
Citation: Gao, L.; Zhu, X. ICN-Based

Enhanced Content Delivery for CDN.

Future Internet 2023, 15, 390.

https://doi.org/10.3390/fi15120390

Academic Editor: Franco Davoli

Received: 22 September 2023

Revised: 28 November 2023

Accepted: 28 November 2023

Published: 30 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Article

ICN-Based Enhanced Content Delivery for CDN
Lei Gao 1,2 and Xiaoyong Zhu 1,2,*

1 National Network New Media Engineering Research Center, Institute of Acoustics, Chinese Academy
of Sciences, No. 21, North Fourth Ring Road, Haidian District, Beijing 100190, China; gaol@dsp.ac.cn

2 School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences,
No. 19(A), Yuquan Road, Shijingshan District, Beijing 100049, China

* Correspondence: zhuxy@dsp.ac.cn; Tel.: +86-131-2116-832

Abstract: With the rapid growth of internet traffic, the traditional host-to-host TCP/IP architecture is
subject to many service limitations faced with content-oriented applications. Various novel network
architectures have been proposed to solve these limitations, among which Information-Centric
Networking (ICN) is one of the most prominent. ICN features the decoupling of content (service)
from the physical devices storing (providing) it through location-independent naming, and offers
inherent enhancement to network performance, such as multicast and in-network caching. ICN
in-network caching has been extensively studied, and we believe that it may also be the main incentive
for ISPs to deploy ICN. A CDN (content delivery network) is a typical content-oriented network
paradigm that aims to provide the fast delivery of content. In this paper, we leverage the advantages
of the in-network caching of ICN to enhance the content delivery efficiency of CDN by integrating
ICN as a service. First, we present our design of a content delivery network enhanced with ICN,
called IECDN. Additionally, we formulate a mathematical model to optimize the performance of our
proposed design and conduct a series of evaluations. The results indicate that our proposed design
provides significant performance gains while reducing bandwidth consumption and shows better
resilience to traffic surge.

Keywords: CDN; ICN; in-network caching; multi-commodity flow problem

1. Introduction

For the past few decades, the development of the internet has always adhered to the
tenet of connecting a computer to another by establishing host-to-host communication.
However, with the evolving user interests and requirements comes the boom of novel
applications, such as Instagram and TikTok, which puts the nature of the internet under
question. According to Cisco’s 2020 annual report [1], video and other applications are in
enormous demand in today’s home, and there will be significant bandwidth demands with
the video application requirements in the future. This simply means the internet is shifting
towards a content-oriented delivery network of video files. Many content providers use
content delivery networks (CDNs) as a patch to the current IP network infrastructure in
order to enhance the availability of content. For example, Netflix has used services from
both Akamai and Limelight to build an ISP-independent content delivery network [2]. A
CDN caches content on edge servers in point-of-presence (POP) locations that are close
to end users, thereby reducing access latency. When the user requests a file via a special
domain name, the DNS routes the request to the optimal POP location, which is typically
determined by geographic proximity. If no edge servers in the POP have cached the file,
the file is retrieved from the origin server which is comparatively time consuming.

Meanwhile, in the context of future internet study, many studies focus on a new net-
working paradigm called Information-Centric Networking (ICN). Contrary to the current
IP network, ICN emphasizes the content itself rather than its location. The shift from a
host-centric to content-centric communication paradigm facilitates the communication

Future Internet 2023, 15, 390. https://doi.org/10.3390/fi15120390 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi15120390
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://doi.org/10.3390/fi15120390
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi15120390?type=check_update&version=1

Future Internet 2023, 15, 390 2 of 22

between networking parties by the identifier of the content instead of the address of the
host holding a copy of the content, which provides solutions to many issues faced by the
IP infrastructure today. The design specifics of ICN paradigm have been proposed by
many studies. Some of these research works advocate a clean-slate architecture, such as
Content-Centric Networking (CCN) [3], Named Data Networking (NDN) [4] and Publish
Subscribe Internet Technology (PURSUIT) [5]. However, many others acknowledge the
unbearable cost of kicking IP networks out of the game and settle for the coexistence with
existing IP networks to achieve incremental deployments, such as Data-Oriented Network
Architecture (DONA) [6], the Network of Information (NetInf) [7], MobilityFirst [8] and
SEANet [9]. Despite the differences in design, all of these candidate ICN architectures share
the fundamental principle of ubiquitous in-network caching.

Since the very beginning of the proposition of ICN paradigm, numerous research fields
have endeavored to leverage its striking feature of in-network caching to enhance their per-
formance, such as Internet of Things (IoT) [10], vehicular networks [11], 5G networks [12]
and IPFS [13]. The benefits that the ICN in-network caching brings are particularly similar
to those of CDN [14]. Meanwhile, the effectiveness of in-network caching has already
been proven by the commercial success of CDN. The ICN content-centric communication
paradigm meets the CDN content-oriented service requirements. CDN has already been
incorporating technologies to emancipate itself from the bounds of host-centric communi-
cation paradigm of IP networks, such as GeoDNS [15] and Anycast [16]. In that sense, we
envision a future CDN architecture with the support of ICN infrastructure. We incorporate
the ICN in-network caching as a service for CDN to further improve the content availability.
The main contributions of this paper can be summarized as follows:

• We design an enhanced content delivery network architecture by integrating the ICN
in-network caching as a service. Furthermore, we provide details on the mechanisms
for enabling collaboration between different communication paradigms within these
two networks.

• We quantify the optimization goals of content delivery network architecture by for-
mulating a mathematical model derived from the Multi-Commodity Flow (MCF)
problem, which jointly considers the QoS demand and bandwidth capacity constraint.

• Based on the optimization model, we use a real-world network topology to gauge
the performance improvements of our proposed design by conducting a series of
experiments. The results demonstrate our design’s benefits in terms of reduced
delivery latency, decreased network bandwidth consumption and better resilience to
traffic surge.

The rest of this paper is organized as follows. In Section 2, we first introduce the
background of the ICN cache and content discovery mechanism, and then review the
related research, which jointly studies ICN and CDN. In Section 3, we present our design
of the ICN-enhanced CDN architecture, called IECDN. In Section 4, we describe the
formulation of the optimization model in detail. Then we conduct a series of experiments
and analyze the results in Section 5. Finally, the conclusion is drawn in Section 6.

2. Background and Related Work
2.1. ICN Cache in a Nutshell

There have been early attempts [17–19] to develop a ubiquitous caching system within
the IP networks to avoid repeated transmission. Nevertheless, the emergence of ICN has
raised both the intensity and breadth of research on in-network caching to a new level.
There is a vast literature addressing the challenges of content caching in ICN, most of which
focus on the cache placement strategy [20–22], cache replacement policy [23] and cache
capacity allocation [24]. Three major features differentiate the ICN cache from the existing
cache system. First, ICN caching is transparent to upper-level applications and exists as
an underlying service, making it more efficient and available to different types of traffic.
Second, in ICN, the cache can be equipped on any network node. This ubiquity allows
for content to be cached closer to the end users, reducing latency and improving content

Future Internet 2023, 15, 390 3 of 22

delivery. Third, the objects cached in most traditional cache systems are generally based
on files. However, to meet the line-speed constraints of ICN routers [25], ICN employs
the smaller unit of chunk as its basic caching unit. As a side effect of this, many analysis
reference models of traditional cache become outdated to ICN.

2.2. Name Resolution Mechanism

A primary concept of ICN is naming data independently from their physical location.
Each Named Data Object (NDO) in ICN is identified with a unique name, which is not
directly usable for forwarding or routing within the current IP network. Consequently, the
issue of locating and discovering NDOs using their location-independent names has arisen.
To address this challenge, a Name Resolution Service (NRS) is required, which provides
the mapping between Identifiers (IDs) and Network Addresses (NAs). A NRS in ICN is
defined as the service that provides the name resolution function for translating an object
name into some other information, such as a locator, another name, metadata, next-hop
info, etc., that is used for forwarding the object request [26]. There are generally three kinds
of name resolution service approaches:

1. Explicit name resolution approach: This approach is also referred to as a standalone
name resolution approach. In this approach, the name resolution process and content
request routing process are decoupled. The NRS first returns to the client the locators
of the content and then it is used by the underlying network as the identifier to route
the content request. This approach is employed by many ICN architectures, such
as PURSUIT [5], DONA [6], NetInf [7] and MobilityFirst [8]. For instance, in the
MobilityFirst ICN architecture, the infrastructure of NRS is called the Global Name
Resolution Service (GNRS). It is designed as a massively scalable distributed system
which provides the dynamic binding between a content’s Global Unique ID (GUID)
and its NA.

2. Name-based routing approach: Some ICN architectures employ a name-based routing
approach which integrates the name resolution process with content request routing.
In this approach, the name is used as the basis for routing and forwarding the content
request. When a request is initiated, the name is used to search for the NDO in the
NRS cache. The NDO is forwarded back to the requester along the same path used
for request routing but in the opposite direction. A typical example is NDN [4].

3. Hybrid approach: The hybrid approach entails both an explicit name resolution
approach and name-based routing approach to complement each other. For example,
if the name-based approach fails at a certain router, the explicit name resolution
approach can be utilized as an alternative, and vice versa.

2.3. Related Work

CDN and ICN are two network paradigms proposed to enhance the content distribu-
tion efficiency in the presence of service limitations in current IP networks. Previous studies
regarding the discussion of these two paradigms can be classified into two broad classes:

1. Comparative studies: These studies have attempted to conduct comparative analyses
of these two paradigms to evaluate their respective performance bounds. In their
research, Ma Ge et al. [27] discussed the differences between CDN and NDN in
terms of distribution efficiency, protocol overhead, security, robustness, and cost, and
testbed research was conducted to compare the data transmission efficiency of the
two paradigms, with the conclusion being that NDN outperforms CDN under the
same network topology and cache storage budget. In [28], Ma Ge et al. constructed
comparable testbeds on cloud computing platforms for CDN and CCN separately
to systematically compare their performance metrics in content delivery capability.
This research found that CCN is comparable to CDN, even though it introduces
overhead in content chunk decoding and restructuring. M. Mangili et al. [29] studied
the performance bounds of these paradigms using optimization models and proposed
a comparative model to gauge the performance difference of a CDN with respect

Future Internet 2023, 15, 390 4 of 22

to CCN. The results showed that, under the same total caching storage, CDN can
have slightly better performance than CCN. In [30], real-world experiments were
conducted to compare the performance of NDN and two leading CDNs (Akamai and
Fastly). The results showed that although NDN can provide satisfactory service, it lags
behind CDN due to the hardware infrastructure and software/protocol immaturity.
NDN outperforms in terms of server load balancing and failure resiliency enabled
by ubiquitous caching. The comparative studies have shown that ICN does not
necessarily outperform CDN in terms of content distribution efficiency; however, it is
favorable in terms of lower management cost and better resiliency. Rather than being
two separate models, these two can be explored to complement each other.

2. Hybrid studies: Some prior research proposed to integrate CDN and ICN using
hybrid approaches to achieve better performance. Ref. [31] proposed a named content
delivery network called nCDN, which embeds NDN into the existing CDN framework
by setting up NDN running over UDP/TCP to simplify the implementation and
improve efficiency. In nCDN, ICN is only in charge of request routing and content
delivery. Similarly, in [32], the authors borrow the ICN name-based routing idea and
integrate it into the CDN architecture with a centralized routing engine to fully exploit
the ISP underlay network infrastructure. In [33], Benkacem et al. integrate NDN with
CDN as two network slices with the technology of Network Function Virtualization
(NFV). In this architecture, NDN serves as a service slice designated for request
routing and in-network caching over a specific region. The CDN slice is considered
the content publisher of the NDN slice. Upon the first request for a particular content,
the content is retrieved from the CDN service slice and simultaneously published to
the NDN slice. Instead of building a CDN using NDN by the direct borrowing of the
NDN network, the authors in [34] proposed another CDN-NDN architecture called
iCDN, with two major mechanisms: first, to fully utilize in-networking caching, iCDN
builds a cache hierarchy with the CDN full-mesh topology to exploit on-path and
off-path caches and cuts the forwarding plane’s dependency on routing information;
second, iCDN introduces a new forwarding strategy for enabling the forwarding
plane to make efficient decisions. J. Chen et al. [35] designed a CDN architecture
over MobilityFirst in the application layer so that minor modification is needed for
existing protocol stack. Meanwhile, it uses a self-certifying naming schema to enable
low-cost, efficient content validation and uses proactive caching to further improve
the performance of CDN. The main features and discussions regarding the above
hybrid approaches are compared and summarized in Table 1. To conclude, although
the above hybrid studies differ in their approaches, they all clearly indicate that by
integrating ICN into the CDN architecture, the content distribution efficiency of CDN
can be significantly improved.

When incorporating ICN into CDN, addressing the challenges of communication
paradigm translation between the two is an important research area. The translation
operations are typically executed by gateways or proxies that support both paradigms. The
first is to convert HTTP semantics into a ICN naming convention. In a hierarchical ICN
naming convention like NDN/CCN, the most common approach [36–38] is to construct
a hierarchical name structure by extracting information from the HTTP URL and HTTP
header. In [36], the sub-level of the HTTP domain name is split and reversely appended in
the NDN name, followed by the version, segment, and other information. This approach
improves the NDN routing capability with route aggregation. The strategy in [38] puts
a default prefix at the beginning of the CCN name, HTTP protocol, request method, and
request domain, and the request parameters are hierarchically appended.In a flat naming
convention like MobilityFirst, the key to translation is generating a globally unique ID that
identifies the content/host [35,39]. In [35], the authors use a public key generated by the
Elliptic Curve Cryptography (ECC) algorithm as the content ID. Secondly, regarding the
different HTTP request methods, primarily GET and POST, the GET method can naturally
correspond to the ICN pull-based interest packet, but the POST method is more complex.

Future Internet 2023, 15, 390 5 of 22

In [37,38], the proposed method is for the gateway/proxy to save data upon receiving a
POST, then sends a special interest to the ICN terminal. This prompts the ICN terminal to
send an echo interest to the gateway and pull the data, thus achieving a push-like effect.

In the integration methods discussed above, using overlay or network slice techniques
can facilitate the fast deployment of ICN. However, they also introduce complexities in man-
agement and incur overhead associated with network abstraction. Inspired by the above
research, we propose our ICN-enhanced CDN architecture, called IECDN. The ubiquitous
caching capabilities of ICN can be a compelling incentive for ISP to embrace its deployment.
In light of this, this paper envisions a scenario where ICN is employed as an infrastructure
service, providing network services through dual-stack gateways. To ensure a cost-effective
deployment of ICN, we propose the introduction of an IP-compatible ICN paradigm. This
strategic combination of infrastructure deployment and an IP-compatible protocol stack
aims to address the challenges posed by ICN deployment, presenting a balanced approach
that capitalizes on the strengths of ICN while mitigating the associated complexities.

Table 1. Comparison of hybrid approaches in related work.

Approach ICN Paradigm Integration Method Discussions

nCDN [31] NDN
An overlay method by setting

up NDN running over
UDP/TCP

Provide better QoS, reliability
and scalability especially in

dynamic network

R-iCDN [32] Not mentioned but
name-based routing

Integrate a centralized content
routing engine in CDN, using

ICN name-based routing

Improve CDN sub-optimal
routing in ISP networks

CDN with NDN slice [33] NDN Integrate NDN as a
network slice

Shorten delivery time and
reduce traffic load by

leveraging ICN for regional
content distribution

iCDN [34] NDN
Build CDN in NDN’s logic
using stateful forwarding

plane and in-network caches

Using NDN technology on the
CDN full-mesh topology,

shorter delay and less traffic
load is achieved, FIB
explosion is avoided

CDN over MobilityFirst [35] MobilityFirst Build CDN on top of
MobilityFirst

Combine the CDN application
awareness and ICN efficient

network forwarding

IECDN proposed in this paper IP-compatible and
ID-based protocol

ICN infrastructure service
layer with

translation gateways

Show reduced latency, less
overall bandwidth

consumption and better
resilience to traffic surge

3. Proposed Design

In this section, we first clarify our motivation to utilize the ICN functionalities to
enhance CDN and present the general description of the architecture design and its key
components. Next, we explain the working mechanism of the architecture by presenting
the workflow of a content request and delivery process. Finally, we introduce the details of
our solution to several issues in converting from the HTTP paradigm to the ICN paradigm.

3.1. Motivation

Over the past few decades, CDN has evolved to demonstrate remarkable stability
and high service performance. However, the inherent design of CDN often relies on a
centralized set of content servers. On the contrary, ICN emphasizes more lightweight and
ubiquitous caching. This motivation section explores the potential advantages of adopting
ICN to complement the CDN architecture.

Future Internet 2023, 15, 390 6 of 22

1. Emphasis on lightweight and ubiquitous caching in ICN: ICN introduces a paradigm
shift by emphasizing the lightweight nature of caching and embracing heterogeneous
and ubiquitous caching capabilities. ICN nodes can seamlessly join and leave the
network, offering great scalability and lower management costs. This departure from
centralized caching servers brings better flexibility and failure resiliency.

2. Leveraging ICN for cost-efficient content delivery: One of the primary costs of CDN
is from bandwidth consumption and maintenance. The ubiquitous caching capability
of ICN allows for the storage of content replicas within the network at any place.
Utilizing idle resources of ICN nodes, such as bandwidth and storage, to provide
content service can reduce CDN deployment costs and enhance system scalability.

3. Benefits of the ICN cache relative to the CDN HTTP-based cache: In contrast to the
CDN HTTP-based caching at the application level, the ICN cache operates at the
network layer. The control overhead is minimized, involving only a few bits in the
data packet for cache management. The ICN router can achieve line-speed caching
operation. Furthermore, the ability of ICN to split content files into data chunks
facilitates load balancing by distributing requests for locally popular content across
multiple nodes.

3.2. Design Overview

An overview of our proposed design is illustrated in Figure 1. The major modification
to CDN in our architecture is that we integrate an ICN service layer with routers supporting
ICN paradigms, which mainly involves in-network caching and naming service. These
routers constitute a large distributed caching entity of the ICN service layer. Moreover,
Ingress Gateways (IGs) and Egress Gateways (EGs) are respectively deployed at the entry
and exit points of the ICN service layer. These gateways function as both HTTP proxy and
protocol conversion components. To be specific, IG can be viewed as an HTTP proxy, to
which HTTP requests for content are redirected, and as a protocol conversion component
which translates an HTTP request into an ICN chunk request so as to discover and retrieve
content from the ICN service layer. EG receives HTTP content responses from the internet
content provider (origin server) and publishes this content to the ICN service layer, which
subsequently performs in-network caching in compliance with certain caching policies. A
detailed process of the content request and delivery will be elaborated on in Section 3.3.

Figure 1. An overview of content delivery network enhanced with ICN (IECDN).

A standalone NRS system is deployed to resolve IDs to NAs. When a router caches a
chunk, it simultaneously registers to NRS the value of its physical device NA with the key
of chunk ID. Afterwards, this chunk can be discovered and retrieved with this ID: first, an
ID resolution request is submitted to the NRS, and NRS returns a resolution response that
comprises a list of chunk replica NAs, then, a replica selection mechanism is adopted to

Future Internet 2023, 15, 390 7 of 22

select a suitable chunk replica and triggers the download. In our context, the nearest replica
selection mechanism [40] is adopted since it is commonly used in related work. Finally, the
subsequent transmission is conducted through NA routing.

Content is cached at the granularity of a file in a CDN, whereas ICN performs caching
at the granularity of a chunk. For the purpose of this discussion, we use the terms “content”
and “file” interchangeably to refer to data within a CDN network, and the term “chunk”
within an ICN network. Further information regarding this issue is discussed in Section 3.4.

3.3. Workflow

Hereafter, we elaborate on our proposed mechanisms for enabling seamless collabora-
tion between CDN and ICN to achieve efficient content delivery as illustrated in Figure 2.

User
Edge

Server

Ingress

Gateway
NRS ICN Router

Egress

Gateway
Origin

Server

1. User HTTP

request

to edge server

2. Redirect

HTTP request

to IG

4. Query NRS if chunk

ID is registered ?

5. ID registered,

returns list of cached

router NAs

3.Process HTTP

request, generate ICN

chunk request

5'. ID not registered,

returns NULL

6. Pick the optimal

router to retrieve chunk

6'-1. Send ICN chunk

request to EG 6'-2. Generate

HTTP content request

6'-3. Retrieve content

from origin server

6'-5. Send chunk to IG,

cache and register

chunk along path

7. Generate

HTTP content response

8. Send HTTP

response

to edge server

9.Serve user HTTP

request

6'-4. Generate

ICN chunk response

Request

Process

Content

Retrieval

Figure 2. Flow diagram of content request and retrieval process.

Upon a cache miss on the CDN edge server, the content request is redirected to IG.
This can be achieved by configuring IG as a proxy (steps 1–2 in Figure 2). IG parses the
HTTP content request and initiates a name resolution request to NRS, querying if the
corresponding chunk ID is registered (steps 3–4 in Figure 2). If registered, NRS returns
the list of NAs of chunk replicas, and then IG selects the optimal replica using the nearest
replica mechanism (steps 5–6 in Figure 2). If not registered (as in the dotted box), NRS
returns NULL and the content needs to be retrieved from the origin server: first, IG initiates
a chunk request to EG; second, EG handles the chunk request and generates an HTTP
request of the content; third, EG requests the content from the origin server and sends the
content back to IG in the form of a chunk. While forwarding, the chunk is cached along
path (steps 5′–6′ in Figure 2). The details of the conversion between the HTTP and ICN
paradigm will be discussed in the following section. Once IG retrieves the content, it serves
the CDN edge server (steps 7–8 in Figure 2).

Future Internet 2023, 15, 390 8 of 22

3.4. Details
3.4.1. ID-Based ICN Protocol Stack

In our design, an ID-based ICN communication paradigm is utilized to decouple the
name and location. In that sense, the content is named by a unique ID but retrieved with a
late-binding network address as presented in the above section. In order to process IDs
while avoiding an overhaul in the current IP network, it is favorable to deploy the ICN
paradigm over the existing IP infrastructure. Figure 3 shows the whole picture of this ICN
protocol stack. The identifier protocol (IDP) [41] is extended over the IP protocol, and
it regulates ID-based NA operations, such as ID-to-NA register and resolution. Above
IDP, an ID-to-ID ICN transmission protocol [42] is running, and it provides a pull-based,
chunk-oriented transmission service with efficiency and reliability mechanisms, such as
retransmission and congestion control.

Figure 3. ID-based ICN protocol stack.

3.4.2. Design of IG and EG

IG and EG are the most important components of the ICN service layer. As the
interchange points between ICN and HTTP, the HTTP-ICN gateways must be compatible
with both the HTTP and ICN paradigms. Figure 4 shows the design diagram of the
HTTP-ICN gateway.

Figure 4. The design diagram of the HTTP-ICN gateway.

Future Internet 2023, 15, 390 9 of 22

The HTTP server on IG parses and translates an HTTP request into an ICN chunk
request with a protocol conversion mechanism. The chunk request is subsequently handled
by the ICN client. Vice versa, upon receiving the chunk response on the ICN client, IG
wraps the data in the HTTP payload and sends the HTTP response back to the CDN server.
Similarly, EG receives an ICN chunk request, translates it into an HTTP content request
and extracts data from the HTTP response payload to generate the ICN chunk response.
The ICN client and server run on the ICN protocol stack described in the above section.

3.4.3. Protocol Conversion

The protocol conversion in our context is twofold:

1. HTTP to ICN: An HTTP request generally consists of a request line and several request
headers. The request line commonly consists of three items: a method that instructs
the server what it should do with the resource; a URI that locates and identifies the
resource; and an HTTP version number. In ICN, each chunk is identified with a
unique ID. Since the URL of each content is unique, we use SHA1 to generate the
20-byte hash digest of the content URL as its chunk ID. This process is illustrated
in Figure 5. Afterwards, this content will exist in the form of chunks in the ICN
network with a unique ID used for registration/publishing and resolution/retrieval.
Upon receiving a GET request for content on the HTTP server, the ID of its chunk
counterpart is calculated to locate its physical address by querying NRS, then the
follow-up download is triggered.

Figure 5. Protocol conversion from HTTP to ID-based ICN protocol.

2. ICN to HTTP: HTTP services on the application layer and is rich in semantics, whereas
most of the ICN architectures reach up to only the network layer or transport layer.
Apart from that, in our context, we use the hash digest of a content URL as its naming
ID in ICN, which is a non-reversible operation. This means that a literal translation
from the ICN protocol to HTTP is infeasible. To address this issue, we adopt a method
commonly used in related work [43,44] that the ICN packets piggyback with extra
control or feedback information. Specifically, since an HTTP request needs to be
reconstructed by EG, IG sends to EG the ICN chunk request piggyback with HTTP
request headers related to this content. Likewise, EG sends to IG the chunk response
piggyback with the HTTP response headers for IG to reconstruct the HTTP response,
and the response headers are cached on IG for future use. This can achieve zero loss
of HTTP semantics at the cost of relatively low overhead.

3.4.4. Large Content Chunking

When a content is too large to fit into one chunk, it needs to be split into smaller pieces.
Therefore, a proper chunking size should be determined. In [45], it is concluded that chunk
size has a large impact on system performance.

Future Internet 2023, 15, 390 10 of 22

However, determining the optimal chunk size is indeed a challenging task since both
large and small chunk sizes exhibit trade-offs across different performance metrics. We
summarize the related work in [45–47] and provide analysis in Table 2. In CCN, 4 KB
is adopted as the default chunk size [3]. However, this value is not applicable in the
context of HTTP-based web content. Inspired by the latest report on [48] that the average
size of web content is about 2.3 MB, the rounded-down value of 2 MB may be suggested
as an appropriate chunking size, as it is storage-friendly, which helps mitigate cache
fragmentation and is large enough to avoid chunking in many cases. The optimal chunk
size is to be further adjusted based on extensive empirical research.

Table 2. Performance impact of chunk size.

Impact Large Chunk Size Small Chunk Size

Cache Performance Higher cache hit ratio longer cache entry lifetime;
cache space not fully utilized

Lower cache hit ratio and shorter cache entry
lifetime; better utilization of cache space

Transmission Performance Longer retrieval delay; less transmission
control overhead

Shorter retrieval delay but bad throughput; more
control overhead introduced in packet header

Replica Router Load One-hot cache more likely occurs and entails an
imbalance of the router load

Distortion of content popularity but hot cache is
distributed across more replica routers for

load balancing

After multiple chunks are generated, each one of them requires a unique chunk ID.
We use a metadata file, called manifest, to store the mapping relation between one content
to many chunks so that chunks can be retrieved from the ICN distributed cache system and
assembled as the content. The operation of the manifest can be described as follows: first,
when EG pulls content from the origin server, the manifest for this content is generated and
stored on EG; second, we assign the hash digest of the content name to manifest. As for the
ID of each chunk within the content, it is generated by hashing the content name tagged
along with the numerical order of each chunk. The list of the chunk NAs are encoded into
the manifest with a TLV format. The steps of content chunking, ICN chunk response and
manifest generating are described in Algorithm 1.

Algorithm 1 Large content chunking.

Input: HTTP content response (HCRP)
Output: ICN chunk responses (ICRPs), manifest chunk (MC)

1: Initialization: ICRPs = {�}, chunk_size = 2MB
2: MC.ID ← hash(HCRP.url)
3: if HCRP.content_length ≤ chunk_size then
4: ICRP.ID ← SHA1(HCRP.url + string(0))
5: ICRP.payload← HCRP.payload
6: ICRPs.add(ICRP)
7: MC.payload← encode(ICRP.ID)
8: else
9: chunk_num← dHCRP.content_length/chunk_sizee

10: for i = 0; i ≤ chunk_num; i ++ do
11: ICRPi.ID ← SHA1(HCRP.url + string(i))
12: ICRPi.payload← [i× chunk_size, (i + 1)× chunk_size) in HCRP.payload
13: ICRPs.add(ICRP)
14: end for
15: MC.payload← encode([ICRP0.ID, ICRP1.ID, . . . , ICRPn.ID])
16: end if
17: return ICRPs, MC

Future Internet 2023, 15, 390 11 of 22

In such a case, the process of handling the HTTP request discussed in Section 3.3
should also be updated. The first step is to retrieve the manifest from EG, and after the
retrieval, it is decoded to generate a list of chunk IDs belonging to the content. Afterwards,
IG sends a resolution request of each chunk ID to NRS, and the follow-up process is the
same. Multiple chunks can be retrieved concurrently from different cache replica routers so
that the download latency can be reduced.

4. Problem Formulation
4.1. Model Description

The core philosophy of CDN is to move content from the places of origin servers
to the places of edge servers, which are much closer to users so that a better QoS (lower
access latency and higher transfer rate) is ensured. To this end, the optimization model
is QoS-oriented. Meanwhile, a significant traffic engineering goal is to be responsive
to sudden traffic surges and have better control over the link load since network links
packed with traffic may experience significant degradation in performance. This means
our model is subject to bandwidth constraints on each link, which translates our model
into a Multi-Commodity Flow (MCF) problem.

We formulate a QoS-oriented model subject to bandwidth constraints to mathemati-
cally represent our proposed design. The model is considered a directed graph G = (V, E)
with |V| vertices and |E| edges. The set V = {v1, v2, . . . , vn} and set E = {e1, e2, . . . , en}
represent nodes and links in the network, respectively. A node can act as one of the fol-
lowing roles: user, router, CDN edge server, origin server, IG and EG. We assume that
there is only one origin server providing all the contents to the whole network, which
we denote as Vs. IG and EG are chosen from the set of routers R = {r1, r2, . . . , rn} with
a specific mechanism which will be introduced in Section 5. Let U = {u1, u2, . . . , un} be
the set of users and N = {n1, n2, . . . , nm} be the set of CDN edge servers. Thus, we have
that V = U ∪ N ∪ R ∪Vs. Each router and CDN edge server can potentially cache content
and is restricted with finite cache capacity C(v). For each link (i, j) in the network, it is
characterized by its bandwidth capacity b(i,j) and delay d(i,j).

A large proportion of content cached on CDN edge servers is web files whose sizes
range from several bytes to megabytes. In most cases, a content is equivalent to a chunk.
And we discuss content/chunks from an object level referring to [49]. To this end, we define
the set of content as F = { f1, f2, . . . , fn} and Size(fp) = Size(fq), ∀ fp, fq ∈ F. Derived from
MCF model, we define K = {k1, k2, . . . , kn}, k = (sk, tk, ωk) as the set of demands in our
model and refer to k as a content delivery demand, which needs to route a content from
source sk to destination tk with a demand for transmission rate at ωk. In our context, sk is
the node where the content is stored, and tk is the user requesting the content. The content
f demanded by each k complies with a certain probability distribution, which we denote
as f = ξ(k). In the context of CDN, Zipf distribution is one of the possibilities. For each
demand k, we define variable z(i,j) such that if z(i,j) = 1, the route goes through link (i, j)
and z(i,j) = 0 otherwise. The traffic generated by demand k on link (i, j) is denoted as γk

(i,j).
Moreover, the conversion from an HTTP paradigm to an ICN paradigm in our proposed
design can introduce overhead, which we denote as αk.

In our proposed design, both routers and CDN edge servers have to make the decision
of caching a content according to its caching policy. Let X(f , r) −→ {0, 1} be the Boolean
function of caching the content f at router r, and Y(f , n) −→ {0, 1} be the Boolean function
of caching it at edge server n. After a content is cached at a router or edge server, it becomes
an available source for content delivery demand k. We denote the content availability at a
certain node with binary value x ∈ {0, 1} and y ∈ {0, 1} such that:

xk
r =

{
1, content demanded by k is available at router r
0, otherwise

(1)

Future Internet 2023, 15, 390 12 of 22

yk
n =

{
1, content demanded by k is available at server n
0, otherwise

(2)

When a content is available at the edge server, it will be routed directly to user.
However, on encountering a cache miss on the edge server, the routing occurs in two stages.
The first is to route the content from a source that is either a router or the origin server in
our proposed design, to the CDN edge server. The second is to route content from the edge
server to user. Meanwhile, the content is cached along the path. We also assume that IG is
placed near edge servers; thus, the delay from IG to an edge server is ignored. The routing
process from the origin server to EG is simply regarded as a one-hop transmission with
unlimited bandwidth and a large delay.

We evaluate the efficiency of completing a content delivery demand based on QoS,
which we measure by its most important factor: the total latency from the source to the
destination. In the meantime, each demand must fulfill constraints on link and node
capacity. To proceed with further discussion, Table 3 summarizes the notations used in
this paper.

Table 3. Summary of the notation used in this paper.

Notation Comment

V Set of vertices (network nodes)
E Set of edges (network links)
U Set of user nodes
N Set of edge server nodes
R Set of router nodes
Vs The single origin server node
F Set of contents
K Set of demands

C(v) Finite cache capacity of node v
Size(f) Size of content f
f = ξ(k) Mapping of demand k to content f

b(i,j) Link capacity of (i, j)
d(i,j) Link delay of (i, j)
γk
(i,j) Traffic flow related to demand k at link (i, j)
αk Latency overhead related to demand k

zk
(i,j) 0–1 variable, indicating whether (i, j) is used for routing demand k

X(f , r) Boolean function of whether to cache content f at router r
Y(f , n) Boolean function of whether to cache content f at edge server n

xk
r 0–1 constraint, indicating availability of demand k at router r

yk
n 0–1 constraint, indicating availability of demand k at edge server n

Given the above definitions and assumptions, we formulate our QoS-based optimal
design model as follows:

min ∑
k∈K

(∑
n∈N

∑
r∈R

(1− yk
n)[x

k
r lk

1 + (1− xk
r)l
′k
1]) + lk

2 (3)

lk
1 = ∑

(i,j)∈E
zk
(i,j)d(i,j) + αk, ∀ k ∈ K, sk ∈ R, tk ∈ N, |sk| > 1 (4)

l
′k
1 = ∑

(i,j)∈E
zk
(i,j)d(i,j) + αk, ∀ k ∈ K, sk ∈ Vs, tk ∈ N (5)

lk
2 = ∑

(i,j)∈E
zk
(i,j)d(i,j) , ∀k ∈ K , sk ∈ N, tk ∈ U (6)

subject to constraints (7)–(15):

Future Internet 2023, 15, 390 13 of 22

∑
j:(i,j)∈E

zk
(i,j) − ∑

j:(j,i)∈E
zk
(j,i) = λk

i , ∀ k ∈ K, (i, j) ∈ E, (7)

λk
i =


1, i = s
−1, i = tk

0, i 6= skand i 6= tk

γk
(i,j) zk

(i,j) =
{

0, ωk
}

, ∀k ∈ K, ∀(i, j) ∈ E (8)

∑
k∈K

zk
(i,j) γk

(i,j) 6 b(i,j), ∀(i, j) ∈ E (9)

∑
k∈K

[Y(n, ξ(k)) + yk
n] 6 C(n), ∀n ∈ N (10)

Y(n, ξ(k)) + yk
n 6 1, ∀n ∈ N, k ∈ K (11)

∑
k∈K

[X(r, ξ(k)) + xk
r] 6 C(r), ∀r ∈ R (12)

X(r, f ξ(k)) + xk
r 6 1, ∀r ∈ R, k ∈ K (13)

yk
n = {0, 1}, ∀k ∈ K, n ∈ N (14)

xk
r = {0, 1}, ∀k ∈ K, n ∈ N (15)

The objective function (3) minimizes the total content delivery latency over all content.
For each demand k, lk

1 in Equation (4) denotes the latency to deliver content from an ICN
in-network caching router to the edge server. Note that |s| ≥ 1, which means there is
generally more than one available replica for content. Equation (5) means that if there is
no available content in the ICN in-network cache, the source will be assigned to origin
server, and the latency is denoted as l

′k
1 in such a case. lk

2 in Equation (6) denotes the
latency to deliver content from the edge server to the user. In (7), we use the standard flow
conservation constraint of the MCF problem, i.e., for nodes that are neither the source nor
destination, the inflow is equal to the outflow. This means our model does not support
multicast routing, even though multicast is another attractive enhancement technique of
ICN; we intend to explore this further in our future work. Constraint (8) ensures that
each link chosen by demand k fulfills its demanded transmission rate of ωk. Constraint (9)
ensures that the traffic on link (i, j) does not surpass its capacity. Content cached on each
router and the CDN edge server should not surpass its capacity, and only one replica of the
content is cached per server/router as enforced by constraint (10)–(13). Finally, we add to
the model the binary constraint (14) on yk

n and (15) on xk
r .

4.2. IECDN Model and Conventional CDN Model

The optimal design model we described above is based upon our proposed content
delivery architecture. However, both our proposed design and a conventional CDN can
be adapted to it. In our proposed design, αk in the objective function (3) is a value larger
than zero, whereas in a conventional CDN model, αk is always equal to zero. Since routers
in a conventional CDN do not perform caching, constraint (12)–(15) can be removed, and
constraint (15) is re-adapted to (16). Therefore, a conventional CDN model has that objective
function (3), wherein αk ≡ 0, subject to constraints (7)–(11), (14) and (16):

xk
r = 0, ∀k ∈ K, n ∈ N (16)

From a practical point of view, when a certain cache policy for ICN (e.g., LCE, LCD
and CL4M) is given, the Boolean function X(f , r) is given as an input of the problem.
Meanwhile Y(f , n) is deterministic when the HTTP response header indicates a preference
for caching content (e.g., Cache-Control: max-age = 300 instructs server to cache the content
for 300 s). For simplicity, we assume that content will always be cached on the CDN edge
server, i.e., Y(f , n) = 1 . Additionally, when a certain cache eviction policy is given for
both ICN and CDN (e.g., LRU, LFU), constraints (10)–(13) are always satisfied. As for

Future Internet 2023, 15, 390 14 of 22

constraints (14)–(15), the CDN edge server is aware of the existence of cached content, so
yk

n is also given as an input. Likewise, a content discovery mechanism of ICN provides
the value of xk

r . As we introduced in Section 3, a name resolution service is integrated
in our proposed design, which facilitates content discovery. The value of variable zk

(i,j) is
dependent upon both content delivery architecture design and routing. When a candidate
design is given from {IECDN, Conventional CDN}, the problem is reduced to a routing
problem, which prompts us to solve the problem using Linear Programming.

5. Simulation Study
5.1. Methodology

We implemented the simulation program in Python and the optimization problem
was solved using CPLEX (v 22.1.0).

5.1.1. Topology

In order to establish a network topology for our proposed design that contains the key
components, we developed a mechanism to generate the topology:

• Routers: We use a real network topology for core routers as follows:

1. Abilene topology (12 nodes, 14 bidirectional links);
2. Geant2 topology (32 nodes, 54 bidirectional links).

• IG and EG: Both IG and EG are selected from routers. Based on our previous as-
sumption, IG is placed close to CDN edge servers. In light of the topology-informed
placement strategy for CDN servers proposed in [50], we select IG as the router with
the highest out-degrees so that it reaches out to more users with smaller latency.
In contrast, EG is selected as the router with the maximum sum of distances to all
other routers, reflecting that EG is placed towards the origin server, which is distant
from users.

• Edge servers and origin server: Edge servers are arranged in a ring topology, with
each one of them linked to the IG. We set the number of edge servers in proportion
to the number of users, with one edge server per ten users. Lastly, the origin server
is directly connected to the EG as previously assumed. A topology of our proposed
design generated with the Abilene topology is shown in Figure 6.

Figure 6. The Abilene topology used for IECDN.

Future Internet 2023, 15, 390 15 of 22

5.1.2. Parameter Configuration

As stated in Section 4, our problem can be solved using an ILP (Integer Linear Pro-
gramming) model. Hereafter, we list the parameters we used in our numerical analysis,
which can be categorized as follows:

1. Content and request parameters: Since working with objects of a large cardinality
is practically unfeasible in an ILP model, we generated a workload extracted from
a catalog of 1× 104 content objects following the Zipf distribution, and to study the
impact of different content popularity on our model, we varied the parameter α of
the Zipf distribution to within the range of [0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2], referring
to [51]. The requests of this workload were designed up to 2× 104, with each request
mapped to a content delivery demand in our model. We generated different demand
profiles at the numbers in the range of [10, 12, 14, 16, 18, 20] to model different user
demand frequency. Within an analysis, the destination of each request/demand was
randomly assigned to an unrepeated user; the CDN edge servers servicing these
requests were scheduled in a Round Robin manner. To stay faithful to the real CDN
routing scenario, routing for each requested content was carried out in two stages if
necessary as mentioned in Section 4.1. Furthermore, we analyzed two possible user
demand rates of 0.5 and 1.0 Gbps. Finally, we computed the mean total bandwidth
consumption and delay as the outcome.

2. Network parameters: We classified links into two main categories, the core links and
the edge links.

• Core links refer to links connecting routers. Bandwidth limits on core links in
both topologies are set to 10 Gbps. Delays on core links in the Abilene topology
are set to the measurement results of [52].

• Edge links connect routers to user. For both topologies, bandwidth limits on
edge links are set to the highest user demand rate of 1.0 Gbps, and delays are set
to random values between 1 and 5 ms, following a uniform distribution.

In particular, according to our previous assumption, for the link between the origin
server and EG, the bandwidth is set to infinite, and the delay is set to a large number,
for which we deem 100 ms to be reasonable, considering the dataset we employed
from [52]. Meanwhile, we relaxed the bandwidth constraints on links connected to
IG since it is the meeting point of all the influx when delivering content from the
source to the PoP. Their limits are elevated to the value of max (content demand
frequency) × max (contend demand rate) to allow the concurrency of all the flows.

3. Cache parameters: In the context of our study, caching is involved in both CDN and
ICN. As we assumed in Section 4.2, content is always preferably cached on CDN
servers in our model. Regarding ICN, we implemented the LCE policy, which we
deemed as the counterpart. We set the cache capacity for CDN nodes to be within
the range of [10, 50, 100, 200, 300, 500] (objects). From a practical point of view, the
cache capacity for CDN servers is assuredly larger than that of ICN routers. Therefore,
we set the cache capacity of all ICN routers equally as one-tenth of the CDN server
capacity, conforming to the homogeneous cache allocation strategy. When reaching
the maximum cache capacity, the eviction policy of LRU is adopted for both ICN and
CDN. The fundamental parameters we tested in our numerical analysis are shown
in Table 4.

Future Internet 2023, 15, 390 16 of 22

Table 4. Parameters for numerical analysis.

Parameter Value Default

Topology Abilene, Geant2 Abilene
Catalog size 1× 104 -

Request number 2× 104 -
α of Zipf [0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2] 0.8

Content demand frequency [10, 12, 14, 16, 18, 20] 10
Content demand rate [Gbps] 0.5, 1.0 1.0

CDN node cache size [Objects] [10, 50, 100, 200, 500] 100
ICN node cache size [Objects] [1, 5, 10, 20, 50] 10

5.2. Result Analysis
5.2.1. Enhancement to Performance

In this experiment, we attempt to evaluate the performance of our proposed design
compared with conventional CDN. We use the Abilene topology for analysis and vary
the cache size in the network, noting that by changing the maximum cache size of CDN
servers, the maximum cache size of the ICN routers is correspondingly changed. Other
parameters are set to their default values. The results are illustrated in Figure 7a,b with
the direct comparison of total bandwidth consumption and average content delivery delay
under different cache sizes between IECDN and conventional CDN.

10 50 100 200 500300 400
��!�����������
�#����������	�����
�

75

80

85

90

95

��
��
���
��
�
��
��
��
��
��
�
��
��
��
��
��
�

�������"���������
IECDN
CDN

10 50 100 200 500300 400
����������������!���������
�
������

80

100

120

140

160

��
��
��
��
�
��
�
�
�

��

	������ ���
�����
IECDN
CDN

(a) (b)

Figure 7. Comparison of total bandwidth consumption (a) and average delay (b) under different
cache sizes between IECDN and conventional CDN.

Overall, it is obvious that compared with conventional CDN, IECDN achieves consid-
erable performance gains while reducing bandwidth consumption. Therefore, it is verified
that it is favorable to integrate ICN into the CDN architecture. Specifically, with a default
cache size of 100 objects on CDN servers and correspondingly 10 objects on ICN routers, the
average delay is reduced by approximately 46%, and bandwidth consumption is decreased
by around 19%. Meanwhile, it is noteworthy that in the context of CDN, the reduction of
bandwidth consumption and average delay exhibits a significant decline when the cache
size per server increases from 10 to 200 objects, whereas there are only marginal benefits
observed in the wide range of 200 to 500 cache size per server. This phenomenon can
be attributed to the inherent characteristics of the Zipf distribution, wherein numerous
objects are rarely accessed. The analysis of the impact of Zipf distribution on our proposed
design is presented in the following section. A similar but more moderate trend can be also
observed in the case of IECDN: when enlarging the cache size, despite a noticeable decline
at the beginning, a saturation of both bandwidth consumption and average delay ensues

Future Internet 2023, 15, 390 17 of 22

with minor benefits continuing to be achieved. This enlightened us that less storage cost is
required for CDN providers to achieve an adequate performance goal in the presence of
in-network caching.

5.2.2. Impact of Content Popularity

As discussed in the above section, the Zipf distribution exerts inherent influence
on our model. In this experiment, we attempt to explore this further by studying the
most import factor of Zipf distribution: for the α parameter, the higher the value of α, the
more focused the users’ preferences. We still use the Abilene topology for analysis and
change the α parameters of the Zipf distribution. Other parameters are set as the default.
Additionally, we present the results with both the comparison between the two architectures
and their performance gap as the α parameter varies. As demonstrated in Figure 8a,b, as α
increases, both the total bandwidth consumption and average delay decrease as expected
because with a higher α value, there are more requests for popular content, which makes
caching play a more important role in improving performance. However, as α increases,
the performance gaps between IECDN and conventional CDN also tend to narrow (as
indicated by the green columns). Specifically, with the α value of 0.6, the total bandwidth
consumption is reduced by 19.24 Gbps, and the average delay is reduced by 77.16 ms,
whereas these two gaps narrow down to 6.66 Gbps and 27.43 ms, respectively, with the
α value of 1.2. This is also because a higher α value leads to a more focused preference
for popular content. Most content with high popularity is requested and cached on CDN
servers, which in turn makes more content readily available on CDN servers. Therefore,
the ICN in-network caching tends to be of service for fewer content requests, resulting in
smaller performance improvement.

0.6 0.7 0.8 0.9 1.0 1.1 1.2

���
���������

0

20

40

60

80

100

��
�

���

�

��
��

��
��

��
��

�
��

��
��

��
��

�	

19.24 18.52 17.63 15.36 12.94
10.16

6.66

��������������
�

IECDN
CDN

0.6 0.7 0.8 0.9 1.0 1.1 1.2
���
����������

0

20

40

60

80

100

120

140

160

��

�
��

�
�

�
��

���
��

77.16 74.72 70.46
62.05

52.25

40.44

27.43

�����������	��
�

IECDN
CDN

(a) (b)

Figure 8. Comparison of total bandwidth consumption (a) and average delay (b) under different
alpha parameter between IECDN and conventional CDN.

5.2.3. Resilience to Traffic Surge

At last, we attempt to dig deeper into our design’s resilience to traffic surge compared
with conventional CDN. By increasing the content demand frequency, more content is
demanded to be routed in the network simultaneously, thus increasing the traffic. We also
set the demand rate at two different values, 0.5 and 1.0 Gbps. Both Abilene and Geant2
topologies are used for analysis. Figure 9 depicts the trend of total bandwidth consumption
in the Abilene and Geant2 network topologies as the content demand frequency increases.

Future Internet 2023, 15, 390 18 of 22

10 12 14 16 18 20
�! &� &����� ���$�#'� �)

50

75

100

125

150

175

200

�!
&�
���

�
�(

��
&�
��
!

%'
�
"&
�!
 �
��

�"
%�

&� ������
&� ������

&� ������

&� ��
��	

�!"!�!�)��
���� �
IECDN(rate=0.5 Gbps)
CDN(rate=0.5 Gbps)
IECDN(rate=1.0 Gbps)
CDN(rate=1.0 Gbps)

10 12 14 16 18 20
� �%��%���������#�"&���(

50

75

100

125

150

175

200

225

�
%�
��

��
�'

��
%�
��
 �

$&
�
!%
�
��
��

�!
$�

%��	�����
%��	���
�

%��	���
�

%��	������

� ! � �(������%�
IECDN(rate=0.5 Gbps)
CDN(rate=0.5 Gbps)
IECDN(rate=1.0 Gbps)
CDN(rate=1.0 Gbps)

(a) (b)

Figure 9. The trend of total bandwidth consumption in Abilene (a) and Geant2, (b) topology as
content demand frequency increases.

It is observed that at the demand rate of 0.5 Gbps, the total bandwidth consumption is
trended as near linear in all scenarios. This meets the expectation because even with the
largest demand frequency of 20, the network links are not subject to congestion. Apart from
that, there is a subtle feature that the line of conventional CDN rises more steeply than that
of our proposed design. Specifically, we calculate the slope of each fitted line (as indicated
by the dotted lines) to provide a clearer indication of its rate of growth, and it shows that
the growth rate of the total bandwidth consumption in conventional CDN outweighs that
of our proposed design. At the demand rate of 1.0 Gbps, congestion is more possibly to
occur in the network links as demand frequency increases. More and more content has to
make a longer detour to avoid congestion instead of a Dijkstra shortest path as imposed
by link constraints. Under these circumstances, a linear trend of bandwidth consumption
is unsustainable in conventional CDN. However, in our proposed design, the bandwidth
consumption still maintains closely linear, which benefits from the presence of in-network
caching that alleviates network congestion. This demonstrates a better resilience to traffic
surge by integrating ICN and is of great importance to traffic engineering.

5.3. Overhead Analysis

In general, for small content, the latency overhead in our proposed design is mainly
caused by the process of protocol conversion and name resolution. For each HTTP content
request, a single hash operation is required for discovering content in the ICN network. We
adopt a piggyback method to deliver information required for protocol conversion; thus,
an additional session of data transmission is avoided. It was suggested by [53] that the
cost of updating the control layer is considerably lower than that of data downloading.
Meanwhile, by adopting the deterministic-latency name resolution method [54], αk can
be viewed as a constant, making resolution-based content discovery a promising solution.
From a holistic point, the fraction of latency overhead decreases as the cardinality of the
transmitted content in the network increases, which can be formulated in our model as
limk→∞ ∑k∈K αk/ ∑k∈K lk = 0. On the other hand, as shown in Figure 7b, the content
delivery latency nearly halves in the presence of ubiquitous cache, indicating that the
latency overhead is worthwhile for the purpose of utilizing the ICN in-network caching.

However, for large content, another overhead is introduced since manifests are re-
quired to store the mapping between content and chunks. Here, we discuss this overhead
in detail.

We conducted a simple simulation study focusing on content chunk and manifest
generation under different chunking size. Web content sizes generally follow a Pareto

Future Internet 2023, 15, 390 19 of 22

distribution, a typical heavy-tailed distribution. Assuming a random variable X follows a
Pareto distribution, the probability distribution of X is given by Equation (17) as follows:

P(X > x) = (
x

xmin
)−α (17)

Suppose there are 100,000 pieces of content whose sizes follow a Pareto distribution
with model parameter xmin = 133 KB, referring to [55]. As in Algorithm 1, the manifest
primarily stores 20 byte chunk IDs. Therefore, we can calculate the corresponding manifest
sizes based on the content sizes and chunking size. We utilize the average size (bytes)
of manifests as the evaluation parameter because it is a crucial determinant of both the
transmission and storage overhead. We use different α parameters of Pareto distribution
to simulate varied content size distributions. When α takes values of 1.1, 1.2, and 1.3,
the corresponding average content sizes are 1141, 761 and 517 KB. Figure 10 depicts the
variation of average manifest size with changing chunk size. The trend implies that when
the chunk size grows exponentially, the average manifest size exhibits a corresponding
exponential decrease when the chunk size is relatively small. However, as the chunk size
increases significantly, particularly surpassing the average size of all contents (as indicated
by the dashed line position), the decreasing trend reduces and tends to stabilize. This is
because when the chunk size is large, content smaller than that chunking granularity cannot
be further divided, so increasing the chunk size further does not significantly decrease the
average manifest size. Combining this observation with [48], which reports an average
web content size of 2.3 MB, selecting the chunk size of 2 MB in our framework is acceptable
as a value for reducing manifest management overhead.

2 4 8 16 32 64 128 256 512 1024 2048 4096 8192
�
�������
����

20
30

100

1,000

10,000

��

�
	�

�
�
	�
��

���
��
�

��

�

alpha = 1.1
alpha = 1.2
alpha = 1.3

Figure 10. Average manifest size under different chunk sizes.

6. Discussion and Conclusions

ICN in-networking caching has been widely adopted to address issues in other fields
because of its advantages in terms of less content retrieval latency, low network traffic
and so on. This study focuses on the design and evaluation of utilizing the ubiquitous
caching of ICN as a service to enhance the performance of CDN. To this end, first, we
introduce the overview of our proposed design of a CDN enhanced with ICN, called
IECDN, and elaborate on the mechanisms for enabling the collaboration between CDN
and ICN to achieve efficient content delivery. Second, we formulate an optimization model
derived from the MCF problem, which quantifies the optimization goal for content delivery.
Through a series of numerical analyses, the results demonstrate that our design not only
improves content delivery efficiency but also reduces the network load and is more resilient
to network traffic surge. Based on these findings, we venture the conclusion that the

Future Internet 2023, 15, 390 20 of 22

ICN-based enhanced CDN distribution can economically satisfy the exponential growth of
internet content without placing an unacceptable burden on link loads.

However, the ubiquitous caching and dynamic replica selection of ICN also pose
a great challenge to the security design within ICN. In our framework, an associated
manifest is generated when the content is published in ICN. Therefore, the manifest can be
leveraged as a handle to ensure content-level security. In our forthcoming work, we intend
to further explore the solutions to security issues by considering the distinctive features
of our framework and using the existing mature security mechanism support. Moreover,
we will explore more advantages of ICN in the domains where it can possibly provide
better solutions.

Author Contributions: Conceptualization, L.G. and X.Z.; methodology, L.G. and X.Z.; software, L.G.;
writing—original draft preparation, L.G.; writing—review and editing, L.G. and X.Z.; supervision,
X.Z.; project administration, X.Z.; funding acquisition, X.Z. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was funded by the Goal-Oriented Project Independently Deployed by Institute
of Acoustics, Chinese Academy of Sciences: Distributed Supercomputing Based on SEANET Network
(project no. MBDX202114).

Data Availability Statement: Data are contained within the article.

Acknowledgments: We would like to express our deepest gratitude to Linlin Hu and Chunmei Liu
for their meaningful support for this work.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Cisco Annual Internet Report (2018–2023) White Paper. Available online: https://www.cisco.com/c/en/us/solutions/collateral/

executive-perspectives/annual-internet-report/white-paper-c11-741490.html (accessed on 29 November 2023).
2. Norton, W. The emerging 21st century access power peering. Commun. Strateg. 2011, 84 , 55–73.
3. Jacobson, V.; Smetters, D.K.; Thornton, J.D.; Plass, M.F.; Briggs, N.H.; Braynard, R.L. Networking named content. In Proceedings

of the 5th International Conference on Emerging Networking Experiments and Technologies, Rome, Italy, 1–4 December 2009;
pp. 1–12.

4. Zhang, L.; Afanasyev, A.; Burke, J.; Jacobson, V.; Claffy, K.; Crowley, P.; Papadopoulos, C.; Wang, L.; Zhang, B. Named data
networking. ACM SIGCOMM Comput. Commun. Rev. 2014, 44, 66–73. [CrossRef]

5. Fotiou, N.; Nikander, P.; Trossen, D.; Polyzos, G.C. Developing information networking further: From PSIRP to PURSUIT. In
Proceedings of the Broadband Communications, Networks, and Systems: 7th International ICST Conference, BROADNETS 2010,
Athens, Greece, 25–27 October 2010; Revised Selected Papers 7; Springer: Berlin/Heidelberg, Germany, 2012; pp. 1–13.

6. Koponen, T.; Chawla, M.; Chun, B.G.; Ermolinskiy, A.; Kim, K.H.; Shenker, S.; Stoica, I. A data-oriented (and beyond) network
architecture. In Proceedings of the 2007 Conference on Applications, Technologies, Architectures, and Protocols for Computer
Communications, Kyoto, Japan, 27–31 August 2007; pp. 181–192.

7. Dannewitz, C.; Kutscher, D.; Ohlman, B.; Farrell, S.; Ahlgren, B.; Karl, H. Network of information (netinf)—An information-centric
networking architecture. Comput. Commun. 2013, 36, 721–735. [CrossRef]

8. Venkataramani, A.; Kurose, J.F.; Raychaudhuri, D.; Nagaraja, K.; Mao, M.; Banerjee, S. Mobilityfirst: A mobility-centric and
trustworthy internet architecture. ACM SIGCOMM Comput. Commun. Rev. 2014, 44, 74–80. [CrossRef]

9. Wang, J.; Chen, G.; You, J.; Sun, P. Seanet: Architecture and technologies of an on-site, elastic, autonomous network. J. Netw. New
Media 2020, 6, 1–8.

10. Zhang, Z.; Lung, C.H.; Wei, X.; Chen, M.; Chatterjee, S.; Zhang, Z. In-network Caching for ICN-based IoT (ICN-IoT): A
Comprehensive Survey. IEEE Internet Things J. 2023, 10, 14595–14620. [CrossRef]

11. Khelifi, H.; Luo, S.; Nour, B.; Moungla, H. In-network caching in ICN-based vehicular networks: Effectiveness & performance
evaluation. In Proceedings of the ICC 2020—2020 IEEE International Conference on Communications (ICC), Dublin, Ireland,
7–11 June 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–6.

12. Serhane, O.; Yahyaoui, K.; Nour, B.; Moungla, H. A survey of ICN content naming and in-network caching in 5G and beyond
networks. IEEE Internet Things J. 2020, 8, 4081–4104. [CrossRef]

13. Zeng, R.; You, J.; Li, Y.; Han, R. An ICN-based IPFS high-availability architecture. Future Internet 2022, 14, 122. [CrossRef]
14. Passarella, A. A survey on content-centric technologies for the current Internet: CDN and P2P solutions. Comput. Commun. 2012,

35, 1–32. [CrossRef]
15. Hawley, J. GeoDNS-Geographically-aware, protocol-agnostic load balancing at the DNS level. In Proceedings of the Linux

Symposium, Montreal, QC, Canada, 13–17 July 2009; pp. 123–130.

https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
http://doi.org/10.1145/2656877.2656887
http://dx.doi.org/10.1016/j.comcom.2013.01.009
http://dx.doi.org/10.1145/2656877.2656888
http://dx.doi.org/10.1109/JIOT.2023.3274653
http://dx.doi.org/10.1109/JIOT.2020.3022243
http://dx.doi.org/10.3390/fi14050122
http://dx.doi.org/10.1016/j.comcom.2011.10.005

Future Internet 2023, 15, 390 21 of 22

16. Calder, M.; Flavel, A.; Katz-Bassett, E.; Mahajan, R.; Padhye, J. Analyzing the Performance of an Anycast CDN. In Proceedings of
the 2015 Internet Measurement Conference, Tokyo, Japan, 28–30 October 2015; pp. 531–537.

17. Ari, I. Design and Management of Globally Distributed Network Caches; University of California: Santa Cruz, CA, USA, 2004.
18. Bhattacharjee, S.; Calvert, K.L.; Zegura, E.W. Self-organizing wide-area network caches. In Proceedings of the IEEE INFOCOM’98,

the Conference on Computer Communications, Seventeenth Annual Joint Conference of the IEEE Computer and Communications
Societies, Gateway to the 21st Century (Cat. No. 98), San Francisco, CA, USA, 29 March–2 April 1998; IEEE: Piscataway, NJ, USA,
1998; Volume 2, pp. 600–608.

19. Rosensweig, E.J.; Kurose, J. Breadcrumbs: Efficient, best-effort content location in cache networks. In Proceedings of the IEEE
INFOCOM 2009, Rio de Janeiro, Brazil, 19–25 April 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 2631–2635.

20. Laoutaris, N.; Che, H.; Stavrakakis, I. The LCD interconnection of LRU caches and its analysis. Perform. Eval. 2006, 63, 609–634.
[CrossRef]

21. Laoutaris, N.; Syntila, S.; Stavrakakis, I. Meta algorithms for hierarchical web caches. In Proceedings of the IEEE International
Conference on Performance, Computing, and Communications, 2004, Phoenix, AZ, USA, 15–17 April 2004; IEEE: Piscataway, NJ,
USA, 2004; pp. 445–452.

22. Chai, W.K.; He, D.; Psaras, I.; Pavlou, G. Cache “less for more” in information-centric networks. In Proceedings of the 11th
International Networking Conference (NETWORKING), Prague, Czech Republic, 21–25 May 2012; Springer: Berlin/Heidelberg,
Germany, 2012; number Part I, pp. 27–40.

23. Shailendra, S.; Sengottuvelan, S.; Rath, H.K.; Panigrahi, B.; Simha, A. Performance evaluation of caching policies in ndn-an
icn architecture. In Proceedings of the 2016 IEEE Region 10 Conference (TENCON), Singapore, 22–25 November 2016; IEEE:
Piscataway, NJ, USA, 2016; pp. 1117–1121.

24. Rossi, D.; Rossini, G. On sizing CCN content stores by exploiting topological information. In Proceedings of the 2012 Proceedings
IEEE INFOCOM Workshops, Orlando, FL, USA, 25–30 March 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 280–285.

25. Mansilha, R.B.; Saino, L.; Barcellos, M.P.; Gallo, M.; Leonardi, E.; Perino, D.; Rossi, D. Hierarchical content stores in high-speed
ICN routers: Emulation and prototype implementation. In Proceedings of the 2nd ACM Conference on Information-Centric
Networking, San Francisco, CA, USA, 30 September–2 October 2015; pp. 59–68.

26. Hong, J.; You, T.; Dong, L.; Westphal, C.; Ohlman, B. RFC 9138 Design Considerations for Name Resolution Service in Information-
Centric Networking (ICN). Available online: https://www.rfc-editor.org/rfc/rfc9138.html (accessed on 29 November 2023).

27. Ma, G.; Chen, Z.; Cao, J.; Guo, Z.; Jiang, Y.; Guo, X. A tentative comparison on CDN and NDN. In Proceedings of the 2014 IEEE
International Conference on Systems, Man, and Cybernetics (SMC), San Diego, CA, USA, 5–8 October 2014; IEEE: Piscataway, NJ,
USA, 2014; pp. 2893–2898.

28. Ma, G.; Chen, Z. Comparative Study on CCN and CDN. In Proceedings of the 2014 IEEE Conference on Computer Commu-
nications Workshops (INFOCOM WKSHPS), Toronto, ON, Canada, 27 April–2 May 2014; IEEE: Piscataway, NJ, USA, 2014;
pp. 169–170.

29. Mangili, M.; Martignon, F.; Capone, A. A comparative study of content-centric and content-distribution networks: Perfor-
mance and bounds. In Proceedings of the 2013 IEEE Global Communications Conference (GLOBECOM), Atlanta, GA, USA,
9–13 December 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 1403–1409.

30. Ghasemi, C.; Yousefi, H.; Zhang, B. Far cry: Will cdns hear ndn’s call? In Proceedings of the 7th ACM Conference on
Information-Centric Networking, Virtual, 29 September–1 October 2020; pp. 89–98.

31. Jiang, X.; Bi, J. ncdn: Cdn enhanced with ndn. In Proceedings of the 2014 IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS), Toronto, ON, Canada, 27 April–2 May 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 440–445.

32. Lin, T.; Xu, Y.; Zhang, G.; Xin, Y.; Li, Y.; Ci, S. R-iCDN: An approach supporting flexible content routing for ISP-operated CDN. In
Proceedings of the 9th ACM Workshop on Mobility in the Evolving Internet Architecture, Maui, HI, USA, 11 September 2014;
pp. 61–66.

33. Benkacem, I.; Bagaa, M.; Taleb, T.; Nguyen, Q.; Toshitaka, T.; Sato, T. Integrated ICN and CDN Slice as a Service. In Proceedings
of the 2018 IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, United Arab Emirates, 9–13 December 2018;
IEEE: Piscataway, NJ, USA, 2018; pp. 1–7.

34. Ghasemi, C.; Yousefi, H.; Zhang, B. icdn: An ndn-based cdn. In Proceedings of the 7th ACM Conference on Information-Centric
Networking, Virtual, 29 September–1 October 2020; pp. 99–105.

35. Chen, J.; Xu, H.; Penugonde, S.; Zhang, Y.; Raychaudhuri, D. Exploiting ICN for efficient content dissemination in CDNs. In
Proceedings of the 2016 Fourth IEEE Workshop on Hot Topics in Web Systems and Technologies (HotWeb), Washington, DC,
USA, 24–25 October 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 14–19.

36. Marchal, X.; El Aoun, M.; Mathieu, B.; Cholez, T.; Doyen, G.; Mallouli, W.; Festor, O. Leveraging NFV for the deployment of
NDN: Application to HTTP traffic transport. In Proceedings of the NOMS 2018—2018 IEEE/IFIP Network Operations and
Management Symposium, Taipei, Taiwan, 23–27 April 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–5.

37. Fahrianto, F.; Kamiyama, N. Comparison of migration approaches of ICN/NDN on IP networks. In Proceedings of the 2020 Fifth
International Conference on Informatics and Computing (ICIC), Gorontalo, Indonesia, 3–4 November 2020; IEEE: Piscataway, NJ,
USA, 2020; pp. 1–7.

38. Wang, S.; Bi, J.; Wu, J.; Yang, X.; Fan, L. On adapting http protocol to content centric networking. In Proceedings of the 7th
International Conference on Future Internet Technologies, Seoul, Republic of Korea, 11–12 September 2012; pp. 1–6.

http://dx.doi.org/10.1016/j.peva.2005.05.003
https://www.rfc-editor.org/rfc/rfc9138.html

Future Internet 2023, 15, 390 22 of 22

39. Jahanian, M.; Chen, J.; Ramakrishnan, K. Managing the evolution to future internet architectures and seamless interoperation. In
Proceedings of the 2020 29th International Conference on Computer Communications and Networks (ICCCN), Honolulu, HI,
USA, 3–6 August 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–11.

40. Zhang, F.; Zhang, Y.; Raychaudhuri, D. Edge caching and nearest replica routing in information-centric networking. In
Proceedings of the 2016 IEEE 37th Sarnoff Symposium, Newark, NJ, USA, 19–21 September 2016; IEEE: Piscataway, NJ, USA,
2016; pp. 181–186.

41. Dang, S.; Han, R. An In-Network Cooperative Storage Schema Based on Neighbor Offloading in a Programmable Data Plane.
Future Internet 2021, 14, 18. [CrossRef]

42. Xu, Y.; Ni, H.; Zhu, X. An effective transmission scheme based on early congestion detection for information-centric network.
Electronics 2021, 10, 2205. [CrossRef]

43. Yang, Y.; Song, T.; Zhang, B. OpenCache: A lightweight regional cache collaboration approach in hierarchical-named ICN.
Comput. Commun. 2019, 144, 89–99. [CrossRef]

44. Yang, W.; Qin, Y.; Yang, Y. An interest shaping mechanism in NDN: Joint congestion control and traffic management. In
Proceedings of the 2018 IEEE International Conference on Communications (ICC), Kansas City, MO, USA, 20–24 May 2018; IEEE:
Piscataway, NJ, USA, 2018; pp. 1–6.

45. Nasis, C.; Sarros, C.A.; Tsaoussidis, V. The Impact of Chunk Size on Named Data Networking Performance. In Proceedings of the
2020 3rd International Conference on Hot Information-Centric Networking (HotICN), Hefei, China, 12–14 December 2020; IEEE:
Piscataway, NJ, USA, 2020; pp. 108–113.

46. Song, Y.; Ni, H.; Zhu, X. Analytical modeling of optimal chunk size for efficient transmission in information-centric networking.
Int. J. Innov. Comput. Inf. Control 2020, 16, 1511–1525.

47. Wang, L.; Bayhan, S.; Kangasharju, J. Optimal chunking and partial caching in information-centric networks. Comput. Commun.
2015, 61, 48–57. [CrossRef]

48. Report: State of the Web. Available online: https://httparchive.org/reports/state-of-the-web89-99 (accessed on 22 Novem-
ber 2023).

49. Rossini, G.; Rossi, D. Evaluating CCN multi-path interest forwarding strategies. Comput. Commun. 2013, 36, 771–778. [CrossRef]
50. Jamin, S.; Jin, C.; Kurc, A.R.; Raz, D.; Shavitt, Y. Constrained mirror placement on the Internet. In Proceedings of the IEEE

INFOCOM 2001. Conference on Computer Communications. Twentieth Annual Joint Conference of the IEEE Computer and
Communications Society (Cat. No. 01CH37213), Anchorage, AK, USA, 22–26 April 2001; IEEE: Piscataway, NJ, USA, 2001;
Volume 1, pp. 31–40.

51. Guillemin, F.; Kauffmann, B.; Moteau, S.; Simonian, A. Experimental analysis of caching efficiency for YouTube traffic in an ISP
network. In Proceedings of the 2013 25th International Teletraffic Congress (ITC), Shanghai, China, 10–12 September 2013; IEEE:
Piscataway, NJ, USA, 2013; pp. 1–9.

52. Mekaouil, S.; Benhamed, C.; Ghoumid, K. Traffic matrix estimation using the Levenberg-Marquardt neural network of a large IP
system. Data Manag. Secur. Appl. Med. Sci. Eng. 2013, 45, 85.

53. Azimdoost, B.; Westphal, C.; Sadjadpour, H.R. Resolution-based content discovery in network of caches: Is the control traffic an
issue? IEEE Trans. Commun. 2017, 65, 2943–2955. [CrossRef]

54. Liao, Y.; Sheng, Y.; Wang, J. A deterministic latency name resolution framework using network partitioning for 5G-ICN integration.
Int. J. Innov. Comput. Inf. Control 2019, 15, 1865–1880.

55. Melazzi, N.B.; Detti, A.; Pomposini, M.; Salsano, S. Route discovery and caching: A way to improve the scalability of Information-
Centric Networking. In Proceedings of the 2012 IEEE Global Communications Conference (GLOBECOM), Anaheim, CA, USA,
3–7 December 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 2701–2707.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/fi14010018
http://dx.doi.org/10.3390/electronics10182205
http://dx.doi.org/10.1016/j.comcom.2019.05.013
http://dx.doi.org/10.1016/j.comcom.2014.12.009
https://httparchive.org/reports/state-of-the-web89-99
http://dx.doi.org/10.1016/j.comcom.2013.01.008
http://dx.doi.org/10.1109/TCOMM.2017.2692225

	Introduction
	Background and Related Work
	ICN Cache in a Nutshell
	Name Resolution Mechanism
	Related Work

	Proposed Design
	Motivation
	Design Overview
	Workflow
	Details
	ID-Based ICN Protocol Stack
	Design of IG and EG
	Protocol Conversion
	Large Content Chunking

	Problem Formulation
	Model Description
	IECDN Model and Conventional CDN Model

	Simulation Study
	Methodology
	Topology
	Parameter Configuration

	Result Analysis
	Enhancement to Performance
	Impact of Content Popularity
	Resilience to Traffic Surge

	Overhead Analysis

	Discussion and Conclusions
	References

