereby accelerating HE scheme computations. Uniquely, HeRefresh sidesteps
the need for Gentry’s bootstrapping and its associated circular security assumptions. Lever-
aging HeReLU and HeRefresh, we propose a comprehensive framework for SNNI that offers
enhanced security, improved accuracy, fewer communication rounds, and faster inference
times, as demonstrated by our experimental results. This framework has been rigorously
validated to be secure within the semi-honest model.

This work introduces an iLHE-based method for efficiently evaluating the ReLU
activation in NNs, circumventing the communication overhead associated with MPC
protocols. An avenue for future research lies in extending iLHE-based techniques to
other non-linear functions, such as max-pooling and softmax. Such advancements could
significantly enhance the performance of existing SNNI frameworks.
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