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Abstract: Machine learning (ML) models are essential to securing communication networks. However,
these models are vulnerable to adversarial examples (AEs), in which malicious inputs are modified
by adversaries to produce the desired output. Adversarial training is an effective defense method
against such attacks but relies on access to a substantial number of AEs, a prerequisite that entails
significant computational resources and the inherent limitation of poor performance on clean data.
To address these problems, this study proposes a novel approach to improve the robustness of
ML-based network traffic classification models by integrating derived variables (DVars) into training.
Unlike adversarial training, our approach focuses on enhancing training using DVars, introducing
randomness into the input data. DVars are generated from the baseline dataset and significantly
improve the resilience of the model to AEs. To evaluate the effectiveness of DVars, experiments
were conducted using the CSE-CIC-IDS2018 dataset and three state-of-the-art ML-based models:
decision tree (DT), random forest (RF), and k-neighbors (KNN). The results show that DVars can
improve the accuracy of KNN under attack from 0.45% to 0.84% for low-intensity attacks and from
0.32% to 0.66% for high-intensity attacks. Furthermore, both DT and RF achieve a significant increase
in accuracy when subjected to attack of different intensity. Moreover, DVars are computationally
efficient, scalable, and do not require access to AEs.

Keywords: machine learning; adversarial attack; network traffic classification; derived variables;
robustness

1. Introduction

Machine learning (ML)-based models are still widely used in cybersecurity, including
network traffic classification and intrusion detection, because of their maturity and ease
of implementation [1]. Moreover, they remain mainstream in real-time network traffic
analysis, particularly in high-throughput networks [2]. However, despite the widespread
use, these models are vulnerable to adversarial attacks (an attack is a method of crafting an
adversarial example, AE for short), including poisoning, extraction, evasion, and inference,
which can compromise their efficiency and cause significant network damage [3–6]. An
adversarial attack is a type of cyberattack in which an attacker intentionally modifies
the input data to an ML model to produce the desired result [7]. The discovery of this
vulnerability can be traced back to the field of computer vision, where researchers first
demonstrated that deep neural networks (DNNs), which were thought to be robust and
accurate, could easily be deceived by maliciously crafted inputs [8]. They demonstrated
that a small and well-computed perturbation of a few input features (i.e., the pixel values of
an image) can deceive an image recognition system, causing the misclassification of objects
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or scenes with a high degree of confidence (Figure 1). However, adversarial attacks are not
limited to computer vision: this is also an evolving concern in other fields of ML, including
cybersecurity [9].

ML-based network traffic classification systems are particularly vulnerable to these
attacks because they are often used in security-critical applications [10–12]. The infiltration
of AEs into network traffic data during the training or testing phase can compromise the
efficiency of ML-based network security systems (Figure 2), potentially causing significant
network damage. Attackers can achieve this by using several methods, including altering
packet rates and payload sizes, modifying packet headers, and using evasion techniques to
avoid detection by network security systems [13–15]. The growing concern surrounding
adversarial attacks has led to an increased interest in adversarial defense [16,17]. Adver-
sarial training, a technique that involves the retraining of ML models with AEs, is widely
recognized as the state-of-the-art defense because of its efficacy [18]. However, it is not
without significant limitations. These limitations encompass the need for access to a sub-
stantial number of AEs, a prerequisite that entails significant computational resources, and
the inherent limitation of poor performance on clean data (non-adversarial data). Models
trained with adversarial training may exhibit suboptimal performance when presented
with non-adversarial data. In response to these limitations, alternative defenses have
garnered attention, including anomaly detection [19] and ensemble methods [20], each of
which is characterized by a distinctive set of strengths and weaknesses. Numerous other
defensive approaches have been primarily validated in the domain of computer vision,
where adversarial attacks were initially discovered. Furthermore, these defensive strate-
gies have been predominantly applied in deep learning models, with limited exploration
in shallow models, which are particularly relevant in real-time network traffic analysis.
The significance of this gap becomes evident when considering the relevance of shallow
machine learning models in real-time network traffic analysis. Consequently, a pressing
imperative emerges for the advancement and implementation of defense mechanisms
specifically tailored to secure shallow ML models in such critical applications.
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Figure 1. Adversarial attack in computer vision [21].
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Figure 2. Adversarial attack on network traffic classification systems [22].

This study is particularly relevant in the dynamic field of network security, where the
evolving threat of adversarial attacks is of paramount concern. In contrast to conventional
retraining with AEs, the introduction of derived variables (DVars) effectively bridges the
recognized gap in the existing literature and provides valuable insights to improve the
resilience of ML-based network traffic classifiers. DVars, an automated approach designed
to enhance the robustness of ML-based network traffic classification systems, introduces
controlled randomness into the data, thus enhancing its diversity. The core of this research
focuses on the improvement of three state-of-the-art shallow ML-based network traffic
classifiers: decision tree (DT), random forest (RF), and k-neighbors (KNN) in response
to adversarial attacks, with a specific focus on countering the Jacobian-based Saliency
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Map Attack (JSMA). While the primary intent of the JSMA was originally designed to be
attacking image classification systems, its perturbation crafting procedures could be used
to preserve the underlying logic of a network traffic flow [22]. The JSMA only perturbs
the most appropriate features in the decision boundary without affecting the remaining
features, which can preserve the correlations among most features of a network flow; hence,
this underscores the strategic motivation behind its adoption. Our findings show the
profound impact of adversarial attacks on these models and underscore the remarkable
efficacy of DVars in restoring their performance in the presence of black-box attacks.

The main contributions of the work presented in this paper are as follows:

• A method that improves the robustness of ML-based network traffic classification
models against adversarial attack is proposed by integrating DVars into training.
The DVars follows the logic of adding randomness to the input data. In particular,
our proposed approach preserves the underlying logic and maliciousness of the
network flow.

• Evaluation of the proposed method on the CSE-CIC-IDS-2018 dataset, with a spe-
cific focus on improving the accuracy of network traffic classification models when
subjected to AEs. According to experimentation and analysis, our approach shows
considerable improvements in the performance of the models.

• Investigation of the impact of AEs on ML-based network traffic classification models.
Using experiments and analysis, we explore the effect of AEs on the performance and
robustness of the investigated models.

The remainder of this paper is organized as follows: Section 2 provides a detailed
review of related studies on ML-based network traffic classification, common AE generation
methods, and defenses. Section 3 presents the impact of AEs on ML-based network traffic
classification models, and Section 4 presents our novel defensive method based on DVars.
Section 5 presents the dataset and evaluation metrics used in assessing the performance of
DVars. Section 6 provides the results and analysis, and Section 7 concludes the work and
discusses future directions.

2. Related Work

In this section, we provide a detailed review of related works on ML-based network
traffic classification, common AE generation, and defense methods against AEs, with focus
on cybersecurity systems.

2.1. ML-Based Network Traffic Classification

ML models such as DT, RF, and KNN have been explored for network traffic classifica-
tion due to their simplicity, interpretability, and efficiency. Several studies have investigated
the use of ML models for network traffic classification. For example, Mohanty et al. [23]
proposed a robust stacking ensemble model to combine the predictions of RF, KNN, and
DT for darknet traffic classification, achieving accuracy rates of 98.89% and 97.88% for
darknet traffic identification and characterization, respectively. Zaki et al. [24] proposed a
hybrid feature selection algorithm based on the filter and wrapper method. Their method
was evaluated using DT, KNN, naive Bayes (NB), and support vector machine (SVM),
with average accuracy of 98.90%. Cao et al. [25] developed an improved network traffic
classification model based on SVM, achieving higher classification accuracy, 97.20%. Bhatia
et al. [26] proposed a DT-based multi-level P2P traffic classification technique based on
packet and flow characteristics, achieving a combined accuracy rate of 98.30%. Dey et
al. [27] compared the performance of several ML models, including DT, RF, and artificial
neural networks (ANNs), to classify network traffic and found that DT, RF, and ANNs
achieved the best accuracy.

Despite this tremendous success, ML models are vulnerable to adversarial attacks,
which can manipulate input data to mislead classifiers and cause misclassification. Ad-
versarial attacks on ML models have become a significant concern in the cybersecurity
community because they can lead to serious consequences in real-world scenarios, such as
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malicious traffic bypassing intrusion detection systems. Various studies have investigated
the susceptibility of ML models to adversarial attacks in the context of network traffic
classification. Rust-Nguyen et al. [28] demonstrated that RF is vulnerable to adversarial
attacks on darknet traffic classification. They proposed a defense mechanism based on
an encoding scheme to transform class features using probability analysis to effectively
deal with such adversarial attacks. Other studies have explored different adversarial attack
techniques and defense mechanisms for ML models in network traffic classification. For
example, Lin et al. [29] proposed an adversarial example generation method based on the
Wasserstein distance to evade DT classifiers for intrusion detection. Alhajjar et al. [30]
proposed an adversarial example generation method using evolutionary computation, i.e.,
particle swarm optimization (PSO) and genetic algorithms (GAs), along with a generative
adversarial network (GAN) to fool eleven different ML-based network traffic classifiers,
including DT, RF, and KNN. In the defense race, Asadi et al. [31] proposed a method to
detect botnets using the PSO algorithm based on the voting system. Moreover, some studies
have investigated the impact of adversarial attacks on the interpretability and explainability
of ML network traffic classification models. For example, Capuano et al. [32], in their
survey, demonstrated that adversarial attacks can cause DT to produce counterintuitive
and misleading explanations for network traffic classification. They proposed a defense
mechanism based on model distillation and gradient regularization to improve the inter-
pretability and robustness of the decision trees. In general, ML algorithms have shown
promising results in the classification of network traffic. However, their vulnerability to
adversarial attacks is a significant challenge that must be addressed. Further research is
required to develop more robust and secure ML models for network traffic classification.

2.2. Common AE Generation Methods

AEs are specifically designed inputs that can cause ML models to classify the output
incorrectly. In the context of network traffic classification, AEs can be used to evade
detection or generate false positives, leading to the inefficient use of resources and potential
security breaches. An AE can be generated as shown in Equation (1).

x′ = x + ε

subject to f (x′) 6= f (x)
(1)

where x is the original input to the model, f (x) is the output of the model for that input, x′ is
the perturbed input, and ε is the small perturbation added to x to generate x′. Perturbation
ε is chosen to be sufficiently small to be imperceptible to humans but sufficiently large to
cause the model to make an incorrect prediction.

AEs can be generated using various techniques, such as gradient-based methods,
evolutionary algorithms, and black-box attacks. Gradient-based methods, in which the
gradient of the loss function with respect to the input data is used to iteratively modify
the input until the desired misclassification is achieved, are the most commonly used
techniques for generating AEs. For example, in [33], a gradient-based method was proposed
to generate AEs that can evade detection using a well-trained network traffic classification
model. Evolutionary algorithms such as GAs and PSO can also be used to generate AEs.
These algorithms search for the optimal modification of the input that maximizes the
adversarial objective function. For example, in [34], a GA was used to generate AEs that
could evade detection by an SVM-based network traffic classification system. A black-
box attack is a more challenging type of attack where the attacker has limited access
to the target model and cannot directly compute the gradients. These attacks require
the use of transferability and model inversion techniques to generate AEs. For example,
Usama et al. [35] proposed a black-box attack technique to generate AEs. They exploited
the statistical properties of the features to calculate the mutual information between each
feature and true label. Their proposed scheme evaded detection even when the attacker
had no knowledge of the target model.
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Several gradient-based methods have been proposed for generating AEs, including
Fast Gradient Sign Method (FGSM), Jacobian-based Saliency Map Attack (JSMA), Project
Gradient Descent (PGD), Basic Iterative Method (BIM), etc. These methods aim to determine
the optimal perturbation of the input data that can cause the maximum misclassification
error of the model while remaining imperceptible to humans. In this study, the designed
defense method is evaluated using the JSMA. The reason for this choice is that this attack
manipulates the features that have the greatest effect on output classification [36]; therefore,
it represents a real-life scenario among others. However, for clarity, we further explain in
detail the underlying logic of the most influential gradient-based methods for generating
AEs (also designated as adversarial attacks).

2.2.1. Fast Gradient Sign Method (FGSM) Attack

The FGSM attack, proposed by Goodfellow et al. [37], is an optimal method of max
norm constraint to craft perturbations of the original input. This attack fools the ML/DNN
model to misclassify the input generated by increasing the direction of the gradient based
on the gradient descent principle. The FGSM can be formulated as shown in Equation (2).

x′ = x + ε ∗ sign(5xJ(θ, x, y)) (2)

This equation computes the perturbed input, x′, which is the original input (x) sup-
plemented with a small perturbation (ε) that is proportional to the sign of the gradient of
the model’s loss function (J(θ, x, y)) with respect to the input features (x), where θ is the
model parameter and y is the true label of the data point. The sign function ensures that
the perturbation is in the direction that maximizes the loss function, whereas the epsilon
value controls the intensity of the perturbation. The FGSM method is computationally
efficient and can be used to quickly generate AEs. However, it may not always be effective
in generating strong AEs and can be easily defended from methods such as adversarial
training.

2.2.2. Project Gradient Descent (PGD) Attack

Madry et al. [38] proposed the PGD attack to improve the robustness of neural network
models with adversarial training. This is an advanced iterative attack method used to
evaluate the robustness of ML models against adversarial attacks. The PGD attack involves
iteratively perturbing the input data in small steps in the direction of the gradient of the loss
function with respect to the input while projecting the perturbed data back onto a restricted
set of allowed values. The projection step ensures that the perturbed data remain within a
bounded region of the input space, which is typically defined by the maximum permissible
perturbation or range of the allowed input values. The PGD attack can be customized
by varying the number of iterations, the step size, and the projection function. A higher
number of iterations and smaller step sizes can result in stronger attacks but may also
require more computation time. The projection function can also affect the effectiveness
of an attack, with different projection functions leading to different levels of success in
generating AEs. The PGD attack is formulated as shown in Equation (3).

xt+1 = Πx+s
(
xt + αsign(5xL(Θ, x, y))

)
(3)

where Π(.) is the projection operator, t denotes the current step, α represents the step size,
and ε is the magnitude of the perturbation. This attack is considered to be one of the
strongest and most effective attacks in adversarial ML.

2.2.3. Jacobian-based Saliency Map Attack (JSMA)

The JSMA was proposed by Papernot et al. [39] to find the optimal perturbation to
create an AE by taking forward derivatives of the classifier model. It is a targeted attack that
aims to modify the input data in a manner that causes the model to misclassify the input as
a specific target class. The JSMA attack works by computing the saliency map of the input
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data, which indicates the importance of each input feature for the model’s decision. The
saliency map is computed using the Jacobian matrix, which describes the rate of change
of the model outputs with respect to the input features. The saliency map is then used to
identify the most important input features that could be modified to cause the model to
misclassify the input as the target class. The JSMA is a white-box attack, which means that
it requires access to the internal parameters of the ML model being attacked. It is typically
performed by iteratively modifying the input features that have the highest saliency values
to maximize the likelihood that the model misclassifies the input as the target class. The
modified input is then checked to determine if it has the desired misclassification, and the
process is repeated until a successful AE is found.

Given an input data point x, an ML model with parameters θ, a target class t, and a
perturbation budget ε, the JSMA seeks to find a perturbed data point x′ that maximizes
the probability of the model predicting the target class (t), subject to the constraint that the
perturbations are bounded by ε:

argmax′xP(y = t|x′)
subject to ||x′ − x||p ≤ ε

(4)

where P(y = t|x′) is the probability that the model predicts the target class (t) for perturbed
data points x′ and ||.||p denotes the Lp norm that measures the distance between x and x′.

To compute the perturbed data point x′, the JSMA uses the Jacobian matrix (J(θ, x)),
which describes the rate of change in the output of the model with respect to the input
features. The saliency score of each input feature (i) is calculated as shown in Equation (5).

Si(x) = maxj 6=t[(J(θ, x)j, i ∗ ( ft(x′)− f j(x′)))] (5)

where J(θ, x)j, i is the (j, i)th element of the Jacobian matrix, ft(x′) is the output of the
model for the target class (t), and f j(x′) is the output of the model for class j.

The saliency scores are then used to identify the k most salient input features for
modification. The modification to each input feature i is given by Equation (6).

x′i = xi + εi (6)

where εi is the smallest perturbation that increases the saliency score of feature i while
maintaining the perturbation within the budget (ε). The JSMA iteratively modifies the k
most salient input features until the model predicts the target class (t) for the perturbed
data point (x′). The attack can terminate after a specified number of iterations or when the
model predicts the target class with a specified probability threshold. The JSMA is effective
in generating AEs with high success rates, but it requires access to the model’s parameters
and outputs, which may not always be available in real-world scenarios.

2.3. Common Defense Methods against AEs

Several defense methods have been proposed to mitigate the impact of AEs on ML-
based network traffic classifiers. These defense methods can be broadly categorized into
two types [40]: reactive and proactive. On the one hand, reactive defense methods aim
to detect and reject AEs during classification. These methods can be based on various
preprocessing techniques, such as feature squeezing and input normalization, to narrow
the search space for an adversary and postprocessing techniques, such as mechanisms that
deal with model uncertainty and require predictions with high confidence scores [41,42].
Although these defense methods are effective, they often suffer from high false-positive
rates and require significant computational resources. On the other hand, proactive defense
methods aim to improve the robustness of ML models against AEs by modifying the
training process or model architecture. These methods are based on techniques such as
adversarial training [43], regularization [44] to better calibrate the learning process, and
defensive distillation to create smaller models that are less sensitive to data variations [45].
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Adversarial training is a technique in which a model is trained on both clean data and
AE to improve its robustness against AEs. For example, in [46,47], the authors proposed
adversarial training as a defense method against adversarial attacks on ML-based network
security systems that achieved significant improvements in terms of robustness against
AEs. However, adversarial training is susceptible to transferability attacks, where the
AEs generated for one model can also fool other models trained using similar techniques.
Model-based defense aims to improve the robustness of a classification model by modifying
its architecture or training process. Examples of model-based defense include defensive
distillation, ensemble methods, and regularization techniques. Input preprocessing tech-
niques aim to render the ML model more resilient to AEs by introducing random noise
or perturbations into the input data. Despite the effectiveness of these defense methods,
recent studies have shown that they are not foolproof and can be circumvented by more so-
phisticated AEs. Therefore, the development of more robust and reliable defense methods
against AEs remains an active area of research in the field of cybersecurity.

In this paper, we propose a new defense method to enhance the robustness of network
traffic classification models against AEs. The proposed method involves the derivation of
additional variables from the baseline dataset. These derived variables are used together
with the baseline dataset to train a more resilient model that is robust to AE. Specifically, we
first identify features in the dataset that are likely to be targeted by the adversary and then
use these features to derive distinct variables. By incorporating these derived variables
into training, a more robust classifier can be trained. The proposed method offers several
advantages over existing defense methods. First, it does not require the generation of AEs
during training, making it less vulnerable to transferability attacks. Second, it does not
rely on AE detection, thus reducing the risk of false positives. Third, it is computationally
efficient and can be easily integrated into existing network traffic classification models. In
general, the proposed method is a promising solution to improve the robustness of network
traffic classification models against adversarial attacks.

3. AE Impact on Network Traffic Classifiers

We begin by developing well-trained ML-based models for network traffic classi-
fication to study the impact of adversarial attacks on these models. For development,
we employed the Python programming language, as well as the popular ML libraries
Keras [48] and scikitlearn [49]. Additionally, Adversarial Robustness Toolbox (ART) [50] is
used to guide the AE generation process.

3.1. The Target Models

As previously stated, our goal is to secure ML-based network traffic classification
models against adversarial attacks. Figure 3 provides an overview of the procedures
involved in ML-based network traffic classification, also employed by the target models.
We investigated three state-of-the-art ML-based network traffic classification models: DT,
RF, and KNN. Throughout this study, these models will be referred to as target models.
First, we used scikit-learn to build a multi-class classifier for each of these models. We
preprocessed, scaled, and split the re-sampled dataset into 70:30 training and test samples,
respectively. The accuracy, precision, recall, and F1-score of the classifiers were used to
evaluate their performance.

3.2. Generating AEs for Non-Gradient-Based Models

Due to their simplicity, interpretability, and efficiency, non-gradient-based models
such as the target models employed in this study are often used for classifying network
traffic. However, these models cannot be directly used to craft AEs using gradient-based
attacks, as they do not have a continuous and differentiable loss function. To overcome this
limitation, we developed a neural network model called AdverNet trained on the baseline
dataset using the JSMA technique to generate AEs that can be transferred to non-gradient-
based models to evaluate their robustness against adversarial attacks. To use AdverNet to
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attack non-gradient-based models, we first generate AEs for AdverNet and then exploit
the transferability property of AEs to attack the target models. This transferability property
allows the AEs generated for one model to be effective in fooling other models even if
they are trained on different datasets or using different architectures [51]. Because the
target models and AdverNet are known to be similar and trained with portions of the
same dataset, the approach is intended to be illustrative of black-box attacks. Nevertheless,
because we inevitably have some knowledge of the underlying models, this may well be
called a gray-box attack. AdverNet was trained using the same procedures and architecture
as in McCarthy et al. [33], except that 50 training epochs were used to train AdverNet,
whereas 300 epochs were used in their study, with an early stoppage time of 100 epochs.

Model BuildingDataset

CSV

PCAP

Preprocessing

Feature
Engineering

Classifier Model

Testing Dataset

Training Dataset

Model Evaluation

Accuracy

Precision

Recall

F1 Score

Figure 3. An overview of ML-based network traffic classification.

3.3. Domain Constraints in AE Generation

The feasibility of adversarial attacks differs depending on the domain, as it is highly re-
stricted by several constraints, which can be divided into two distinct groups [52]: syntactic
constraints and semantic constraints. All the constraints related to syntax are often referred
to as syntactic constraints. Merzouk et al. [53] stated three syntactic constraints that an
AE must satisfy: out-of-range values, non-binary values, and multi-category membership.
The values considered out of range are those that are higher than the theoretical maximum
value that cannot be exceeded. Nonbinary values are entries that invalidate a feature’s
binary nature, whereas multi-category membership values cannot be one-hot encoded.

However, semantic links represent the relationships that distinct features may have
with each other. Teuffenbach et al. [54] suggested an obvious method for NIDS by splitting
the features into roughly three distinct groups with various semantic relationships. The
first group comprises features that can be directly altered by the adversary (e.g., number
of forward packets, size of the forward packets, and flow duration). The second group
of features is dependent on the first feature and is updated with respect to the latest
feature (e.g., number of packets/second, average forward packet size). The last group of
features comprises elements that the adversary cannot change (e.g., IP address and protocol
number).

3.4. Using AdverNet to Attack Target Models

As an adversary, the objective is to misclassify the output of target models. Adversarial
attacks are generally classified into three categories: white box, black box, and gray box.
White-box attacks involve complete knowledge of the target model and direct access to
its parameters and architecture. Using this information, attackers can craft sophisticated
attacks by leveraging gradient-descent search algorithms. Gray-box attacks assume partial
knowledge of the target model. Although not as powerful as white-box attacks, gray-box
attacks can still be effective by exploiting certain vulnerabilities or weaknesses in the model.
An attacker may have access to limited information, such as the model’s architecture,
output probabilities, or a subset of its parameters. This partial knowledge can be used to
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devise evasion strategies and generate AEs to deceive a model. Black-box attacks present
the most challenging scenario, as the attacker has zero knowledge of the target model.
In such cases, attackers often use techniques such as transferability, whereby they train
substitute models or gather information from similar models to create surrogate models.
These surrogate models act as proxies for the target model and are used to generate AEs.
By exploiting the transferability of the AEs, an attacker fools the target model without
direct knowledge of its internals. In our approach, we generate AEs for AdverNet using
the JSMA technique. These AEs are then tested against the target models to assess their
vulnerabilities and the potential impact of the attack.

4. DVars for Adversarial Attack Defense

The proposed method for defending against adversarial attacks in network traffic
classification models involves a two-step process, namely, feature selection and variable
derivation. This section provides a detailed explanation of the methodology employed in
this paper. Figure 4 shows the schematic overview of the proposed system.

Test

Train
AdverNet

Test

Train
Target

 ModelsFeature
Selection

DVars

Sum
 (Eq. 8)

Absolute Difference
(Eq. 9)

Baseline
Variables

Baseline
Dataset

Dataset

CSV

PCAP

Figure 4. Schematic overview of the proposed system.

4.1. Feature Selection

Feature selection plays a crucial role in identifying the most relevant input feature
subset that positively influences the classification performance of ML models [55]. During
our experiments, we focused on the analysis of four specific features of network flow:
source bytes (sbytes), destination bytes (dbytes), source packets (spkts), and destination
packets (dpkts), as explored by Jiang et al. [56]. These features represent the counts of bytes
and packets transmitted between the source and destination of a network flow. We selected
these four features because of their susceptibility to modification by attackers through small
content changes. Moreover, changes in these features do not affect the underlying logic or
maliciousness of the network flow. These four features are intrinsic to network flows and
are often used to distinguish malicious from benign flows.

4.2. DVar Algorithms

Following the logic of introducing randomness into the input data without compro-
mising the underlying logic and maliciousness of the network flow, we propose two DVar
algorithms. These algorithms are designed to compute representative features considering
the sum of adjacent variables and the absolute differences between adjacent variables. The
former aims to capture the holistic characteristics of a network flow, which allows for the
extraction of valuable insights from the combined features of adjacent variables, whereas
the latter aims to discern subtle patterns and variations within network flows. Table 1
shows the representation of DVars using both the sum and the absolute difference in the
flow characteristics.
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Table 1. A representation of DVars using both the sum and absolute difference in adjacent flow
features; C indicates the condition.

Sbytes Dbytes Spkts Dpkts C

sbytes1 dbytes1 spkts1 dpkts1 —
. . . . . . . . . . . . —

sbytesn+1 dbytesn+1 spktsn+1 dpktsn+1 Equation (7)
|spktsn−1| |dbytesn−1| |spktsn−1| |dpktsn−1| Equation (8)

sbytesn dbytesn spktsn dpktsn —

4.2.1. The Sum of Adjacent Values

This process involves taking the sum of the adjacent values of each set of features
in the baseline data. To ensure that the DVars remain within the same feature space as
the baseline and preserve the validity of the network flow, a condition is set to retain
the maximum value if any resulting value exceeds the maximum value in the baseline.
This process is repeated for each adjacent feature value until the final feature value of the
selected features is obtained. The new set of representative features obtained through this
process are then combined with the baseline dataset. Representative feature Yij can be
calculated using Equation (7).

Yij =

{
Xij + Xi(j+1), if Yij > max(Xi,:)

max(Xi,:), otherwise
(7)

where X is the baseline dataset, Xij represents the value of the j-th feature in the i-th
sample, Y is the matrix containing the representative features, Yij represents the value of
the representative feature for the j-th feature in the i-th sample, and max(Xi,:) represents
the maximum value of the features in the i-th sample.

The process of deriving variables using the sum of adjacent feature values is shown in
Algorithm 1.

Algorithm 1: Derivation of representative features using the sum of adjacent
values.

Data: Baseline dataset X
Result: Matrix of representative features Y

1 for each sample i in X do
2 for j = 1 to number of features do
3 if j + 1 ≤ number of features then
4 Yij = Xij + Xi(j+1);
5 if Yij > max(Xi,:) then
6 Yij = max(Xi,:);
7 end
8 end
9 else

10 Yij = max(Xi,:);
11 end
12 end
13 end

4.2.2. The Absolute Difference in Adjacent Values

In contrast to the sum of adjacent values, this process computes the absolute difference
in adjacent values in each set of features in the baseline dataset. To keep the DVars in
the same feature space with the baseline, if any resulting value is below the minimum
value of the baseline data, a condition is set to retain the minimum value. This process is
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repeated for each adjacent feature value until the final feature value of the selected features
is obtained. Representative feature Yij can be calculated using Equation (8).

Yij =

{
|Xij − Xi(j+1)|, if |Yij| < min(|Xi,:|)
min(|Xi,:|), otherwise

(8)

where X represents the baseline dataset; Xij denotes the value of the j-th feature in the
i-th sample of the baseline dataset; Yis the matrix containing the representative features;
Yij represents the value of the representative feature for the j-th feature in the i-th sample;
|Xi,:| denotes the absolute values of all elements in the i-th row of the baseline dataset;
min(|Xi,:|) represents the minimum absolute difference between all values in the i-th row
of the baseline dataset; and |Yij| represents the absolute value of Yij, which is the calculated
absolute difference. The process of deriving variables using the absolute difference between
the values of the adjacent flow features is shown in Algorithm 2.

Algorithm 2: Derivation of representative features using the absolute difference
in adjacent values.

Data: Baseline dataset X
Result: Matrix of representative features Y

1 for each sample i in X do
2 for j = 1 to number of features do
3 if j + 1 ≤ number of features then
4 Yij = |Xij − Xi(j+1)|;
5 if |Yij| < min(|Xi,:|) then
6 Yij = min(|Xi,:|);
7 end
8 end
9 else

10 Yij = |Xij|;
11 end
12 end
13 end

After acquiring a new set of representative features through the process described in
the equations (Equations (7) and (8)), they are merged with the baseline dataset. Subse-
quently, this combined dataset is used to train the ML models for network traffic classi-
fication. The primary objective of this training is to enhance the ability of the models to
withstand adversarial attacks while also improving their overall accuracy.

5. Dataset and Performance Metrics
5.1. Dataset

The performance of the proposed method was evaluated using the Canadian Institute
of Cybersecurity (CSE-CIC-IDS-2018) dataset [57], recognized as a standard benchmark
dataset in the field of network security. This dataset has three classes, namely, a benign
class and two malicious classes, which comprise two families of Denial of Service (DoS)
attacks: GoldenEye and Slowloris. Due to the high class imbalance present in the dataset,
we re-sampled this dataset using a random down-sampling technique for the majority
class to achieve a more balanced dataset. Moreover, the dataset was cleansed to eliminate
missing entries. The resulting dataset consisted of 50,400 class counts. Further details of
this dataset are provided in Table 2.
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Table 2. The breakdown of the CSE-CIC-IDS2018 dataset before and after preprocessing.

Benign GoldenEye Slowloris

Before preprocessing (raw dataset)

Class counts 996,077 41,508 10,990
Proportion of total 94.99% 3.96% 1.05%

After preprocessing (re-sampled dataset)

Class counts 21,200 18,400 10,800
Proportion of total 42.06% 36.51% 21.43%

5.2. Performance Metrics

To measure the performance of our method, we employed several commonly used
performance metrics, including accuracy (Acc), precision (Prec), recall (Rec), and F1-score
(F1). These metrics provide insights into the effectiveness of our defense technique in
correctly classifying network flows:

• Accuracy: This is a common metric used to evaluate the performance of ML models.
It measures the proportion of correctly classified samples relative to the total number
of samples.

Accuracy :
TP + TN

TP + FP + TN + FN
(9)

• Precision: This metric measures the proportion of true-positive predictions to the total
number of positive predictions.

Precision :
TP

TP + FP
(10)

• Recall: This metric measures the proportion of true-positive predictions to the total
number of positive samples in the dataset.

Recall :
TP

TP + FN
(11)

• F1-score: This metric is the harmonic mean of precision and recall, providing a single
score that balances both metrics. It ranges from 0 to 1, with higher values indicating
better performance.

F1-score : 2× Precision × Recall
Precision + Recall

(12)

True positives (TPs) and true negatives (TNs) represent the number of instances that
were correctly classified as positive and negative, respectively, whereas false positives (FPs)
and false negatives (FNs) represent the number of instances that were incorrectly classified
as positive and negative, respectively.

For adversarial ML, additional evaluation metrics may be required to measure the
robustness of the model against adversarial attacks. A commonly used metric for evaluating
the robustness of ML models is adversarial accuracy:

• Adversarial Accuracy: Adversarial accuracy measures the percentage of correct pre-
dictions made by the model on the AEs. This metric provides a measure of the model’s
ability to correctly classify AEs.

Adv Acc =
TPadv + TNadv

TPadv + FPadv + TNadv + FNadv
(13)

A higher value of adversarial accuracy indicates that the model is more resilient to
AEs.
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6. Results and Analysis

In this section, we present the results of our experiments and discuss their implications.
We evaluated the performance of our proposed method in defending against adversarial
attacks in the context of network traffic classification. Furthermore, an assessment in com-
parison to similar techniques applied to shallow models was performed. These experiments
were carried out with a dataset consisting of various network flows.

6.1. Experimental Setup

Before presenting the results, we provide details of the experimental setup. We used
three state-of-the-art network traffic classification models as the baseline. These models
were trained on a labeled dataset that contained both benign and two families of DoS
malicious network flows. We split the dataset into training and test sets, in a 70:30 ratio.
The entire test set was then used to generate AEs. This approach enables us to assess the
resilience of the proposed method against adversarial perturbations. Table 3 outlines the
hyper-parameters settings for the studied models and attack method.

Table 3. Hyper-parameters of the studied models and attack method.

Model Parameters

AdvNet
Layer 1 = 128, Layer 2 = 64, Layer 3 = 3,
activation = Relu, optimizer = adam,
output_layer_activation = softmax, epochs = 50

DT Criterion = gini, max_depth = 12

RF Number of estimators = 170, random_state = 4,
min_sample_split = 5

KNN Number of neighbors = 10, distance metric =
Euclidean

JSMA θ = 1.0, γ = 0.1, clip min = 0.0, clip max = 1.0

6.2. Comparative Analysis

The experimental results are presented below to provide a concise summary of the
findings. The performance of various ML models in the absence of AEs is summarized
in Table 4. The evaluation metrics of accuracy (Acc), precision (Prec), recall (Rec), and F1–
score (F1) were used to assess model performance. AdverNet, which is a feed-forward
neural network specifically employed to craft AEs, exhibited accuracy of 98%, while the
DT, RF, and KNN models showed exceptional performance, achieving accuracy scores of
100% and consistent metrics at 99%. Additionally, the training curves of AdverNet on the
baseline dataset are depicted in Figure 5.

Table 4. Baseline results of the target models in accuracy, precision, recall, or F1-score.

Acc (%) Prec (%) Rec (%) F1 (%)

AdverNet 0.98 0.98 0.98 0.98
DT 1.00 1.00 1.00 1.00
RF 0.99 0.99 0.99 0.99

KNN 0.99 0.99 0.99 0.99

Furthermore, as detailed in Table 5, we present a comparative analysis of baseline
performance using the CSE-CIC-IDS2018 dataset. Notably, our approach consistently
achieved exceptional levels of accuracy and other performance metrics, surpassing es-
tablished baseline models. This table underscores the pronounced superiority of DVars
on clean examples, thus reaffirming their substantial influence in the field of network
traffic classification research. Additionally, a comparative study examining both the attack
success rate and defense effectiveness on the leading models considered within the same
dataset is presented in Tables 6 and 7, respectively. The proposed defense outperformed the
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referenced studies, except for the removal of altered features (RAF), which was examined
with a self-validated attack.

Table 5. Comparison of baseline performance of the leading models using the CSE-CIC-IDS2018
dataset.

Work Model Acc (%) Prec (%) Rec (%) F1 (%)

Apruzzes et al. [6] KNN - 0.99 0.99 0.99
Pujari et al. [58] RF 0.92 - 0.91 0.94
Pujari et al. [59] RF 0.91 - 0.91 0.94
Shu et al. [60] N/A 0.94 - - -

Ours KNN 0.99 0.99 0.99 0.99

Table 6. Comparison of attack success rate of the leading models using the CSE-CIC-IDS2018 dataset.

Work Attack Acc (%) Rec (%) F1 (%)

Apruzzes et al. [6] Self - 0.48 -
Pujari et al. [58] JSMA 0.84 0.57 0.59
Pujari et al. [59] C&W 0.81 0.81 0.83
Shu et al. [60] JSMA 0.94 - -

Ours JSMA 0.45 0.48 0.44

Table 7. Comparison of defense effectiveness of the leading models using the CSE-CIC-IDS2018
dataset.

Work Attack Acc (%) Rec (%) F1 (%)

Apruzzes et al. [6] RAF - 0.90 0.82

Pujari et al. [59] GAN 0.82 0.83 0.84

Shu et al. [60]

A2 0.64 - -
A3 0.51 - -
A4 0.63 - -
A5 0.78 - -

Ours DVars 0.84 0.84 0.83

The results in Table 8 underscore the effectiveness of our defense strategy against
adversarial attacks with different perturbation intensity. In the absence of perturbations, all
models (DT, RF, KNN) performed exceptionally well, reflecting their robustness. As the
perturbation intensity increased, the model performance gradually diminished. Despite
this, KNN consistently demonstrated a higher degree of defense effectiveness, outper-
forming DT and RF, particularly at low and medium perturbation levels. This highlights
the effectiveness of our defense mechanism in enhancing model resilience to adversarial
attacks, with KNN emerging as the most reliable choice for such scenarios.
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Table 8. Performance of the proposed defense against JSMA with different perturbation intensity.

Intensity (ε) Model Acc (%) Prec (%) Rec (%) F1 (%)

Baseline
DT 1.00 1.00 1.00 1.00
RF 0.99 0.99 0.99 0.99

KNN 0.99 0.99 0.99 0.99

Low
DT 0.72 0.81 0.72 0.65
RF 0.72 0.81 0.72 0.65

KNN 0.84 0.87 0.84 0.83

Medium
DT 0.67 0.50 0.67 0.56
RF 0.67 0.50 0.67 0.56

KNN 0.72 0.79 0.72 0.64

High
DT 0.67 0.50 0.67 0.56
RF 0.67 0.50 0.67 0.56

KNN 0.66 0.67 0.66 0.55

The results obtained when no AEs were present in the dataset are shown in (Figure 6).
The figure shows Acc, Prec, Rec, and F1 with respect to each class in the dataset for different
classification models, including DT, RF, KNN, and AdverNet. As can be seen in this figure,
all the models performed well in classifying the network flows, achieving the best accuracy
scores across all classes present in the dataset.
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Figure 5. Performance evaluation of AdverNet trained on the baseline dataset.
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(c) KNN

Benign DoS GoldenEye DoS Slowloris
Dataset Class

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rf

or
m

an
ce

 (
%

)

Accuracy Precision Recall F1 Score

(d) AdverNet

Figure 6. The baseline results showing accuracy, precision, recall, and F1-score with respect to each
class of the dataset.

Furthermore, Figure 7 presents the results of when the models were subjected to
adversarial attacks with different perturbation intensity. The figure highlights the decrease
in accuracy for each model to below 50%. As observed in the confusion matrix, the
performance of these models declined even with small, subtle changes in the dataset,
leading to a high class misclassification rate. A large proportion of DoS attacks were
classified as benign (Figure 8). However, our proposed defense method still provided
reasonable protection, maintaining relatively high accuracy, 84%, and achieving satisfactory
precision, 87%, using our best-performing model, KNN.
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Figure 7. The results with the AE effect showing accuracy with respect to the perturbation intensity.

Based on the results presented in Table 8 and Figures 9 and 10, it is evident that the
proposed defense method enhances the robustness of network traffic classification models
against adversarial attacks. In the absence of attacks, the models achieved high accuracy,
precision, recall, and F1-score, indicating their effectiveness in classifying the network
traffic flows. However, when subjected to adversarial attacks of increasing intensity, the
performance of these models gradually declined. Nevertheless, our defense method still
provided significant protection, consistently maintaining accuracy of above 70% and 65%
for low- and high-intensity attacks, respectively. Notably, KNN achieved the highest accu-
racy rates, 84%, and 72%, for low- and medium-intensity adversarial attacks, respectively,
outperforming the DT and RF models. These results highlight the efficacy of the proposed
approach in mitigating the impact of adversarial attacks on network traffic classification
models.

Through the integration of feature selection and variable derivation techniques, our
defense method introduces additional randomness into input data. This increased random-
ness poses a challenge for attackers attempting to craft AEs that can completely deceive
classification models. As a result, our defense method maintains reasonable levels of
accuracy, precision, recall, and F1-score, even in adversarial scenarios.
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(a) Decision Tree (b) Random Forest

(c) KNN

Figure 8. The confusion matrix showing results with AEs present with respect to low perturbation
intensity (ε = 0.01).
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Figure 9. The results with defense effect, showing accuracy, precision, recall, and F1-score with
respect to perturbation intensity.
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(a) Decision Tree (b) Random Forest

(c) KNN

Figure 10. The confusion matrix showing robustness of DVars against AEs with respect to low
perturbation intensity (ε = 0.01).

6.3. Scalability

The proposed methodology not only enhances the resilience of ML-based network
traffic classification models but also highlights significant scalability. Through the integra-
tion of DVars into training, our approach achieves a reduction in computational overhead,
imposes minimal resource demands, and demonstrates adaptability across various clas-
sifiers. Its seamless compatibility with existing systems, coupled with a straightforward
integration process, makes it a lightweight, efficient, and easily scalable solution that is
particularly useful for deployment in real-world scenarios. Moreover, the adaptability of
DVars to changing network dynamics and their ability to maintain robust performance
underscores their scalability, positioning them as a versatile and practical solution for
securing communication networks of varying scales against adversarial attacks. Addition-
ally, it is imperative to highlight that even for clean data, the baseline classifiers exhibit
commendable performance. This observation emphasizes the reliability of our approach,
affirming that the introduction of DVars does not compromise the efficacy of the baseline
classifiers during routine operational scenarios.

7. Conclusions and Future Research

This study examines the robustness of existing ML-based network traffic classification
models against adversarial attacks. A novel framework called DVars is proposed to enhance
the resilience of these models. DVars, which introduce randomness into the input data by
generating distinct variables from the baseline dataset, play a crucial role in strengthening
the robustness of models against adversarial attacks. Notably, the key distinction between
the proposed approach and traditional adversarial training lies in the emphasis on utilizing
DVars rather than AEs. The evaluation conducted herein reveals that the integration of
DVars in the training of ML models considerably improves their robustness when faced
with adversarial attacks. Moreover, the practicality and scalability of DVars are underscored
by their computational efficiency and independence from AEs.
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This research not only highlights the potential of DVars as an effective defense mech-
anism against adversarial attacks but also provides a viable avenue for further research.
Further research is warranted to assess the applicability of DVars to deep learning-based
network traffic classification models.
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