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Abstract: In recent years, the need for computation-intensive applications in mobile networks requir-
ing more storage, powerful processors, and real-time responses has risen substantially. Vehicular
networks play an important role in this ecosystem, as they must support multiple services, such as
traffic monitoring or sharing of data involving different aspects of the vehicular traffic. Moreover,
new resource-hungry applications have been envisaged, such as autonomous driving or in-cruise
entertainment, hence making the demand for computation and storage resources one of the most
important challenges in vehicular networks. In this context, Mobile Edge Computing (MEC) has
become the key technology to handle these problems by providing cloud-like capabilities at the edge
of mobile networks to support delay-sensitive and computation-intensive tasks. In the meantime,
researchers have envisaged use of onboard vehicle resources to extend the computing capabilities
of MEC systems. This paper presents a comprehensive review of the most recent works related
to MEC-assisted vehicular networks, as well as vehicle-assisted MEC systems. We illustrate the
MEC system architecture and discuss its deployment in vehicular environments, as well as the key
technologies to realize this integration. After that, we review the recent literature by identifying
three different areas, i.e.: (i) MEC providing additional resources to vehicles (e.g., for task offloading);
(ii) MEC enabling innovative vehicular applications (e.g., platooning), and (iii) vehicular networks
providing additional resources to MEC systems. Finally, we discuss open challenges and future
research directions, addressing the possible interplays between MEC systems and vehicular networks.

Keywords: mobile edge computing; MEC; vehicular networks; intelligent transportation systems;
vehicle-to-everything

1. Introduction

In recent years, the volume of data generated by devices and applications in many
sectors—such as smart factories and smart transportations—has increased significantly.
According to Cisco, mobile data traffic reached a Compound Annual Growth Rate (CAGR)
of 46% from 2017 to 2022, reaching 77.5 exabytes per month in 2022, and annual traffic
has reached almost one zettabyte [1]. This has been propelled by the establishment of the
Internet of Things (IoT) and 5G (and Beyond-5G, B5G) networks. The 5G traffic prediction
represents 12% of the total mobile traffic [2]. This means that, with the upcoming era of the
IoT, the world is about to become smarter as well as able to offer countless applications and
services [3,4]. From the application standpoint, we can refer to smart cities, smart traffic,
smart transportation, smart agriculture, digital smart healthcare, smart homes, virtual
reality, augmented reality, and so on, which will be commonly used by the end of 2025 and
turn into daily applications. Consequently, managing and computing data produced by
the above-mentioned applications will soon be the most important challenge.

The pressure derived by such an amount of data for enhanced Quality of Service
(QoS), such as lower latency, higher bandwidth, and higher capacity, as well as lower
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energy consumption, has driven the advancement of new technologies to improve data
gathering, processing, storage, and communication. Technologies such as cloud and fog
computing have been introduced to enhance computation capabilities [5]. However, these
have limitations when it comes to handling an enormous amount of latency-sensitive data
and computing millions of tasks correctly in a time-sensitive way. Moreover, sending such
amount of data to cloud or fog layers generates high traffic load on the network, which
may become congested.

1.1. Motivation

Vehicular Networks (VNs) are a crucial component of the IoT ecosystem. These
networks are designed to facilitate communication and data exchange among vehicles,
as well as between vehicles and roadside infrastructure or remote servers. VNs play
a pivotal role in enhancing road safety, traffic management, and overall transportation
efficiency. The study of VNs has advanced to new heights thanks to the integration of
computers, transportation, communication, and vehicular technology [5]. According to
available data, the primary challenge that VNs are encountering is the integration of data
processing, communication networks, resource allocation, and applications, which has
severely hampered the growth of a fully automated Intelligent Transportation System
(ITS) [6]. In traditional cloud-based vehicular architectures, vehicles connect to the cloud
via Roadside Units (RSUs) and related network devices such as switches and routers.
Servers running in the cloud are responsible for computing tasks and making decisions for
the VNs. However, such a paradigm does not scale well, as it makes servers overloaded and
response times unpredictable and hence unsuitable for applications that require real-time
processing, such as autonomous driving.

Fog computing, on the other hand, moves computation power and storage resources
closer to the end user to reduce the time required to complete a task and prevent overloading
the links connecting the devices to the cloud. Tasks with bandwidth, latency, and reliability
requirements can be completed with fog computing. However, ultra-high-reliability and
ultra-low-latency factors in high-density VNs cannot be addressed with the support of
fog computing, as resources at fog nodes may be limited and they may need to interact
with the cloud to process data. Mobile or Multiaccess Edge Computing (MEC) can satisfy
the communication requirements of delay-sensitive and computation-intensive tasks and
provide more storage resources and processing resources due to its close proximity to the
end user. In a MEC architecture, tasks can be performed at distributed computing nodes
that are near the source of data at every point of the network.

A detailed review of the recent literature on MEC development is therefore required
to provide insight into the state of the art of this field and aid in the discovery of future
research pathways in the context of VNs. There have already been several surveys on MEC
in the last few years, as illustrated in Table 1. Work [7] investigated the architecture of MEC
with a focus on its various applications in different network areas. It mainly presented a
brief definition of the applications and architecture of MEC and did not investigate works
in the context of VNs. In ref. [8], authors illustrated a study on different architectures
of MEC and discussed use cases and challenges in the MEC area. This work does not
investigate the most recent works on MEC, i.e., those that have appeared since 2020. In
survey [9], researchers discussed MEC-enabled 5G use cases. They studied the architecture
of MEC and potential security issues in different networks. In ref. [10], authors studied
mobility-aware MEC. They concentrated on the mobility aspect of IoT devices, architecture,
services, and applications of things in distinct IoT networks. Work [11] presented a study
on MEC and VNs. Their work only covered usage scenarios, a range of services, and
technologies, without delving into the latest developments. In contrast, our paper delves
into recent advancements concerning the augmentation of computational resources, com-
monly employed applications, and the integration of vehicles to enhance MEC capabilities.
We also strived to provide readers with insights into the most up-to-date algorithms and
methodologies that are currently being employed in this context. In another study [12],
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authors worked on fundamentals, services, enablers, and challenges in MEC. They stud-
ied key technologies, applications, and services in MEC-enabled IoT. Their research does
not focus on a specific type of IoT network, such as VNs. The research initiatives for
managing user mobility in a MEC-assisted network for distinct types of services are ex-
amined in [13]. That work investigated caching and computation offloading considering
the mobility of diverse types of devices in MEC environments. Most of the above surveys
in the MEC area discuss IoT networks in their generality, and they are not specifically
focused on VNs. In ref. [14], researchers have studied mobility management, handovers,
communication dependability, and the effectiveness of techniques for offloading tasks in
a Vehicle-to-Everything (V2X) environment. Ref. [15] provides a review for computing
offloading strategies in the context of MEC. The study presents a comparative evaluation
of various frameworks while addressing the challenges associated with offloading in MEC.
However, that study does not specifically target VNs, focusing solely on offloading ap-
proaches. Work [16] provides a focused review of task allocation methods, highlighting
the methods and optimization algorithms in conjunction with various network types in
edge computing systems. In ref. [17], a thorough examination of MIMO-MEC research is
presented, delving into research scenarios, application scenarios, and evaluation indicators.

Table 1. Existent surveys on MEC.

Reference Year Main Contribution

[7] 2018 Various applications of MEC in different network areas of IoT
[8] 2019 Architectures of MEC, use cases, and challenges in IoT
[9] 2022 MEC-enabled 5G use cases, security

[10] 2023 Mobility of IoT devices
[11] 2022 Use cases and challenges of MEC in VNs
[12] 2022 Fundamentals, enablers, and challenges of MEC in IoT
[13] 2019 Mobility issues of both content-caching nodes and end devices
[14] 2022 MEC for V2X architectures and applications
[15] 2023 Comparison of offloading strategies in MEC
[16] 2023 Task-offloading algorithms and optimization approaches in MEC
[17] 2023 A review of the research status of MIMO-MEC networks

This work End of 2023
Using MEC for task offloading in V2X (Section 5);
using MEC to enable V2X applications (Section 6);

using vehicles to enhance MEC (Section 7)

1.2. Contribution

Our aim in this paper is to overcome the limitations of previous studies and comple-
ment them. We strive to cover the employed technologies, algorithms, and applications
that are used in MEC-enabled VNs in a comprehensive manner. Although MEC and VNs
have originated to tackle different needs, they crossed paths naturally at some point of
their evolution, as demonstrated by the extensive amount of literature involving both
technologies. In fact, MEC and VNs represent both a technological driver and enabler with
respect to each other. This paper—as well as its structure—was then motivated by the need
to review how the relationship between MEC and VNs has historically evolved.

In this regard, we identified the use of MEC as a provider of low-latency computing
capabilities to vehicles as a first cornerstone. The availability of computing resources in
proximity of vehicles (possibly following them while they are moving) paved the way
to task-offloading solutions, along with the related research efforts focusing on resource
allocation. As a natural consequence, these enhanced capabilities evolved towards exploit-
ing MEC resources to directly support vehicular applications themselves: this approach
allowed vehicles to be relieved from the burden of running complex applications (such as
collision avoidance and platooning) locally and with limited resources. More recently, the
increasing availability of resources at the vehicles made possible a third perspective, that
is considering vehicles as edge computing nodes themselves, hence exploiting possibly
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idle computing resources at the vehicles to augment MEC capabilities. To the best of our
knowledge, this is the first survey paper collecting works covering this last aspect.

In the first part of this paper, we provide a brief introduction about the evolution and
architecture of MEC, starting from cloud and fog computing paradigms. The deployment
of MEC in VNs is also introduced. Then, we discuss relevant technologies in the context of
MEC and VNs such as software-defined networking and digital twins, along with related
works, and we provide a classification for the existing works according to three main
categories identified above. Specifically, we consider works that use MEC as an extension
of vehicular capabilities (e.g., for task offloading), MEC as an enabler for vehicular applications
(e.g., platooning), and vehicles as an extension of MEC capabilities. Open research challenges
and future research directions are also discussed. Figure 1 presents the organization of this
paper, which reflects the proposed categorization of the most recent state-of-the-art works.
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To compile this review, we searched the Google Scholar database (which is cross-
publisher) for the following keywords (separated by semicolon): Vehicular Networks;
MEC-enabled; MEC-assisted Vehicular Networks; MEC-enabled Vehicular Networks; SDN
in MEC; SDN-enabled Vehicular Networks; Digital Twin in Vehicular Networks; Mobile
Edge Computing; Task Offloading in Vehicular Networks; Resource Allocation in Vehicular
Networks; MEC applications; Cooperative Task Offloading; Collision Avoidance; Tele-
operated driving; Platooning; Video Streaming.

We restricted our search to works published since 2019. However, we did add earlier
works when needed (e.g., when a newer work cited a methodology outlined in an older
one, or when it was found to be particularly relevant). This gave us a rather large starting
set, which we pruned based on significance. From that set, we expanded our search using a
“pointer chain” heuristic, i.e., we searched within papers citing or cited by those we already
had selected, still using relevance as an inclusion criterion. We also added standards
whenever necessary.

The rest of this paper is organized as follows. Section 2 provides a brief background
on the architecture of cloud computing and its deployment, fog computing architecture and
its features, and edge computing architecture and its characteristics. Section 3 includes the
definition of MEC-enabled VNs. In Section 4, cooperative technologies for MEC-assisted
vehicular networks are shown and recent works about that topic are presented. Section 5
illustrates recent works that exploit MEC to augment computing and resource capabilities
of vehicles. Section 6 reviews works where MEC is considered as a key technology to enable
vehicular applications, such as autonomous driving, platooning, and collision avoidance
applications. In Section 7, we present the works for augmenting MEC capabilities by using
vehicles. Section 8 shows the open challenges and future research opportunities. Finally,
Section 9 concludes the paper.

2. The Evolution from Cloud Computing to MEC
2.1. Cloud Computing

According to the official National Institute of Standards and Technology (NIST) defini-
tion [18], “cloud computing is a model for enabling ubiquitous, convenient, on-demand
network access to a shared pool of configurable computing resources (e.g., networks,
servers, storage, applications, and services) that can be rapidly provisioned and released
with minimal management effort or service provider interaction”. The cloud computing
model has been designed to address storage capacity and related computational issues [19].
Various types of clouds exist, each with its own peculiarities. All types of cloud are based
on virtualization. The “creation of a virtual (rather than actual) instance of something,
such as a server, a computer screen, a storage device, an operating system, or commu-
nication capabilities” is referred to as virtualization. In other terms, virtualization is a
strategy that enables numerous consumers and organizations to share one actual instance
of infrastructure or software.

2.1.1. Deployment Models

Public cloud: Public clouds provide services such as server access and storage capacity
through the Internet. Operated by third-party companies, these clouds oversee and control
all aspects of hardware, software, and substructure [20]. Users can avail themselves of
these services through easily accessible accounts, and payment is typically based on the
usage of the public cloud assets.

Private cloud: A private cloud is a cloud computing infrastructure dedicated solely
to a single organization. It may be administered either by the organization itself or by a
third-party service provider. In this setup, the resources within the cloud are restricted to
the customers affiliated with the owning organization, thereby heightening the security
and privacy of the stored information [21].

Hybrid cloud: Hybrid cloud is a combination of both the above-mentioned types of
clouds. Hybrid cloud deployment is implemented when a corporation simultaneously
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employs both public and private clouds, deploying distinct segments of interconnected
infrastructure, platforms, and applications across both domains. This strategy allows the
establishment to access the security and management attributes of private clouds where
required, such as storing and processing sensitive data. Concurrently, it capitalizes on the
advantages of a public cloud environment for activities such as inter-organizational data
sharing and managing capacity overflows [22].

2.1.2. Service Models

Infrastructure as a Service (IaaS): IaaS is one of the first service models provided
by cloud computing systems. It enables the use of available resources and servers based
on user needs. With this service and the components that are provided, customers do
not need to purchase and maintain the infrastructure needed to develop programs and
services, storage space, etc., thus minimizing costs [23]. More specifically, the mentioned
resources are like computer tools that have been turned into virtual ones. They also come
with extra services. For instance, monitoring the system, keeping it safe (and not just for
small businesses), distributing the workload evenly, creating backups, and more. Cherry
Servers and Microsoft Azure are two examples of this type of service model.

Platform as a Service (PaaS): PaaS is useful, e.g., to website and software developers.
In fact, with this service model, developers can provide, test, manage, and develop appli-
cations based on their needs and demands [24]. With this service, developers no longer
need to worry about basic infrastructure such as storage space, Internet, database, and
servers. This cloud computing service provides customers with a platform to perform
computations, including the operating system and programming environments. Examples
of this type of service model are Microsoft Azure, AWS Elastic, and Google App Engine.

Software as a Service (SaaS): SaaS is effective in providing services on the Internet
platform and is provided in a shared manner based on demand and need. With this type of
service, applications and software are provided to users via the Internet. The providers of
these services host and manage tasks such as security enhancement, software upgrades,
maintenance, and any infrastructure [25]. Examples of these popular services include tools
for accounting, systems for keeping track of customer relationships, and tools for handling
human resources, which are designed and developed by large companies such as Microsoft,
Oracle, and IBM.

2.2. Fog Computing

The Data Centers (DCs) of large companies providing cloud services can be quite far
apart, and this can cause some issues such as long end-to-end delays and lack of sufficient
bandwidth. These problems have not been addressed completely so far [26]. Fog computing
is an architecture initiated by CISCO in 2012 [27], as “an extension of cloud computing
paradigm from the core to the edge of the network. It enables computing at the edge of the
network, closer to IoT and/or the end-user devices using virtualization techniques”. NIST
offers another definition of fog computing as “a horizontal, physical or virtual resource
paradigm that resides between smart end-devices and traditional cloud computing or data
center” [28] (Special Publication 800–191). According to [29], fog computing is “a scenario
where a huge number of heterogeneous (wireless and sometimes autonomous) ubiquitous
and decentralized devices communicate and potentially cooperate among them and with
the network to perform storage and processing tasks without the intervention of third
parties. These tasks can be for supporting basic network functions or new services and
applications that run in a sandboxed environment. Users leasing part of their devices to
host these services get incentives for doing so”. Figure 2 presents the basic architecture of
fog computing.
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Fog computing is about avoiding exchanging data with remote network elements as
much as possible, as one would in a cloud computing paradigm. Instead, devices close
to each other can share data directly using device-to-device communication and nearby
small cell networks [30,31]. Furthermore, in a Fog Network (FogNet) [32], the devices at
the edge share some of their resources, such as computing power and storage capacity, to
help neighboring nodes. Only the tasks that the edge devices cannot handle are sent to the
main cloud for processing. Consequently, fog computing reduces the computing load of
the cloud remarkably. The differences between fog and cloud computing are summarized
in Table 2.

2.2.1. Architecture

The three-tier architecture shown in Figure 3 is the most widely utilized one in fog
computing [33]. The tiers are presented as follows:

• Tier 1—IoT Devices: This level mainly comprises user equipment such as smartphones,
intelligent cars, etc. We call these devices Terminal Nodes (TNs). TNs might have
features such as a Global Positioning System (GPS).

• Tier 2—Fog (middle layer): There is a special plane in this architecture called the
fog computing plane. In this plane, there are devices such as routers, switches, and
Access Points (APs). These devices not only exchange data but they can also share
their storage space and computing power.

• Tier 3—Cloud: This faraway layer is equipped with extensive storage capacity and
powerful computing resources that can handle a lot of information and perform
complex tasks.
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2.2.2. Applications

Fog computing emerges as a practical solution for executing tasks under limitations
related to bandwidth and delay. It plays an important role in handling different needs
for various applications, such as making homes smarter [34–36], managing transporta-
tion [37,38], surveillance with face recognition [39], running health-related applications [40],
and even helping large industries [41]. However, interoperability is a challenge [42]. To
address these issues, fog computing integrates all various tasks and their requirements into
a single platform and provides elastic resources to smart home apps. There are numerous
applications for vehicular fog computing [43], such as traffic signal scheduling, congestion
reduction, hazard sharing, traffic situation data, and so on. The fog nodes are in charge of
sending/retrieving data to/from passing cars.

Smart health is another area addressed by fog computing. Health data include im-
portant and confidential information, and management of health information has been an
issue of concern. It is possible to accomplish the objective of patient ownership of their
own medical information locally using fog computing [42]. Medical information will be
kept in a fog node, which may be a smartphone or an intelligent vehicle. When a patient
seeks assistance from a clinical laboratory or a physician’s office, computations occur in a
privacy-preserving mode. Moreover, information is modified locally in the patient-owned
fog node [42].
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Table 2. Differences between Fog and Cloud computing.

Features Cloud Computing Fog Computing

Server hardware Large-scale data centers (including a
significant number of highly capable servers)

Small-scale data centers (moderate or
low resources)

Server location Far from end users, installed in large premises,
accessed via wired Internet [41]

Located near the end users, communication via
Wi-Fi, LTE, 5G, etc.

Deployment cost High, requiring complicated configuration
and planning

Low, requires ad hoc deployment with or
without planning

Computing method Centralized Distributed or centralized

Operated by Large companies Small or large companies

System management Centralized control Hierarchical control

Applications Cyber-domain, time-tolerant, and
high-intensity computation applications

Supports both cyber-domain and
cyber-physical applications, specifically

latency-sensitive applications

Backhaul usage Frequent use Lower use, avoiding traffic congestion

Latency control Low High

Reliability High Low

Maintenance By technical experts Requiring little or no human intervention

2.3. Edge Computing

Edge computing is a newer approach to handling computer tasks, concentrating on
performing computations right where the information is produced, i.e., at the edge of the
network. It follows a distributed architecture, processing user data as close to their source as
possible. Recent data indicate that edge computing is revolutionizing the way information
is dealt with. Rather than sending raw data to a central data center for processing and
analysis, edge computing tackles this right where the data originate, be it from an online
store, a manufacturing unit, a utility, or a smart city. In this setup, tasks such as initial data
analysis and checking for potential issues in critical equipment or software are carried out,
with the results then sent to the data center for a more thorough examination.

Edge, fog, and cloud computing share some common traits. All three are connected
to distributed computing, but they differ in the physical positioning of computing and
storage resources with respect to where data originate. The primary contrast among these
technologies lies in determining the ideal location for the necessary resources. Lately,
there has been a notable shift in computing, introducing a progressive extension of cloud
capabilities to the network edge [44,45]. This involves harnessing the substantial amount
of underutilized computing power and storage resources scattered at the edges of the
network, enabling the efficient execution of computation-intensive and time-sensitive tasks
on mobile devices. This innovative approach is referred to as Multiaccess Edge Computing
(MEC) [46]. Moreover, the advent of 5G technology has spurred a significant demand for
new cloud services, given the substantial surge in mobile devices. These services encompass
mobile cloud games, remote control services for air and ground vehicles, and applications
managing manufacturing processes [7]. To meet these evolving demands within cellular
networks, conventional cloud-based platforms are undergoing a transformation, expanding
their services to enhance the user Quality of Experience (QoE). This involves providing
rapid and robust computing, energy efficiency, ample storage capacity, as well as support
for mobility, location awareness, and context awareness [47]. MEC emerges as a solution to
address these requirements by seamlessly integrating cloud functionalities at the edge of
the network.



Future Internet 2023, 15, 391 10 of 45

2.3.1. Definition of Mobile Edge Computing

As maintained by European Telecommunications Standards Institute (ETSI) [48], mo-
bile edge computing “provides an IT service environment and cloud computing capabilities
at the edge of the mobile network, within the Radio Access Network (RAN) and in close
proximity to mobile subscribers”. MEC changes how mobile data are handled by con-
necting users directly to a nearby cloud platform, avoiding direct travel through the core
network. The RAN helps with this connection in the cellular communication system. MEC
is like an upgrade for mobile Base Stations (BSs), blending information technology and
telecommunications [48]. It is seen as a crucial part of the future 5G networks, working
alongside technologies such as Network Function Virtualization (NFV) and Software-
Defined Networking (SDN) to transform mobile broadband into a programmable space
that meets the specific needs of 5G, such as speed, delay, scalability, and automation [49].

2.3.2. Mobile Edge Computing Architecture

In this section, some MEC architectures that have been proposed in the last decade
are reviewed.

• Mobile Micro Cell (MMC)

Making sure that applications such as augmented reality and video streaming work
smoothly is a big challenge for current technologies. The MMC solution, described in [50],
puts a server right in the BS, so devices such as smartphones connect directly for super-fast
access to resources. The MMC has ultra-low delays and does not need central control, but
it faces challenges such as handling disruptions and balancing the load.

• Small Cell Cloud (SCC)

SCC uses small cell RANs in cellular systems, like LTE, with small BSs covering short
distances. The aim is to boost the efficiency of these networks since user devices are nearby.
In SCC, Small Cell Managers (SCMs) enhance the capabilities of BSs, making it easier to
manage resources dynamically. This setup allows for powerful computing at the network
edge, but coordinating BSs and deploying SCMs optimally is still a challenge. In a model
for MEC using SCC, authors, in [51], considered multiple users, geographically spread data
centers, and provider profits, using the NSGA II algorithm [52] to balance user satisfaction,
identifying a Pareto front [53] and provider benefits. However, mobility was not addressed.

• MobiScud

Network service providers have begun to use highly distributed mobile network
architectures, utilizing new technological approaches such as NFV and SDN, to reach goals
such as scalability, flexibility, and low latency of future applications [54]. Further limitations
such as backhaul adaptability and standards compatibility make the process of deploying a
cloud-based architecture like cloudlets in cellular networks even more laborious. Moreover,
some services and applications, such as cognitive augmentation and smart healthcare, need
to exchange sensitive and private information quickly between devices (UEs) and the cloud.
MobiScud is designed to handle these limitations and problems. In [54], the authors use a
method from an earlier work on the SMORE architecture [55]. This method moves certain
data to an internal cloud platform without changing how standards for interactions work,
using SDN features. SDN features help send low-latency, high-computation applications
to a private Virtual Machine (VM) platform. To move specific data to a private VM in the
cloud for user applications that need low latency, the MobiScud control function cooperates
with the main network, the cloud operator, and the SDN plane.
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• Follow Me Cloud (FMC)

A new method to implement collaborative services in mobile networks is a networked
federated cloud [56] to effectively support mobile users’ demands in relation to the geo-
graphical coverage and proximity of DCs to UEs. It includes allocating virtual resources
provided on several distributed DCs over a particular geographical region, upon the infras-
tructure of different federated cloud providers in a transparent way. To address the modern
tendency of cloudifying the mobile network infrastructure and providing mobile services
in a flexible manner, it is crucial to take into account user needs, the availability of in-region
resources, and the flexibility of the virtualization methods on which federated clouds are
built [57]. The concept of federated clouds is to connect the geographically dispersed DCs
into a shared resource pool to provide various cloud services. When a service request is
received, a DC is selected to handle it through the network. It is crucial to spread cloud
resources in different places to be closer to users, which makes serving tasks faster and
have lower communication cost. To handle requests optimally, a special process guides the
request to the best DC based on available resources, user requirements, and expected QoS.
This process also moves the service to other DCs if needed. The Follow Me Cloud (FMC)
idea, from [58], suggests moving user services between data centers using VMs to support
service continuity when users move or when there is an excess of demand. FMC ensures
services stay connected as users move and provides access to cloud services from the best
DC at the same time.

• ETSI Multiaccess Edge Computing

In 2014, ETSI started the standardization work for the mobile edge computing archi-
tecture, whose initial specifications were notably related to cellular networks. However, at
the end of 2018, ETSI extended its focus to other networking technologies such as cable net-
works and non-3GPP networks such as WiMAX [59] and switched the name to “multiaccess
edge computing”—still having MEC as an acronym—to better highlight its access-agnostic
nature. In [60], a complete framework for MEC is illustrated, which includes a reference
architecture that outlines the characteristics of different crucial components, connection
points, and interfaces and how they are interconnected. This architecture is composed of
three parts as shown in Figure 4: first, a MEC system plane, which includes device applica-
tions and a MEC orchestrator, then a middle plane known as the MEC host plane, which
consists of MEC applications, the MEC platform, virtualization substructure, and their cor-
responding components, and finally the core and cloud network plane. MEC applications
can perform various jobs, such as running a task on behalf of the user, obtaining location
information, task offloading, and resource allocation, by running VMs in virtualization
infrastructure. The responsibility of coordinating and interacting among MEC applications
is on the MEC platform. The principal coordinator among the user side and other parts
of architecture is the MEC orchestrator, which provides services such as keeping track of
available resources, creating connections with the virtualization infrastructure, managing
applications, etc. The UE application runs on the user-side device. Due to being near the
user, MEC provides the lowest latency for real-time applications and it manages available
resources and allocates them to applications in an optimal way in terms of storage and
computation resources [60].
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3. MEC Implementation in Vehicular Networks

Nowadays, the world is experiencing substantial growth in Internet usage and tech-
nology, especially in the IoT and the Internet of Vehicles (IoV). Consequently, the need
for safety and mobility control of smart cars has introduced new challenges in this field.
Researchers and service providers have presented new methods to address these issues
and provide the best QoE. The rest of this section illustrates a general model for deploying
MEC in VNs.

The design model of MEC in VNs is depicted in Figure 5. It consists of three different
layers [11], namely the user-side layer including smart cars, the MEC layer including
distributed Roadside Units (RSUs) and MEC servers to provide storage and computa-
tion resources, and the core network layer which has cloud platforms and core network
data servers.
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3.1. User-Side Layer

Each smart car is equipped with a Vehicle Terminal (VT) which has its own storage
and computing capacity and handles all the connection processes for the Vehicle-to-Vehicle
(V2V) and Vehicle-to-Infrastructure (V2I) links in order to transfer data. Every VT is
responsible for sensing and collecting data from the internal and external environment—
such as GPS data or video streams from onboard cameras—and sending them to the MEC
layer, if deemed necessary. Usually, computing tasks related to local applications are
handled within the VT.

Several technologies enabling V2X communications can be used, as highlighted by [61].
The IEEE 802.11p technology is the basis for the Dedicated Short-range Communication
(DSRC) in the United States [62] and ETSI ITS-G5 in Europe [63], which operates in the
5.9 GHz spectrum for ITS. It is a mature technology and the de facto standard for V2X
communications and favored due to its ease of deployment and the native support for V2V
communications in an ad hoc manner. Cellular-V2X (C-V2X) and its evolution NewRadio
(NR)-V2X have been proposed by 3GPP as an extension of the 4G and 5G networks, re-
spectively, to support vehicular communications by exploiting the existing high-capability
cellular infrastructure [64,65]. A thorough comparison of the V2X communications per-
formance between these two technologies has been carried out in [66]. Visible Light
Communication (VLC) has also been proposed as a V2X communication technology. It
employs the rapid modulation of light sources, such as LED bulbs, to encode and transmit
data. It is mostly used for direct communications in the vicinity through head-to-tail
links, especially for safety applications when radio-frequency-based technologies are not
available or may suffer congestion [67].

3.2. MEC Layer

Gathering and processing data from VTs are performed in this layer. MEC servers are
installed in proximity to RSUs, and their computation and storage resources are usually
larger than the VTs’. Moreover, MEC servers have more communication resources in
order to access the core network, such as fiber/cable connections, which enables them to
access the core network at a high speed. After processing the data from the VTs, some
of the collected data and computation results may be transferred to the core network
layer. Deploying MEC servers aims to reduce communication overhead and end-to-end
delay. Moreover, MEC servers manage local demands and tasks produced by vehicles and
respond to them.

3.3. Core Network Layer

Cloud servers have a huge capacity to cover all needs of the networks and make
optimal decisions. Those are deployed in remote data centers and store the transferred data
from MEC servers. The role of processing uploaded data and information is performed by
cloud servers, and the cloud creates a global and centralized control and management over
the whole VN.

4. Key Technologies for MEC-Assisted Vehicular Networks

This section reviews the key technologies necessary for effectively incorporating MEC
into VNs. These technologies play a pivotal role in improving the abilities and efficiency of
VNs by moving computation, storage, and networking resources closer to the network’s
edge. This proximity enables the development of a variety of applications and services
specifically designed for vehicular environments. In the following paragraphs, we will
examine these technologies and their related works, which include Software-Defined
Networking (SDN) and Digital Twins (DTs).

4.1. Software-Defined Networking

SDN consists in employing software-based controllers or Application Programming
Interfaces (APIs) to communicate with the core hardware architecture of the network.
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Instead of running management protocols within standard networking devices such as
switches, SDN manages the routing of data packets in virtual networks or conventional
hardware through a centralized server called the SDN controller. Network virtualization
helps network operators to build various virtual networks within only one physical network
or to connect devices on different physical networks to create a single virtual network. In
the rest of this section, we present recent works on SDN-enabled VNs.

In ref. [68], authors introduce a system that combines deep learning algorithms with
5G technologies (network slicing, MEC, SDN) to support applications in order to provide
safety in IoV. They integrate the 5G slicing functionality using the SDN paradigm to enable
flexible resource allocation to improve heterogeneous autonomous car applications’ KPIs
(e.g., low response time and low packet drop requirements). Then, they propose to employ
AI techniques in an autonomous car to check driver conditions remotely and report serious
incidents exclusively to the Remote-Control Center (RCC). The need for bandwidth is
significantly reduced because of the integration of AI methods and the MEC paradigm.
Additionally, the MEC approach is utilized in order to provide safety servers and to make
it easier to meet the delay targets. The entire pipeline begins with the video stream that
has been recorded by the smartphone and proceeds via machine learning processes to
assess a driver’s drowsiness. Lastly, they proposed SDN as a 5G slicing implementation
approach to deliver vital signals to the control center with the necessary level of QoS. Their
suggested method achieves a considerable improvement in average Round-trip Time (RTT)
and throughput across many scenarios.

In the current design of edge-based Vehicular Ad Hoc Networks (VANETs), each
edge node operates independently, lacking efficient techniques for interaction among
the involved smart objects, potentially leading to a load-balancing issue [5]. To address
this challenge, researchers, in [69], have developed a three-level routing hierarchy based
on the Dijkstra algorithm for an enhanced SDN and MEC-assisted VANET architecture.
This model employs a control system to provide best-effort services for the VANET while
considering the operational states of edge nodes. It incorporates a vehicular trajectory
prediction algorithm to enhance network transfer efficiency. By utilizing edge devices for
distributed computing and transmission, this approach can significantly reduce system
processing load, improve system performance, and accelerate service response times. The
routing hierarchy integrates three communication forms: V2V, Vehicle-to-Edge (V2E), and
Edge-to-Controller (E2C). This integration offers protocol-independent routing, making
effective forwarding decisions for various applications. The hierarchy is designed to
manage dynamic and unpredictable VANET environments. The architecture is illustrated
in Figure 6, and experimental results demonstrate that the proposed three-level routing
hierarchy in the upgraded SDN-MEC-VANET design significantly enhances performance.
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There are challenges in an SDN-based MEC architecture: first, how to address the
communication issues derived by single link failure and maintain the performance of the
network by handling latency problems. Secondly, how to place the controller to minimize
network cost. Work [70] addresses these two challenges and proposes a mobility-aware
solution, focusing on an adaptive deployment technique, and a reliable controller placement
approach based on deployment cost and link failure probability. Firstly, the deployment
cost content is presented. After that, a model is created to understand how reliable the
system is and to estimate the maximum possible delay in the worst-case scenario, based on
the likelihood of connection failures. To enhance user experience by reducing the perceived
latency and the cost of relocation, a mobility-aware service-adaptive deployment strategy is
proposed. The maximum range of mobility is then estimated using a probabilistic approach.
Subsequently, a user mobility-based service deployment overhead model is established,
considering computing and communication delays and migration costs. Finally, to avoid
frequent service migration, a long-term migration cost is implemented. The last step
involves experimental testing and comparison of the proposed strategy which includes
implementing cost and connection failure likelihood. In [71], authors devise a MEC-assisted
VN model that takes into account the communication interference that occurs when tasks
are offloaded or relocated in order to reduce the computational cost. They utilize SDN
in order to control data traffic. In the network, a sub-SDN controller collects data related
to specific computing tasks of target vehicles and information about idle vehicles. This
includes the location, direction of travel, and CPU frequency of the on-board unit of the car.
Information about the computation task for the target vehicle includes specifics like the task
volume, workload, and the maximum acceptable latency. The vehicle typically transmits
information to the closest RSU on a regular basis. The RSUs keep the gathered data in the
MEC server to provide them to the SDN controller. They suggest two algorithms—a Task
Migration (TM) algorithm and a Computation Overhead Minimization Offloading (COMO)
algorithm—that can decrease computation costs and boost task execution success rates.
In [72], a unique Software-Defined Vehicular Network (SDVN) architecture for offloading
tasks is introduced. Collecting global data about the car, the task, and the RSU can be
achieved by implementing the SDVN control system at the routing layer. This facilitates
the implementation of an optimal processing scheme for real-time tasks associated with
connected cars. They propose an efficient method for evaluating performance through a
software-defined predictive task migration scheme. This approach involves modeling the
transition of vehicle task offloading, which includes estimating the final delay and power
consumption. The SDVN design is structured into three planes: the traffic layer, data layer,
and control layer. Vehicles that are on the road and have varying task requirements make
up the traffic layer. The task data movement between RSU is included in the data layer.
Via an area-deployed SDN controller, the control layer will put the migration decision into
action. When a vehicle is in range of an RSU, tasks are offloaded to the RSU via the wireless
link. Specific RSUs, acting as fog nodes with robust computing capabilities, can handle
these tasks locally. Alternatively, some RSUs may transfer the workload from the local
cloud to the central network for processing. The SDVN controller collects and manages
information tables for vehicles, fog nodes, and tasks. These tables include the vehicle data,
the fog node data, and the task data [72].

In ref. [73], researchers propose a framework for edge computing that leverages SDN.
The aim is to provide a more detailed explanation of the task migration and application
relocation rules outlined by the ETSI. In this model, they use cloud-native solutions and the
Docker container platform for service relocation. The SDN system predicts when service
migration will happen, selects the best target MEC host, manages bandwidth, and ensures
a smooth transition [74]. SDN acts as a MEC orchestrator in the suggested architecture [73],
coordinating MEC hosts and making network-related decisions. Integrating the Docker
container framework brings benefits such as application mobility, stability, scalability, and
quick implementation times to the MEC design.
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To solve the issues in both communication and computing while meeting the QoS
needs of diverse applications, researchers, in [75], present an Autonomous Vehicular Net-
work (AVNET) framework that considers the SDN and NFV ideas in MEC. MEC facilitates
effective collaboration among various wireless networks. Moving computing tasks to the
network edge, such as in cooperative driving, enhances response times and data transmis-
sion speed. MEC servers can store and process crucial information such as HD maps. By
separating the control and data layers and integrating SDN with MEC hosts, a cohesive
control interface is established without additional installations. This approach enables
global network control for optimizing resource usage and efficient traffic management.

The strategy proposed in [76] uses SDN to create a unified control layer for efficient
connection and task management, addressing reliability and improving the mobile user
experience. Researchers developed an Extended Forwarding Module (EFM) allowing
access points to communicate with the SDN controller. This controller handles service
classification, mobility control, and network resource development. To manage mobility
in MEC-enabled 5G and VNs, four components were created, including a performance
monitor module. The 5G-MEC design incorporates SDN enhancements and Soft-varied
Multiple Access Management Services (S-MAMSs), optimizing resource utilization and
allowing mobile users to connect to multiple services simultaneously using different radio
access protocols.

In ref. [77], scientists investigated Xavier-Convolutional Neural Network (XCNN) and
Distribution-Satin Bowerbird Optimization (CD-SBO) algorithms with caching approaches
performed with the help of a vehicles’ cache memory for MEC-assisted IoV and using
SDN for energy-efficient resource allocation. For data processing, each RSU is outfitted
with a MEC server. To improve communication efficiency, vehicles are grouped based on
RSU coverage using a clustering algorithm. The model includes using Kullback–Leibler
Divergence-K-Means Algorithm (KLD-KMA) and CD-SBO algorithm for load balancing
and data parsing, achieving lower latency compared to other schemes.

To give precedence to services related to road safety in emergency scenarios, re-
searchers in [78] presented a fog (MEC)-level adaptive slicing framework with the support
of SDN/NFV-based IoV. The idea is to periodically offload resources to handle emergency
traffic load, and then restore the original resource allocation when the situation is back
to normal. The results obtained demonstrate that the latency, which is the paramount
QoS parameter for emergency services, is decreased by temporarily transferring certain
resources from the entertainment slice to improve the resources in the road safety plane.

In ref. [79], authors investigate the cooperative optimization problem for congestion
control and compute offloading in multiserver vehicular edge computing networks. They
suggest an approach considering balancing network load for computation offloading
relying on Asynchronous Advantage Actor–Critic (A3C) in the automotive edge domain
supported by SDN. Additionally, they create a resource provisioning and offloading scheme.
The MEC host is installed in the RSU, where a Cellular-Vehicle-to-Everything (C-V2E)
or Dedicated Short-range Communication (DSRC) mechanism enables V2I. RSUs may
communicate with several cars using MIMO technologies. SDN is used to assist the
collaboration of the heterogeneous Vehicular Edge Computing Network (VECN) design
in order to provide traffic balancing among several servers with offloading workloads
simultaneously. SDN controllers are often located in BS or remote system units, which can
centrally monitor and regulate the requests and information from the data layer.

4.2. Digital Twin

Digital Twins (DTs) can construct virtual replicas of actual (physical) things by using in-
formation, concepts, structures, functions, and computing power in the digital domain [80].
The real-time status of physical objects is continuously predicted, estimated, and analyzed
by virtual digital models [81]. The network layout and characteristics of actual elements
can be accurately reflected using these virtual objects. Many studies have investigated
using DTs to improve the effectiveness of VNs assisted by MEC. Moreover, the concerns
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of selecting the target MEC server and task offloading supported by Artificial Intelligence
(AI) can be addressed at the same time by the development of DT innovation. In the rest of
this section, we present some of the latest works regarding this subject.

Researchers in [82] address how Vehicular Edge Computing (VEC) networks and
DTs operate together. They suggest a three-layer adaptive VEC network built on a digital
twin. To achieve reliable network orchestration, the two near loops between the physical
VEC network level and the virtual network plane are controlled by AI. They analyze a
DT-enabled VEC offloading challenge that seeks to reduce the overall process time of all
cars in order to explain the combination of DT and VEC further. In this issue, the DT is
used to create virtual representations of the cars and RSU. They develop an intelligent
system for flexible and innovative offloading decision making using Deep Reinforcement
Learning (DRL).

In ref. [83], authors create a virtual domain that accurately represents the real entity
and uses DT to simulate the transfer of computations and application-caching in MEC-
enabled Intelligent Transportation Systems (MITSs). To speed up computing offloading,
they use mixed-integer non-linear programming. They also introduce an approach based
on decision theory in MITSs to address the problem by aligning user needs with the com-
puting capabilities of MEC-powered RSUs. Their results demonstrated that this approach
outperforms other baselines.

Scientists, in [84], create a system using decision theory and MEC to enable smart
and reliable lane-changing for Connected and Automated Vehicles (CAVs). The system
gathers information about the surroundings from non-visible lanes, and the tasks for
lane-changing are shared between the vehicle and the computing node, offering different
safety levels in various scenarios. The DT converts the network information to a connected
wireless network simulation model and a traffic congestion simulator before creating
simultaneous virtualization of the actual MEC network. It gives CAVs the ability to learn
lane-changing tactics using a foresight-informed strategy that not only maximizes traffic
stream effectiveness but also includes its own advantage. It is possible to assess and
validate the learned approach in the DT layer before pushing it to the CAVs for lane-
changing actions. In the last step, they utilize DRL for assessing their suggested method.
The results show that the proposed strategy ensures the flexibility and reliability of the lane
changing and controls steering, cruising, and acceleration in an effective way.

In another study, researchers suggest a Digital Twin-Driven Vehicular Task-Offloading
and Intelligent Reflective Surface (IRS) Configuration Framework (DTVIF) [85]. First,
they present the DTVIF approach for IoV. The use of a DT can offer an automatic control
methodology for self-driving vehicles, decisions and actions for a dynamic environment,
and possible future approximation. The best strategy for utilizing edge capabilities and
having better quality in transmission links can both be enhanced by the merging of IRS and
MEC. In order to reach the best decisions for a joint task offloading and IRS structure, they
suggest an optimization problem. To address this problem, they investigate a two-stage
algorithm that is relied on DRL and Transfer Learning (TFL). Their results show that their
method can efficiently decrease latency and energy consumption.

In order to achieve data fusion from numerous devices, ref. [86] proposes to run an AI
algorithm in a remote MEC server, based on a 5G Time-Sensitive Networking (TSN) [87]
network. The model is rendered on the MEC and then transmitted to the vehicle to support
smart driving [86]. The edge-to-cloud smart car integrative system’s design, which is based
on 5G and TSNs, is employed to meet the system’s low-delay and predictable transmission
needs. The system processes the returned streaming video to the end vehicle using AI and
DT engineering, making driving assistance more natural. In order to provide a broader
range of MEC services and to realize more cost reductions, this article advocates placing
the 5G MEC infrastructure near the user. The suggested model utilizes AI for extracting
additional data. Subsequently, it employs DT representation to communicate these findings
to the vehicle in a user-friendly and comprehensive manner. The twin rendering layer then
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responds with only a few milliseconds of delay, enough for combining real and virtual
information in a dual-landscape augmented reality.

The task transferring issue in IoV is addressed in [88] using a DT, and the best outcomes
are found using DRL. The DT and DRL are used to record and examine the system states.
Traffic time series, the price of cloud server and bandwidth, and the available MEC servers’
processing capabilities are all taken into account. The obtained state by the DT is used
as an input for DRL, and the goal is to reach the shortest delay for task processing and
reduce energy usage and renting costs. Moreover, DTs are used in [89] to determine the
best caching method for a VN. The edge buffering device is instantiated in the digital world
by utilizing a DT, which makes it easier to build a social connection design to address the
varied and complex attributes of cars. The concept involves creating a specialized cache
cloud for vehicles. This system is designed to consider the specific data-caching needs
of different cars in various traffic scenarios. The development is based on a social-aware
framework model, taking into account the social context of the vehicles. Then, an ideal
socially aware caching tactic is put forth, which jointly takes into account the social model,
cache cloud arrangement, and cache storage management and adaptively controls the
buffered resources of RSUs and cars considering the similarity of user precedence and
service access.

In another study, a new comprehensive network virtualization framework is used
which combines DTs with network slicing to virtualize the service-centric and user-centric
slices in order to manage the network in an effective way [90]. This approach enhances
the potential for preparing services and monitoring the network effectively. The novel
Environment-aware Offloading Methodology (EAOM), which is built on the Integrated
Sensing and Communication (ISAC) system, is proposed in this research to reduce the
computing delay in IoV. There are two accessible transmission mechanisms for cars, which
will minimize the system’s Overall Response Time (ORT) in comparison to the conventional
offloading technique.

In order to assess migration and security measures, study [91] analyzes the DT concept
as a finite-state machine and the interaction between the main object and the on-screen
version as a status transition operation. For automated driving scenarios, they offer migra-
tion techniques for the DT migration problem that may be used to move the digital version
from one processing core to another. To choose the best approach, they evaluate each
one’s latency and consistency. They evaluate the security metrics of each migration option,
suggest potential cyber-attack vectors for some of them, and identify associated defenses.
In comparison to previous studies, it allows vehicles to migrate a DT model to edge nodes
faster. Three migration tactics are analyzed in their work: (1) the car sends the information
required by the new edge device to create the digital copy; (2) during the migration, the
new edge component updates information after receiving the digital version from the
cloud server; (3) during migration, the new edge BS updates information after receiving
the digital prototype from the old BS. Also, in ref. [92] researchers investigate security
issues derived by a DT in MEC-based vehicular networks, such as privacy, time-sensitive
responses, and information synchronization.

Researchers in the automotive industry have introduced a simulation-driven DT ap-
proach for self-driving cars connected through 5G in a cross-border scenario [93]. The
Apollo autonomous vehicle and the open-source SVL simulator can communicate and
respond to real-time messages thanks to the integration of V2X communications technol-
ogy [93]. The features of a DT in a MEC structure with DT support are examined in [94] for
6G V2X networks. The DT offers several innovative concepts, such as enhancing human–
machine interaction through the assessment of driving style, enhancing car and pedestrian
safety through knowledge-based vehicle problem detection, and assessing the dynamic
traffic parameter attributes through data collection. It is possible to separate the suggested
design into two areas. The roadside MEC endpoints, drivers, other physical transportation
elements, and V2X network devices are included in the physical world. The DT concept is
housed in a public or private cloud that has a specialized core network for communication
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with the physical domain. Periodically, the physical region is sampled for data by the
DT domain. In the DT sector, these data will pass the stages of analysis, learning, and
prediction. To support task-oriented V2X connections, the outcomes of the evaluating and
prediction processes are sent back to the physical layer of the V2X infrastructure.

5. Using MEC to Augment the Computing Capabilities of Vehicles

Mobile devices in IoV networks leverage collected real-time data and information to
perform intensive computations and address latency-sensitive tasks. This type of network
aims to make an optimal and smart decision. However, due to the limited computational
capacity and storage of mobile devices, some computations cannot be completed within
prespecified time limits, which may lead to problems such as traffic congestion. To solve
these problems, cloud computing has been proposed to support the execution of tasks in
the cloud, which can lead to information loss [95]. Recently, researchers have introduced
MEC to support low-delay, low-energy task processing using some available Edge Points
(EPs) near vehicle users [59].

5.1. Task Offloading

In ref. [96], researchers investigated a system for IoV that utilizes a nearby EP to help
with executing tasks and to reduce the network traffic load. They split tasks into two parts:
one is carried out locally, and the other is sent to the EP via wireless channels. However,
estimating channels accurately is tricky because of cars’ mobility. To preserve user QoE
despite inaccurate channel estimation and to reduce costs, they set up an optimization
problem in the first phase. In the second phase, they use a smart approach combining DRL
and Lagrange multipliers to solve that optimization problem. DRL predicts how to select
the best way to handle tasks, and the Lagrange multipliers help manage bandwidth.

In ref. [97], authors introduced a new method called Vehicular Edge Computing
with Network Slicing and Load Balancing (VECSlic-LB) for handling computing tasks in
connected vehicles. This approach combines network slicing and load balancing, aiming to
efficiently distribute computation tasks among cars and RSUs or gNBs (5G base stations).
Inspired by considering SDN features, VECSlic-LB manages these tasks in a centralized
method, optimizing computing resources in RSUs and gNBs. To deal with the challenge of
migrating tasks from vehicles to other locations, VECSlic-LB formulates an integer linear
program. This method maximizes the number of tasks offloaded from vehicles. VECSlic-LB
calculates these tasks for different network slicing setups, and it improves resource usage
by up to 48% compared to existing approaches.

The Combinatorial Multiarmed Bandits (CMAB) [98] concept was used in work [99],
which learns the task-offloading strategy by selecting the task-offloading endpoints ef-
fectively in a distributed way. This strategy relies on replicating tasks at various end
nodes, without squandering system resources and reducing the duration of the system
as a whole. Replication increases reliability by reducing task failures and increasing the
successful completion of tasks. However, it also causes network overhead and requires
more computation resources.

The inherent mobile nature of VNs causes additional issues in the IoV context. For
instance, a mobile might move beyond the coverage area of the MEC host before its task is
completely processed, making the implementation of an efficient offloading mechanism
more challenging. In ref. [100], the path of the cars is defined in a fixed area. Consider the
scenario where each vehicle is linked to a task that needs to be completed and that task can
only be sent to the server that handles it during the task-offloading phase. If there is a lot of
traffic in this fixed area [100], it is extremely likely that the same MEC server is processing
all the tasks. Therefore, the probability of task overload and queueing latencies drastically
increases, which diminishes users’ QoE. The authors propose a method for migrating tasks
to address this issue. Performing tasks can occur either locally or offsite. When handling
tasks offsite, a server capable of offering the necessary services is chosen, which cuts down
the average task completion delay. The method used in this work takes into account the
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network status and makes decisions dynamically, however, it does not consider available
computation and storage resources.

In ref. [101], authors suggest using a Double Deep Q-network (DDQN) to collabora-
tively offload tasks among vehicles, aiming to minimize the system delay, which includes
the delay of performing tasks in vehicles, the delay of creating connection links among
vehicles, and the latency of performing tasks at cooperative vehicles. Nearby cooperating
vehicles are identified and tasks are divided among them according to an ideal proportion
computed by the neural network of the DDQN structure. Additionally, a task-offloading
approach using the DDQN algorithm is suggested to improve flexibility. However, due to
the scarce power of computation units of the vehicles, this approach is useful for tasks with
low resource requirements. Tasks with high computation requirements must migrate to
the MEC.

The work in [102] formulates a cost minimization problem and provides a network
model for Vehicle Edge Computing (VEC) relying on Non-orthogonal Multiple Access
(NOMA) [103]. NOMA enables multiple Vehicular User Equipment (VUE) to access the
same wireless resources, improving spectrum usage and system volume. The entire system
cost is reduced by jointly optimizing offloading decision making, VUE platooning, sub-
channel and processing resource assignment, and transmission power regulation under the
assumption that all VUEs will be able to tolerate delays [102].

In ref. [104], authors examine a situation where devices can either send their tasks to a
BS server or share them with stationary cars. The service time is estimated by considering
car position and speed and the interval for which they are under the coverage of a BS. They
consider parameters such as data volume, computation needs, and task priority for each
task. The idea is to work together, using the BS server, cars, and the wireless channels of the
BS, to minimize the time tasks take to complete. They formulate a mixed-integer non-linear
problem to find the best candidate cars. Figure 7 shows the architecture of this work.
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In ref. [105], authors propose a solution named Mobility-aware Multihop Task Offload-
ing (MMTO) to better utilize resources and enhance the QoE in VNs, which leverages idle
cars’ resources. The innovative trait of the offloading policy is that it considers multihop
communication among cars in order to reduce task completion times. One-hop relaying is
enough if a neighbor can complete the task and return the result before leaving the client
vehicle’s transmission range. However, multihop neighbors can provide service too, taking
part in task processing. A MILP problem is proposed to realize this task-offloading strategy.
A semidefinite relaxation method and an adaptive control procedure are proposed to solve
it while taking into account the connection restrictions on both one-hop and multihop
service provider cars. The architecture of this work is depicted in Figure 8.
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In ref. [106] researchers presented a model for task offloading that utilizes game
theory for offloading decisions. They employed offloading methods without considering
vehicles’ information about network bandwidth and status. A hybrid DQN approach for
task offloading strategy in a multi-MEC assisted architecture illustrated in [107]. With this
method, they ensure that each user makes offloading decision with the help of collected
data and experiences from network by themselves. Ref. [108] demonstrates the using of idle
resources of vehicles for computing tasks. They use a pricing method in order to minimize
the total cost of the system.

Works [109,110] propose a three-level architecture which consists of a vehicle level,
an edge level, and a cloud level for VEC. This architecture allows for the local execution
of some computation-intensive tasks by vehicles, whereas some others can be moved to a
MEC or a cloud host. Researchers, in [109], proposed a method to reduce the average delay
by incorporating edge–cloud processing. They tackled challenges related to the dynamic
computing environment and the necessity for swift decisions by employing an effective
task-offloading technique relying on DRL [111] for VEC. They use a Deep Q-network (DQN)
with minimal computational burden and best convergence in the task-offloading scheme
to adaptively discover the best offloading tactics between edge and cloud servers. They
utilize the inspection phase to make the DQN training converge faster.

In ref. [110], authors use the standard three-level VEC architecture. Cars communicate
wirelessly with RSUs, which are connected to edge servers. RSUs are linked via optical
cables to a cloud data center. Tasks can be offloaded from cars to the edge or cloud server
using V2I wireless communication over RSUs. A cellular link allows task transfer to the
cloud server. Users have three task-offloading options, modeled as a MILP problem. Due
to the problem’s complexity, estimations may outperform precise solutions in a real VEC
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system. Maximizing the success rate of task offloading is crucial to avoid wasting network
and processing resources. The study utilizes deep learning to predict task-offloading
success rates and service latency, enhancing the VEC system’s overall performance based
on historical data from EdgeCloudSim [112].

A summary of the above works is presented in Table 3. Since most of the above
formulate task offloading as a mathematical programming problem, we also report a
comparison of the nature and size of such problems in Table 4.

Table 3. A comparison among recent works on Task offloading in MEC-enabled VNs.

Reference Methodology Key Metrics Computing
Method

Focused
Infrastructure

Mobility
Consideration

[96] IoV with imperfect
CSI—using DRL

Computation delay
and energy

consumption
MEC server V2I No

[97] Network slicing Delay Local—MEC
server V2V-V2I Yes

[99] Multiuser MEC assisted Delay and energy
consumption

Local—MEC
server V2V-V2I No

[100] A heuristic task migration Delay Local—MEC
server V2I Yes

[101]
Distributed task-offloading

framework—DDQN
optimization

Delay and resource
management

Local—MEC
server V2I Yes

[103] NOMA and MEC merging Delay and resource
utilization Local V2V Yes

[104] Task offloading using
parked and moving vehicles Processing delay

MEC
server—cloud

server
V2I-I2I No

[105] Multihop task offloading Service-delay
prediction

MEC
server—cloud

server
V2I No

[106]
Decentralized DRL—task

offloading with game
theory algorithm

Latency and
energy

consumption
MEC server V2I No

[107]

Generic MEC system—a
hybrid DQN and

optimization approach for
task-offloading strategy

Resource
consumption

Local—MEC
server V2V-V2I Yes

[108]

Probabilistic scheduling
approach—two-

dimensional
Markov chain

Load balancing MEC server V2I No

[109] Computation offloading Latency and
overhead

Local—MEC
server V2I No



Future Internet 2023, 15, 391 23 of 45

Table 4. An analytical comparison among the works on task offloading in MEC-assisted VNs.

Ref. Type of Problem Objective Function Number of
Variables

Number of
Constraints Algorithm Used

[96] Convex Minimizing the
total overhead O(N) O(N)

DRL and
Lagrangian multiplier

[97] Integer linear Maximizing the accepted
offloading tasks O(N × R × G × S) O(N × R × G)

Network slicing and
load balancing,

VECSlic-LB

[99] Non-convex Minimizing response time
of the task O(T × X × L) O(T)

Learning-based
task-offloading

framework based on
the multiarm bandit

[100] Convex Diminishing
average delay O(T) O(T × X)

Task migration
cooperative offloading

[101] Non-convex Minimizing the total
system delay O(N × L) O(N) DRL-DDQN

[105] Mixed-integer
linear

Minimizing execution
time and computation cost O(N × T) O(N)

Quadratically
Constrained Quadratic
Programming (QCQP)

problem and
semidefinite relaxation

[108] Linear Minimizing cost O(N × T × C) O(N × T × C) Markov chain

[109] Non-convex Minimizing the
averageprocessing delay O(N × T × R) O(N)

DQN and RMSProp
optimizer

[110] Integer linear
Maximizing success
offloading tasks and

minimizing service delay
O(T) O(T)

Convolutional Neural
Network
(CNN)

N = Number of vehicles, R = Number of RSUs, G = Number of gNBs, T = Number of tasks, X = Set of edge nodes
(hosts), L = Size of task, C = Number of cost policies, S = Number of slices.

5.2. Resource Allocation

Compared to cloud computing servers, MEC servers’ storage and processing capabili-
ties are more constrained. Managing scarce resources to meet changing resource demands,
complex traffic situations, heterogeneous application features, and effective usage is a
complex task [113].

The authors of [114] suggest a real-time strategy to balance energy consumption and
task latency for vehicles. They use a MINLP problem to optimize computation offloading
and resource allocation, employing bi-level optimization to break down the problem into
two subproblems. Power and channel allocation is a lower-level challenge, and task offload-
ing is an upper-level problem [114]. Additionally, a DRL offloading strategy is proposed
to allow users to choose the best offloading options while taking into consideration the
mobility of VUEs and the accessibility of cloud resources. Also, they integrate power distri-
bution, channel distribution, and compute offloading in a multicell scenario to minimize
the total latency and energy consumption of the system by the VUEs.

Researchers, in [115], used the DRL to minimize system overhead as well. Based
on the system’s current state, they utilized an actor-centric approach to optimal decision
making about controlling resource utilization and task migration. To use this algorithm,
it is necessary to define a state and action table and a reward function. In comparison
with other algorithms, the vehicle will perform more tasks. Processing tasks by themselves
will result in a significant delay due to the vehicle’s limited computing capabilities. The
suggested algorithm takes into account the cooperation of the terminal, edge, and cloud,
increases resource usage efficiency, and minimizes system delay. In ref. [116], the authors
aim to boost the RSU’s profit constantly in a highly dynamic environment by addressing
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the configuration issue of computational resources. They utilize edge servers to provide
services to all vehicles in their coverage area, and the RSU obtains rewards [117]. The RSU
will receive a preprocessing request from a dynamically arriving vehicle [116], which it will
then notify. The RSU will then calculate the likelihood of admission for the edge computing
service. When cars enter the RSU’s coverage area, they can switch between local and edge
processing based on QoS, and they can adapt their task requirements. The approach uses
a novel model and a threshold-based method to handle the changing dynamics of these
VEC systems. Both mathematical formulation and simulations are carried out to confirm
the viability of the suggested method and present its effectiveness depending on various
network circumstances. Unlike the MEC-related work [118], this research examines the
allocation of processor power in VEC. It focuses on server end’s profit maximization, in
contrast to [119] whose main goal is to maximize end users’ advantages. This approach also
tries to optimize the RSU’s long-term operating benefit, whereas [120] only concentrated
on short-term optimization. Moreover, [116] differs from [121] by taking into account how
service quality affects the QoS needs of vehicles. In [121], a novel approach to adaptively
assign resources for VEC is introduced. The aim is to enhance the QoE in situations
characterized by scarce resources and dynamic conditions. Queued latency-sensitive tasks
are assigned a queuing time limit. If they miss the deadline, they are removed and discarded.
The authors investigate the advantages of modifying processing configurations that can
effectively regulate the data drop rate in order to handle the latency for mission-critical
operations. Next, taking into account the processing capacity of the network, an online
method allocates resources adaptively and enables the network to minimize the loss in
processing quality while ensuring the completion of the task on time. To achieve this
objective, the proposed approach can dynamically adjust and manage the offloading of the
tasks, channel resources, processing method, and data loss.

To reduce the system latency for SDN-enabled IoV, researchers optimize the offloading
mechanism, transmission ratio, and resource allocation together [122]. Moreover, the
impacts of varying task complexity on offloading and computation are also taken into
account in their methodology. The authors devise an SDN model which divides tasks
according to two-plane communication. Also, they use Particle Swarm Optimization (PSO)
to enhance the total throughput. This method works by breaking the issue down into three
smaller issues: the offloading decision of cars, the distribution of resources by RSUs, and the
proportion of offloading for vehicles. It solves the multivehicle and multi-MEC offloading
scenario effectively and minimizes the complexity of the problem. To increase system
performance, the local offloading mechanism and its rate and the method of assigning
resources are all collaboratively adjusted. The SDN controller broadcasts a global status
report including task urgency, available resources, and Channel Status Information (CSI).
When SDN obtains the vehicle’s demand for resource offloading through the data layer,
it seeks out the best solution (containing resource allocation and offloading strategy) at
the control layer, and then transmits control commands. Simulation results show that the
proposed mechanism achieves optimal performance.

In order to enhance urban communication and computing capacities, it has recently
been proposed that cars with an abundance of unused computing capabilities be organized
as a fog server [123]. This creates a new computing paradigm called Vehicular Fog–Edge
Computing (VFEC). Authors model the VFEC scenario as a multilevel Stackelberg game
with an incentive system. RSU leases computing resources from cars in a long-period
market. The implementation of the Pareto optimal configuration is hampered in this
procedure by using collected data over the RSU. Also, an incentive system is created based
on contract theory to address this issue. The contract helps represent different vehicle
types and improves benefits for both parties. Meanwhile, the communication between
the RSU, MEC server, and users forms a short-term market with interactions like pricing
and resource decisions, simulated using the Stackelberg game. Unlike iterative techniques
frequently employed in some auctions and non-cooperative games, the equilibrium of the
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Stackelberg game can be found in a single stage of processing. The architecture of the
model is shown in Figure 9.
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The authors of [124] consider the diverse conditions encountered by vehicles while on
the move in a real-world scenario. They propose a comprehensive architecture for dynamic
resource management in mobile networks of vehicles. The architecture models the dynamic
vehicular environment by a collection of connected Markov Decision Processes (MDPs),
employs a learning method, and utilizes the advantages of an actor–critic algorithm to
allocate resources for vehicles. Their algorithm has a distinct manner in comparison
with [125]. Their suggested learning model can adjust to a new environment when the
higher network layer is fine-tuned. This makes the learning approach more adaptable,
efficient in using samples, and, overall, more effective.

In ref. [126], authors investigate capacity planning and service transfer in MEC. Their
work seeks to minimize delay by formulating the allocation problem as an MINLP, factoring
in user mobility and limitations in MEC server resources. Additionally, they put forth an
efficient matching technique that solves the MINLP while considering both user and edge
server preferences for selection.

Service migration is a crucial step in ensuring users receive service continuously. The
user must decide whether to migrate, because they usually are within range of several small
BSs. Considering this, there are two basic user service strategies [127]. When a user switches
from one small BS to another, they can either (a) continue using the previous edge server to
complete tasks and receive the computed results or (b) transfer the service to a different
edge server. This resource-provisioning issue might be viewed as a matching problem
between edge servers and users [128]. Users can choose from a variety of computing
resources provided by edge servers, and edge servers and users are matched. Therefore, to
create a competitive resource allocation scheme, the authors devise a matching algorithm.
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In ref. [129], authors researched the use of intelligent offloading and caching techniques
for link control in MEC systems. The goal of this study is to optimize QoS through
coordinated resource allocation and MEC in multiaccess heterogeneous networks, aiming
to guarantee the users’ QoS requirements while also optimizing system energy efficiency.
First, a new objective function is created for the multiserver MEC scenario, taking into
account various offloading and computation methods, in order to reduce the time it takes
for all tasks to be completed and to achieve the highest possible energy efficiency while
still meeting deadlines. Secondly, the basic optimization problem is changed to a MINLP
by adding interference coordination and user association and continuing carrier allocation
variables to the objective function. The authors suggest a method to match users with
suitable channels for optimal access, considering data rate limits and transmission power
constraints. This involves pairing each user with a channel and using a Dinkelbach-like
technique to attain the best resource allocation.

In ref. [130], researchers introduce a framework which considers an orchestration for
edge and cloud endpoints [131], structured in three planes. They transform the scheduling
challenge into an MDP and tackle it using Deep Deterministic Policy Gradient (DDPG) [132],
leveraging reward functions to enhance exploration performance and mitigate the disper-
sion of good scheduling rewards. NoisyNet [133] is integrated with the suggested schedul-
ing technique. They also create a Mobility-aware (MA) component to detect the temporal
and spatial distribution of mobile devices and forecast their motion. This component is
further improved with the suggested method to effectively make decisions about com-
putational task offloading and resource assignment. Regardless of the number of mobile
devices, their work provides the lowest maximum latency among all alternatives [130].

The above works are summarized and compared in Table 5.

Table 5. A comparison among recent works on resource allocation in MEC-enabled VNs.

Reference Methodology Key Metrics Focused Component

[115] Real-time energy-aware offloading using MINLP Energy consumption Vehicles
[116] Resource management optimization with DRL Network traffic and overhead MEC server and vehicles

[117] Threshold-based computation
resource configuration

Computation resource
demand and processor power MEC server

[122] Adaptive resource allocation Processing capacity,
radio resources MEC server

[123] SDN-enabled IoV resource allocation with
PSO algorithm

Processing capacity,
radio resources MEC server and vehicles

[124] A contract-Stackelberg approach Idle resources of vehicles Vehicles
[125] Dynamic resource management with MDP Dynamic network conditions MEC server

[127] Mobility-aware resource allocation based on
matching theory

Mobility of users and
constrained resources MEC server

[130] Intelligent offloading and caching strategy Energy efficiency MEC server and vehicles

[131] Mobility-aware EECOC task scheduling
with DRL Task latency MEC server

6. Using MEC as Enabler for Vehicular Applications

The deployment of vehicular applications will place a high demand on communica-
tions networks, which must ensure that data are transmitted securely and on time. These
applications are used for safe and comfortable autonomous driving, to avoid hazards, and
for tele-operated cars. MEC is a crucial facilitator for such vehicular applications. In this
section, the recent works on applications of MEC-enabled vehicular networks in various
domains are presented.
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6.1. Collision Avoidance

Road Traffic Accidents (RTAs) continue to be a major source of fatalities and harm
worldwide, generating a huge cost in terms of deaths and hospitalization. According to the
World Health Organization (WHO), the lives of almost 1.3 million people are negatively
affected by the consequences of road accidents every year. To prevent accidents, safety-
related information might be relayed to nearby vehicles or to the edge infrastructure. The
edge processors are placed adjacent to moving vehicles by the RSUs (MEC servers). They
also enable the receipt and analysis of sensor information in near real time [11]. Cellular BSs
that offer wireless access to moving cars within their coverage are taken into consideration
in [134]. In a VEC system, each BS connects to a dedicated MEC host, enabling cooperative
collision avoidance (CAV) operations. These MEC hosts are linked to a centralized cloud DC
through a network backbone, ensuring a constant flow of updated data. Communication
between MEC servers and the cloud is facilitated by a central broker service. Each vehicle
is equipped with processors, interfaces, sensors, and cellular User Equipment (UE) for
detecting road hazards. Interactions between the CAV system and vehicles use standard-
compliant messages such as Cooperative Awareness Messages (CAMs) and Decentralized
Environmental Notification Messages (DENMs) through Vehicle-to-Network (V2N) and
ITS-G5 communication protocols. With continuous contact with the MEC server, vehicles
can have access to up-to-date data. The CAV system incorporates a web interface module
(through HTTP) that enables visualization of cars and danger areas on OpenStreetMap [135],
establishing the predefined distance for the accident risk zone of each vehicle and keeping
the database up to date.

To increase the safety of Vulnerable Road Users (VRUs), researchers provide solu-
tions for Car-to-Pedestrian (C2P) communication with MEC assistance in [136]. They rely
on proven Car-to-Car (C2C) communication strategies and expand this idea to include
pedestrians in the framework. The problem with this approach is that all computation
and communication must occur on a cellphone that the user is carrying. Since specialized
movement identification algorithms must be run and the findings must be combined into
suitable Collision Detection Algorithms (CDAs), this raises issues with energy consumption
and delay. To address these restrictions, authors suggested an offloading approach that
relies on MEC and leverages a machine learning system for real-time pedestrian movement
detection. All CAMs transmitted between cars and passengers utilize cellular communica-
tion as a substitute for Device-to-Device (D2D) methods and are therefore carried via an
eNB (and the LTE core network). In the collision warning service, the operation involves
multiple stages. As a vehicle or a person with a cellphone moves along the road, it regularly
sends Cooperative Awareness Messages (CAMs) containing Context Information (Ctx-Info)
to other User Equipment (UE) through the LTE interface, notifying them of its presence.
Other UEs will then receive these CAMs in the same context. Then, UEs carry out a local
CDA to determine the potential of collisions with other UEs and, if necessary, initiate
collision identification procedures.

In ref. [137], scientists describe a hybrid architecture for V2X services that uses MEC
and cloud-based capabilities jointly to enhance the system’s end-to-end functionality. The
proposed VRU-Safe service is designed to quickly detect and prevent potential collisions
between VRUs and nearby vehicles. Simultaneously, it leverages the advantages of a novel
5G design, and it is capable of dynamically steering processing queries toward the MEC or
cloud infrastructure, forwarding effective V2X action procedures, and reducing the latency
for critical situations.

A collision avoidance technique for automotive scenarios based on the edge com-
puting paradigm has been presented in [138]. Specifically, a crash-anticipation-assisted
steering system based on MEC is created. When delay restrictions are necessary (e.g., in an
emergency situation), these messages should be sent as soon as possible and the edge must
be used. By the utilization of edge computing nodes, system processes are brought near to
end users and finally to the network’s edge. A Docker container operated by the Kubernetes
orchestrator serves as the controller for the MEC and cloud server. In order to simulate
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the proposed mechanism, they utilize standard PCs to simulate the RSU units running
in Docker [139] containers controlled by Kubernetes [140] and, for the vehicle traffic, the
SUMO simulator is used [141]. The results of the proportion of car crashes demonstrate
that using the MEC methodology considerably reduces the number of accidents because of
shorter delays. The architecture of the suggested approach is presented in Figure 10.
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Work [142] identifies two paramount issues in MEC-assisted vehicular networks.
The first problem is figuring out how to create connection protocols for inter-city traffic
scenarios that adequately consider the impact of dynamic traffic flow. Slot demand and
duplication will result from the conventional fixed slot-partitioning approaches, which are
recommended to handle dynamic traffic situations, particularly in the context of imbalanced
traffic. Using the traffic data correctly to control the slot assignment procedure is crucial to
addressing this issue. Efficient interaction among RSUs is the second most complex issue.
The authors comprehensively evaluate how to offer delay-sensitive broadcast services by
taking full advantage of the Vehicle-to-RSU (V2R) connection and inter-RSU collaboration
together with the MEC servers. They develop the Collision Prediction and Avoidance MAC
(CPA-MAC) protocol (distributed TDMA-based MAC).

A new approach is presented in [143]. The proposed architecture consists of three
main components, users, Points of Access (POAs), and a collision detection algorithm [144]
that runs in MEC servers. The latter is a trajectory-based collision detection system. End
users should continuously transmit Basic Safety Messages (BSMs). BSMs are broadcast and
users run their own collision detection algorithms. Cars listen to broadcasts, while VRUs
are more prone to rely solely on the collision detector’s alerts. The driver can be warned by
the vehicle’s alert system or receive an automatic emergency stop. Cellphones can interrupt
any ongoing activity, such as music playback, by alerting their users with any mixture of
sound, vibration, and on-screen notice. The MEC concept gives a great deal of versatility in
terms of collision detector setup and number of detectors.
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A method that utilizes dynamically changing MEC resources to avoid car collisions is
presented in [145]. The goal of this approach is to better optimize all MEC assets and ensure
the service’s optimal results (i.e., shortest delay). This is obtained by employing Deep
Learning (DL) to anticipate vehicles’ movement and correspondingly allocate processing
resources to the car collision identification application. The suggested scheme estimates the
movement of the cars using DL, and more specifically Long Short-term Memory (LSTM),
from which it obtains the required MEC capabilities. MEC resources are increased or
decreased depending on the number of cars involved and the DL module based on LSTM
uses a real data set for training and finally anticipates the vehicle trajectory.

6.2. Platooning

A platoon is a set of networked smart vehicles traveling together securely at fairly high
speed while keeping a near-constant and small distance. This conserves fuel and reduces
road occupancy. In network-assisted platooning, wireless connection ties the first vehicle
(the platoon leader) to the rest of the platoon members, and members move according to
the commands received by the leader. To enhance safety on roads, this application may
combine vehicle identification, a collision avoidance system, and sidewise control systems.
A platoon may also allow other road users to insert between the platoon members (linked
vs. unlinked modes). The development of MEC, combined with 5G cellular networks,
makes management of a platoon system easier, and eliminates the costs of implementing
powerful computation logic in vehicles. We present some works on platooning in the rest
of this section.

In ref. [146], authors suggest a high-level design for MEC-assisted Cooperative Adap-
tive Cruise Control (CACC) longitudinal control functionality. They describe its primary
elements, which will be installed on the vehicle and at the network edge, as well as their
interfaces. The platooning control logic is distributed between the cars and the MEC server.
The high-level controller is placed at the MEC server, whilst the low-level manager is
implemented aboard the vehicle. The virtual controller app and the virtual platoon app
are hosted at the MEC server to allow platooning management. According to ETSI MEC
requirements, they are implemented as virtualized ME apps. These apps are fed by infor-
mation shared inside the platoon and preprocessed locally by the platoon app provided by
platoon cars. Both the platoon leader and members continuously transfer CAMs over V2V
connections [146].

To reduce the overall energy usage of the platoon without unduly delaying processing,
a new approach is proposed in [147] which simultaneously optimizes the task-offloading
technique and the resource-assigning strategy. This work takes into account the computing
capabilities provided to the car platooning by the MEC server as well as the unoccupied
computing resources of other members of the platoon. This study employs a cooperative
vehicle architecture framework that combines MEC and IoV to decide when to offload
member vehicle calculations. They utilize a technique that ensures that computation tasks
are completed within a specified time limit by efficiently assigning computing capabilities.
They also consider an improved adaptable large neighborhood search algorithm to enhance
the offloading strategy.

Work [148] deals with several issues of platooning. Platoon members connect to each
other using current networking approaches. Traffic movement speed is anticipated using a
real-world fluid model of traffic, and crash detection application is performed when cars
meet at a crossroad. The authors show that this scheme conserves energy and mitigates the
carbon dioxide footprint, prevents traffic jams, and increases road usage proportion. They
use reinforcement learning to train cars to seek out the shortest route to the desired position.
Moreover, they consider MEC to offload the computational task to the MEC server to reach
a low latency goal.
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In ref. [149], researchers present a novel three-layer distributed control mechanism
with the support of 5G and MEC to obtain short communication delay and high reliability
for platooning vehicles. It includes a core, cloud, and terminal layers. The core layer
manages service requests and updates the road state for each component. Also, it considers
the destination, present position, and best route for the platoon of vehicles. The cloud
layer uses MEC architecture and calculates and monitors road path states globally and near
vehicles. The terminal unit creates the platoon and manages the position and speed of cars.
A leader–follower control mechanism is used in this study.

To maximize the benefits of both the Mobile Edge Platoon Cloud (MEPC) and the
task vehicle (i.e., the one requesting offloading), the relationship between them is modeled
as a Stackelberg game in [150]. The authors analyze task transferring in MEPC. They
recommend service charging and asset management strategies based on blockchain to
increase the effectiveness of the task vehicle and Platoon Member (PM). The two strategies
allow task vehicles and MEPC logical objectives to distribute resource allocation. The
adoption of blockchain, meanwhile, guarantees the confidentiality and safety of data
related to service operations.

Study [151] presents a cooperative adapted driving for platooning by using the benefits
of MEC. Two different clouds are created by wireless technology: the Global Cloud (GC)
and the Vehicular Cloud (VC) [152]. The GC may provide Cooperative Adaptive Driving
(CAD) vehicles with global road data, and the platoon-managed VC can provide them
with live local traffic data. The controlled traffic data include location-based spatial and
temporal data, including Platoon Identification (PID), vehicle ID, position, speed, speed
limits on the road, etc. The Platoon Leader (PL) manages the Platoon Members (PMs), as
they arrive or quit the platoon. Moreover, the PL stores sensed and collected traffic data
provided by PMs. The timestamped messages are transmitted with minimum hops.

Researchers, in [153], present the use of the co-simulation approach to generate a DT of
a platoon, which can analyze various traffic scenarios and protocol variations. A Simulink
model for vehicle movements is combined with the CACC algorithm’s instantiation in the
digital model. The investigation of various scenarios within the framework of a MEC- or
V2V-based communication method is made feasible by the DT.

Researchers, in [154], combine MEC and V2N concepts to create a platoon management
service that operates as a MEC application, possibly allowing mobile network providers to
offer Platform-as-a-Service (PaaS) architecture. In the platooning scheme, when the uplink
spectrum is constrained, V2N communication dramatically decreases uplink interference.
As it is not necessary for all cars to be in radio range of one another, a platoon can scale
up to many PMs using this strategy. Platoon control moving from cars to communications
infrastructure also makes it easier to integrate other ITS capabilities such as traffic and
emergency monitoring and control of a multiplatoon environment. A MEC-enabled con-
troller also offers the additional bonus of minimizing the on-board unit computation power
because there is no need to compute the control law calculations anymore. In ref. [155],
authors replace every PM’s own controller with a centralized one that may transfer between
MEC hosts based on the action-value function the platoon learns as it travels. In more
detail, they create a migration negotiator for centralized platoon management utilizing
MEC, combining a Q-learning algorithm with context awareness. Additionally, they adjust
CACC to measure and compensate for network delays and impairments. They describe the
cooperative capabilities of many Q-learning models for quick policy making with no syn-
chronization burden. The classic computing infrastructure is reshaped as an MEPC [156],
which can offer supporting capabilities and cloud-native features. Next, an MEPC-based
Cloud–Edge–End (M-CEE) structure is suggested for smart, distributed, and scalable apps
that incorporate cutting-edge technology such as blockchain and AI. It can address applica-
tion latency constraints, solve the distributed intelligent scheduling issue, and guarantee
data confidentiality. Researchers, in [157], have established a Semi-Markov Process (SMP)
model. This model aims to describe the relationship between capacity deterioration and re-
generating behaviors in a vehicle-platooning system. The system employs a failure strategy
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to safeguard the active Cooperative Downloading and Uploading (CDU) service. The SMP
model provides insights into how these elements are interconnected within the context of
the platooning system. To meet the needs of various vehicle-platooning structures, this
paper specifically considers the attributes of vehicle platooning, consisting of whether
a PM can be a leader in order to have a stable platoon as the main aspect, the variable
number of cars, and the variations in resource availability of every car. The MEC host
monitors how the containers behave inside each car. Study [158] introduces a context-aware
Q-learning-based relocation technique that figures out the best ways to move a platooning
control algorithm from one MEC server to other servers in the edge layer.

By describing the design of a MEC host for managing platoons, installed at eNB
stations [1], authors demonstrate the feasibility of MEC-enabled platooning [159]. The
service merges a longitudinal controller from the research [160] with a grouping mechanism
to detect platoons and manage platoon stability. They establish the accuracy of the clus-
tering approach and fine-tune the longitudinal controller’s variables. UEs are connected
to the network by a number of eNBs, which also connect them to the MEC framework
and to other UEs. Both UEs and ME hosts operate the platooning application, but they
have distinct responsibilities. While the former frequently report their location and speed,
the latter gather data from all UEs, establish platoons, and organize the vehicle’s motion
within a platoon. Every vehicle will always obtain platooning operations from one ME
host, although over time, the service provider host may change due to a variety of circum-
stances, such as proximity between the UE and the ME host and network communication
bandwidth [159].

In ref. [161], researchers introduced a comprehensive Platooning-as-a-Service (PlaaS)
framework, which outlines roles and interactions. This framework is intended for use
within a multioperator mobile network equipped with ETSI MEC capabilities. In a sce-
nario where vehicles can form groups (platoons) on a highway, multiple mobile network
operators provide MEC services along the road. Each vehicle is subscribed to one opera-
tor’s network and can only communicate with that operator’s BSs and has its own MEC
framework, adapted with ETSI MEC standards, and these systems collaborate to form a
federation. The aim is to create an ETSI MEC-assisted PlaaS framework that allows vehicles
to discover and join nearby platoons and to regulate cruising speed. This framework
must work across different MEC systems and is realized through software applications
on vehicles and MEC systems, ensuring standard APIs for portability and interoperability.
They have extensively examined the practicality of implementing platoon control using
MEC within a federated setup. Their research shows that neither computational overhead
nor communication delays on a 5G network are significant concerns. Instead, the potential
issues stem from inaccuracies in reporting vehicle positions caused by variations in system
delays. They quantified the scope of these challenges and put forth a simple solution to
address them. Also, their investigation underscores that MEC-based platooning is a viable
option within a multioperator environment, where control information is transmitted over
a 5G network [161].

Study [162] introduces task offloading for vehicular platooning with the assistance of
a MEC server. They propose an efficient task-offloading mechanism to meet task deadlines
while minimizing overall energy consumption. The approach employs a greedy algorithm
to address the simplified problem, achieved through the Lyapunov optimization technique.
When compared to the shortest waiting time algorithm and the full transfer to a MEC
technique, the proposed algorithm significantly reduces the power usage of PMs.

6.3. Tele-Operated Driving

Under specific circumstances, the utilization of automated cars is already feasible to-
day. However, complex environments, such as those seen at worksites, are still challenging
for autonomous cars to master. A human controller is required to help the driving scenario
from an exterior workspace if the car is unable to manage it autonomously. Hence, fully
autonomous driving can be complemented by Tele-operated Driving (ToD), allowing a
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single person to oversee numerous cars simultaneously. Both the telecoms and automotive
industries collaborate to enable this relatively new application. Standardization bodies
3GPP [163], ISO [164], ETSI Intelligent Transport Systems (ITSs) [165], 5GAA Associa-
tion [166], and research initiatives such as 5G-PPP [167] are working on it. Some scientific
works in this area are illustrated in the rest of this section.

In ref. [68], researchers present a system that combines DL algorithms with 5G net-
works and supporting technologies (network slicing, MEC, SDN) to enable safety man-
agement in IoV. Their suggested platform’s elements communicate via 5G slices. The
protection servers are tied directly to the RSUs to realize the MEC infrastructure. The IoV
layer, edge computing device layer, control and data layer (SDN network core), and QoS
implementation make up the four key components of our suggested methodology. The
IoV layer includes automated cars that produce different types of traffic data: news and
entertainment traffic, and traffic generated by the safety service. In their study, the focus is
on remotely monitoring and identifying a drowsy driver using AI techniques deployed on
the MEC server. Once a drowsy driver is detected, a signal is sent to the safety server to
transition the vehicle into the tele-operation state.

In ref. [168], authors suggest a tele-operated transport approach for logistics. In order
to provide continuous transboundary tele-operated transportation based on 5G networks,
the 5G-Blueprint project [169] is designing and verifying a technological infrastructure as
well as commercial and governance structures. Their project analyzes risks and advantages
of tele-operated driving, by collecting all necessary technical components to complete
a thorough verification and covering multiple use cases in an end-to-end perspective.
Additionally, since this is thought to be essential for enabling broad-scale worldwide
implementation, the project attempts to test both commercial and governance designs and
provide unambiguous advice to the relevant standardizing authorities [168].

6.4. Video Streaming

V2X communication creates links between cars and infrastructure, people, or other cars.
Digital media services have grown significantly over the last several years, and this rise is
anticipated to continue as more devices use infotainment services in the future. As a result,
it is crucial to concentrate on client metrics, such as video quality [170]. Under a specific
circumstance involving substantial data traffic, the combination of MEC and VNs can
improve the entire network’s capacity and dependability for video communication [171].
Some recent studies are investigated in the rest of this section.

To discover and select the ideal car from which to acquire data streams among those
in the neighborhood, scientists propose a 5G MEC-assisted car discovery service that
centralizes all the navigation data in a local region [172]. It keeps track of recent location-
specific data in order to recommend a set of sensor data sources for video streaming
that considers the prospective location of the vehicles. Instead of broadcast messaging,
the suggested strategy uses a MEC service to collect the information needed to provide
vehicle discovery requests with low latency and high throughput. The vehicle identification
system uses a simple algorithm to choose the best cars to provide sources of sensor data
by considering network delay and car mobility. Even with other types of network delay
like the LTE networks, the MEC-assisted vehicle identification service described in this
study has effective results. As the received information is limited to a region near the end
user, the MEC not only centralizes vehicle requests but also offers advantages in terms of
security and confidentiality of data.

Researchers, in [173], suggest an approach to make use of both caching and com-
putation capabilities at the MEC nodes to fulfill users’ queries for videos with various
bandwidths. Most current works on video streaming are not adaptive bitrate aware and
are primarily concerned with storing and transferring data without performing any com-
putation. To fulfill user queries, MEC hosts can convert a video into many versions. Each
version is a distinct bitrate copy of the stream, and lower bitrate versions can be created
from higher bitrate ones [174]. They broaden the concept of cooperative streaming to a
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new level where the MEC hosts can perform the delivery role for the requested video
over backhaul connections [173]. Also, MEC hosts can convert the video into the preferred
version. For instance, when the target server is overloaded, other servers can assist to carry
out the encoding process.

To save bandwidth and reduce data communication times, researchers, in [175], sug-
gest an architecture for video streaming in VNs where car users are able to obtain high-
resolution video from the MEC servers installed on RSUs. For users in vehicles, they create
a model that considers the average download percentage and weighs it for assessing the
mean opinion score of mobile videos. Due to the fact that the car-to-RSU association lasts
for a short time, it is possible for a car user to only obtain a small portion of the streaming
while under the coverage of an RSU, which results in poor QoE. The incomplete portion of
the video copies will still be distributed by a Macro Base Station (MBS) after the vehicle
user departs the RSU service range region. The authors model the video-buffering problem
as an MDP, and propose a smart buffering algorithm based on DRL.

In ref. [176], authors investigate a buffering method with the objective of optimizing
the data size received from MEC hosts located in RSUs rather than MBSs, taking into
account the high mobility of cars and the overlapped coverage of RSUs. The main goal is
to store the information as close as possible to cars. The architecture considers one MBS
and several RSUs, each one regularly updating the MBS with information about the state
of its service coverage. The MBS acts as a centralized repository. When a vehicle requires
information stored at a neighboring RSU, the car obtains it from the related MEC server of
the RSU. Alternatively, the MBS distributes the desired information to the RSU through the
backbone network.

Authors, in [177], build a V2V interacting method by predicting the passage distance
between two moving cars. They proposed a clustered video-caching technique and calcu-
lated the likelihood of the V2V connectivity using the Kolmogorov equation [178]. Next,
depending on buffering and delay requirements, they opt to use either V2V or non-V2V
connections. Caching occurs at MEC servers. Additionally, they utilize this algorithm
to derive the matrix for the ideal buffering approach in order to maximize the buffering
function. The results illustrate that the mentioned factors have a substantial impact on the
buffering method and that the suggested algorithm outperforms other strategies [177].

Researchers, in [179], build a three-layer hierarchical cooperative cache architecture to
fully utilize the storage of MBSs, RSUs, and vehicles. The backbone network and MBSs are
both part of the core layer, and wired links are used to interconnect the MBSs to the RSUs.
The cooperative RSU layer consists of RSUs dispersed over various locations and connected
together via wireless networks. Vehicles operating in various locations are included in the
vehicle layer. Memory is available in MBSs, RSUs, and vehicles to cache a specific amount
of data. When data are requested, if the car has the content already, it will pull it right
out of its cache. If not, the nearest RSU will receive the query. The host RSU queries the
associated RSUs if it does not have the content stored. The request is directed to the core
network if no RSUs hold the requested data.

Enhanced usage of MEC buffering for 360◦ video streaming with a dynamic Viewport
(VP) is introduced in [180]. A VP is the portion of the 360◦ video scene that one is actually
seeing at a time, depending on the orientation. The researchers suggest an effective method
for using the MEC buffer to identify the best scene tiles to be transmitted to cover the VP.
The novelty of the algorithm comes from substituting tiles with near-equal copies, thus
minimizing the queries to the remote CS by preloading tiles in MEC servers.

Table 6 presents the summary of papers on applications of MEC-assisted VNs.
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Table 6. Summary of recent works on MEC-assisted vehicular applications.

Reference Methodology Computing Place Focused Connection

[68] Safety management in tele-operated driving MEC server V2I

[135] Detecting and solving road hazards Vehicle, MEC server,
cloud server V2I

[137] Detecting car-to-pedestrian hazards User cellphone V2V-V2I
[138] Detecting vulnerable road users, avoiding car accidents MEC server, cloud server V2X
[139] Crash anticipation-assisted steering system MEC server V2I

[144] Detecting car-to-pedestrian hazards MEC server, vehicles, user
cellphone V2X

[146] Assigning processing resource to collision
detection system MEC V2I

[147] Platooning, cooperative adaptive cruise control Vehicle, MEC server V2V-V2I

[148] Platooning, optimizing task offloading and
resource allocation MEC server V2V-V2I

[149] Platooning, conserving fuel, and increasing
traffic effectiveness MEC server V2I

[150] Platooning, short delay, and high reliability Vehicle, MEC server,
cloud server V2V-V2I

[151] Platooning resource allocation MEC server V2I

[152] Platooning, cooperative adapted driving Vehicle, MEC server,
cloud server V2V-V2I

[154] Platooning, cooperative adaptive cruise control Vehicle, MEC server V2V-V2I
[155] Infrastructure-focused platoon management Vehicle, MEC server V2V-V2I-V2N
[156] Centralized control of a platoon MEC server, cloud server V2I

[158] Generating and controlling behaviors of the
platooning vehicles Vehicle, MEC server V2V-V2I

[159] Migration of the platoon controller MEC server V2I

[162] Controlling power of task offloading for
vehicular platooning MEC server V2I

[168] Tele-operated transport approach MEC server V2I
[172] Video streaming MEC server V2V-V2I
[173] Video streaming with caching mechanism MEC server V2I

[175] Video streaming with bandwidth saving and reduced
data communication times MEC server V2I

[176] Video streaming with a buffering method MEC server V2I
[177] Video streaming clustered video caching Vehicle, MEC server V2V-V2I

[179] Video streaming with hierarchical cooperative
cache architecture Vehicle, MEC server V2V-V2I

[180] MEC cache for 360-degree video streaming MEC server V2I

7. Using Vehicles to Augment MEC Capabilities

The quick advancement of communication technologies has changed the conventional
vehicular networks in the IoV, which is a pillar of ITSs [181]. The 5G infrastructure is envis-
aged for vehicular networks to connect vehicles to everything. By increasing the scalability
of vehicular communications, the concept of Cellular-V2X (C-V2X) has attracted the interest
of industry and academia. To support delay-sensitive and high-computation applications in
5G-assisted vehicular networks, MEC can serve offloaded tasks and optimize resource allo-
cation. However, due to the massive growth in produced data and resource demand, there
is a need for better solutions to handle large computation and storage resources. The VEC
paradigm expands the resource potential of MEC by offering more resources to improve
the services provided by the MEC [182]. A car with available processing resources may
offer computing services to adjacent nodes. This kind of car is called a VEC server [183].
Research paper [101] focuses on ensuring timely task completion by adopting a novel
strategy that utilizes V2V communications for task offloading. To increase the coverage of
MEC services, the authors choose collaborative vehicles to collectively manage tasks that
require low latency and significant computation, executing them in parallel. The proposed
approach leverages local processing, V2V offloading, and collaborative computing among
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several cars, enhancing parallel computing to deliver efficiency and low latency. Further-
more, task offloading is addressed as a decision-making framework, aiming to maximize
the overall reward. After identifying the cooperative vehicles, the optimal task partition
ratio is subsequently determined. Moreover, the application of a Double Deep Q-network
(DDQN) enables the selection of optimal dual actions.

Researchers, in [184], developed a framework to enhance collaborative processing
in a VN. They used stochastic analysis to assess data transmission likelihood in dynamic
V2V and V2I communications, considering factors such as car movement and channel
status. They also developed a model for computing tasks in VNs and found optimal CPU
scheduling, aiming to minimize application execution time. In this optimization process,
they consider the computation reliability by factoring in both the computation capacity
and the application requirements. Furthermore, their approach explores the potential of
distributing a vehicular application to several processing tasks to compute simultaneously.
Furthermore, they utilize the availability of resource-rich facilities such as a cloudlet or
a central cloud, or MEC, which may offer significantly stronger processing capabilities
than vehicles [185]. Each vehicle can communicate information about contents to an
adjacent vehicle and the supporting infrastructure simultaneously by employing V2V and
V2I connections.

In ref. [186], scientists suggest an interactive content-precaching strategy for Intermit-
tently Connected Vehicular Networks (ICVNs). They examine a network in which cars
drive on highways in VN regions with multiple RSUs placed. Every vehicle in this network
proceeds along its planned path traversing the coverage region of multiple RSUs. Upon
entering the communication range of an RSU, a vehicle initiates a process of registering
its current location and movement data by transferring periodic beacon messages to the
RSU [187]. As a result of this registration, every RSU maintains a dedicated table that
stores comprehensive details about all the vehicles present within its communication cov-
erage [186]. The proposed scheme incorporates a mechanism wherein each RSU has the
capability to choose the best-relaying vehicle and the subsequent RSU for task delivery to
the requesting car. This selection process is facilitated by precaching the content, utilizing
information about the requesting vehicle’s mobility within the RSU’s coverage area. Using
vehicle resources to cache the content with the aim of reducing delivery time is the main
object of this paper.

The authors of [181] have presented an approach to enhance the network latency
performance in vehicular networks. This is achieved through the implementation of
cellular-based V2V communications within the IEEE 802.11p framework. Furthermore,
they detailed a scheme that allows the cellular eNB to carefully select the most suitable set
of cellular-based V2V links. Vehicles send their request to establish a V2V link to the eNB
and the latter decides which set of vehicles is optimal for V2V connectivity. In this channel
allocation mode, eNB allocates a portion of its bandwidth to V2V communication. V2V
communications and traditional cellular transmission are conducted in distinct frequency
bands to ensure separation. The total delay of the network, considering separate V2V links,
is reduced.

A cluster-based cooperative computation offloading scheme designed specifically for
Cellular-V2X (C-V2X) networks has been proposed in [188]. This scheme involves the
seamless collaboration of VEC and MEC servers. The primary objective is to enhance
the reliability of task offloading by optimizing both the offloading policy and resource
allocation strategies. Through this approach, the authors achieve significant improvements
in the overall performance of the offloading process. Within this framework, the authors
utilize matching theory for task assignment, aiming to optimize resource allocation. The
crux of their method lies in the effective utilization of both V2V communication links and
Vehicle-to-Network (V2N) communication links for computation offloading. By seamlessly
integrating these communication channels into the task assignment process, they can
maximize resource efficiency and significantly enhance the performance of computation
offloading. To reduce the communication overhead on the cellular network, a clustering



Future Internet 2023, 15, 391 36 of 45

approach is employed. Vehicles are organized into clusters, eliminating the need for each
vehicle to communicate individually with the network. Instead, within each cluster, a
designated cluster head takes on the responsibility of communicating with the network
through the eNB. This clustering mechanism streamlines the communication process,
optimizing network resources and improving overall efficiency. Selecting a VEC or a MEC
server allows the network to reduce its computation time and latency as well.

In ref. [189], researchers suggest a new approach called collaborative EdgePV which
allows Parked Vehicles (PVs) to act as computation nodes. PVs dynamically complete tasks
during rush hours. They use Binary Integer Programming (BIP) to decrease offloading
costs and increase the performance of task offloading. The authors of [184] advocate
leveraging resources of vehicles that are moving together at a low speed. They confer these
idle resources to a resource pool to schedule task offloading to service vehicles in order
to reduce task completion time. They utilize a min–max optimization model to solve it.
Study [190] considers parked vehicles as edge computing nodes to perform different types
of tasks in collaboration with cloud and MEC. To handle the PVs’ erratic parking duration,
a container orchestration framework based on the Kubernetes [140] platform is used. The
authors formulate their model as a BIP problem to decrease the offloading cost and solve
their problem, called EdgeGA, which is based on a genetic algorithm.

The summary of the above-mentioned papers is presented in Table 7.

Table 7. Summary of recent works on vehicles augmenting MEC capabilities.

Reference Methodology Mobility Consideration Focused Connection

[101] Cooperative vehicle-assisted task offloading Yes V2I
[185] Cooperative task offloading with vehicles, MEC, and cloudlet Yes V2V-V2I

[186] Offloading service with best-relaying vehicle to
requesting vehicle Yes V2X

[188] Cooperative task offloading to VEC and MEC servers Yes V2I
[189] Collaborative EdgePV, parked vehicle resources No V2X
[184] Moving vehicles with a resource pool Yes V2I
[190] Collaborative EdgeGA, parked vehicle resources No V2V-V2I

8. Open Challenges and Research Directions

Notwithstanding all the benefits of deploying MEC systems in VNs, there are still
some research opportunities and challenges in this field. Thus, we discuss future research
directions in this section.

8.1. Stability and Interconnectivity

One of the primary challenges in the realm of MEC-enabled VNs revolves around
achieving and maintaining stability and interconnectivity. Many vehicular applications,
such as video streaming, platooning, and autonomous driving, critically depend on a
stable and uninterrupted connection between vehicles and the infrastructure. Given the
proliferation of connected vehicles, particularly within the context of 5G infrastructure, the
demand for frequent connections and seamless handovers across multiple cells is evident.
The ability to control and manage such a dynamic and densely populated environment is
paramount to ensuring network stability. Moreover, preserving service continuity during
handovers, whether vertical (between different access technologies) or horizontal (between
cells of the same cellular network), poses a significant challenge. Future research in this
domain should aim to develop robust algorithms, protocols, and network architectures
that can effectively handle the intricacies of vehicular mobility and the demands of diverse
applications. This includes addressing issues related to handover management, QoS
guarantees, and the dynamic allocation of network resources to meet the varying needs of
vehicular applications. Additionally, exploring the potential of next-generation technologies
such as 6G and beyond could open up new avenues for achieving enhanced stability and
interconnectivity in MEC-enabled VNs. While MEC has already made significant progress
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in transforming VNs, there is ample room for innovation and exploration in ensuring
the stability and interconnectivity necessary to support a wide range of mission-critical
vehicular applications in an increasingly connected and mobile world.

8.2. Task Segmentation and Migration

In a highly dynamic vehicular environment, and due to quickly changing vehicle
positions, completing offloaded tasks on time is vital. Thus, researchers suggest segmenting
tasks and/or migrating them to other MEC hosts to be able to complete them correctly and
on time.

Segmentation entails executing parts of a task at multiple servers and then getting
back the results once all parts of a task have been completed [191,192]. This approach
is particularly valuable when dealing with tasks that have stringent timing constraints,
where obtaining results from each component in a matter of milliseconds is of paramount
importance. This way, the seamless and timely execution of tasks in a dynamic vehicular
setting is achieved, ensuring that critical tasks receive the necessary attention and deliver
results with minimal latency. However, as of today there are few works addressing this
issue and the research opportunities are still open in this direction.

Migration involves moving the computation of the ongoing task to a different server,
usually one physically closer to the vehicle for reduced latency, or one with more re-
sources/capabilities [100,193]. There are two primary categories for service migration
techniques: stateful and stateless. Stateless migration pertains to services that lack an active
state and do not retain any session data. This implies that these services can be effortlessly
deployed by initiating fresh instances on the target nodes. On the other hand, stateful
migration presents a greater challenge because it necessitates the preservation and transfer
of state information to the destination node for service resumption. Most research contribu-
tions in this field concentrate on stateful migration, as stateless migration simply involves
halting the instance on the source node and initiating it anew on the destination node
without preserving the current operational state.

8.3. Using Artificial Intelligence

Nowadays, ML algorithms and tools are commonly used in several fields, and VNs
are no exception to this practice. In recent years, many works proposed to use ML, DL,
and AI algorithms for task offloading and resource management. However, there are still
many opportunities to use AI for predicting future network situations and performing and
migrating of tasks. Furthermore, the challenge of offloading AI algorithms themselves
within VNs presents an intriguing and complex problem. Ensuring that the right AI models
are deployed on the right vehicles, as well as considering their computational capabilities
and communication constraints, is a non-trivial task. Developing efficient mechanisms for
AI model selection, deployment, and updates is crucial for the seamless integration of AI
into VNs.

9. Conclusions

MEC has become increasingly important in today’s technology landscape. With the
substantial increase in data produced by IoT networks, the need for computational and
storage resources has become more prominent. Addressing the above-mentioned demands
for delay-sensitive and computation-intensive tasks is made feasible by deploying MEC
in the network. In this paper, we studied the hierarchical architecture from cloud-based
networks to edge computing. Then, with the support of the latest literature on the topic,
the challenges in how to offload tasks and how to allocate resources to perform tasks in
MEC-assisted vehicular networks in an optimal way are investigated. Furthermore, our
research extended to exploring the challenges associated with deploying cutting-edge
technologies such as SDN and DT within MEC-enabled VNs. These technologies are crucial
for making informed decisions, efficiently managing network resources, and exercising
precise control over network operations. We recognized that the successful integration
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of SDN and DTs into MEC environments presents its own challenges. Furthermore, our
research encompassed an in-depth analysis of recent developments in leveraging MEC
to enable vehicular applications. This included a comprehensive review of the following
areas: MEC to enhance collision avoidance systems in VNs; the application of MEC in
platooning scenarios; MEC-assisted in tele-operated driving; MEC-powered enhanced
video streaming VN applications. Moreover, we also considered how vehicles themselves
can contribute to augmenting MEC capabilities. This involved studies on investigating
how vehicles can serve as mobile edge nodes, extending the reach and capacity of MEC
infrastructure. Our comprehensive study of these topics not only contributed towards
complete understanding of MEC’s potential in vehicular applications but also provided
valuable insights into the practical implementation and optimization of these technologies
within the context of modern transportation systems.
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