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Abstract: In recent years, the Internet of Vehicles (IoV) has garnered significant attention from
researchers and automotive industry professionals due to its expanding range of applications and
services aimed at enhancing road safety and driver/passenger comfort. However, the massive
amount of data spread across this network makes securing it challenging. The IoV network generates,
collects, and processes vast amounts of valuable and sensitive data that intruders can manipulate.
An intrusion detection system (IDS) is the most typical method to protect such networks. An IDS
monitors activity on the road to detect any sign of a security threat and generates an alert if a
security anomaly is detected. Applying machine learning methods to large datasets helps detect
anomalies, which can be utilized to discover potential intrusions. However, traditional centralized
learning algorithms require gathering data from end devices and centralizing it for training on a
single device. Vehicle makers and owners may not readily share the sensitive data necessary for
training the models. Granting a single device access to enormous volumes of personal information
raises significant privacy concerns, as any system-related problems could result in massive data leaks.
To alleviate these problems, more secure options, such as Federated Learning (FL), must be explored.
A decentralized machine learning technique, FL allows model training on client devices while
maintaining user data privacy. Although FL for IDS has made significant progress, to our knowledge,
there has been no comprehensive survey specifically dedicated to exploring the applications of FL for
IDS in the IoV environment, similar to successful systems research in deep learning. To address this
gap, we undertake a well-organized literature review on IDSs based on FL in an IoV environment.
We introduce a general taxonomy to describe the FL systems to ensure a coherent structure and guide
future research. Additionally, we identify the relevant state of the art in FL-based intrusion detection
within the IoV domain, covering the years from FL’s inception in 2016 through 2023. Finally, we
identify challenges and future research directions based on the existing literature.

Keywords: Federated Learning (FL); intrusion detection systems (IDS); Internet of Vehicles (IoV);
deep learning; machine learning

1. Introduction

The rapid expansion of the Internet of Things (IoT) has led to a number of novel
applications, such as smart cities, smart grids, and the Internet of Vehicles (IoV). When
these smart objects take the form of interconnected vehicles over the internet, the IoT
becomes the IoV. Significant interest in IoV technologies has emerged due to substantial
advancements in the smart automobile industry. IoV networks are integrated and open
network systems that connect vehicles, human intelligence, neighboring environments, and
public networks. These networks aim to increase road safety, reduce human error-related
accidents, and mitigate congestion. This is accomplished by continuously monitoring
traffic congestion. However, despite the numerous benefits offered by the IoV, several
issues must be addressed to safeguard the lives of all road users. The IoV is vulnerable to
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cyberattacks, which threaten its stability, robustness, and can lead to vehicle unavailability
and traffic accidents. Since communication in these networks requires the involvement of
multiple components, they are susceptible to a broad array of attacks. Thus, ensuring their
security requires advanced intrusion detection systems (IDSs) that can address potential
cyberattacks. IDSs excel at identifying anomalies and attacks in the network’s data during
communications between vehicles and various devices. Given that the IoV is a relatively
new network paradigm, new and ever-evolving attacks against it continue to emerge.
The IoV network creates a huge amount of data very quickly, especially when there are
cyberattacks.The accuracy of machine learning and deep learning approaches makes them
a preferred choice in this high-stakes environment [1]. Nevertheless, the need to store and
transmit data to a centralized server may compromise privacy and security. In contrast,
Federated Learning (FL), a decentralized learning approach that protects privacy, trains
models locally before sending only the parameters to the centralized server. Even though
FL for IDS development has made significant progress, a comprehensive survey specifically
exploring the applications of FL for IDS in the IoV environment has yet to be conducted. To
the best of our knowledge, a gap exists in the availability of a study that comprehensively
assesses current IDSs based on FL for IoV, similar to the successful systems research
conducted in deep learning.

To address this gap, the key contributions of our survey can be summarized
as follows:

• We offer a generic taxonomy for describing FL systems (FLSs) to ensure a coherent
structure and guide future research.

• We undertake a well-organized literature review on IDSs based on FL in an IoV
environment. This review identifies the latest advancements in FL-based intrusion
detection within the IoV domain, covering the years from FL’s inception in 2016
to 2023.

• Furthermore, we highlight several challenges and potential future directions based on
the existing literature.

The remainder of the paper is organized as follows. Section 2 explores the background
within this domain, covering IoV, FLSs, and IDSs. Section 3 aims to provide a thorough
overview of FL research within the context of IDSs in IoV environments. Finally, we
conclude the paper by describing open research challenges and outlining possible future
research directions in Section 4. For increased clarity and understanding, abbreviations
section summarizes the abbreviations used in this manuscript.

2. Background
2.1. An Overview of Internet of Vehicles

Transportation has become a significant challenge in many countries due to population
growth. Often, the transportation system itself is outdated, making upgrading a costly
and daunting task. By 2035, the number of vehicles around the globe is estimated to reach
two billion. This substantial number will strain existing transportation systems and most
likely result in more accidents and traffic jams. Therefore, changes must be made in the
transportation system’s framework to adjust to emerging prerequisites of new vehicles,
travelers, and drivers [2]. Technological advancements have motivated the enhancement
of a wide array of gadgets to be used in various fields, including IoT. Additionally, the
Internet is helping societies develop much faster, and people in developed societies, in
turn, are seeking a better way of life [3]. A few of these technologies have resulted in the
further advancement of IoV, a field commonly considered an extension of IoT. IoT is a
universal network of interconnected smart devices equipped with embedded hardware
and software for environmental sensing and data exchange, with the capability to act on
that information. Therefore, including vehicles as devices makes IoV a field with appli-
cations in intelligent transportation, crash prevention, and smart cities [4]. IoV networks
require software applications to monitor vehicle movements and provide security against
malicious attacks. These systems function through interactions with various components,
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including vehicle communication with roads, roadside units, and sensors [5]. IoV brings
together two cutting-edge dreams—the network and intelligent vehicles—while center-
ing around the objects (e.g., humans, vehicles, systems) to create a perceptive system
that relies on information technology and communication features to assist authorities
in huge urban territories and entire countries [3]. IoV enables extensive communication
between vehicles in various forms, including vehicle-to-vehicle, vehicle-to-road, vehicle-
to-human, vehicle-to-infrastructure, and vehicle-to-sensor connections through wireless
communication technologies [6]. Additionally, human-to-human interaction occurs in IoV.
Generally, though, the human component is gaining importance as the services develop.
In their research, Rim et al. [7] view IoV as a worldwide network with three integrated
subnets: the intravehicle network, the intervehicle network, and the vehicular mobile
internet. By contrast, Garg et al. [3] define IoV from the angle of integration of on-board
sensors and communication technologies. These researchers view IoV as intelligent vehicles
with advanced devices that utilize modern communication and networking technology
to provide vehicles with complex environment sensors, intelligent decision making, and
control functions.

2.1.1. Benefits of Internet of Vehicles

IoV has the potential to transform the transportation industry’s landscape, making
travel safer, more efficient, and friendlier to the environment. The IoV provides several
opportunities for improvement and numerous benefits, including the following [3]:

• Lower costs: Improved traffic control results in lower costs, including insurance
premiums and operational costs.

• Time efficiency: Traffic is meticulously monitored, examining the time people spend
on the road.

• Reduced risk of fatalities: Examining the transportation environment can reduce
accidents, such as by helping drivers navigate traffic [8].

• Smart cities development: Smart cities are more organized due to the services they
provide, including enhanced navigation and real-time traffic.

• Greenhouse effect reduction: This limits harm to the world.
• Emergency response: IoV can autonomously notify emergency services in the case of

an accident, potentially diminishing reaction times and saving human lives.
• Autonomous driving: IoV is an essential part of the development of autonomous and

semi-autonomous vehicles, both of which can lower the number of accidents resulting
from human mistakes and enhance general road safety.

• Traffic documentation: Filming traffic accidents using services such as pics-on-wheels
allows any vehicle on the road to act as a witness to any accident. Among other
outcomes, this encourages people to maintain decorum on the road.

In general, IoV offers the potential for safer, more intelligent, and more efficient
mobility for individuals and society as a whole.

2.1.2. Internet of Vehicles’ Characteristics and Challenges

This section elaborates on the characteristics of IoV and discusses various challenges
that IoV faces. Compared to other types of networks, IoV networks are distinguished by
several qualities. IoV is an evolution of traditional vehicular ad hoc networks (VANETs) and
shares many characteristics with VANETs, including dynamic topology, fluctuating network
density, high vehicular mobility, and network obstacles [2]. However, IoV networks possess
the following additional attributes:

• Scalability: Compared to traditional VANETs, IoV networks have the capacity to
incorporate a significantly larger number of interconnected vehicles, ranging from
hundreds to thousands. Furthermore, IoV has the potential to significantly augment
the number of interlinked gadgets to a magnitude of millions, depending on the
utilized application.
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• Multiple wireless access methods: The IoV platform supports several types of wireless ac-
cess methods, including WLANs, WiMAX, cellular wireless, and satellite communications.

• Extended network communication: IoV enables a broader range of communication
options than conventional VANETs, characterized by their restricted communication
capabilities. IoV facilitates vehicle-to-smart object connection, including devices such
as smartphones and tablets.

• Cloud computing: Unlike VANETs, the activities in IoV mostly rely on cloud comput-
ing services.

• Predictable mobility: Vehicular networks differ significantly from other ad-hoc net-
work types because vehicles often move quickly and in any direction. Vehicles are
predictable in their movement due to the topography, roadway layout, use of signal-
received traffic lights, and consideration of other moving vehicles’ distance. Therefore,
vehicles are predicted to possess integrated GPS systems to ascertain information on
their movement.

• Highly dynamic topology: A vehicle network’s topology exhibits a high degree of
dynamism, characterized by intermittent and rapid changes. Hence, the intricate
network topology dynamics must be thoroughly analyzed to advance the IoV envi-
ronment. IoV encompasses a collection of vehicles that exhibit regular variations in
both their velocity and trajectory. As a result, the configuration of the moving vehicles’
topology likewise undergoes alteration. Therefore, IoV supports a highly dynamic
topology, and the routing protocols are designed to consider this [9].

The IoV encounters a multitude of issues that require thorough investigation to en-
hance communication dependability, robustness, and steadiness, including the following:

• Fault tolerance: Because the IoV design is built on cloud connections, some vehicles
could malfunction; nevertheless, these failures should not influence the functioning of
the remainder of the network.

• Latency: The term “latency” refers to the amount of time that passes while a packet is
transferred through a network. Latency must be reduced as much as possible in some
mission-critical applications, such as accident warnings, to ensure that messages are
transmitted quickly.

• Network compatibility: To develop applications and protocols for IoV, researchers
must consider the numerous access technologies supported by IoV. This ensures that
the networks they create are compatible and allows IoV to function with the various
access technologies available today.

• Security: The data shared over the IoV network is sensitive and private, which is
especially important given that users can access the internet. As a result, the process
of protecting these networks is an essential undertaking and a prerequisite for the
implementation of IoV.

• Connectivity: The rapid movement of vehicles can result in frequent fluctuations
in network architecture, impacting connectivity. As a result, a significant portion
of the rate at which nodes arrive and leave can be influenced. The need to contend
with such a restriction depletes an essential amount of communication overhead.
Thus, nodes must often choose a trustworthy route to ensure that data is delivered to
specific destinations to function correctly. The vehicles must be continuously linked to
one another.

2.1.3. IoV Network Requirements and Generic Architecture

The Internet of Vehicles (IoV) is a transformative advancement in the realm of vehicu-
lar communications, merging traditional vehicular networks with cutting-edge information
and communication technologies. This integration not only expands vehicular capabilities
but also introduces intricate challenges and requirements in security, privacy, and func-
tionality. Understanding the architecture and requirements of IoV networks is pivotal for
developing sophisticated solutions like Federated Learning (FL)-based Intrusion Detection
Systems (IDS). In this subsection we provide a summary analysis of the essential security,
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privacy, and functional requirements of IoV networks, alongside a detailed description of a
generic IoV network architecture. Figure 1 shows the essential IoV network requirements.

Figure 1. IoV Network Requirements.

Security Requirements in IoV Networks

Security within Internet of Vehicles (IoV) networks is uniquely complex, given the
dynamic and mobile nature of vehicular communications [10]. Here, data integrity must
go beyond standard concerns—it is critical for safe vehicular operation as vehicles rely on
accurate, real-time shared information for essential functions. Any unauthorized data ma-
nipulation can lead to immediate safety risks. Authentication in IoV networks is also more
challenging than in static networks. It is not just about securing data, but about reliably
verifying the rapidly changing participants in the network—vehicles, road infrastructure,
and other connected entities—to prevent malicious activities [11]. The confidentiality of
data in IoV systems carries additional weight. Protecting user privacy, like location and
travel habits, is not only about privacy rights but also about safeguarding against poten-
tial threats that could exploit this sensitive data for harmful purposes. Non-repudiation,
while important in many digital systems, takes on heightened significance in IoV. Here,
it is crucial for legal and liability reasons, ensuring that a vehicle or network component
cannot deny its actions, especially in incident analysis and forensic investigations following
accidents or security breaches. Lastly, the aspect of continuous availability in IoV networks
is paramount. The challenge is to maintain seamless service in a mobile, high-speed envi-
ronment, where Denial of Service (DoS) attacks or other disruptions not only compromise
data but can directly impact physical safety and traffic efficiency.

Privacy Requirements in IoV Networks

Privacy concerns in Internet of Vehicles (IoV) networks are especially pronounced
due to the continuous and detailed data generation by vehicles. Protecting user identities
and sensitive data here goes beyond typical privacy considerations. Users in an IoV
context should have options for anonymity or pseudonymity [3], crucial for preventing the
real-time tracking of their vehicles, which could lead to physical tracking in the real world.

The principle of data minimization becomes even more critical in IoV environments.
Here, the vast amount of data generated by vehicles, including location, travel routes,
and driving patterns, must be carefully managed. Collecting only the necessary data
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for intended functionalities not only preserves privacy but also reduces the risk of data
breaches with potentially severe real-world consequences. User control over data in
IoV networks is vital. Given the diverse sources of data collection and dissemination in
IoV—from traffic management systems to third-party service providers—users must have
clear and manageable controls over who accesses their data and for what purpose. This
aspect is particularly challenging in IoV due to the interconnected nature of vehicular
networks and the range of stakeholders involved [12]. Moreover, when data sharing
is necessary for the functionality of IoV services, its execution requires robust security
measures. It is essential to ensure that sensitive information, such as real-time location or
travel behavior, is accessible only to authorized entities [4]. This protection is crucial in
preventing the potential misuse of data, which could lead to privacy infringements or even
safety hazards.

Functional Requirements in IoV Networks

The functionality of Internet of Vehicles (IoV) networks is not just about enabling
vehicular communication; it is about doing so in a way that meets the unique demands of
a highly mobile and rapidly evolving vehicular environment. Scalability is more than a
feature here; it is a necessity. The IoV network must seamlessly integrate an ever-growing
number of vehicles and infrastructure elements, each adding to the complexity and volume
of data exchange [13]. Real-time communication in IoV networks is about more than just
speed; it is about life-critical decisions. Low latency is indispensable for enabling timely re-
actions in dynamic driving scenarios, where milliseconds can mean the difference between
safety and danger. Interoperability in IoV extends beyond standard tech compatibility. It
involves harmonizing a myriad of vehicle models, diverse infrastructural technologies, and
varied network protocols to ensure uninterrupted communication, a task that is signifi-
cantly more complex given the varying standards and technologies in the automotive sector.
Effective mobility management in IoV is not just about maintaining network connections;
it is about doing so in a context where vehicles are constantly moving at high speeds, often
transitioning between different network zones, which requires sophisticated handover
mechanisms and robust connectivity management [14]. Furthermore, optimizing energy
usage, especially in the realm of electric vehicles, goes beyond conventional energy man-
agement concerns. In IoV, this is critical for the sustainable operation of not just individual
vehicles, but the entire network, impacting everything from data transmission efficiency to
the overall environmental footprint of the vehicular ecosystem.

Generic Architecture of IoV Networks

The Internet of Vehicles (IoV) is an advanced network architecture that integrates
vehicular technology with information and communication systems to enhance road safety,
traffic efficiency, and driving experiences. The core components of IoV architecture in-
clude [15]:

• Vehicles: The primary entities in IoV are the vehicles themselves, equipped with
sensors, communication modules, and computing capabilities. These vehicles can
collect and share a vast array of data, including speed, location, traffic conditions, and
environmental data.

• Roadside Units (RSUs): These are fixed infrastructural components placed alongside
roads. RSUs facilitate communication between vehicles and the broader network
infrastructure, acting as access points for data transmission and reception [5].

• Central Servers: Central servers provide backend support for data processing, storage,
and advanced computational tasks. They play a critical role in managing the overall
network, including traffic control, data aggregation, and system updates.

• Communication Network: This includes both Vehicle-to-Vehicle (V2V) and Vehicle-to-
Infrastructure (V2I) communications, enabled through technologies like Dedicated
Short Range Communications (DSRC) and cellular networks. The network ensures
seamless and continuous connectivity within the IoV.
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• Traffic Management Center (TMC): The TMC acts as the control hub for traffic man-
agement, receiving data from various sources and making decisions to optimize traffic
flow, reduce congestion, and enhance road safety [5].

• Cloud and Edge Computing Resources: Cloud computing provides vast storage and
processing capabilities, essential for handling the large volumes of data generated in
IoV. Edge computing, on the other hand, offers localized processing at the network
edge, enabling real-time data processing and decision-making.

This architecture fosters an interconnected environment essential for various appli-
cations, including IDS. The architecture’s distributed nature, real-time communication
capabilities, and integration of advanced computing technologies are vital for implement-
ing effective FL-based IDS.

2.1.4. Security in Internet of Vehicles

IoV technologies are developing rapidly, and a number of industries investing in
these technologies are in a race to launch state-of-the-art self-driving vehicles. These
rapid advancements in IoV result in security issues that threaten not only the industry
but consumers as well [8]. The challenge lies in preventing security breaches and privacy
violations in IoV, making it less susceptible to cyberattacks [3].

Cyberattacks in Internet of Vehicles Networks

Vehicular sensor networks comprise a variety of vehicle sensors used to monitor and
measure various physical parameters associated with the vehicle and the environment in
which it is located. These sensors contribute to a more comfortable driving experience and
smoother driving operations. Table 1 lists some of the most frequently employed smart
vehicle sensors. Each of these sensors is built using cutting-edge electronic components
and communication systems. Due to their limited available resources, implementing
sophisticated and reliable security algorithms on these sensors directly is impractical.
Consequently, these sensors are susceptible to various cyberattacks [16].

IoVs are susceptible to several types of attacks and threats, including the following:

• The flow of bogus information: Attackers use fake information to make users believe
in a false environment.

• Message injection attack: Attackers send seemingly legitimate messages to gain access
to one or more entities, which they can also utilize to send out malicious messages [16].

• Replay attack: Attackers iterate messages to gain unlawful access to the network’s
services and resources [17].

• Cookie theft attack: Resembling the previous attack, attackers use a copy of the cookies
they stole to reach the network’s resources.

• Sybil attack: Attackers create fabricated vehicles around the vehicle they are targeting
and generate a signal jam, compelling the target to use an alternate path. To do this,
they use a countless number of fake IDs for a single node to create the appearance of
multiple nodes [18].

• Man-in-middle attack: Attackers insert themselves between two communicating
entities. In this type of attack, which can be active or passive, the attackers can receive
messages from one entity and send them to the other [16].

• Denial-of-service and distributed denial-of-service attacks: Attackers attempt to dis-
rupt the network’s efficiency by flooding the target channel with messages that exceed
its handling capacity. This is carried out to use the network’s limited resources ille-
gally [10].

• Dissimulation of GPS attack: Attackers intercept and modulate GPS signals before
the intended receiver receives them. This type of attack can endanger the lives of the
people in the target vehicle as they are given the wrong directions.

• Impersonation attack: As the name implies, attackers impersonate the identity of a
legitimate user on the network to spoof unsuspecting vehicles on the network with
messages that are not only fictitious but dangerous.
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• Masquerading attack: Again, as the name implies, attackers masquerade as authorized
users. Unlike the previous attack, attackers copy the legitimate ID of one of the
network’s nodes and can create two different senders using the same identity.

• Wormhole attack: Attacker nodes fake incorrect information about the distance from
the target node, aiming to obtain every message sent from the receiver to flow through
it. Deadlocks are typically created by these types of attacks [17].

• Eavesdropping attack: Attackers passively listen to the communication on the network.
They become a part of the network, aiming to secretly obtain confidential, sensitive
data and use it unlawfully.

Table 1. Common sensors in vehicle sensor networks.

Sensor Use of Sensors in Vehicles

Camera

Identifies traffic signs, enhances night vision, adapts to the
light system, determines the likelihood of being involved
in a collision, detects lanes, records emergencies, and
provides parking aid.

GPS
Tracks location, provides path direction, minimizes fuel
costs, lowers operational costs, helps with theft recovery
and in an emergency.

Ultrasonic sensors
Include parking assist systems, which monitor the
immediate surroundings of the vehicle and measure
distance to obstacles.

LiDAR Ensures safe navigation by detecting objects and
estimating distances.

Radar

Detects obstacles or pedestrians, deploys automatic
emergency braking, and enables blind-spot monitoring,
lane-keeping assistance, and parking assistance in
autonomous mode.

Inertial sensors
Provide data concerning the rate of acceleration and the
current direction of the vehicle, includes automotive
safety systems like airbag and anti-skidding protection.

Tire pressure monitoring system Monitors tire air pressure and alerts the driver when it
falls dangerously low.

2.2. An Overview of Federated Learning

As the risk of a data breach grows increasingly significant, many governments are
enacting legislation to protect their citizens’ data. Because of a breach that occurred
in 2016 involving the personal information of 600,000 drivers, Uber was forced to pay
USD 148 million to resolve the investigation [19]. In response to these situations, Google
introduced the notion of FL to facilitate on-device learning while ensuring the preservation
of data privacy. FL enables collaborative learning among devices without necessitating
data sharing with a centralized server. In other words, machine learning and deep learning
may be trained across various devices and servers using decentralized data thanks to
the capabilities of the technology [20]. This process can be repeated multiple times. This
section provides an overview of FL, introducing the concept and highlighting its potential
applications and benefits in several domains.

2.2.1. Definition of Federated Learning

FL facilitates the collaborative training of a machine learning model by many parties
without the need for the direct exchange of their respective local data. The subject matter
encompasses a range of methodologies derived from various fields of research, including
distributed systems, machine learning, and privacy. Building on the definitions of FL
provided by previous studies [19,21,22] we propose the following definition for FL. In an
FL framework, numerous entities work together to train machine learning models without



Future Internet 2023, 15, 403 9 of 53

the need to share their raw data. The result of the process is a machine learning model for
each entity involved (which may be identical or distinct). A crucial restriction of a practical
FLS is that the performance of the model acquired through FL should surpass that of a
model obtained through local training when evaluated using a designated measure, such
as test accuracy, using the same model architecture. FLSs include the following aspects:

• Data privacy: An FLS tackles the issue of data privacy by enabling individual entities
to maintain their data locally, hence avoiding the need to share it with a centralized
server. This is especially crucial when handling private or sensitive data [23].

• Collaborative training: Models are trained collaboratively within the FLS. Based on its
local data, each party or device independently computes updates to the model and
shares them with other participants or a central server.

• Aggregated model: By combining the model updates from each participant, the
central server creates an enhanced global model that gains from everyone’s combined
expertise. The participants then receive a copy of this combined model.

• Iterative process: The iterative nature of the FLS entails the incorporation of several
training rounds. During each iteration, individuals involved in the process update
their respective local models and then contribute to the overall global model. The afore-
mentioned iterative procedure persists until the global model reaches a satisfactory
performance level.

• Customized models: The FLS enables the customization of models to cater to each par-
ticipant’s specific needs and requirements. Participants may have models customized
to their individual needs, depending on the distribution of data and local requirements.

2.2.2. Components of a Federated Learning Framework

In today’s data-driven world, the conventional centralized approach to ML—in which
data from multiple sources is pooled on a single server for training—is encountering
obstacles, particularly regarding privacy and efficiency. This technique collects data from
various sources and then stores it on a server. FL has emerged as a potential solution,
enabling decentralized training while ensuring that data is kept on its original device,
thereby reducing the overhead associated with data transfer [24]. This section discusses the
fundamental elements that comprise an FL framework.

• Client devices: These are edge devices, including smartphones, tablets, IoT devices,
and even personal computers; they can store and process data locally and oversee
local model training.

• Central server: This entity serves as the primary aggregation point in the FL structure.
The central server is responsible for communicating with client devices, collecting
model updates, and disseminating the global model back to the clients [21].

• Local models: Each client device is equipped with its own version of the ML model,
which is trained using the local data available on that device.

• Global model: This model aggregates all the local models stored on the client devices
and is hosted on the central server.

• Communication protocol: The primary objective of the communication protocol is
to establish reliable and effective communication between the client devices and
the central server while ensuring the security of the data sent. It is responsible for
overseeing the transmission of updates to the model and the distribution of the
global model.

• Aggregation algorithm: The algorithm is implemented on the central server, integrat-
ing the model updates received from all client devices to enhance the global model.

• Privacy mechanisms: During model aggregation and communication, additional lay-
ers of data security can be added by integrating various techniques, such as differential
privacy and Secure Multiparty Computation (SMPC).

By gaining a comprehensive understanding of the fundamental components of FL,
one can develop a deeper appreciation for the complexities and possibilities that FL offers
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in addressing contemporary challenges within the field of data science. The significance of
such decentralized techniques is expected to continue expanding as the digital ecosystem
evolves, making FL a cornerstone in the future of ML.

2.2.3. Typical Federated Training Process

The FL process begins with each device developing a localized model using its own
dataset. After completing local training, the device transmits model changes—specifically
weights and gradients—to a central server, rather than sending raw data [16]. This approach
ensures that confidential information remains in its original location, effectively mitigating
various privacy risks commonly associated with traditional data centralization [25]. The
model updates from all participating devices are consolidated on the central server to create
an enhanced global model that incorporates insights derived from all the decentralized
data sources. This aggregated model is then distributed to all devices, allowing them to
leverage the collective intelligence of the entire network. The iterative process involves local
training, model update transmission, aggregation, and global model dissemination, with
each iteration progressively improving the accuracy and resilience of the global model [21].
By employing this innovative methodology, FL addresses the challenges related to data
privacy and ML efficiency, effectively utilizing a wide range of authentic data sources from
the real world while safeguarding the security of individual data [26].

2.2.4. Federated Learning Systems Taxonomy

FLSs facilitate cooperative model training while upholding the principles of data
privacy and security. This approach is especially suitable for situations where data is
distributed across multiple sources, and the parties involved are hesitant to share their data
in a centralized manner. Many new FLSs have emerged since the creation of FL in 2016.
There are a general taxonomy describing the difference of FLS is was presented in [19] and
also replicated in [27]. Even though their taxonomy was very helpful for many researchers,
it had several limitations that need to be addressed. Firstly, the taxonomy primarily focuses
on the most prevalent and widely adopted Federated Learning scenarios, and as such,
does not encompass all possible scenarios. Secondly, there might be gaps in terms of the
different types of data distributions, models, and algorithms presented, indicating that the
taxonomy might not be exhaustive. Thirdly, the taxonomy does not delve deeply into the
specifics of each category, which could lead to overlooking certain nuances. Lastly, it is
worth noting that the taxonomy is a reflection of the state of Federated Learning in 2021
and may require updates.

As the domain progresses, we present a general taxonomy describing the differences
between these FLSs in this section. We use the taxonomy to clarify the distinctions be-
tween different FLSs, which can be categorized according to their essential features and
characteristics. This multidimensional classification considers the most significant com-
ponents of FLSs, such as data sources, privacy, model aggregation techniques, learning
models, scalability, and network topology. Given the prevalent system abstractions and
foundational components employed in various FLSs, we can classify these systems based
on six key aspects: data distribution, model management, privacy method, communication
architecture, FL algorithms, optimization techniques, use cases, and applications. Figure 2
shows this taxonomy of FLSs.

Data Distribution

When discussing the taxonomy of FLSs, the term “data distribution” refers to the
process by which various participants or nodes in an FL environment are given different
portions of the data. It affects the effectiveness and level of privacy maintained during the
learning process, making it an essential component of FL.



Future Internet 2023, 15, 403 11 of 53

Figure 2. Taxonomy of Federated Learning systems (FLSs).

The following list reviews important factors regarding the distribution of data within
this taxonomy:

• Data partitioning: The concept of data partitioning describes how data is allocated or
divided among entities. Generally, FLSs can be divided into two categories, vertical
and horizontal FLSs, depending on how the data are spread over the sample and
feature spaces. The vertical partitioning strategy involves allocating distinct aspects or
attributes of the dataset to various participants. For instance, a given participant may
possess data pertaining to age and gender, whereas another participant may possess
data on income and location. By contrast, in horizontal partitioning, participants have
access to distinct sections of the data instances. A slice of the dataset with the same
attributes belongs to each participant. For example, one member might have customer
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data for a particular location, whereas another participant might have customer data
for a different location.

• Data imbalance: The notion of data imbalance holds significant importance within
the taxonomy of FLSs as it relates to the uneven allocation of data among the par-
ticipants or nodes within the system. An imbalanced data distribution can have a
substantial impact on the performance, fairness, and effectiveness of FL models [28].
Generally, FLSs can be categorized into systems with an even distribution and those
with an imbalanced distribution. In even distribution, data can be distributed among
participants to ensure an equitable allocation, thereby resulting in each participant pos-
sessing a proportionate share of the data. This methodology is commonly employed
in situations with a reasonably equal distribution of data among participants and
without substantial disparities in the quantity or significance of the data. In contrast,
in imbalanced distribution, participants’ data are not dispersed equally, resulting in
some participants having noticeably more data than others. Managing data imbal-
ance is a crucial factor to consider, as it might impact the FL process’s performance
and fairness.

• Data heterogeneity: A vital component of the FLS taxonomy is data heterogeneity,
which describes the variation in the kinds, forms, and quality of data among nodes or
participants in an FLS [29]. The FL context offers different opportunities and problems
when dealing with heterogeneous data. Homogeneous data refers to particular in-
stances of FL where the data possessed by participants exhibits a considerable degree
of similarity concerning data type, format, and quality. The utilization of homoge-
neous data in the FL process facilitates the training of models by enabling a more
streamlined approach since the consistency of the data allows for easier training. Ho-
mogeneous situations can facilitate model aggregation, sharing updates, and making
assumptions about data features. On the other hand, heterogeneous data relates to
scenarios when the data obtained from diverse participants exhibit notable variations
in terms of data kinds, formats, and quality. Heterogeneity can manifest in myriad
ways, such as disparities in feature representations, variations in data preparation
techniques, and discrepancies in data-gathering methodologies. Data heterogeneity
arises for a variety of reasons, such as the utilization of disparate technologies, the
involvement of many companies, and the integration of data from sources that possess
separate data schemas. The issue of data heterogeneity is highly significant in the FL
context, as it has notable implications for the capacity to develop a valuable global
model from varied data sources while ensuring data privacy and model performance.
The efficient management of data heterogeneity and adaptation to accommodate
the different attributes of individual participants’ data are crucial considerations in
developing effective FLSs.

• Data skewness: The concept of data skewness holds significant relevance within the
FLS taxonomy, as it specifically refers to the uneven distribution of data across the
participants or nodes in an FLS. Skewness pertains to the extent of asymmetry or
lopsidedness in the distribution of data [30]. The comprehension of data skewness is
essential due to its potential impact on the performance, fairness, and convergence of
models in the FL context. In certain instances of FL, the distribution of data among
participants may exhibit a uniform skew. This implies that each participant’s data are
subject to a comparable degree of skewness. Uniform skewness is observed when
participants show identical patterns of data distribution despite potential variations
in the quantity of data. By contrast, non-uniform skewness is observed when the
skewness of the data distribution across different participants varies. Certain par-
ticipants may have heavily skewed data distributions, while others may have more
evenly balanced ones. Dealing with non-uniform skewness can pose difficulties as it
necessitates accepting diverse levels of skewness in the data distribution. The presence
of data skewness In FL gives rise to several challenges, including training imbalance,
model bias, concerns over privacy, and increased communication overhead. Weighted
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aggregation approaches can be utilized in FLSs to address the issue of data skewness
and reduce its impact. These strategies involve allocating varying weights to partic-
ipants based on the degree of skewness in their data distribution. Participants who
possess more highly skewed data may be assigned lower weights in order to prevent
their data from exerting an excessive impact on the overall model.

• Data evolution: The evolution of data in FLS taxonomy pertains to the temporal
modifications that transpire within the datasets maintained by participants. These
modifications can have noteworthy consequences in terms of the efficiency and preci-
sion of FL models. In certain FL situations, the data remain static throughout the FL
process, resulting in a simplified training procedure. Static data are typically seen in
situations where the underlying data exhibits few changes, as in the case of historical
datasets or reference databases. Notably, dynamic data have the potential to change
over time. Consequently, participants may find it necessary to update their respective
local datasets regularly.

Model Management

Another critical component of the FLS taxonomy is model management, which refers
to the approaches and techniques used to manage the machine learning models within an FL
framework. It includes several aspects of model deployment, customization, aggregation,
initialization, and updates in FL environments. The following elements are essential in
understanding model management within the FLS taxonomy:

• Global model: In an FL environment, the global model represents the machine learning
model trained and updated collectively by all participating devices or nodes. Without
consolidating the data, the global model captures the common knowledge derived
from the decentralized data sources. Most FL situations have a single global model
that all participants work together to enhance. Meanwhile, some global models may
be employed in other specialized applications, each tailored to a particular task, set
of features, or user group. The central focus of FL is the global model, encapsulating
collective intelligence from various data sources while safeguarding data privacy and
promoting decentralization. The successful management of the global model is crucial,
involving appropriate initialization, secure updates, and precise evaluation.

• Local model: The term “local model” refers to individual machine learning models
maintained and updated by each participating device or node in the network. These
local models are trained using local data accessible on each individual device, and
the raw data is not shared with a centralized server throughout this process. Each
participant may have their own unique local model, which they are responsible for
maintaining. During the training, participants do not discuss their models, nor do
they exchange raw data or model parameters with one another. As an alternative, each
participant may maintain their own local ensemble of models, allowing for a variety
of perspectives and levels of competence. The ensemble may include models that
use various algorithmic approaches, architectural layouts, or hyperparameter settings.
More reliable and accurate results can sometimes be achieved by combining the pre-
dictions of different models. Local models are essential to the FL process because they
enable individuals to contribute to the collective intelligence without compromising
the privacy of their personal information. Effective local model management is crucial
for the success of FLSs across various domains and applications. This management
must include secure training, customization, and evaluation.

• Model aggregation: A key component of model management in the FLS taxonomy is
model aggregation, which describes the procedure for combining local model updates
from many collaborators to produce a current global model. This procedure is essential
to FL because it guarantees the integration of all participants’ aggregate knowledge
without centralizing their raw data [31]. FLSs use various standard methods for
aggregating models. Federated averaging is the most widely used model aggregation
technique for FL. After using their own data to train their local model, all participants
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transmit the updated model—gradients—to a central server. A new global model
is produced by averaging these modifications. Since no raw data is transferred,
privacy is guaranteed [32]. This approach’s efficiency and simplicity enable quick
adjustments to the global model. Another popular FL model aggregation method
is secure aggregation. This technique combines model updates while protecting the
privacy of individual modifications. It uses cryptographic techniques, such as SMPC,
to aggregate data without disclosing the unprocessed changes. It is appropriate for
sensitive applications since it offers a high degree of privacy and secrecy. Additionally,
it safeguards the integrity of the aggregation process from malevolent attempts. Krum-
based aggregation, the third aggregation technique, is designed to stave off Byzantine
attacks. This aggregation approach entails sorting the updates from participants
according to their impact. The update with the smallest cumulative distance to the
k-nearest updates is selected for aggregation [33]. Because it is robust against updates
that differ significantly from one another, it can be used in adversarial environments.
Trimmed mean aggregation, a popular variation of federated averaging, removes
a predetermined proportion of extreme updates before averaging. After sorting
the participant updates, the updates with the largest variances from the mean are
eliminated. By using this method, the aggregation process becomes more resilient
to updates that contain outliers. Participants in the weighted aggregation technique
are given varying weights according to the caliber or applicability of their updates.
During aggregation, higher weights are assigned to participants who provide more
accurate or diverse updates, increasing their contributions’ effect on the global model.
This allows for the prioritization of more trustworthy or pertinent updates, enhancing
the global model’s overall quality. In FL, model aggregation is a crucial stage since
it establishes the quality and efficacy of the final global model. The best aggregation
technique is determined by specific application needs, such as privacy concerns,
resilience against adversarial attacks, communication limitations, and required model
quality. Effective model aggregation approaches enable FLSs to create precise, reliable,
and privacy-preserving global models.

• Model updates: Model updates pertain to modifications made to machine learning
models during the FL process. Implementing these updates is paramount in improving
the models’ overall performance, accuracy, and generalization capabilities. On the
one hand, local model updates can be employed in scenarios where players train
their own local models using their respective datasets, resulting in model updates
derived from their individual training procedures. Local updates are computed
via methodologies such as stochastic gradient descent (SGD) or its variations, such
as federated averaging. The updates are contingent upon the data on individual
participants’ devices, enabling models to catch localized patterns. On the other hand,
in global model updates, changes are computed by aggregating information from
the local models of all participants. Global updates are produced by combining the
local model updates contributed by several participants. These updates indicate the
cumulative understanding of the FL network as a whole. Model updates play a
vital role in the FL context, as they enable the integration of the collective intelligence
derived from various data sources into one cohesive and improved model. The success
of FLSs in many domains and applications heavily relies on the efficient administration
of model updates, encompassing privacy protection, security, and adaptability.

• Model deployment: Model deployment in FLSs includes the steps required to make the
trained machine learning model accessible and functional for generating predictions
or providing services to end-users or applications. However, model deployment in FL
exhibits notable differences from conventional machine learning model deployment,
mostly stemming from the decentralized and privacy-preserving characteristics inher-
ent in the FL methodology. The strategic process of deploying models in FLSs involves
striking a compromise between real-time adaptation and safeguarding user privacy
and data security. FL involves the collaborative training of models on dispersed
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devices while preserving the confidentiality of sensitive data within local servers [26].
Following the completion of training, models can be deployed in both online and
offline environments. The process of online deployment in FLSs entails the seamless
and immediate incorporation of model changes originating from distributed devices.
This facilitates the prompt reaction to evolving data patterns and user behaviors in real
time. This methodology enables rapid model aggregation, maintaining the pertinence
and precision of forecasts in dynamic settings. By employing strategies such as the
integration of real-time noise injection to ensure privacy and the implementation of
continuous monitoring, the online deployment of the model ensures its ability to
promptly adapt to developing trends. Feedback loops facilitate the collection of user
interactions in real time, enabling prompt modifications and refinements. Utilizing
adaptive learning rates and personalization settings guarantees customized experi-
ences for individual users. Online deployment generally ensures that FL models
offer timely, accurate, customized predictions while protecting user privacy. This
makes it crucial for applications that require swift and exact answers to real-time
data streams. Conversely, offline deployment in FLSs encompasses using pretrained
models on novel data without necessitating real-time adaptation. After the FL model
completes the training and aggregation process by incorporating updates from devices
involved in the process, it can be implemented offline for many applications. Offline
deployment is especially advantageous in situations when immediate adjustment is
not critical and regular updates are satisfactory. In this particular situation, the model
that has undergone training is implemented on servers or edge devices, enabling it
to provide predictions or services by leveraging its accumulated knowledge. This
deployment strategy demonstrates efficacy when employed in applications character-
ized by consistent data patterns and when privacy-preserving methodologies have
been included during the training phase. Although offline deployment may not pos-
sess the immediate responsiveness of online deployment, it offers the advantage of
ensuring consistency and accuracy in predictions. This characteristic renders offline
deployment well-suited for numerous FL applications. Table 2 provides a comparison
of online and offline model deployment in FLSs.

Table 2. Comparison between online and offline model deployment in Federated Learning systems.

Adaptability
Online deployment is well-suited for dynamic environments subject to rapid change, as it enables instant

adaptation to new data. In contrast, offline deployment ensures consistency but may not adapt as rapidly to
new circumstances.

Privacy
Both deployment strategies prioritize privacy during the training period. However, online deployment

guarantees real-time privacy maintenance while updating the model, offering enhanced privacy for
continuous interactions.

Resource usage
Online deployment requires consistent and instantaneous information exchange, as well as the availability of
computational resources to implement model revisions promptly. In contrast, offline deployment reduces the

need for continuous communication, enhancing resource efficiency.

Use cases

Online deployment is highly advantageous in scenarios where real-time adjustments and customized
responses are crucial. Offline deployment is a suitable option for applications requiring periodic model

updates and consistent forecasts, particularly in situations where continuous communication may not be
practical or essential.

The selection of online or offline deployment in FLSs is contingent upon the particular
use case, data patterns, privacy stipulations, and the necessity for real-time adaption. Each
option presents distinct advantages, enabling organizations and developers to customize
their strategy according to the application’s specific requirements.
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Privacy and Security

Privacy and security are of utmost importance in the taxonomy of FLSs. The preser-
vation of data privacy, secrecy, and security is critical due to the involvement of various
sources. The following key elements pertain to privacy and security within FLSs:

• Differential privacy: Differential privacy is a core principle within the field of privacy-
preserving data analysis, such as in FL. Differential privacy techniques ensure that the
presence or absence of a particular data point does not materially affect the output
by adding noise to the computations made on the data [34]. Even when combined
with or applied to updates to machine learning models, it safeguards the privacy of
individual data pieces. Differential privacy is used in FLSs to protect participant data
privacy while enabling group participation in machine learning model training [35].
The following are the fundamental types of differential privacy inside FLSs:

– Local differential privacy (LDP): When using LDP, noise is applied locally to
individual data points on the users’ devices before transferring the perturbed
data to the central server. This ensures that raw data are never transmitted outside
users’ devices, offering a higher level of privacy but making it more difficult to
aggregate the data [35].

– Central differential privacy (CDP): In the CDP technique, noise is added to the
aggregated statistics or model parameters in a centralized location. This helps to
ensure that no participant’s data are made public. It is appropriate for situations
in which a reliable central server compiles the updates contributed by participants
without disclosing their private data [35].

– Epsilon-differential privacy (ϵ-differential privacy): The level of privacy can
be quantified using a parameter known as epsilon. A lower value for epsilon
indicates a greater degree of discretion and confidentiality. A balance must be
struck between personal privacy and practicality. Lower values result in increased
privacy but could also lead to a less accurate global model.

In FLSs, differential privacy is crucial to guaranteeing that users can provide data for
model training without risking their privacy. Ensuring the security of sensitive information
while maintaining accuracy in models is a critical component of privacy-preserving machine
learning in collaborative settings. Table 3 provides a comparison summary between these
three standard differential privacy techniques.

• Secure multiparty computation: SMPC is a cryptographic methodology that facilitates
collaborative computation of a function by numerous entities while ensuring the
privacy of their inputs. Within the realm of FLSs, SMPC assumes a pivotal role in
upholding privacy and security. The integration of SMPC inside the FLS taxonomy
can be elucidated as follows:

– Privacy-preserving model aggregation: SMPC guarantees participants’ ability to
safely submit their model updates or gradients to collectively construct a global
model while ensuring that no individual party can access the specific contribu-
tions made by others. The integration of collective intelligence from multiple
participants while maintaining individual privacy is of utmost importance in the
FL context.

– Collaborative model training: The SMPC technique facilitates the cooperative
training of machine learning models, allowing participants to cooperatively
compute model parameters without sharing their raw data. Collaborative efforts
among participants can be employed to enhance the model’s accuracy while
maintaining the privacy and confidentiality of their respective datasets.

– Differential privacy in aggregation: The combination of SMPC and differential
privacy approaches allows for the introduction of noise into aggregated results,
hence offering a robust privacy assurance. The utilization of the aggregated model
guarantees that the determination of the contribution made by any particular
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participant remains computationally infeasible, thus upholding the preservation
of individual privacy [35].

Table 3. Comparison summary between three common differential privacy techniques.

Local Differential Privacy Central Differential Privacy Epsilon-Differential Privacy

Privacy level

Ensures robust individual
privacy by ensuring raw data

remains exclusively on the
participants’ devices.

Provides privacy at an
aggregate level, ensuring that
individual data is not directly
exposed in any circumstance.

Adjusting epsilon allows for
custom privacy levels,

offering flexibility.

Aggregation complexity
Aggregating locally perturbed

data while maintaining
privacy is complex.

Since noise addition happens
centrally, aggregation

is simpler.

The aggregation complexity is
determined by the particular

implementation and the
noise-adding mechanism.

Centralization

Completely decentralized,
with no centralized entity

participating in the processing
of data.

The addition of noise
necessitates the use of a

reliable centralized server,
resulting in centralization.

The centralization level
depends on the noise-
adding mechanism.

Flexibility
High privacy but increased

noise levels may
reduce usability.

A balanced approach with
group-level privacy.

Flexible, enabling privacy
levels to be changed in

accordance with
application needs.

Challenges Aggregation complexity.
Increased noise.

Central trust.
Potential central attack. Utility trade-off.

The utilization of SMPC-based aggregation plays a crucial role in the FL context, as it
enables participants to collectively improve the accuracy of a global model while simul-
taneously ensuring the protection of their data’s privacy. FLSs can utilize safe multiparty
computation techniques to use the combined information from various remote sources
effectively. This approach ensures that security, privacy, and integrity are maintained
during the collaborative learning process.

• Participant authentication: Participant authentication is an essential component within
the taxonomy of FLSs, as it verifies the identity and legitimacy of entities involved
in the collaborative learning process. Participant authentication can be conducted
using authentication mechanisms, or participants can remain anonymous through
anonymous participant techniques. Authentication systems are an essential feature of
FLSs. They ensure that all participants and entities interacting with the system have
their identities checked and are granted the appropriate permissions. Within the FLS
taxonomy, the following authentication mechanisms are used:

– User credentials authentication: In this mechanism, participants must provide
their usernames and passwords to verify their identities. This fundamental
mechanism is used extensively despite the fact that, if not adequately secured, it
is susceptible to password-based attacks.

– Biometric authentication: The authenticity of the participants is determined by
using distinctive biological characteristics, such as fingerprints or facial recogni-
tion. Because copying biometric data is so complex, this technique provides a
very high level of security.

– Token-based authentication: Participants authenticate subsequent requests with
tokens, which are typically generated once an initial login has been completed suc-
cessfully. It improves security by minimizing the amount of sensitive credentials
that must be transmitted regularly.

– Certificate-based authentication: Participants show digital certificates signed by a
reliable certificate authority to authenticate themselves. This improves security
by guaranteeing that a reliable third party confirms participants’ identities.
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– Multi-factor authentication: In order to gain access, participants are required
to furnish a variety of authentication methods, including a password and a
verification number transmitted to their mobile device. The implementation of
various proofs of identification enhances the level of security.

– oAuth and OpenID connect: The use of secure authentication and authorization
protocols is prevalent in web-based FLSs. The system offers standardized and
secure authentication techniques, effectively integrating them with a wide range
of applications and services.

– Device-based authentication: The authentication of participants’ devices is con-
tingent upon the utilization of distinct device identifiers or certificates linked to
the hardware. Implementing device authorization in the FLS bolsters security
measures by only allowing access to authorized devices.

– Role-based access control: Participants are allocated distinct roles and permissions
in accordance with their respective tasks inside the FLS. Implementing access
controls guarantees that participants possess suitable levels of access, hence
mitigating the risk of unauthorized activities and access to data.

– Continuous authentication: The activities and behaviors of participants are con-
tinuously watched to identify any anomalies, ensuring that authenticated users
maintain their authentication status. Including this feature enhances security
measures by rapidly detecting and addressing any questionable behavior.

– Symmetric encryption: In FLS, symmetric encryption plays a crucial role in main-
taining data confidentiality and integrity. This method, utilizing the same key for
both encryption and decryption, is particularly efficient for the large volumes of
data typical in FLS. It ensures that sensitive information remains secure during
transmission, as only model updates or insights are shared across the network,
not the raw training data. This encryption method not only protects the data
from potential eavesdroppers but also maintains their integrity, making any unau-
thorized alterations easily detectable. While symmetric encryption is central to
preserving data privacy and consistency in FLS, it is typically complemented by
other security measures, such as secure key management protocols, to provide a
comprehensive security framework. The efficiency and effectiveness of symmet-
ric encryption in these systems highlight its indispensability in the secure and
efficient operation of FLS.

The specific requirements of a particular FLS determine the most suitable authenti-
cation approach, taking into account aspects such as security, usability, scalability, and
management complexity. These techniques can frequently be combined to achieve an
efficient balance between security and usability. Table 4 provides a comparison of the main
authentication mechanisms within FLSs.

• Anonymous participants: When discussing FLSs, the term anonymous participants
refers to the practice of protecting the participants’ right to privacy and maintaining the
confidentiality of their data and identities. Ensuring that users can participate in FLSs
while maintaining anonymity is essential for protecting their data privacy. This objec-
tive is accomplished by using a variety of strategies and approaches. In FLSs, the fol-
lowing methods are frequently used by participants who wish to remain anonymous:

– Participant identity concealment: The concealment of participants’ identities
is a crucial measure in the FL process, as it guarantees the protection of their
personal information from being disclosed. The preservation of user privacy
fosters engagement from individuals and businesses who are apprehensive about
the potential risks associated with data disclosure.

– Data anonymization: In the context of FL, personal data undergo anonymization
procedures prior to engagement, guaranteeing that even in the event of unautho-
rized access, the data cannot be directly associated with identifiable individuals.
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Methods such as differential privacy, k-anonymity, and data perturbation can be
employed to achieve data anonymization

– Pseudonymization: During the FL process, participants are not required to re-
veal their true identities and instead employ pseudonyms or temporary IDs.
The utilization of this technology affords a level of anonymity, making it more
challenging to trace particular data contributions to specific individuals.

– Blockchain-based identity management: The utilization of blockchain technol-
ogy facilitates the management of participants’ identities and transactions in a
decentralized and tamper-proof manner. The elimination of a central authority
and the provision of transparent and safe identity management contribute to the
enhancement of security and privacy.

The emphasis on preserving participant anonymity is pivotal for building trust, en-
couraging engagement, and safeguarding privacy within FLSs. FLSs align with regulatory
frameworks like the General Data Protection Regulation, which prioritize principles such
as user permission and the anonymization of personal data. By taking these factors into
account, FL platforms have the potential to establish a secure, privacy-preserving environ-
ment for collaborative machine learning initiatives.

Table 4. Comparison of the main authentication mechanisms within Federated Learning systems.

Authentication Mechanisms Strengths Weaknesses

User credentials authentication Simple, widely understood and used. Vulnerable to password-based attacks if
weak passwords are used.

Biometric authentication Highly secure, unique to individuals,
eliminates the need for passwords.

Hardware requirements (e.g., fingerprint
scanners), potential false

positives/negatives.

Token-based authentication Reduces reliance on passwords, enhances
security for multiple requests.

Requires secure token storage and
transmission mechanisms.

Certificate-based authentication Strong security, verified by
certificate authorities.

Complex certificate management,
reliance on a trusted certificate authority.

Multi-factor authentication Adds an extra layer of security, even if
one factor is compromised.

User inconvenience, requires additional
verification steps.

OAuth and OpenID Connect Widely adopted, standardized, secure
token-based authentication.

Requires integration and understanding
of protocols.

Device-based suthentication Ensures device authenticity, useful for
Internet of Things devices.

Complex device management, potential
security vulnerabilities.

Role-based access control Granular control over user permissions,
scalable for large systems.

Initial setup complexity, requires
ongoing management.

Continuous authentication Provides real-time security monitoring,
identifies and responds to anomalies.

Requires sophisticated monitoring tools,
potential false positive/negative issues.

Communication

Another vital element of FLSs is communication, which involves the exchange of
data between the central server and participants, including devices, clients, or edge nodes.
Effective and safe communication is necessary for FLSs to function well. The following
provides an analysis of the various components related to communication within the
taxonomy of FLSs.

• Communication patterns: Communication patterns in FLSs concern how participants,
including diverse devices or entities, interact with one another and the central server
during the collaborative learning procedure. These patterns play a crucial role in
facilitating the effective and secure transmission of data and updates to models. In
FLSs, the following communication patterns are considered to be the most common:
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• Client–server communication: In this communication pattern, the participants’ devices
establish direct contact with a central server, through which they transmit their changes
and receive aggregated model parameters. It is frequently observed in situations where
participants possess restricted computational capabilities and depend on a central
server to aggregate models.

• Peer-to-peer communication: In this setting, users directly communicate with one
another, facilitating the exchange of model updates or aggregated information without
needing a central server to mediate the process. Utilizing decentralized environments
is advantageous as it allows players to establish direct connections, minimizing latency
and decreasing reliance on a central server.

• Hierarchical communication: In this pattern, participants are systematically grouped
into hierarchical structures, wherein updates are initially consolidated at lower levels
before being transmitted to higher levels for additional consolidation. This approach
exhibits scalability, particularly in the context of massive federated networks, enabling
effective aggregation at several hierarchical levels [36].

• Federated architecture with cloud offloading: Participants carry out the preliminary
computations at their respective locations and then send the more intensive com-
putations (such as aggregation) to a central server hosted in the cloud. It allows
devices with limited resources to take part by offloading complicated activities and
distributing computation evenly between on-premise and remote resources.

• Federated architecture with edge offloading: The process resembles cloud offloading,
but its computations are offloaded to edge devices situated within the local network.
This approach diminishes latency and decreases dependence on a remote cloud server.
This technology is well-suited to use cases requiring real-time responses and minimal
delay, frequently seen in IoT and edge computing environments.

• Broadcast communication: The central server disseminates model updates to all
participants concurrently, maintaining consistency across all devices. The broadcasting
of updates, particularly when all participants require identical model parameters,
conserves bandwidth and reduces time consumption.

• Multicast communication: Model updates are distributed to distinct groups of par-
ticipants, enabling selective broadcasting based on the degree to which two sets of
data are comparable. When multiple groups of people work on similar activities, this
pattern is helpful because it allows for the more efficient use of network resources.

• Delayed communication: Participants gather updates on their local machines and
deliver them in batches at regular intervals, thus decreasing the time spent communi-
cating with the centralized server. This reduces the overhead of transmission and the
delay, particularly in situations when real-time updates are not essential.

The selection of a communication pattern substantially influences the effectiveness,
scalability, and responsiveness of FLSs, rendering it a critical element in their design and
execution. Every communication pattern possesses distinct advantages and trade-offs,
making them appropriate for specific use scenarios. The selection of a particular pattern
is contingent upon various aspects, including but not limited to the configuration of the
network, the capabilities of the participants involved, the need for real-time features, and
the need to maintain anonymity. A combination of these patterns is frequently utilized to
achieve an ideal balance of various components.

• Communication synchronization: In FLSs, “communication synchronization” refers
to the process of coordinating and aligning the various communication activities that
take place among the participating devices or nodes. It ensures that the processes
of aggregation, exchanging data, and updating models happen in a structured and
synchronized way. The devices must be synchronized correctly in order to maintain
the reliability and precision of the collaborative model being trained across distributed
devices. Communication in FLSs can be either synchronous or asynchronous [37].

• Synchronous communication: This type of communication involves individuals send-
ing real-time updates on a predetermined timetable to the central server or other
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participants. Everybody synchronizes their communication so that aggregations and
model updates happen simultaneously. This synchronous method creates an FLS with
a coordinated and organized workflow. Synchronous communication is necessary for
applications in autonomous vehicles because it ensures that the vehicle’s model can
adjust in real time to the constantly shifting conditions of the road and its surround-
ings. To take full advantage of the benefits of synchronous communication in FLSs, it
is vital to properly manage network latency and bandwidth usage.

• Asynchronous communication: This type of communication involves devices or nodes
functioning autonomously without the requirement of precise time synchronization.
In contrast to synchronous communication, which involves coordinating updates
in rounds or at predetermined intervals, asynchronous communication enables par-
ticipants to individually transmit their updates to the central server or other nodes
according to their unique schedules [38]. Asynchronous communication, for instance,
makes it easier for research institutes located in several time zones to collaborate, en-
abling scientists to share their discoveries without being constrained by synchronized
communication periods. To fully utilize asynchronous communication’s advantages
in FLSs, its associated problems must be addressed.

The selection of one of these two approaches is contingent upon the particular de-
mands and limitations of the FLS and the attributes of the involved devices or nodes.
Table 5 provides a summary of the comparison between asynchronous and synchronous
communication in the context of FLSs.

• Communication overhead: Within the context of FL, the term “communication over-
head” refers to the additional data transmission and processing resources necessary
for participants to exchange model updates, gradients, and other information while
the collaborative learning process is being carried out [39]. The effective manage-
ment of communication overhead is essential because it directly affects the band-
width of the network, the latency, and the overall effectiveness of the FLS. In FLSs,
a number of different techniques have been established to reduce the amount of
communication overhead. Table 6 presents a comprehensive summary of several
prominent methodologies.

Table 5. Comparison between asynchronous and synchronous communication in FLSs.

Synchronous Communication Asynchronous Communication

Communication Timing
Participants communicate according to a

predefined schedule or specific
synchronization points.

Participants communicate independently,
sending updates whenever they have

new data or model improvements
to contribute.

Flexibility

Less flexible as participants are bound to
fixed communication schedules,

potentially causing delays for
some participants.

Highly flexible, allowing participants to
operate at their own pace,

accommodating varying network
conditions and device availability.

Dependency on central control

Often requires central control to
coordinate communication, ensuring all

participants adhere to the
predefined schedule.

Reduces dependency on central control,
enabling decentralized decision-making

and autonomous operation
of participants.

Latency

Lower latency as updates are
synchronized, allowing rapid model

adjustments and real-time responses to
changing data patterns.

Potentially higher latency due to the lack
of synchronization, especially if updates

from critical participants are delayed.
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Table 5. Cont.

Synchronous Communication Asynchronous Communication

Communication overhead
More predictable communication

patterns, potentially reducing overall
communication overhead.

Can lead to higher communication
overhead due to the lack of

synchronization, efficient data
compression and differential updates are

essential to manage this.

Adaptability to dynamic environments
Might struggle to adapt to dynamic

environments where network conditions
or participant availability fluctuate.

More adaptable to dynamic
environments, allowing participants to
contribute whenever they can, ensuring

continuous collaboration.

Fault tolerance

Susceptible to disruptions if a participant
fails to communicate at a scheduled time,

potentially affecting the entire
synchronization process.

More fault-tolerant as one participant’s
failure does not disrupt the entire system.

Other participants can continue to
contribute independently.

Privacy and security
Easier to implement security protocols

and encryption as communication occurs
at predictable times.

Requires robust encryption and security
measures to ensure the safety of data

transmitted independently
by participants.

Each of the strategies mentioned above are designed to target distinct facets of com-
munication overhead in the context of FL. Frequently, these methodologies are synthesized
in practical contexts to attain maximum communication efficacy while concurrently up-
holding the principles of data confidentiality, model precision, and system promptness.
The selection of methodologies is contingent upon the particular application scenario,
prevailing network circumstances, and attributes of the involved devices. On the other
hand, the presence of significant communication overhead in FLSs can be attributed to
several variables. These variables include the utilization of large model sizes, frequent
updates, non-selective participant communication, high data dimensionality, non-localized
computing, and excessive reliance on encryption or privacy measures. The transmission of
machine learning models across distant devices can result in massive data transmission
and consume significant network resources, particularly when these models are sizable or
updated often. The practice of non-selective communication further exacerbates the issue
because all participants send updates without considering their relevance. In addition,
many gradients must be transmitted for high-dimensional data, resulting in an additional
increase in communication volume. When computations are concentrated in a central
location, participants must send unprocessed data, resulting in inefficiencies. Furthermore,
an excessive focus on encryption and privacy protocols can increase the quantity of data,
thus intensifying the difficulties associated with communication. The presence of inefficient
communication protocols can exacerbate these concerns. To address the issue of high
communication overhead, techniques such as model compression, intelligent participant
selection, dimensionality reduction, localized computation, and the judicious application
of encryption methods must be strategically implemented. This ensures a balance between
the protection of data and the effectiveness of communication.

Federated Learning Algorithms

FL algorithms are yet another essential component of FLSs. These algorithms make
it possible to train collaborative models without transferring raw data between devices
and a central server. This helps protect users’ privacy while reducing the amount of
communication overhead required. The following is a list of essential uses of FL algorithms.
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Table 6. An overview of some of key communication-efficient methods.

Methods Description Advantages Considerations

Differential updates

Instead of transmitting the
entire model, participants

compute and transmit only
the changes (gradients) in

their local model parameters.

Significantly reduces the
amount of data transmitted,
especially when only small

parts of the model
have changed.

Efficient algorithms are
needed to calculate and

transmit the
differentials accurately.

Model compression

Techniques like quantization,
where model parameters are
represented with fewer bits,

and pruning, where
insignificant model weights

are removed, reduce the
model size

before transmission.

Reduces the amount of data
that must be transmitted,
reducing bandwidth and
computational overhead.

Balancing compression levels
to maintain model accuracy

is crucial.

Decentralized optimization

Algorithms like federated
averaging allow model
updates to be computed

locally and averaged among
participants, reducing the
need to transmit raw data

or gradients.

Minimizes communication
overhead by performing local

computations and
transmitting only the

aggregated model updates.

Requires careful coordination
to ensure

accurate aggregation.

Smart sampling and
client selection

Algorithms that intelligently
select a subset of clients for
participation, reducing the

total number of
updates transmitted.

Reduces the communication
overhead by selecting a
representative subset of

clients, optimizing the use
of bandwidth.

Requires algorithms that
balance randomness and
representation to avoid

biased sampling.

Edge computing

Computation and updates are
performed locally on edge

devices, reducing the need for
frequent communication with

a central server.

Minimizes communication by
allowing edge devices to
handle computations and

updates, reducing latency and
bandwidth usage.

Ensuring that edge devices
have sufficient computational
resources and storage capacity

is essential.

Adaptive communication

Dynamic communication
frequency and volume

adjustment based on network
conditions, participant

capabilities, and
system requirements.

Optimizes communication
overhead in real time,
ensuring efficient use

of resources.

Requires continuous
monitoring and adaptation,

potentially introducing
computational overhead.

Cryptography and encryption

Secure communication
protocols use encryption
techniques to protect data

during transmission.

Ensures data privacy and
security, allowing sensitive

information to be
transmitted securely.

Introduces computational
overhead for encryption and

decryption processes.

• Optimization algorithms: Optimization algorithms have a crucial function in FLSs,
providing the aggregation of information from various devices and enabling the
construction of accurate and efficient machine learning models. These algorithms
have been specifically developed to achieve a harmonious equilibrium between the
collaborative aspects of FL and the imperative requirements of privacy preservation
and computational efficiency [21]. Federated optimization techniques commonly
prioritize minimizing a global objective function by integrating local updates obtained
from individual devices. Several examples of prominent optimization algorithms
employed in FLSs are mentioned below:

– Federated SGD: This is a pivotal algorithm that has revolutionized the framework
of collaborative machine learning in decentralized environments, particularly
in the context of Federated Learning Systems (FLSs). This algorithm offers a
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nuanced approach to model training, diverging from traditional methods that
necessitate the transmission of raw data to a central repository.
At the heart of Federated SGD lies the principle of gradient computation at the
local device level. Each participating device in the network utilizes its local data
to calculate gradients, which represent the partial derivatives of the loss function
with respect to the model parameters. This local computation not only preserves
the privacy of user data by avoiding raw data transmission but also significantly
reduces the volume of data that needs to be communicated across the network.
This aspect of Federated SGD is particularly advantageous in scenarios where
network bandwidth is limited.

* Privacy preservation and data integration. The privacy-preserving nature
of Federated SGD is one of its standout features. By enabling local gradient
computation, the algorithm ensures that sensitive data remains within the
confines of the originating device. These locally computed gradients, en-
capsulating the necessary information for model updates, are then securely
transmitted to a central server [40]. On the server, an aggregation process
takes place, where these gradients from multiple devices are combined to
update the global model. This approach not only safeguards individual data
confidentiality but also facilitates the integration of heterogeneous datasets
into a unified model. By aggregating diverse local updates, Federated SGD
harnesses the collective intelligence embedded in disparate data sources,
enhancing the robustness and relevance of the global model.

* Bandwidth optimization and application versatility The reduction in data
transmission volume inherent to Federated SGD addresses the challenges
posed by restricted bandwidth environments. In traditional centralized
learning models, the transmission of large volumes of raw data can be a
significant bottleneck, consuming substantial network resources. Federated
SGD elegantly circumvents this issue by transmitting only essential gradi-
ent information, thereby optimizing bandwidth usage. This optimization is
crucial for ensuring the scalability and efficiency of FLSs, particularly when
deployed in bandwidth-constrained settings. Furthermore, the versatility
of Federated SGD extends its applicability across a broad spectrum of do-
mains. From healthcare to finance, and from mobile computing to Internet of
Things (IoT) applications, this methodology proves instrumental in diverse
fields by facilitating effective model training across various scenarios while
maintaining data privacy and minimizing risk.

– Federated Averaging with Momentum (FedAvgM): represents a significant en-
hancement over the traditional Federated Averaging (FedAvg) algorithm, pri-
marily used in Federated Learning Systems (FLSs). This advanced algorithm
introduces a momentum component to the model updates, enhancing the overall
efficiency and accuracy of the learning process. FedAvgM not only leverages the
collaborative capabilities inherent in Federated Learning but also introduces the
stability and efficiency offered by momentum-based optimization. This results
in a more robust and responsive learning algorithm capable of adapting to the
nuanced requirements of distributed learning scenarios.
The central innovation in FedAvgM lies in the incorporation of a velocity compo-
nent, or momentum, into the model updates. This momentum term allows the
algorithm to ’remember’ and integrate a portion of the previous update into the
current one.

* Enhanced convergence and optimization: By maintaining its previous tra-
jectory through the velocity term, FedAvgM accelerates the convergence
process. This momentum-driven approach is particularly beneficial in sce-
narios with non-IID data distributions or significant data volatility, where
traditional FedAvg might struggle with slow or unstable convergence.
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* Application in diverse scenarios: FedAvgM demonstrates remarkable ef-
fectiveness in a variety of distributed environments. Its ability to facilitate
rapid and steady knowledge acquisition across distributed devices makes
it an ideal choice for FLSs dealing with complex data landscapes. The algo-
rithm effectively balances the need for accurate and efficient model training
while maintaining user privacy and data security. In summary, Federated
Averaging with Momentum elevates the traditional Federated Learning ap-
proach by introducing a dynamic and adaptive component that significantly
enhances model training effectiveness. Its ability to handle complex data dis-
tributions and volatile environments, while ensuring rapid convergence and
optimization, marks it as a valuable tool in the realm of Federated Learning.
The inclusion of momentum in the federated averaging with momentum op-
timization algorithm enhances the traditional federated averaging approach
in FLSs. This modification introduces a velocity component into model
updates, enabling the algorithm to maintain its previous trajectory while
accelerating, resulting in faster convergence and improved optimization. It
facilitates rapid and steady knowledge acquisition across distributed devices,
particularly in scenarios involving non-identically distributed (non-IID) data
or significant volatility. Federated averaging with momentum demonstrates
remarkable effectiveness in achieving accurate and efficient model training
while safeguarding user privacy and data security. It combines the collab-
orative capabilities of FL with the stability offered by momentum-based
optimization.

– The Federated Proximal Algorithm: The Federated Proximal Algorithm repre-
sents an advanced iteration in the evolution of FL algorithms, tailored to address
the challenges posed by non-IID (independently and identically distributed) data
across a network of devices. This algorithm is particularly relevant in scenarios
where the data distribution varies significantly among the participating nodes, a
common occurrence in real-world applications. The Federated Proximal Algo-
rithm is built upon the foundation of the standard Federated Learning framework
but introduces a crucial modification in the optimization process. The key inno-
vation lies in the incorporation of a proximal term to the optimization objective.
This term essentially acts as a regularizer that encourages the local models to not
deviate significantly from the global model. The mathematical formulation of
this algorithm involves adding a proximal term to the local loss function, typi-
cally represented as a squared Euclidean distance between the local and global
model parameters.

* Addressing non-IID data challenges: In standard Federated Learning setups,
the assumption is often that the data across devices is identically distributed.
However, in many practical situations, this assumption does not hold, lead-
ing to significant challenges in model convergence and performance. The
Federated Proximal Algorithm mitigates these issues by ensuring that local
model updates remain ‘proximal’ to the global model. This approach effec-
tively handles the statistical heterogeneity of data, ensuring more stable and
consistent model training across diverse data distributions.

* Optimization process in Federated Proximal Algorithm: During the training
process, each participating device computes its local model update by opti-
mizing the modified loss function, which includes the proximal term. Once
the local updates are computed, they are sent to a central server where a
global aggregation occurs. The server updates the global model by averaging
these updates, similar to standard Federated Learning, but with the added
nuance provided by the proximal regularization.

* Advantages and practical applications: The incorporation of the proximal
term offers several advantages. Primarily, it enhances model performance
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in non-IID data scenarios, which are prevalent in many real-world applica-
tions such as healthcare, finance, and mobile services [41]. Additionally, by
controlling the extent of deviation of local models from the global model, the
Federated Proximal Algorithm promotes more uniform learning across the
network, leading to improved overall model accuracy and convergence rates.
In summary, the Federated Proximal Algorithm represents a significant
advancement in the field of Federated Learning, offering a robust solution
to the challenges posed by non-IID data distributions. Its ability to ensure
consistent and efficient learning across a decentralized network of devices
makes it a valuable tool in the arsenal of Federated Learning algorithms.

The optimization algorithms utilized in FLSs undergo continuous development to
effectively address the challenges posed by diverse and privacy-sensitive data. The use
of these algorithms ensures the efficient generation of precise global models in FL while
protecting user privacy. As a result, these algorithms play a critical role in advancing
collaborative and privacy-preserving machine learning methodologies.

• Personalization algorithms: Personalization algorithms within FLSs play a crucial
role in customizing user experiences while preserving data privacy. These algorithms
facilitate the development of personalized models for users while ensuring the de-
centralization of their sensitive data. Personalization algorithms utilize data from
local interactions and activities on user devices to discern trends and preferences. FL
enables the integration of these insights into the global model while upholding user
privacy. This practice ensures that recommendations, services, or materials provided
to consumers are highly relevant and engaging, aligning with their preferences and
needs [42]. FL empowers organizations and service providers to deliver personalized
experiences on a large scale, simultaneously enhancing user satisfaction and safe-
guarding their privacy and data security. Personalization algorithms can be applied to
tailor both global and local models within FLSs.

– Global model personalization in Federated Learning Systems: Global model
personalization within Federated Learning Systems (FLSs) is a sophisticated ap-
proach that aims to adapt a universally trained model to meet the specific needs
and preferences of individual users or user groups. This concept is particularly
vital in ensuring that the one-size-fits-all model can be effectively tailored to
diverse user contexts while preserving privacy and data security. Global model
personalization involves the adaptation of a shared global model, initially trained
across multiple devices or data sources, to better align with the unique charac-
teristics, behaviors, or preferences of individual users or specific segments [43].
This adaptation is crucial in FLSs, where a single global model is collaboratively
trained but needs to be relevant and effective for each participant in the system.
Techniques for global model personalization:

* Client-side personalization: This involves adjusting the global model on the
client’s device using local data. Techniques such as model fine-tuning, where
the model is slightly adjusted using the user’s data, or layer retraining, where
specific layers of the model are retrained, are commonly used.

* User embeddings: Incorporating user embeddings into the model is another
effective method. User embeddings are vector representations that capture
the unique characteristics of each user. These embeddings can be integrated
into the global model to ensure that the model’s outputs are personalized for
each user.

* Transfer learning: Leveraging transfer learning, where a model trained on
one task is adapted for another related task, can also be employed for per-
sonalization. This is particularly useful when the global model is trained on
a broad dataset but needs to be adapted for specific user scenarios.
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* Meta-learning: Meta-learning, or learning to learn, is a technique where the
model is trained to quickly adapt to new tasks or data. In the context of
personalization, meta-learning can enable the global model to rapidly adjust
to individual user data.

Challenges in global model personalization:

* Data diversity and quality: Ensuring that the global model can effectively
personalize across a wide range of diverse user data is a significant challenge.

* Resource limitations: The computational and storage limitations of client
devices must be considered, especially when personalization involves addi-
tional model training on the device.

* Privacy concerns: Maintaining user privacy during the personalization pro-
cess, especially when user-specific data are used for model adjustments,
is crucial.
Global model personalization in FLSs represents a key strategy in making
Federated Learning models more user-centric and effective. By adapting
the shared global model to align with individual users’ unique tastes and
features, FLSs can provide customized and relevant experiences to users,
enhancing the overall utility and acceptance of these systems.

– Local model personalization in Federated Learning Systems: Local model per-
sonalization in Federated Learning Systems (FLSs) addresses the challenge of
customizing machine learning models at an individual level, using data that
reside on a user’s device. This approach is crucial in FLSs, where maintaining
data privacy and catering to specific user needs are paramount.
Local model personalization revolves around adapting a federated model to
fit individual user profiles based on their unique data. Unlike global model
personalization, which modifies a shared model to suit general user character-
istics, local personalization focuses on leveraging data available on each user’s
device to create a model that reflects their specific preferences, behaviors, and
usage patterns.
Techniques for local model personalization:

* On-device training: This involves adjusting the federated model directly on
the user’s device. The model is fine-tuned with the user’s local data, ensuring
that the personalized model captures individual preferences and behaviors.

* Data augmentation: Enhancing the local training process with data aug-
mentation techniques can improve the model’s ability to learn from a lim-
ited amount of user data. This might include generating synthetic data
points based on the user’s existing data to provide a more comprehensive
training dataset.

* Layer customization: In some cases, only specific layers of the neural net-
work are personalized, while others remain shared across all users. This
approach can be particularly effective in scenarios where certain aspects of
the model need to be user-specific, while others can benefit from broader,
global training.

* User feedback integration: Incorporating user feedback directly into the train-
ing process allows the model to adapt dynamically to changing user prefer-
ences and behaviors. This can be achieved through techniques like reinforce-
ment learning, where the model learns and adapts based on user interactions.

Challenges in local model personalization:

* Resource constraints: Personalizing models on individual devices requires
computational and storage resources, which might be limited, especially in
mobile or IoT devices.
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* Data quality and diversity: The quality and diversity of local data can signifi-
cantly impact the effectiveness of personalization. Ensuring that the model
can handle a variety of data types and qualities is essential.

* Privacy preservation: Even though the data do not leave the device, ensuring
that the personalization process itself does not compromise user privacy
is crucial.

Advancements in lightweight machine learning models, efficient on-device train-
ing algorithms, and privacy-preserving techniques will be key to enhancing local
model personalization. Research into optimizing these elements can lead to more
effective and user-friendly personalized experiences in FLSs.
Local model personalization in FLSs represents a critical step towards creating
more user-centric and efficient learning models. By leveraging local data to tailor
models to individual user needs, FLSs can provide more relevant, accurate, and
privacy-preserving services. This personalized approach not only enhances user
experience but also drives the effectiveness and adaptability of learning models
in diverse real-world scenarios.

• Outlier handling algorithms: Handling outliers is a crucial aspect of data analysis
and statistical modeling. Outliers are data points that significantly deviate from the
majority [44]. Algorithms within FLSs play a vital role in maintaining the precision
and reliability of machine learning models, especially when dealing with noisy or
aberrant data points. These methods focus on detecting and managing outliers, which
are data examples that deviate substantially from the established norm. The presence
of outliers within a dataset can introduce bias during the model training process,
potentially compromising the accuracy of subsequent predictions. The management
of outliers is of utmost importance in FL, which involves utilizing data from various
heterogeneous sources. Once outliers are identified, they can be addressed through
data cleaning, imputation, or robust model training techniques. FLSs enhance the
performance and utility of models across numerous applications and user scenarios by
successfully managing outliers, ensuring data quality and model reliability. Various
techniques for detecting outliers, including statistical methods, clustering algorithms,
and robust machine learning models, are utilized to find abnormal data points.

– Statistical outlier handling methods: Statistical techniques are essential tools for
addressing outliers within FLSs, offering a quantitative framework for detect-
ing and effectively handling anomalies in data. Methods such as the Z-score,
interquartile range, or Tukey’s fences are commonly used to identify outliers
by quantifying their deviation from the dataset’s mean or median. Through the
application of statistical metrics, FLSs can pinpoint data points that significantly
deviate from the established norm, signifying their potential classification as
outliers. Once identified, these outliers can be managed using techniques such as
data imputation, transformation, or exclusion to prevent them from unduly affect-
ing the collaborative model training process. Methods for controlling statistical
outliers offer a systematic and objective approach to preserving the integrity of
data utilized in FL, thereby enhancing the precision and reliability of the resulting
machine learning models.

– Clustering outlier handling algorithms: Clustering algorithms are efficient tools
for managing outliers in FLSs, especially when dealing with diverse and hetero-
geneous data sources. These methods facilitate the clustering of data points that
exhibit similarities, allowing the detection and analysis of patterns inherent in the
data. Outliers, characterized by significant deviation from the norm, frequently
show unusual clustering patterns, making their identification more straightfor-
ward. FLSs can effectively detect outlier clusters using clustering algorithms such
as k-means, hierarchical clustering, or DBSCAN. Clustering techniques aid in
handling outliers within FLSs, providing a data-driven and adaptable approach.
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This ensures the robust and accurate collaborative training of models, regardless
of the diversity of data sources and patterns.

– Robust aggregation machine learning algorithms: Robust aggregation algorithms
play an essential part in FLSs by effectively managing outliers, particularly in
scenarios with noisy or inconsistent data originating from multiple sources. These
algorithms are designed to minimize the impact of outliers on the aggregation
process, ensuring that inaccurate or deceptive data points do not significantly
distort the overall model. The use of robust aggregation strategies helps mitigate
the influence of outliers during the model aggregation phase. Techniques like
the trimmed mean, median-based aggregation, or methods derived from robust
statistics are effective in achieving this objective. FLSs can thus maintain the
integrity of the shared model, even when confronted with outliers, by reducing
the significance of extreme or incorrect updates originating from individual
devices. Robust aggregation algorithms are of utmost importance in enhancing
the robustness of FL models. These algorithms guarantee that the resulting model
accurately captures the collective intelligence of the devices involved, even in
scenarios where the data are contaminated with noise or anomalies.

In summary, statistical techniques offer a straightforward and comprehensible ap-
proach, albeit potentially lacking in their ability to handle intricate data distributions
effectively. Clustering algorithms can uncover subtle patterns within datasets but may be
sensitive to parameters and initialization. Robust aggregation methods have been purpose-
fully developed to address the presence of outliers during the process of model aggregation
in FLSs, thereby guaranteeing the creation of a more dependable and resilient global model.
Table 7 is a comparison table of some common techniques for outlier detection in FLS,
including statistical methods, clustering algorithms, and robust machine learning models.
The selection of an outlier handling method frequently relies on the data characteristics
and the specific requirements of the FLS.

Table 7. A comparison table of some common techniques for outlier detection in FLS.

Technique Approach to
Outlier Detection Advantages Disadvantages Typical Applications

Statistical methods

Use statistical metrics
(like Z-score, IQR) to
identify data points

that deviate
significantly from

the norm.

Simple to implement;
effective for

univariate data.

Can be less effective
with complex,

high-dimensional data.

Data with a
well-defined statistical

distribution.

Clustering algorithms

Group similar data
points together; outliers

are points that fall
outside clusters.

Effective in identifying
groups and anomalies

in multi-
dimensional space.

May misclassify
outliers as a separate

cluster, requires
determination of the
number of clusters.

Multi-dimensional data
with distinguishable

clusters.

Isolation forest

Isolates anomalies by
randomly selecting

features and splitting
values; outliers are

easier to isolate.

Efficient for
high-dimensional

datasets; low linear
time complexity.

Random forest
mechanism may lead to

inconsistent results.

Large datasets with
many features.

Autoencoders (NN)

Neural networks
trained to reconstruct

input data; outliers are
data with high

reconstruction error.

Effective in capturing
complex, nonlinear

relationships in data.

Requires substantial
data for training;
computationally

intensive.

Complex datasets with
intricate patterns.
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Table 7. Cont.

Technique Approach to Outlier
Detection Advantages Disadvantages Typical Applications

Robust ML Models

Models that are less
sensitive to outliers,

like Random Cut Forest
or models with
regularization.

Can handle outliers
while performing the
primary learning task.

May require careful
tuning; could ignore

subtle but
important anomalies.

Scenarios where model
robustness is crucial.

This taxonomy offers a structured framework for comprehending and classifying the
primary distinctions and factors that must be considered when dealing with FLSs. Depend-
ing on the specific use case and context, FLS implementations may vary significantly along
these dimensions. Understanding these variations is essential for the proper development
and deployment of FL solutions.

2.3. An Overview of Intrusion Detection Systems

The IDS is a vital cybersecurity tool specifically developed to observe and evaluate
network traffic to identify any malicious activity or breaches of established policies. The
system functions as a diligent protector, continuously monitoring the network environment
for atypical patterns or behaviors that could signify a security breach or unauthorized
entry [45]. Upon detecting suspicious activity, the IDS provides alerts or notifications,
facilitating IT professionals’ rapid investigation of and response to security issues. In the
realm of network security, IDSs assume a pivotal role by enhancing the overall protection
of computer networks. These systems enable enterprises to promptly identify and coun-
teract potential cybersecurity threats, thereby fortifying the security of sensitive data and
upholding the integrity of computer systems.

2.3.1. Types of Intrusion Detection Systems

IDSs can be classified based on their focus areas, deployment strategies, and detection
techniques. The two primary types of IDS are the host intrusion detection system (HIDS)
and the network intrusion detection system (NIDS) [45].

• HIDS: A HIDS is a critical cybersecurity component that focuses on monitoring and
protecting specific hosts or devices within a network. It operates directly on end-
points such as servers, workstations, or other devices, analyzing local activities and
configurations. HIDS identifies signs of malicious actions by comparing observed
activity to predefined security regulations or baselines [46]. These activities may
include unauthorized access attempts, file alterations, and unusual processes. HIDS
employs methods like log analysis, file integrity verification, and real-time system
monitoring to detect potential security issues. If suspicious actions are detected, HIDS
generates notifications, alerting administrators to investigate and take appropriate
actions to protect individual devices and their stored data. HIDS is particularly useful
in environments where safeguarding specific hosts from internal and external threats
is paramount.

• NIDS: NIDS is a cybersecurity solution that monitors and analyzes network traffic
for indicators of malicious activity or potential security concerns. Unlike host-based
systems, NIDS operates at the network level, analyzing data packets as they traverse
the network. NIDS is strategically placed at critical points throughout the network,
passively observing and analyzing all incoming and outgoing traffic in real time. It
generates alerts when it detects suspicious trends, allowing security teams to promptly
investigate and respond to potential security incidents. NIDS is especially beneficial
for securing large and complex networks
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2.3.2. Intrusion Detection Approaches

In the field of cybersecurity, IDSs utilize a range of methodologies to detect and
counteract potential security breaches. The primary IDS approaches include the following:

• Signature-based detection: An essential component of an IDS involves comparing
known attack patterns, often referred to as signatures, with incoming network traffic or
system actions. If there is a match between the observed data and a saved signature, the
IDS generates an alert indicating a potential security breach. This method efficiently
recognizes well-known attacks that have been documented in the past, including
various forms of malware, viruses, and infiltration attempts. However, its most
significant limitation is its inability to identify novel or zero-day attacks. These types
of security threats exploit vulnerabilities unknown to security professionals. Despite
this limitation, signaturebased detection remains a vital part of any comprehensive
security strategy. When used as one component of a layered security approach, it can
be combined with other detection approaches, such as anomaly-based detection.

• Anomaly-based detection: IDSs use this sophisticated method to identify anomalous
patterns or behaviors within the network traffic or system operations. Anomaly-
based detection establishes a baseline of normal behavior by examining historical data
to create a reference point, rather than relying on pre-defined attack signatures. It
identifies any behavior that deviates from this baseline, such as unexpected patterns
of network traffic or actions that are atypical for the system, as a potential security
threat. ML algorithms are frequently utilized to analyze large datasets, detecting
subtle variations that may indicate a security breach. Because it is highly effective
at identifying entirely new types of attacks, anomaly-based detection is an essential
component of contemporary cybersecurity methods. However, it requires accurate
baselines and ongoing tuning to minimize false positives and negatives, maximizing
the likelihood of identifying serious threats while reducing interference with legitimate
network operations.

2.3.3. Internet of Vehicle Intrusion Detection

Within the dynamic and constantly changing domain of the IoV, IDSs play a vital
role as digital protectors, safeguarding the resilience of interconnected vehicular networks
against an increasingly diverse range of cyberattacks. Fundamentally, an IDS in an IoV
setting entails a multifaceted approach that involves behavioral analysis, signature-based
detection, and anomaly-based detection. Behavioral analysis is a fundamental aspect
that involves careful observation and a comprehensive understanding of the complex
patterns exhibited by vehicle behavior and network connections [47]. By effectively dis-
tinguishing between typical and atypical behaviors, the system can immediately detect
deviations, therefore flagging possible intrusions or harmful operations. Simultaneously,
signature-based detection functions as the initial layer of protection. This approach en-
tails comparing incoming data with an extensive database of identified attack patterns.
When a match occurs, it initiates an alert, facilitating prompt remedial action. Anomaly-
based detection, a more advanced technique, creates baselines of typical behavior. When
anomalies—such as atypical data traffic or unauthorized system access—are identified,
alerts are sent, facilitating proactive measures to address potential security risks [48].

Furthermore, within the context of the IoV, ensuring the security of vehicle-to-everything
communication is critical. Establishing robust cryptographic protocols is necessary to
safeguard the complex communication network between vehicles and outside entities.
These protocols play a crucial role in guaranteeing the secrecy, integrity, and validity of the
data being communicated. Incorporating physical and cybersecurity measures provides
an enhanced level of safeguarding. The detection systems for physical tampering serve
to notify the IDS of potential threats, facilitating proactive cybersecurity measures [6]. By
harnessing the capabilities of machine learning-based detection, IDSs can dynamically
adjust and evolve. Machine learning algorithms, specifically deep learning models, can
analyze extensive datasets obtained from car sensors and network interactions. This enables
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the detection of subtle patterns that can serve as indicators of cyber risks, including those
previously unidentified.

Significantly, the implementation of real-time threat response mechanisms dramati-
cally enhances the effectiveness of IDSs in IoV. Real-time notifications, activated by irreg-
ularities or suspected breaches, are received by individuals inside the vehicle, managers
overseeing the fleet, and centralized monitoring systems. These notifications prompt swift
and targeted actions, including measures such as network segment isolation and emergency
protocol activation. These actions effectively contain threats and safeguard the overall
integrity of the network. The IDSs employed in the IoV encompass a complex integration
of several components, including behavioral analysis, pattern identification, cryptographic
techniques, machine learning capabilities, and instantaneous reactions. These technologies
ensure secure data transmission inside the IoV and protect the safety, privacy, and trust of
all individuals connected to this complex vehicular network. In doing so, they strengthen
the fundamental basis upon which the future of transportation technology relies.

3. State of the Art

In this section, we present a well-organized literature review on IDSs based on FL in
the IoV environment. This review aims to identify the latest advancements in FL-based
intrusion detection within the IoV domain, covering the years from FL’s inception in 2016
to 2023.

3.1. Intrusion Detection Systems Based on Federated Learning

The emergence of IDSs that utilize FL represents a significant advancement in cyberse-
curity. This innovative technique ensures the security of networked environments while
upholding data privacy [26]. Unlike conventional IDSs that depend on centralized data
analysis, FL-based IDSs operate on a decentralized principle. Within this innovative frame-
work, each device independently generates localized ML models by leveraging their own
data inputs. These models are subsequently improved through a collaborative learning
process, where devices communicate changes to the models rather than exchanging raw
data [49]. Ongoing research efforts continuously enhance this approach, leading to the emer-
gence of FL-based IDSs as a potential future in the pursuit of secure and privacy-conscious
network defense mechanisms [46].

Motivation to Adapt Federated Learning in Intrusion Detection Systems

The incorporation of FL into IDSs is driven by the significant demand for height-
ened security and privacy in our increasingly interconnected society. Despite the notable
advancements made by ML and DL in the field of IDSs, various limitations associated
with these technologies must be acknowledged, particularly concerning data privacy and
communication efficiency. FL addresses these challenges by facilitating localized model
training without compromising the privacy of raw data, thereby safeguarding individual
privacy while promoting collaborative learning.

FL facilitates decentralized, real-time threat detection in contexts such as the IoT or
IoV, where various geographically scattered devices generate data. The IDS’s capacity
to adapt to local contexts allows it to detect and recognize distinct threats peculiar to
individual environments. The motivations for implementing FL in IDSs revolve around
several essential elements, including the following [45]:

• Privacy preservation: FL enables collaborative model training while ensuring the
privacy of sensitive raw data. Data privacy is of utmost importance in contexts where
it holds significant value, such as the healthcare, finance, or government sectors.
FL guarantees the protection of individual privacy by maintaining data locally and
exchanging model updates. This approach aligns with legal and ethical requirements
around privacy.

• Data efficiency: Data efficiency is a significant concern in conventional centralized
systems, as transmitting substantial amounts of raw data to a central server may prove
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unfeasible. This is particularly true when there are constraints on available bandwidth
or communication costs are high. FL addresses this issue by focusing on lowering the
volume of data transferred. Specifically, only updates to the model are exchanged,
resulting in a substantial reduction in communication overhead.

• Adaptability and customization: The adaptability and customization of FL models
allow for their adaptation to specific local settings. In the IDS field, various contexts
may encounter distinct and specific threats. FL permits individual devices to customize
their intrusion detection models based on their unique threat landscapes, ensuring
precision in identifying potential threats.

• Continuous learning: Continuous learning is essential in the security field as threats
perpetually evolve. FL permits the ongoing updating of models as new data become
accessible. The capacity to adapt in real time ensures that IDSs remain effective in the
face of developing threats, providing a significant advantage in dynamic situations.

• Robustness and fault tolerance: The inherent robustness of FL systems is based on
their ability to withstand and recover from faults. In the event of a device failure
or offline status, the system can maintain operation by utilizing the remaining func-
tional devices [37]. The maintenance of fault tolerance is of the utmost importance
in guaranteeing uninterrupted intrusion detection capabilities inside diverse and
large-scale networks.

• Decentralization and edge computing: The utilization of FL facilitates decentralized
learning, which aligns with edge computing principles, wherein data processing
occurs in close proximity to its origin. In scenarios like IoT or IoV, where devices are
dispersed geographically, FL enables localized learning, ensuring prompt reactions to
potential risks without dependence on a central server.

These elements make FL a compelling and viable approach for enhancing the efficacy
and confidentiality aspects of IDSs in diverse settings.

3.2. Related Surveys

A few reviews have focused on the topic of FL-based IDSs. Table 8 succinctly outlines
the primary differentiators between our work and the previously conducted surveys.
For instance, ref. [45] offers a comprehensive survey of FL-based IDS approaches and
discusses the difficulties and challenges of using these methods. This review also outlines
potential future directions for FL in IDS. Meanwhile, the authors of [27] focus on the current
scientific progress of FL applications in attack detection problems for IoT and explore these
applications. The extensive review presented in [50] draws from an analysis of 39 research
papers published from 2018 to March 2022, with a specific focus on the IoT. The analysis
examined evaluation variables related to IoT, particularly concerning FL, and identified
and dis-cussed prospects and unresolved issues pertaining to FL-based IoT. The authors
of [25] also provided an overview and comparison of six studies that use FL to enhance
IDS effectiveness for IoT. In the absence of specific datasets for assessing FL, the authors
emphasized data partitioning modeling among clients. Additionally, they investigated
the modeling of bias in the test data to assess its impact on the effectiveness of the ML
model. The authors of [51] discussed the implementation of FL-based IDSs in various
domains and highlighted distinctions between different architectural configurations. Their
structured literature analysis offers a reference architecture that can be used as a set of
principles for comparing and designing FL-based IDS. Despite significant progress in FL
for IDS development, a comprehensive survey exploring FL for IDS applications within
the context of IoV is conspicuously lacking. To the best of our knowledge, no survey has
thoroughly evaluated existing IDSs based on FL for IoV. In this direction, we present an
organized literature analysis that examines recent developments in IDSs based on FL in an
IoV environment. The review covers the years from 2016 (when FL was first introduced) to
2023. We conducted our search using the terms “federated learning”, “intrusion detection”,
and “internet of vehicles”.



Future Internet 2023, 15, 403 34 of 53

Table 8. Summary of related surveys on Federated Learning-based IDS.

Survey Title Year Main Focus Key Contributions IDS IoV

Survey [45] 2021 FL-based IDS Discussion on the role of FL in intrusion detection
- Comprehensive review of ML/DL/FL in intru-
sion detection
- Highlighting open research challenges

✓ X

Survey [27] 2022 FL in IDS within
(IoT) domain Understanding of federated learning, privacy

preservation, and anomaly detection in network
systems, with a particular focus on applications in
IoT and related domains.

✓ X

Survey [25] 2022 FL-based IDS - Review of FL system architectures
- Review of Evaluation Datasets
- Comparative analysis of proposed systems
Open challenges and future directions

✓ X

Survey [50] 2022 FL-based IoT Organizing and reviewing FL-based IoT domains
- Creating a taxonomy to organize various aspects
of FL-based IoT
Providing some research questions about the FL-
based IoT area and answering them
Reviewing evaluation factors
Focusing on open issues and future
research challenges

X X

Survey [51] 2022 FL-based IDS Review of FL application in attack detection
and mitigation
Proposal of a reference architecture
Establishment of a taxonomy
Identification of open issues and research directions

✓ X

Our Survey 2023 FL-based IDS in
IoV environment Offer of a generic taxonomy for describing

FL systems
A well-organized literature review on IDSs based
on FL in an IoV environment.
Highlighting challenges and potential future direc-
tions based on the existing literature.

✓ ✓

Note: In this table, ✓: indicates that the survey discussed the relevant aspect of Federated Learning (FL) or
Intrusion Detection Systems (IDS), while X signifies that the aspect was not discussed in the survey.

3.3. Comparative Analysis of Federated Learning-Based Intrusion Detection Systems for Internet
of Vehicles

In the rapidly evolving landscape of cybersecurity within IoV, FL has emerged as a
transformative paradigm, promising enhanced security and privacy preservation. As the
IoV ecosystem expands, robust IDSs become essential to safeguard vehicles, passengers, and
the underlying network infrastructure from ever-evolving cyber threats. This section offers
an extensive analysis of the relevant literature in the field of IDS based on FL, specifically
tailored to the intricacies of IoV. This comparative survey aims to extract significant insights
by examining the unique techniques, strategies, and structures of recent studies. These
insights are crucial for understanding the current state of IDS solutions based on FL in
IoV and provide valuable guidance for future research. We employed a range of criteria
to evaluate and differentiate the related works in the domain of FL-based IDSs within the
framework of IoV. We formulated the following research questions for our review:
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• What kinds of FL designs are used for IDS?
• What ML model architectures are employed in the proposed solutions?
• Which datasets are utilized for evaluating the proposed solutions?
• What types of attacks can be identified by the proposed solutions?
• Which measures do the authors employ to validate their proposed solutions?
• Which communication patterns are utilized in the solutions they offer?
• Do the proposed solutions operate in synchronous or asynchronous mode?
• Which aggregation model do the proposed solutions utilize?
• Which optimization algorithms do the proposed solutions utilize?
• Are the proposed solutions designed to support real-time processing?
• Are the proposed solutions designed to support imbalanced data distribution?
• What is the impact of the implemented solutions on overhead costs?

Based on the formulated questions, we considered the following criteria during our
review of the papers to organize the information in a structured manner that allowed for
easy comparison and understanding:

• Year of publication;
• Datasets used;
• Attacks detected;
• ML models;
• Communication patterns;
• Communication synchronization;
• Evaluation metrics;
• Model aggregation algorithms;
• Optimization algorithms;
• Real-time considerations;
• Data distribution;
• Communication overhead.

While FL-based IDSs for IoV are the primary focus of this paper, we did not conduct
any experiments on the reviewed approaches to evaluate them. The study aimed to
highlight open difficulties and research directions by considering the described factors.
Table 9 provides a summary of the comparison’s results.
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Table 9. Comparative Analysis of Federated Learning-based intrusion detection systems for IoV.

Ref.\Year Dataset Attacks ML Communication Communication Evaluation Model Optimization Real-Time Data Overhead
Detected Model Patterns Synchronization Metrics Aggregation Algorithms Processing Imbalance

[52], 2022 The attack-free -Spoofing Convolutional Client–server mode Synchronous -FPR, TPR Secure The Federated Real-time Imbalanced Reduces the
dataset of CAN -Replay Long Short- mode -Accuracy MultiParty Proximal processing data overhead
messages published -Drop Term Memory -Precision Computation Algorithm distribution.
by the HCR Lab -Denial-of-Service (DoS) (ConvLSTM) -Recall
of Korea University model -F1-score

[53], 2021 VeReMi -Constant attack Long Short- Client–server mode Synchronous -Precision Federated Federated Batch Imbalanced Reduces the
dataset -Constant offset attack Term Memory mode -Recall Averaging Stochastic processing data overhead

-Random attack (LSTM) neural -Accuracy Algorithm Gradient distribution.
-Random offset attack network. (FedAvg) Descent
-Eventual stop attack. (Federated SGD)

[54], 2022 Simulated dataset Black hole Random Forest Client–server mode Synchronous -Precision Weighted Batch
attack 1-dimensional

CNN (1-D CNN)
mode -Recall aggregation _ processing _ _

1-dimensional
RNN (1-D RNN)

-F1-score model

[55], 2023 VeReMi -Constant attack Deep neural Federated Arch. -Accuracy Federated Federated Reduces the
dataset -Constant offset attack networks with edge -Consensus time Averaging Stochastic overhead

-Random attack offloading _ -Incentive Algorithm Gradient _ _
-Random offset attack mechanisms (FedAvg) Descent
-Eventual stop attack. (Federated SGD)

[56], 2023 The simulated Sybil attack Client–server mode Synchronous Accuracy Weighted Fuzzy logic- Batch Reduces the
Sybil attack _ mode Number of global aggregation based processing _ overhead
dataset aggregations model technique

[16], 2022 Car Hacking -Flooding Gated Recurrent Client–server mode asynchronous -Accuracy Federated Adam optimizer Batch
dataset -Spoofing Unit (GRU) with mode -Precision Averaging processing

-Replay a Random Forest -Recall Algorithm _ _
-Fuzzing (RF)-based -F1 score (FedAvg)

ensembler unit.

[57], 2021 CAN-Intrusion -DoS attack Random Forest Client–server mode -Accuracy Batch
dataset (OTIDS) -Fuzzy attack _ -Precision _ _ processing _ _

-Spoofing attack -Recall

[58], 2022 Car Hacking -DoS attack Multilayer Client–server mode -Accuracy Federated Stochastic Real-time
dataset -Fuzzy attack Perceptron (MLP) _ -Loss Averaging Gradient processing

-Spoofing attack model -AUC score Algorithm Descent (SGD) _ _
-Time Cost (FedAvg) optimizer
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Table 9. Cont.

Ref.\Year Dataset Attacks ML Communication Communication Evaluation Model Optimization Real-Time Data Overhead
Detected Model Patterns Synchronization Metrics Aggregation Algorithms Processing Imbalance

[59], 2022 Practical dataset -Spoofing attacks Long Short- Client–server mode -The detection Real-time
-Replay attacks Term Memory _ accuracy _ _ processing _ _
-Drop attacks (LSTM)
-DoS attacks neural network.

[60], 2023 Car Hacking -DoS attack Convolutional Client–server mode -Accuracy Federated Bayesian Real-time Imbalanced Reduces the
dataset -Fuzzy attack Neural Network _ -Recall Averaging Optimization processing data overhead

-Spoofing attack (CNN) -Precision Algorithm (BO) distribution.
-F1-score (FedAvg)

[47], 2023 NSL-KDD -DoS attack Memory- Client–server mode Synchronous -Accuracy Weighted Adam optimizer Batch Imbalanced
dataset -Probe attack Augmented mode -Precision Aggregation processing data _

-R2L (Remote to Local) Autoencoder -Recall Model distribution.
-U2R (User to Root) Model -F1 score

[61], 2023 VeReMi -Constant attack Long Short- -F1-scores
Extension -Constant offset attack Term Memory
dataset -Random attack (LSTM) _ _ _ _ _ _ _

-Random offset attack neural network.
-Eventual stop attack.

[62], 2023 The dataset -SYN flood attack The deep Federated Arch. -F1-Score Federated Federated
[RAKGZ20] -UDP flood attack autoencoder with edge _ -The false positive Averaging Averaging _ _ _

method offloading rate (FPR) Algorithm Algorithm
(FedAvg) (FedAvg)

[63], 2022 CAN-Intrusion -DoS attack Statistical -Maximum Mean Batch
dataset (OTIDS) -Fuzzy attack Adversarial _ Discrepancy

(MMD)
_ _ processing _ _

-Impersonation attack Detector -Energy distance
(ED)

[64], 2023 The CIC-IDS 2017 DoS attack, web attacks, A Cat Boost Client–server mode Precision, recall, The Bagging The grid Imbalanced
dataset port scan, bot, model _ Kappa score, Classifier search method _ data _

brute force attacks accuracy technique distribution
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3.4. Analysis and Discussion

The analysis of the research papers aided us in formulating the following conclusions:

• Dataset: The selection of a dataset is a crucial aspect when evaluating the effectiveness
and resilience of proposed solutions in the field of IDS based on FL within the context
of IoV. Given the dynamic and complex nature of IoV, it is imperative to use datasets
that can accurately depict real-world vehicular communication scenarios, encompass-
ing both normal and malicious activities. These datasets play a fundamental role
in training and evaluating IDS models, enabling them to effectively identify threats
within the IoV environment. The following describes the datasets utilized in the
provided papers to assess the efficacy of various IDS solutions. Three of the papers,
namely [52,57,63], employed the CAN-intrusion dataset (OTIDS), which was sourced
from the Hacking and Countermeasure Research Lab at Korea University. This dataset
provides a comprehensive representation of intrusion scenarios within in-vehicle
networks, making it suitable for assessing IDSs specifically designed for vehicular con-
texts. By contrast, refs. [53,55,61] employed the VeReMi dataset for their experimental
analysis. The publicly accessible VeReMi dataset was explicitly developed for analyz-
ing mechanisms to detect misbehavior in VANETs. The authors of [16,58,60] employed
the Car-Hacking dataset derived from the “Car Hacking: Attack & Defense Challenge”
competition held in 2020. Additionally, some papers used simulated datasets, such
as [54], where a simulated dataset was employed to evaluate the effectiveness of their
proposed approach in vehicle-to-vehicle and ve-hicle-to-infrastructure scenarios. The
authors of [56] employed a simulated attack dataset consisting of simulated Sybil
attack flows and normal traffic flows in their experimental analysis. Meanwhile,
the simulations in [59] were conducted using the authors’ proprietary dataset. Al-
though the NSL-KDD and CIC-IDS 2017 datasets are not dedicated to IoVs and are
primarily general intrusion detection datasets, the authors of [47,64] conducted their
experiments on these datasets to evaluate the performance of their proposed methods.
Finally, ref. [62] utilized the [RAKGZ20] dataset to evaluate the authors’ proposed
solutions. These datasets collectively offer a comprehensive view of various intrusion
detection scenarios, particularly within automotive networks.

• Attacks detected: Within the domain of FL-based IDSs for IoV, numerous research
papers have put forth methodologies to identify a diverse range of cyber threats.
DoS attacks [47,52,57–60,63] and constant attacks [53,55,61] are the most frequently
discussed types of attacks in the literature. In addition, some authors emphasized
specific attacks, such as the Sybil assault [56] and the black hole attack [54]. Several
papers also explored detecting advanced attacks in in-vehicle networks, including
adversarial attacks like fuzzy attacks [16,57,58,60,63], flooding attacks [16,62], and
spoofing attacks [16,52,58–60]. These studies highlighted the diverse and persistent
nature of cyber threats in the IoV environment, underscoring the critical need for
robust IDS solutions. IDSs based on FL in IoV not only demonstrate the adaptability
and robustness of FL techniques but also illustrate the essential role these techniques
play in protecting the future of connected vehicular systems against a wide array
of cyberattacks.

• ML models: Researchers have turned to more powerful ML models to construct
resilient FL-based IDSs capable of addressing challenges posed by vehicular networks.
These models, tailored to meet the unique requirements of vehicular communication,
offer promising ways to detect and mitigate potential attacks. To improve detection
capacities and ensure vehicular safety, numerous ML models based on FL in IoV have
been implemented in the field of IDS. The following summarizes the ML models
utilized in the proposed solutions across the reviewed papers.

– Long short-term memory (LSTM): This architecture of recurrent neural networks
is prominently featured in articles [16,52,53,59,61]. One notable advantage of this
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approach is its proficiency in identifying patterns over different time intervals,
making it well-suited for analyzing time-series data such as network traffic.

– Deep convolutional neural network (DCNN): Papers such as [55,60] utilized
DCNNs to effectively handle structured grid data, including images or time-
series data. These DCNNs possess the capability to automatically and adaptively
learn spatial hierarchies.

– Support vector machine (SVM): ref. [60] utilized SVM, a supervised ML approach
applicable to both classification and regression tasks.

– Statistical adversarial detector: As explicitly stated in [63], this approach employs
statistical techniques to identify adversarial examples.

– Random forest: refs. [54,57] employed the random forest algorithm, an ensemble
learning technique. This algorithm constructs numerous decision trees during
the training phase and determines the class output by selecting the mode of the
classes for classification.

The utilization of a wide array of ML models in the articles highlights the intricate
and multifaceted characteristics of intrusion detection in IoV. Researchers have used
diverse techniques, such as recurrent networks like LSTM, capable of capturing tempo-
ral relationships, and ensemble methods like random forest, which provide robustness.
These approaches enhance the security and dependability of vehicular networks.

• Communication patterns: Most of the articles we reviewed provided solutions formu-
lated according to the client–server mode of operation, as exemplified
by [47,54,58,60,64], among others. In this mode, clients engage in the process of
training their models on a local level without sharing raw data. Subsequently, the
model updates are transmitted to the server, the central entity responsible for aggregat-
ing them. This procedure guarantees the protection of data privacy and minimizes the
necessity of data centralization. Meanwhile, some papers adopted a federated archi-
tecture with an edge-offloading technique [55,62]. As mentioned above, this approach
diminishes latency and reduces dependence on a remote cloud server. As discussed in
the publications mentioned above, the client–server mode of operation emphasizes
the shifting paradigm of decentralized data processing in IoV. FL-based IDSs not
only protect users’ data privacy but also pave the way for more effective and scalable
security solutions in rapidly developing vehicular networks. These systems enable
vehicles to train models locally, with central servers aggregating the training results.

• Communication synchronization: The communication synchronization mode,
whether synchronous or asynchronous, significantly impacts the efficiency and ef-
fectiveness of the FL process. Ref. [52] discussed the operational characteristics of
synchronous FL, which involves a single launch point and a single aggregate point for
the global model. In this model, the beginning of each iteration occurs concurrently for
all clients, and the federated aggregation process is performed without establishing
a predetermined objective for the learning rounds. In [53], the authors presented a
synchronous FL approach, and ref. [54] introduced a conventional synchronous FL
protocol. This protocol is considered appropriate for a wide range of FL scenarios,
including those involving bottlenecks. On the other hand, ref. [16] preferred an
asynchronous mode, which can provide greater flexibility in dynamic settings and
effectively handle frequent model changes and bottlenecks. This strategy enables
increased adaptability in the learning process, accommodating partial updates from
clients that may impact convergence performance. Nevertheless, not all research
explicitly addressed this matter. Most of the publications did not specify their opera-
tional mode concerning synchronization. The variations mentioned above highlight
the varied approaches that researchers have utilized to enhance the effectiveness of
IDSs within the rapidly changing environment of IoV. In summary, while synchronous
FL was a prevalent technique in the suggested solutions, some studies acknowledged
the advantages of asynchronous methods, particularly in environments characterized
by frequent updates and potential bottlenecks.
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• Evaluation metrics: In most of the papers that were reviewed, the evaluation of the
efficacy of FL-based IDS systems relied on ML measures that assess the effectiveness
of the analytic model. These metrics include accuracy, precision, recall, and F-measure.
A limited number of research publications examined the effects of FL. In particular,
ref. [55] discussed the consensus time, which is impacted by the quantity of FL workers
and the number of created blocks. The study additionally assessed the effectiveness
of the FL-enabled edge node by manipulating the reward and accuracy of the local
model. This evaluation considered various elements, including the reward, energy
consumption, and processing overhead. Moreover, the researchers did not overlook
the significance of accuracy as a fundamental measure for evaluating the efficacy of
their proposed solution. The paper also addressed the issues associated with recruit-
ing FL workers, highlighting the possibility of bias and imbalance when selection
is primarily predicated on reputation. The authors proposed various strategies to
address these difficulties, such as including randomization in the selection procedure.
In addition, in [56], the authors considered the “number of global aggregations (NGA)”
as an evaluation metric. They presented information regarding the number of global
aggregations performed in the proposed system and other state-of-the-art baseline
frameworks. Their research demonstrated how many global aggregations are neces-
sary for different numbers of communication rounds (R) to achieve the desired level
of accuracy. The FLEMDS framework proposed in the study necessitates a reduced
number of global aggregations in comparison to the baseline frameworks to attain a
comparable level of accuracy.

• Aggregation model: In the domain of distributed ML, the combination of data or
model updates from several nodes holds significant importance in determining the
overall performance and efficiency of the system. The aggregation process has been
extensively explored in contemporary research, with numerous novel approaches and
models offered in recent research papers. These aggregation models aim to successfully
harness the collective intelligence of all participating nodes while simultaneously
overcoming problems such as data heterogeneity, communication overheads, and
adversarial threats.
The examined literature suggested a range of aggregation models to improve the
effectiveness and precision of distributed systems, particularly in the domain of FL.
One of the most common aggregation models used in the reviewed papers is the feder-
ated averaging method, where local model updates are averaged to produce a global
model [16,53,55,58,60,62]. This approach is simple yet impactful, particularly in situa-
tions involving non-identically and independently distributed (non-IID) data [32]. An
alternative methodology uses weighted federated averaging, as described in several
papers [47,54,56]. This technique involves assigning varying weights to local models,
considering factors such as the quantity of data samples or the quality of the model.
Secure aggregation is another widely employed model aggregation technique in the
field of FL, as observed in [52]. In this technique, various cryptographic techniques,
including SMPC, are employed to consolidate data while preserving the confiden-
tiality of the unprocessed updates. The authors of [64] used the Bagging Classifier
technique as aggregation model in their developed solution. This technique aggregates
the predictions of multiple models to produce a single, more accurate model. The
resulting supermodel, created by the central server, exhibits better robustness than the
individual edge device models.
Each aggregation method provides specific benefits designed to address the challenges
and requirements of dispersed learning settings. The models described above are at
the forefront of current research, each tackling distinct issues. As technology advances
and increasingly intricate situations arise, these models are expected to continue to
develop, facilitating the implementation of more resilient and effective distributed
learning systems. The ongoing investigation and advancement of aggregation models
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serve as evidence of the dynamic characteristics of ML research and its dedication to
optimizing the utilization of distributed nodes’ collective intelligence.

• Optimization algorithms: The utilization of FL in IDSs presents a new and innovative
method for addressing the issues related to data privacy and effective model training
in IoV. Advanced algorithms play a pivotal role in optimizing FL models. For instance,
the federated proximal algorithm has been used to fine-tune model parameters, en-
suring optimal performance in detecting intrusions [52]. Similarly, some studies have
adopted federated stochastic gradient descent (federated SGD) to optimize the param-
eters of the proposed IDS models [53,55,58]. Furthermore, some papers utilized other
optimization techniques, such as the Adam optimizer [16,47], a fuzzy logic-based
technique [56], Bayesian optimization (BO) [60], and the federated averaging (FedAvg)
algorithm [62]. The authors of [64] used the grid search method for hyperparameter
tuning as an optimization algorithm in their solution. This method is employed to
optimize the Cat Boost model, a gradient boosting algorithm that utilizes decision
trees as the classifier model for edge devices. The grid search technique exhaustively
searches over a specified set of hyperparameters to improve the model’s accuracy.
The integration of optimization approaches, combined with the decentralized nature
of FL, holds the potential to deliver resilient and effective IDSs for the IoV environment.
Decentralizing the learning process and applying complex optimization algorithms
not only enhances detection capabilities but also ensures that modern concerns re-
garding privacy and efficiency within the IoV landscape are effectively addressed.
This represents a significant advancement for the industry. The ongoing expansion
and development of IoV necessitate the use of innovative strategies to ensure the
protection and security of our networked automotive environment.

• Real-time processing: A critical aspect of FL-based IDSs is their ability to process data
in real time, ensuring timely detection and response to potential threats. Our review
found several papers that proposed IDSs designed for real-time operation [52,58–60].
For instance, refs. [52,53,58] highlighted the significance of real-time processing for
IDSs, especially when dealing with vehicular networks. In addition, ref. [60] in-
troduced ImageFed IDS, a system designed for real-time inference. It employs a
lightweight image-based feature extraction for CAN packets, making it suitable for
real-time applications. On the other hand, some papers supported a batch processing
approach rather than real-time processing [16,47,56]. Some papers did not explic-
itly mention whether their proposed solutions are designed for real-time or batch
processing. Nevertheless, all the papers emphasized the importance of real-time pro-
cessing in IDSs for IoV, with various solutions and methodologies proposed to achieve
this objective. The operational significance of IDSs for vehicle networks increases as
these networks undergo continuous evolution and encounter a diverse range of cyber
threats. The research presented in these papers offers solutions and approaches that
contribute to the development of a more secure and responsive IoV environment by
emphasizing the significance of real-time processing.

• Data distribution: While imbalanced data distribution is a significant concern in ML
and AI research, most of the research papers we reviewed did not address this aspect.
We only identified five articles, namely [47,52,53,60,64], that specifically addressed
the issues and implications associated with imbalances in data distribution in FL
scenarios. They stressed the importance of dealing with this problem to achieve
robust and stable model performance. The authors of [52] emphasized that in real
FL contexts, the data distributed across many nodes or devices may exhibit non-IID
characteristics. These characteristics sometimes arise due to an imbalanced distribu-
tion of data, wherein certain data classes may be overrepresented in one node while
being underrepresented in another. To overcome this difficulty, the study suggested
an IDS that uses FL to help handle imbalanced data distribution. The authors of [53]
examined the vulnerability of models to adversarial attacks, particularly when con-
fronted with data imbalance. The presence of an imbalance in vulnerability can be
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exploited by adversarial examples, resulting in the misclassification of benign data.
The authors presented various techniques for identifying these adversarial examples,
indirectly addressing the difficulties associated with data imbalance. From another
perspective, the authors of [60] showed that data distribution among vehicles in FL
scenarios, particularly in the context of IoV, might exhibit a significant imbalance.
This imbalance can potentially impact the overall performance of the global model.
The paper introduced various methodologies aimed at alleviating the repercussions
of this imbalance, thereby ensuring the robustness of the FL framework. The issues
presented by imbalanced data distribution were also addressed in [47]. The authors
highlighted the potential emergence of unexpected attack behaviors in the context of
IoV development. The absence of comprehensive analysis and systematic gathering
of various attack behaviors has resulted in an imbalanced distribution of sample
data categories within intrusion detection for IoV. Consequently, this disparity leads
to diminished accuracy in detection. The authors proposed an intrusion detection
approach integrating FL and a memory-augmented autoencoder (FL-MAAE) to tackle
this issue. They have considered the problem posed by imbalanced data distribution
in their produced solution, hence ensuring the continued effectiveness of the model.
Lastly, the proposed framework in [64] employs the Synthetic Minority Over-sampling
Technique (SMOTE) to tackle the issue of class imbalance in the dataset. This approach
of oversampling minority classes helps to create a more balanced dataset, which in
turn allows for a more accurate and representative evaluation of the classification
models. Addressing data imbalance is critical for guaranteeing the resilience and
dependability of ML models, particularly in distributed learning scenarios such as FL.

• The overhead: One of the primary issues frequently encountered in the domain of
IDSs based on FL is the significant overhead associated with these systems. The effec-
tiveness and responsiveness of IDSs in IoV contexts can be significantly affected by
overhead, including computing, communication, and storage expenses. Addressing
this overhead is crucial to ensure the seamless operation of these systems without
compromising their primary function of identifying and mitigating threats. Several
of the reviewed papers examined the issue of overhead, which holds significant im-
portance in the field of distributed systems and FL [52,53,55–57,60]. In [52], the term
“overhead” refers to the complexity of the algorithms offered, and the authors stressed
how important it is to reduce this complexity as much as possible to ensure efficient
operations. In addition, ref. [53] discussed overhead in the context of communication
costs, emphasizing the relevance of minimizing overhead to improve system perfor-
mance. Overhead was explored in relation to the computing expenses of the proposed
approaches in [55], which emphasized the necessity of striking a balance between
accuracy and computational efficiency in the methods offered. The research presented
in [56] investigated the overhead caused by the consensus process in blockchains
and suggested that using a lightweight consensus method can reduce overhead and
increase scalability. The topic of overhead was discussed in the context of data trans-
mission in [57], which emphasized the significance of effective data-sharing systems to
reduce overhead. Lastly, ref. [60] provided a comparative analysis of various solutions.
This research suggested that FL approaches often incur less overhead than alternative
distributed learning modes. The study also discussed processing overhead in the
context of incentive mechanisms for FL. Taken together, these papers highlight the im-
portance of properly managing overhead costs to guarantee the efficiency, scalability,
and effectiveness of distributed and federated information systems.

Upon reviewing the collection of work relevant to IDSs based on FL in IoV, it becomes
apparent that the realm of security within vehicular networks is experiencing a significant
and fundamental change. FL has emerged as a promising solution for effectively address-
ing the intertwined issues of safeguarding data privacy and enhancing threat detection
efficiency. In conclusion, Table 10 presents a comparative analysis of the advantages and
drawbacks of each one of these proposed solutions that we discussed.
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Table 10. Comparative analysis of FL-based IDS for IoV: advantages and drawbacks.

Ref Advantages Drawbacks

[56]
Three-level model aggregation.

Fuzzy Logic-Based FL Vehicle Selection (FLBFLVS).
Reduced latency.

Complex system architecture.

[52] Reduced model size and convergence time. High
detection accuracy (over 95%)

Complexity of implementation.
Scalability concerns.

[53] Privacy preservation. Reduction in communication
overhead. Handling position falsification attacks.

Complexity in implementation. Challenges in
federated averaging. Experimental limitations.

[54] Trust estimator integration. Effective learning with fewer
rounds. Improved network performance

Challenges in synchronization and model
aggregation. Need for regular updates

and maintenance.

[55]
Blockchain integration for trust. Smart contract use.

Efficient consensus protocol.
High performance.

Resource intensity.
Challenges in worker selection and bias.

Scalability in real-world deployment.

[16]
High accuracy in cyberattack detection.

Reduced communication overhead.
Resource efficiency.

Complex implementation.

[57]
Blockchain integration.

Decomposition using Fourier transform.
High performance.

Complex system architecture.
Resource intensiveness.

Challenges in blockchain integration.

[58]
High accuracy (up to 98.45%).

Low-complexity structure.
Adaptability.

Dependency on local data quality.

[59] High detection accuracy (beyond 90%). -

[60]

High performance metrics (with an average 99.54%
F1-score and 99.87% accuracy, alongside low

detection latency).
Lightweight feature extraction.

-

[47] Robust to imbalanced data.
Effective in detecting unknown attacks.

The evaluation is conducted used the NSL-KDD
dataset, which is not dedicated to IoVs and is

primarily an intrusion detection dataset.

[61] High accuracy in threat detection. Complexity in tradeoffs between utility
and‘privacy.

[62]

Zero-day attack detection.
High detection rates.

Multi-access Edge Computing (MEC) assistance. Complexity in implementation and management

[63]

Adversarial attack detection.
Blockchain integration.

High detection accuracy
Lightweight feature extraction.

Computational overhead.
Limitations in detecting certain

adversarial attacks.

[64] Robust to imbalanced Data.
Handling class imbalance.

The evaluation is conducted used the CIC-IDS
2017, dataset which is not dedicated to IoVs and is

primarily an intrusion detection dataset.

4. Discussion of Challenges and Future Research Directions

IoV is anticipated to experience significant growth in the coming decade, emerging as
a prominent paradigm movement. This projection suggests that IoV will receive substantial
attention and witness considerable advancements across several sectors and industries. The
integration of FL into IDSs within IoV scenarios presents a significant opportunity to bolster
the security of interconnected vehicles in this dynamic environment. The primary objective
of incorporating collaborative intelligence concepts and technologies into the domain of
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IoV is to facilitate the integration of data and resources from a vast array of vehicles, users,
infrastructure, and networks. This integration aims to enhance the reliability, connectivity,
and ease of management, control, and operation of IoV systems. Nevertheless, this novel
methodology also presents a series of challenges that necessitate meticulous consideration
to guarantee the efficiency and security of these systems. These constraints arise from the
heterogeneous characteristics of vehicle data, constrained network resources, the persistent
risk of adversarial assaults, strict regulatory obligations, and the imperative to uphold
the security of FL models. The ability to effectively deal with these intricacies is crucial
to fully harness the capabilities of FL-enabled IDSs in IoV scenarios. This will establish a
resilient, secure, and privacy-conscious vehicular network. Drawing upon the literature
analysis, this section aims to elucidate some of the main challenges we found and possible
future research directions for investigating the development of IDSs empowered by FL
within the IoV context. Figure 3 summarizes the challenges and future research directions
in FL-enabled IDS IoV.

Figure 3. Challenges and future research directions in FL-enabled IDS for IoV.

Here, we cover some of the primary challenges and future research directions associ-
ated with developing FL-enabled IDSs in IoV scenarios.

• The deployment of Federated Learning on Internet of Vehicles devices: Deploying an
FL-enabled IDS architecture on real IoV devices presents many challenges. One notable
obstacle involves the presence of resource constraints since IoV devices frequently
have restricted processing capabilities and memory capacities, making the efficient
execution of intricate FL algorithms difficult. This challenge can be exacerbated when
employing deep learning techniques, as they often require more computational re-
sources than traditional ML [65]. To overcome these restrictions, a prevailing approach
involves the implementation of intermediate nodes positioned at the network edge.
These nodes serve as clients for FL, receiving data from end devices. Real-time pro-
cessing poses an additional challenge in the context of IDSs in IoV. These IDSs need to
effectively evaluate incoming data and promptly identify any instances of intrusion,
requiring the implementation of algorithms that strike a delicate balance between
accuracy and processing speed. Consequently, more work is needed to examine the
real-world constraints of FL-enabled IDS techniques in IoV contexts to ensure optimal
levels of security and efficiency.

• Limitations of existing FL-enabled IDS datasets for IoV: The current datasets available
for FL-enabled IDSs in the context of IoV exhibit various limitations. The issue of
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data diversity presents a notable obstacle as datasets may lack a comprehensive
representation of the wide range of real-world scenarios and driving conditions,
resulting in the development of biased models. Data imbalance is a significant issue
that warrants attention, as specific categories of security threats may be inadequately
represented in the dataset, posing challenges for the FL-enabled IDS to detect these
less frequent intrusions accurately and efficiently. Data quality is essential, as any
inaccuracies or noise present in the data can significantly impact the learning process,
potentially leading to the development of intrusion detection models that are less
reliable and potentially misleading. Furthermore, the issue of data privacy poses
a significant constraint in the context of IoV. The data generated by IoV systems
frequently encompass confidential personal and vehicular details, thereby presenting
a formidable obstacle in creating extensive datasets that simultaneously safeguard
users’ privacy. The concern regarding the scalability of current datasets becomes
particularly significant as IoV networks experience rapid expansion. These constraints
must be acknowledged and addressed to create resilient IDSs that effectively capture
the complicated nature of actual IoV settings while upholding user privacy and
data integrity.

• Aggregator as a bottleneck: In the context of IoV scenarios involving FL-enabled IDS,
the aggregator frequently becomes a bottleneck despite being a central component.
The processing capacity of the aggregator can be overwhelmed by the sheer volume
of incoming information if data from multiple vehicles are sent to the aggregator
for model training and updating [65]. The influx of data, especially in extensive IoV
networks, has the potential to result in delays when it comes to aggregating and
updating FL models. Furthermore, given the real-time nature of intrusion detection in
vehicle contexts, introducing any delay at the aggregator level can impede prompt
responses to security threats. The challenge of balancing the requirement for com-
prehensive model updates with the practical constraints of aggregators is of utmost
importance. This necessitates using innovative approaches in distributed computing,
efficient algorithms, and optimized communication protocols. These measures are
necessary to address the bottleneck and ensure the smooth operation of FL-enabled
IDSs in IoV scenarios.

• Client selection: Identifying suitable clients for FL-enabled IDSs in the IoV context
presents a significant challenge. During each training iteration, the coordinator can
choose a specific subset of devices to engage as FL clients in the training procedure. The
environments in which IoV operates exhibit a high degree of dynamism, characterized
by the continuous movement of vehicles within and beyond the network coverage area.
The dynamic nature of the environment poses difficulties in maintaining a consistent
group of clients who actively participate in the training of FL models. For instance,
specific devices may not be accessible during a particular round due to mobility
issues or disruptions in connectivity. In addition, the criteria for selection need to
consider factors such as the device’s current state, its battery life, its computational
and networking capabilities, and even the precision of the ML technique. The client
selection process can significantly impact the accuracy achieved and, consequently,
the detection of potential security breaches within the framework of an IDS approach.
Striking a balance in the client selection process, where a diverse, accurate, and current
dataset is maintained, necessitates the utilization of advanced algorithms and real-time
decision-making to manage the ever-changing pool of participating vehicles effectively.
Addressing this challenge is essential to maintain the integrity and accuracy of FL-
enabled IDSs in IoV scenarios. Therefore, future strategies for devising an efficient
client selection process in IoV systems must consider the dynamic nature of device
conditions throughout each training iteration.

• Security attacks: In the context of FL-enabled IDSs in IoV scenarios, security attacks
pose a severe threat. Attackers can exploit vulnerabilities inherent in the FL archi-
tecture [66]. These exploits can manifest as various types of attacks, including data
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poisoning [24], where adversaries inject deceptive data into the training process to
manipulate the IDS model [45]. Model inversion attacks can also occur, in which
attackers attempt to deduce confidential data from the trained model. In addition,
the confidentiality and integrity of data might be compromised by eavesdropping
attacks that specifically target the communication channels established between ve-
hicles and the central server. To address these security concerns, robust security
measures are essential, including strong encryption, secure communication protocols,
anomaly detection techniques, and continuous monitoring. Preserving security in
FL-enabled IDSs within IoV scenarios is of utmost importance for protecting against
a diverse range of potential cyberattacks and maintaining the efficiency of IDSs in
interconnected vehicular networks.

• Privacy concerns: Privacy considerations emerge as a significant challenge in the
context of FL-enabled IDSs in IoV scenarios. Although the primary purpose of FL is to
address the privacy concerns associated with centralized learning methods, FL may
still inadvertently disclose information from the training data of individual clients.
FL relies on data provided by individual vehicles for the purpose of training models,
raising issues concerning user privacy and data confidentiality. Within IoV, vehicles
can generate substantial quantities of sensitive data, including location information,
driving behavior, and recordings of communication. The central issue revolves around
the need to effectively utilize this data for training IDS models while safeguarding the
privacy of both vehicle owners and occupants. As a result, there has been a notable
surge of interest has occurred in implementing privacy-preserving methodologies
in the field of FL [23]. These methodologies include differential privacy techniques,
SMPC, and homomorphic encryption. However, using these advanced approaches
often entails a trade-off in terms of precision and effectiveness, potentially compro-
mising the IDS’s ability to identify attacks. Deploying these advanced methods is
necessary to strike a balance between the need for effective intrusion detection, strict
privacy requirements, and meeting user expectations. Further research is required
to find the optimal balance between privacy and performance to develop efficient
IDS methodologies.

• Communication efficiency: Implementing FL-enabled IDSs within IoV introduces a
significant challenge in terms of communication efficiency. In IoV scenarios, where
vehicles are in constant motion, transmitting substantial amounts of data to train
FL models on a central server can strain network bandwidth and result in signifi-
cant communication overhead. This challenge is further exacerbated by the need for
real-time intrusion detection, where rapid responses are crucial. Optimizing com-
munication protocols and data transmission techniques is essential to alleviate the
network’s burden while ensuring the timely delivery of relevant data to the central
server for model updates. Future research in this field is oriented towards devel-
oping sophisticated communication-efficient techniques tailored specifically for IoV
scenarios. Approaches such as model quantization, edge computing, and strategic
data sampling can be leveraged to minimize the volume of transferred data, thereby
enhancing communication efficiency. Balancing the requirement for extensive data
exchange with the constraints imposed by network bandwidth is essential for the
effective implementation of FL-enabled IDSs in dynamic and bandwidth-limited IoV
environments. Research efforts also focus on exploring 5G and beyond-5G technolo-
gies, which hold the potential to provide increased bandwidth and reduced latency.
These advancements can significantly transform the communication landscape of
FL-enabled IDSs in IoV.

• Encryption standards: Encryption standards play a significant and multifaceted role
in the context of FL-enabled IDSs within IoV. Ensuring the security and privacy of
sensitive vehicular data during the transmission process is of paramount importance.
The main challenge lies in adopting encryption standards that combine robustness
and efficiency to effectively manage the substantial volumes of data transmitted
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between vehicles and central servers. Moreover, within the FL framework, which
entails collaborative model training on various devices, selecting encryption methods
that can protect data while preserving the integrity of the collaborative learning
process is a complex task [67]. Future advancements in this field primarily focus
on developing encryption techniques that successfully reconcile the requirements of
security, efficiency, and the necessity for collaborative learning. Research efforts aim to
establish standardized encryption protocols tailored specifically for IoV settings. These
protocols are intended to ensure data security and integrity while facilitating seamless
model updates and promoting collaborative learning within a broad spectrum of
vehicular networks.

• Edge computing: Incorporating edge computing into FL-enabled IDSs within IoV
introduces both challenges and potential solutions. While local data processing on
devices has the potential to alleviate network bandwidth demands, it also brings
about issues related to resource limitations and data diversity. IoV devices, often
constrained in terms of available resources, face difficulties when attempting to ex-
ecute computationally intensive FL algorithms on the device itself. Furthermore,
ensuring consistency and accuracy in updating models across various vehicles with
different hardware configurations and data formats presents a significant challenge.
Future research in this domain seeks to enhance the effectiveness of edge computing
methodologies, facilitating efficient local data processing and collaborative learning
while mitigating the variations in device capabilities. Leveraging edge computing,
IDSs empowered by FL in IoV can realize benefits such as reduced communication
overhead and improved real-time intrusion detection capabilities [68]. This, in turn,
contributes to the establishment of more secure and responsive vehicular networks

• Optimization of Federated Learning and intrusion detection system parameters: FL
predominantly relies on deep learning models that involve a diverse set of trainable
parameters, which the user can configure. Additionally, IDSs are highly sensitive
to these parameters. The next research avenue in FL-enabled IDSs for IoV involves
optimizing FL and IDS parameters, as this directly impacts performance and train-
ing effectiveness [45]. Given the dynamic and diverse nature of IoV environments,
it becomes imperative to identify the most suitable parameters for FL algorithms.
This includes determining appropriate learning rates, aggregation methods, and local
model parameters. In addition, customizing these parameters for specific intrusion
detection tasks and diverse vehicular datasets can significantly improve the perfor-
mance and accuracy of FL-enabled IDSs [51]. Future research should explore these
factors in greater depth, utilizing methodologies such as hyperparameter tuning and
adaptive learning algorithms [51]. By optimizing these parameters, researchers can
finely tailor FL-enabled IDSs to suit specific IoV scenarios. This optimization process
ensures effective collaboration, precise intrusion detection, and minimized communi-
cation overhead, ultimately paving the way for the development of more robust and
responsive vehicular security systems.

• Heterogeneity and interpretability of the Federated Learning model: In the realm
of FL-enabled IDSs for IoV, the heterogeneity and interpretability of FL models are
of paramount importance. Heterogeneity stems from the distinct characteristics of
vehicular data and the varying capabilities of different vehicles and their sensors.
Coordinating multiple models for effective collaboration, especially in real-time in-
trusion detection, introduces a high degree of complexity. Moreover, prioritizing the
interpretability of these models is crucial, as it enables a comprehensive understand-
ing of the rationale behind intrusion alerts. This understanding is valuable for both
developers and end-users. Future research endeavors are geared towards developing
approaches that harmonize these diverse models, ensuring their seamless integration
to enhance intrusion detection accuracy Simultaneously, researchers are dedicated to
enhancing the interpretability of FL models through methodologies like explainable
AI, which provides insights into the decision-making processes of these models. By
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effectively addressing these challenges, FL-enabled IDSs in IoV can achieve a state
of equilibrium that encompasses various data sources, model interpretability, and
efficient intrusion detection. This, in turn, fosters confidence and comprehension
among stakeholders in vehicular security.

• Big data management: Effective management of big data poses a significant challenge
within the context of FL-enabled IDSs in IoV. The sheer volume, velocity, and diver-
sity of data generated by vehicles require robust storage, processing, and analysis
capabilities [69]. The integration of FL-enabled IDSs necessitates the use of extensive
data for training and model updates. Efficiently handling this vast amount of data is
paramount. The complexity lies in maintaining timely data collection, aggregation,
and storage while preserving real-time intrusion detection capabilities, particularly
when considering the limited resources of vehicle networks. Future studies will con-
centrate on creating distributed and scalable storage systems, better data processing
algorithms, and advanced data analytics methods. By addressing big data manage-
ment challenges, FL-enabled IDSs in IoV can harness the wealth of vehicular data
efficiently, enhancing the precision and agility of IDSs in dynamic and networked
vehicular environments.

• Sparse data: Vehicle data, especially regarding specific types of security threats, can
be sparse and unevenly distributed across vehicles. Data sparsity may lead to biased
models, as they might not adequately capture certain types of intrusions. Conse-
quently, this limitation can hinder the overall effectiveness of the IDS. Addressing the
issue of sparse data requires innovative methodologies, such as data augmentation,
imputation approaches, or customized algorithms designed to handle incomplete
datasets effectively [70]. Future research efforts aim to develop algorithms that can
successfully enable FL models to learn from limited and irregular data. By effectively
tackling the issue of sparse data, FL-enabled IDSs in IoV can enhance their precision,
ensuring a more comprehensive and nuanced understanding of various intrusion
patterns across different vehicular scenarios.

• Stability: Stability is a significant challenge within the context of FL-enabled IDSs in
IoV. The inherent instability of the FL process is introduced by the dynamic nature of
vehicular networks, characterized by the continuous changes in the composition and
positions of vehicles. This variability can potentially disrupt the FL environment, af-
fecting the consistency and accuracy of the IDS models. Maintaining stability requires
the implementation of robust systems to address fluctuations in participation rates,
network disconnections, and intermittent data availability [69]. Future research aims
to develop algorithms that can adapt dynamically to changes in the network, ensuring
the stability of FL models, even when confronted with evolving IoV scenarios. By
addressing this challenge, FL-enabled IDSs in IoV can consistently perform at a high
level, providing reliable capabilities for detecting unauthorized access despite the
everchanging characteristics of vehicular networks.

• Reliability: Applications related to intelligent transportation and unmanned aerial
vehicle detection demand a high level of reliability due to their safety-critical nature.
Failures in meeting reliability standards can lead to severe consequences, including
significant loss of life and property. Achieving reliability in the context of intrusion de-
tection within a diverse and dynamic vehicle network presents significant challenges.
Maintaining constant and accurate IDS performance is complicated by factors such as
network latency, fluctuations in data quality, and the reliability of data transfer from
individual vehicles. To ensure reliability, robust FL algorithms are needed to manage
data discrepancies, adapt to changing network conditions, and effectively integrate
data from diverse vehicles. Moreover, the timely and accurate deployment of intrusion
detection solutions depends on the reliability of model updates and communication
protocols. Future research aims to enhance the reliability of IDSs in IoV by refining
FL algorithms, improving data preprocessing methods, and optimizing communica-
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tion protocols. This will ultimately ensure the consistent and reliable operation of
FL-enabled IDSs across diverse IoV environments.

• Real-time data: In the context of vehicle environments, responding promptly to
security threats is crucial for ensuring passenger safety and network security. Swift and
effective intrusion detection relies on processing the substantial volume of real-time
data provided by vehicles. The primary challenge lies in developing FL algorithms
capable of handling this increased data volume efficiently, with a focus on enabling
timely anomaly or intrusion identification. Moreover, optimizing communication
protocols to efficiently transmit relevant real-time data to central servers for model
updates is of paramount importance. Future research in this area is directed towards
creating FL models that combine lightweight characteristics with high-performance
capabilities. This involves exploring the use of edge computing for local real-time
analysis and improving communication protocols to facilitate seamless and swift
sharing of real-time data [68]. By effectively addressing this challenge, the utilization
of FL-enabled IDSs in IoV can offer immediate responses to security threats, thereby
enhancing the overall safety and security of vehicular networks.

5. Conclusions

When we consider the extensive landscape of IDSs supported by FL in the context
of IoV, it becomes abundantly clear that we are on the threshold of a revolutionary era
in the field of vehicular network security. This realization is supported by the fact that
IoV is the foundation upon which IDSs are constructed. IoV requires a security paradigm
that is both resilient and adaptable due to its vast network of interconnected devices and
vehicles. With its decentralized approach, Federated Learning has emerged as a beacon,
offering a harmonious balance between data privacy and collaborative intelligence. It
addresses the growing concerns about data privacy in our hyper-connected world by
enabling vehicles to train models locally, ensuring that sensitive data are always retained
on the device, thus solving this problem. The aggregation of these local models at a
central location produces IDSs that are more accurate and capable of adapting to changing
threat land-scapes, while simultaneously tapping into the collective wisdom of the entire
network. However, challenges persist, as is expected with any emerging technology.
Further research should take into account issues such as scalability, real-time processing
demands, and maintaining model correctness across a wide range of vehicle nodes. In this
paper, we conducted a well-organized literature review on IDSs based on FL within an IoV
environment. We identified the relevant state of the art in FL-based IDSs within the IoV
domain, covering the years from FL’s inception in 2016 through 2023. Additionally, we
introduced a general taxonomy to describe the FL systems, ensuring a coherent structure
to guide future research. Finally, drawing upon the literature analysis, we elucidated
some of the main challenges and potential directions for future studies in developing IDSs
empowered by FL within the IoV context. In conclusion, as IoV continues to rapidly evolve,
the interdependence between FL and IDSs will play a crucial role in establishing a vehicular
ecosystem that is both secure and resilient, all while also safeguarding privacy.
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Abbreviations
The following abbreviations are used in this manuscript:

IoV Internet of Vehicles
IDS Intrusion Detection System
FL Federated Learning
IoT Internet of Things
SMPC Secure MultiParty Computation
SGD Stochastic Gradient Descent
DP Differential Privacy
LDP Local Differential Privacy
CDP Central Differential Privacy
non-IID non-Independent and Identically Distributed
HIDS Host Intrusion Detection System
NIDS Network Intrusion Detection System
ML Machine Learning
DL Deep Learning
VANETs Vehicular Ad-hoc Networks
V2V Vehicle-to-Vehicle
V2I Vehicle-to-Infrastructure
DoS Denial-of-Service
LSTM Long Short-Term Memory
DCNN Deep Convolutional Neural Network
SVM Support Vector Machine
RF Random Forest
FedAvg Federated Averaging Algorithm
BO Bayesian Optimization
MLP Multilayer Perceptron
R2L Remote to Local
U2R User to Root
FPR The False Positive Rate
MMD Maximum Mean Discrepancy
ED Energy Distance
NGA Number Of Global Aggregations
R Numbers Of Communication Rounds
FL-MAAE Federated Learning Memory-Augmented Autoencoder
SMC Secure-Multiparty Computation
UAV Unmanned Aerial Vehicle
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