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Abstract: The rapid growth in the number of interconnected devices on the Internet (referred to as
the Internet of Things—IoT), along with the huge volume of data that are exchanged and processed,
has created a new landscape in network design and operation. Due to the limited battery size and
computational capabilities of IoT nodes, data processing usually takes place on external devices. Since
latency minimization is a key concept in modern-era networks, edge servers that are in close proximity
to IoT nodes gather and process related data, while in some cases data offloading in the cloud might
have to take place. The interconnection of a vast number of heterogeneous IoT devices with the edge
servers and the cloud, where the IoT, edge, and cloud converge to form a computing continuum,
is also known as the IoT-edge-cloud (IEC) continuum. Several key challenges are associated with
this new computing systems’ architectural approach, including (i) the design of connection and
programming protocols aimed at properly manipulating a huge number of heterogeneous devices
over diverse infrastructures; (ii) the design of efficient task offloading algorithms aimed at optimizing
services execution; (iii) the support for security and privacy enhancements during data transfer to
deal with the existent and even unforeseen attacks and threats landscape; (iv) scalability, flexibility,
and reliability guarantees to face the expected mobility for IoT systems; and (v) the design of optimal
resource allocation mechanisms to make the most out of the available resources. These challenges
will become even more significant towards the new era of sixth-generation (6G) networks, which will
be based on the integration of various cutting-edge heterogeneous technologies. Therefore, the goal
of this survey paper is to present all recent developments in the field of IEC continuum systems, with
respect to the aforementioned deployment challenges. In the same context, potential limitations and
future challenges are highlighted as well. Finally, indicative use cases are also presented from an IEC
continuum perspective.

Keywords: IoT; cloud-based operating systems; edge computing; machine learning; federated
learning; task offloading; security and privacy; blockchain technology

1. Introduction

The unstoppable proliferation of novel computing and sensing device technologies,
and the ever-growing demand for data-intensive applications in the edge and cloud, are
driving the next wave of transformation in computing systems architecture [1,2]. In the
same context, there is a vast number of devices that can collect, process, and transmit
data to other devices and systems over the Internet or other communications networks.
This new concept, known as the Internet of Things (IoT), enables the collection of data
from various and diverse sources in the physical world [3]. Leveraging this concept, many
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different advanced human-centric services and applications can be widely deployed, such
as energy management in smart home environments, remote health monitoring, intelligent
transportation, etc. [4].

Since most data are created at the edge, and computationally intensive data processing
usually takes place in centralized cloud infrastructures, a flexible interconnection of all
involved entities is required to bring the edge as close to the cloud as possible and vice
versa. Together with the cloud, edge-based computing is pushing the limits of the tradi-
tional centralized cloud computing solutions enabling, among other features, efficient data
processing and storage as well as low latency for service execution. In this context, multi-
access edge computing (MEC), formerly mobile edge computing, is a new architectural
concept that enables cloud computing capabilities and an IT service environment at the
edge of any network [5,6]. Located in close proximity to the end users and connected IoT
devices, MEC provides extremely low latency and high bandwidth while always enabling
applications to leverage cloud capabilities if necessary. The resulting paradigm shift in
computing is centered around the dynamic, intelligent, and yet seamless interconnection of
IoT devices, edge, and cloud resources in one computing system to form what is known
as a continuum [7,8]. The goal of this synergy is the provision of advanced services and
applications to the end users, which is also leveraged by similar advances in the network-
ing field, such as network function virtualization (NFV) [9,10], which decouples network
operations from specific hardware equipment, as well as software defined networking
(SDN) [11], which enables a holistic and intelligent network management approach.

A continuum, today also referred to as cloud, IoT, edge-to-cloud, or fog-to-cloud
continuum, is expected to provide high computational capabilities for data processing at
both edge and cloud while inferring and persisting important information for post-mortem
and offline analysis. Throughout the rest of this paper, the term continuum will be used to
indicate the IoT-edge-cloud (IEC) continuum, unless otherwise stated. The full deployment
of such a continuum is expected to leverage the support of latency-critical applications
via dynamic task offloading among the IoT nodes and edge or cloud servers. Moreover,
data collected directly from all entities of the continuum can be used for optimum resource
allocation and scheduling policies [12]. However, there are many technical challenges
associated with this new architectural approach:

• Unlike centrally managed clouds, massively heterogeneous systems in the continuum
(including IoT devices, edge devices, and cloud infrastructures) are significantly more
complex to manage. Furthermore, distributed data management raises an additional
level of complexity by classifying data infrastructures, collecting vast and diverse data
volumes, providing transparent data access methods, optimizing the internal data
flow, and effectively preserving data collections [13].

• Because of the heterogeneity of the involved devices and associated technologies,
hardware and technology-agnostic protocols are important, not only to manipulate a
large number of interconnected entities but also to enable scalability which is a key
concept in the IEC continuum.

• The continuum needs to be effectively managed to optimally meet the application
demands during service execution, taking into account multiple constraints, such as
the location of the involved nodes (edge or IoT), their transmission and processing
capabilities, as well as their energy footprint. Optimum resource allocation in multi-
node heterogeneous environments might lead to highly non-convex problems. In this
context, machine learning (ML) algorithms have emerged as a promising approach that
can solve various optimization problems providing near-optimal solutions [14,15]. In
traditional centralized ML approaches, all collected data are sent to a high-performance
computing node for proper model training and inference. However, on one hand,
the collection of heterogeneous data from all involved nodes of the continuum might
increase the pre-processing load, and on the other hand, centralized ML training might
jeopardize latency requirements in critical applications. Therefore, as will also be
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described in Section 2, the support of distributed and decentralized ML approaches is
a key concept in IEC systems [16–18].

• Due to the distributed and dynamic nature of the continuum, with plenty of devices
from different owners and provenance, the application of reliability and trustiness
becomes fundamentally challenging. Secure mechanisms for accessing the distributed
nodes, preserving data privacy, and providing open and transparent operation are
fundamental to enhancing trustworthiness [19,20].

• As it was previously mentioned, the continuum puts together a broad and diverse
space with multiple heterogeneous devices and protocols. Although there are several
standards, open-source projects, and foundations that focus on global communication
and management protocols, the envisioned continuum must also consider that some
constrained devices will not support any specific tool. Therefore, contributing to an
open ecosystem favors interoperability with existing and emerging frameworks, which
is a key challenge for next-generation broadband wireless networks [21].

Hence, as it becomes apparent from the above, the optimum design of an IEC in-
frastructure should address various technical challenges, such as: (i) distributed data
management; (ii) continuum infrastructure virtualization and diverse network connec-
tivity; (iii) optimized and scalable service execution and performance; (iv) guaranteed
trust, security, and privacy; (v) reliability and trustworthiness; and (vi) support of scala-
bility, extensibility, and adoption of open-source frameworks [22]. These challenges are
also depicted in Figure 1. The envisioned effects of edge computing in a wide range of
potential use cases, from smart environmental monitoring to future fifth-generation (5G)
advanced applications (such as e-health, autonomous driving, smart manufacturing, etc.),
have fueled several initiatives aimed at addressing the different challenges posed by the
full deployment of an IEC continuum. These challenges become even more important as
the discussions on sixth-generation (6G) networks have already started taking place [23,24].
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Therefore, the goal of this survey paper is to analyze all recent technological devel-
opments in the field of IEC continuum systems. Emphasis will be given on the addressed
challenges per case, according to the previous description. In the same context, open issues
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and limitations will be identified as well. Moreover, potential deployment scenarios based
on IEC continuum systems will be also presented. The rest of this survey paper is organized
as follows: In Section 1.1 of Section 1, indicative recent survey papers are presented, while
the main contributions of our work are highlighted in Section 1.2. In Section 2, the most
important supporting technologies in IEC systems are presented. In particular, the key
concepts of distributed and decentralized ML with emphasis on federated learning (FL),
serverless computing, blockchain technology, subnetworks, and device-to-device commu-
nications are discussed. In Section 3, indicative use cases are presented in the context of
IEC systems, such as IoT in agriculture, smart manufacturing, efficient energy manage-
ment in households, smart cities, and maritime applications. In Section 4, state-of-the-art
approaches in IEC continuum systems are presented. In Section 5, a discussion based
on the addressed challenges addressed by the presented work takes place. In the same
context, limitations and open issues are also identified. Concluding remarks are outlined
in Section 6. For the sake of illustration, an overview of the survey paper is also depicted
in Figure 2.
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1.1. Related Works

In this subsection, indicative recent survey papers are presented in the context of IEC
systems and related fields. In [25], for example, the authors present all recent advances
on edge computing-driven IoT (ECDriven IoT), which have been summarized in six main
aspects: architecture of edge computing-driven IoT, operating systems, communication
protocols, computing, security and privacy, as well as use cases and applications. In [26],
the most important security and privacy approaches in the context of edge computing
(EC)-based IoT systems are discussed. In particular, these include user-centric, device-
centric, and end-to-end (E2E) security. Apart from the architectural approach per case,
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additional issues such as firewalls, intrusion detection systems, authentication and autho-
rization mechanisms, and privacy-preserving designs are discussed as well. Moving a step
forward, the work in [27] discusses the major classifications of attacks in IEC continuum
systems and also provides possible solutions and countermeasures along with the related
research efforts.

In [28], a survey of edge artificial intelligence (AI) is provided, where AI algorithms
and models are deployed on edge devices. In this context, due to the resource-constraint
nature of the edge devices, various technical challenges are presented and analyzed. In [29],
a comprehensive survey on mobile edge computing nodes (ECNs) is presented along
with related challenges and limitations. In particular, mobile ECNs are classified into four
major categories, namely, aerial, ground vehicular, spatial, and maritime nodes. For each
category, the different types of nodes are introduced, along with transmission and mobility
limitations. A key outcome of this work is the need for an integrated architecture that takes
into consideration all the aforementioned different types of nodes and diverse technical
characteristics. The work in [30] is mainly focused on distributed ML approaches in the IEC
continuum. In this context, the main libraries and frameworks for ML and deep learning
(DL) inference, centralized training, and distributed training with a focus on the edge
and cloud are presented and analyzed, along with limitations and open issues. In [31], in
the context of integrating edge computing with emerging technologies in other domains
(e.g., AI, blockchain, 6G, and digital twin) to support Internet of Energy (IoE) applications,
the authors present an up-to-date survey of edge computing research. The research in [32] is
focused on service orchestration and resource management for edge computing, including
task offloading, content caching, and virtual network embedding (VNE). Finally, in [33],
all recent technological advances in edge computing, especially from the perspective of
architectures and models, key technologies, and directions, are presented and discussed.

The aforementioned indicative surveys are also summarized in Table 1, where the
main contributions per case are highlighted. In the same context, the key contributions of
our work are mentioned as well, which will be analyzed in the following subsection.

Table 1. Indicative related survey papers.

Survey Paper Year Contributions

[25] 2022 Edge computing-driven IoT under various technological aspects

[26] 2022 Security considerations in edge-based IoT

[27] 2021 Security and privacy considerations in IEC continuum systems and classification of attacks

[28] 2023 Edge AI

[29] 2022 Analysis of different node categories in an edge-cloud-IoT environment

[30] 2022 Frameworks and simulation tools for the support of distributed intelligence in the edge to cloud
environments

[31] 2022 Integration of edge computing with novel technologies

[32] 2023 Management and orchestration in edge computing IoT systems

[33] 2022 Recent advances in edge computing

This work - Analysis of recent works in IEC continuum systems in the context of various challenges and key
enabling technologies

1.2. Contributions

From the analysis of the previous subsection, it becomes apparent that related sur-
vey papers have dealt with a subset of the addressed challenges towards a unified IEC
continuum system. For example, the works [26,27] deal with security protection and
classification of attacks, while the works [28,30] deal with ML approaches. In the same
context, the work [25] mainly emphasizes different architectural aspects of modern IEC
approaches. Therefore, unlike other related surveys, the goal of this paper is to analyze all
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recent developments in the IEC continuum in the context of the addressed challenges, as
described in the introductory part and also depicted in Figure 1. For this reason, the most
important key enabling technologies towards an integrated IEC continuum are presented
as well. This analysis is extremely important since the new era of computing systems and
6G networks will build upon a holistic integration of various cutting-edge technologies,
taking into consideration, among others, the aforementioned technological challenges
towards a unified access and management framework to support diverse and demanding
applications. Therefore, the main contributions of our work can be summarized as follows:

• Recent works in the IEC continuum are presented, with emphasis on the challenges
they deal with, as well as on the supporting technologies.

• Basic limitations are identified, and open research directions are analyzed as well. This
discussion on open issues takes into consideration the coexistence of IEC systems with
next-generation broadband wireless networks.

• Indicative use cases are presented, where the synergy among IoT, edge, and cloud
nodes is highlighted for optimum service deployment and user experience.

2. Supporting Technologies in the IoT-Edge-Cloud Continuum

The overall architectural approach of an IEC system is shown in Figure 3 (optional
communication with a 5G network has been included as well). As can be observed, various
IoT nodes from different operational scenarios may communicate with 5G access points
(APs) via either public or private networks. The latter case can be more appealing in latency-
demanding applications, such as smart manufacturing, since all network operations can be
established within the premises of interest [34,35]. It should also be noted at this point that
inter-node communications can be supported as well, based on well-known communication
protocols, such as Sigfox, LoRa, or narrow band (NB)-IoT [36]. It is also assumed that MEC
servers can be either collocated with APs or alternately deployed in close proximity.

Future Internet 2023, 15, x FOR PEER REVIEW  6 of 28 
 

 

classification of attacks, while the works [28,30] deal with ML approaches. In the same 

context, the work [25] mainly emphasizes different architectural aspects of modern IEC 

approaches. Therefore, unlike other related surveys, the goal of this paper is to analyze all 

recent developments in the IEC continuum in the context of the addressed challenges, as 

described in the introductory part and also depicted in Figure 1. For this reason, the most 

important key enabling technologies towards an integrated IEC continuum are presented 

as well. This analysis is extremely important since the new era of computing systems and 

6G networks will build upon a holistic integration of various cutting-edge technologies, 

taking into consideration, among others, the aforementioned technological challenges to-

wards a unified access and management framework to support diverse and demanding 

applications. Therefore,  the main contributions of our work can be summarized as  fol-

lows: 

 Recent works in the IEC continuum are presented, with emphasis on the challenges 

they deal with, as well as on the supporting technologies. 

 Basic  limitations are  identified, and open research directions are analyzed as well. 

This discussion on open issues takes into consideration the coexistence of IEC sys-

tems with next-generation broadband wireless networks. 

 Indicative use cases are presented, where the synergy among IoT, edge, and cloud 

nodes is highlighted for optimum service deployment and user experience. 

2. Supporting Technologies in the IoT-Edge-Cloud Continuum 

The overall architectural approach of an IEC system is shown in Figure 3 (optional 

communication with a 5G network has been included as well). As can be observed, vari-

ous  IoT nodes  from different operational  scenarios may  communicate with  5G  access 

points (APs) via either public or private networks. The latter case can be more appealing 

in latency-demanding applications, such as smart manufacturing, since all network oper-

ations can be established within the premises of interest [34,35]. It should also be noted at 

this point that inter-node communications can be supported as well, based on well-known 

communication protocols, such as Sigfox, LoRa, or narrow band (NB)-IoT [36]. It is also 

assumed that MEC servers can be either collocated with APs or alternately deployed in 

close proximity. 

 

Figure 3. An IoT-edge-cloud operating system. Figure 3. An IoT-edge-cloud operating system.

IoT nodes, which are assumed to have sensing and transmitting capabilities, can
offload a particular task to the MEC server either in cases of latency-demanding applications
or in cases of extreme computational load. This offloading may also take place in the cloud
domain if necessary. In all cases, optimum task offloading should take into consideration
additional parameters that may have a direct effect on the system’s performance, such as
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the energy footprint and computational capabilities of the involved servers. Therefore, as
depicted in Figure 3, efficient ML algorithms can be used for resource optimization and
efficient task offloading. In all cases, it is essential to identify trusted IoT nodes and secure
task offloading/data transfer procedures. Therefore, task offloading may also include the
execution of advanced security protocols that might not always be feasible in resource-
constraint IoT nodes. Finally, in highly demanding latency scenarios (e.g., autonomous
driving in the cases of advanced 5G infrastructure [37]), the involved IoT devices should be
in a position to operate autonomously and support network functionalities via NFV and
ensure uninterrupted connectivity.

In light of the above, the most important key enabling technologies for an efficient IEC
deployment include distributed/decentralized ML approaches for efficient resource opti-
mization, serverless computing to leverage software and hardware decoupling, blockchain
technology to ensure security during data transfer among the various nodes of the contin-
uum as well as trusted nodes identification, subnetworks for the provision of uninterrupted
connectivity, and device to device (D2D) communications for inter-node data transfer and
content caching if necessary.

2.1. Distributed and Decentralized Machine Learning

As also mentioned in the introductory part, over the last decade, ML algorithms
have emerged as a potential solution to relax the computational burden of traditional
optimization approaches and provide near-optimum solutions in highly non-convex prob-
lems [38]. In centralized ML approaches, data collected directly from different network
devices (i.e., mobile terminals, access points, IoT devices, edge servers, etc.), are sent
to a high-performance computing server for proper model training. Afterwards, model
inference to all involved devices takes place, if necessary.

However, there are several disadvantages with this approach, especially in the modern
era of IEC systems: (i) centralized data collection might lead to high computational load,
especially for a large number of involved devices and associated datasets, as well as
to a single point of failure; (ii) since the vision of the IEC continuum involves multiple
connected heterogeneous devices over diverse infrastructures, data preprocessing prior
to the actual training of the ML model is necessary, which might increase overall training
time and result in system latency deterioration; (iii) frequent transmission of data from
IoT devices to centralized servers might drive security and privacy concerns since not
all IoT devices have the processing power to execute advanced security protocols; and
(iv) computationally demanding ML training might have an impact on the energy footprint
of the involved devices.

Distributed ML approaches can reduce the centralized computational burden, either
by parallelizing the training procedures or by efficiently distributing training data [39,40].
The first case, which is also known as model parallelism, enables different parts of the
model to be trained on different devices (e.g., certain layers of a neural network (NN)
or certain neurons per layer are trained per device). In the second case, each ML node
takes into account a subset of the training data. Afterwards, model aggregation takes
place. Although both aforementioned approaches can improve training times and relax the
computational burden, unavoidably, training data offloading still takes place. Consequently,
their deployment on privacy-critical applications might be questionable.

To overcome the aforementioned issue, the concept of FL has emerged over the last
years [41,42] as a promising approach that ensures distributed ML training on the one
hand and privacy protection on the other hand. To this end, training is performed locally
on the involved devices, with no need for forwarding training data to external servers.
At predefined time intervals, the parameters of the trained model are sent to the central
processing node, where the master model is periodically updated. Moreover, since training
data remain localized, privacy is enhanced, as was previously mentioned. In addition,
with FL, data can be distributed across many devices, which can enable the use of much
larger datasets. Moreover, the amount of data transfers and the communication burden



Future Internet 2023, 15, 383 8 of 27

are reduced, especially in cases where the data are distributed across devices with limited
connectivity or bandwidth. Finally, FL allows the model to be trained on a diverse range
of data sources, which can improve its robustness and generalizability, as well as overall
training times. For example, focusing on the previously mentioned autonomous driving
5G scenario, using this approach, a predefined set of identical cars can be parallelly trained
on different landscapes. Results can then be aggregated and sent back to the autonomous
cars in order to cover a wide range of driving reactions.

A schematic diagram of FL is shown in Figure 4, in the case of NN training. In this
case, each node locally trains the corresponding ML model with the available local data set.
The derived parameters (i.e., weights of the NN in the specific case) are sent periodically
to the master processing node for proper model aggregation. At the next stage, the new
weights of the master model are sent back to the local nodes for a model update. Apart from
autonomous driving, which was previously mentioned, FL can be quite beneficial in a wide
range of scenarios, such as smart manufacturing and e-health applications, where data
privacy protection is of utmost importance [43]. However, since FL is based on distributed
computations, several types of privacy attacks may take place, such as poisoning and
backdoor attacks [44]. Hence, privacy enhancement is a crucial step towards large-scale
FL deployment.
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2.2. Serverless Computing

Serverless computing expands on state-of-the-art cloud computing by further ab-
stracting away software operations and parts of the hardware–software stack. To this end,
and with respect to the already standardized 5G architecture, the execution of vertical
applications in the management and orchestration layer initiates the E2E service creation
and orchestration. In the context of serverless computing [45,46], related functions need to
be executed in the background for specific time triggers or generally short events. In this
case, a container cluster manager (CCM) is required where the appropriate set of function
containers is enabled per the requested application. Therefore, supported applications
are fully decoupled from hardware infrastructure. This will not only make the support of
latency-critical scenarios feasible on the one hand, such as autonomous driving, smart man-
ufacturing, e-health applications, etc., but on the other hand, a more efficient infrastructure
management can be supported.
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The serverless computing concept benefits from containerization by removing decision-
making regarding scaling thresholds, reducing costs by charging only when applications
are triggered, and reducing application starting times. Therefore, appropriate business
models can be applied in IEC continuum systems, based on the actual usage of applications.
Serverless and edge computing are indispensable parts in the heterogeneous cloud envi-
ronments of 6G networks, since major network functionalities should be able to migrate
and be executed at the edge, either in cases of outage of the main core network or in order
to leverage flexible network deployment for ultra-low latency applications.

2.3. Blockchain Technology

The ever-increasing number of interconnected devices on the Internet has raised many
concerns regarding security and privacy preservation, as was previously mentioned. For
example, in domestic or e-health IoT scenarios, multiple attacks may take place due to the
diverse nature of the involved communication protocols [47,48]. To this end, blockchain
technology is a credible way to ensure security and privacy in heterogeneous infrastruc-
tures. A blockchain is a distributed ledger technology with growing lists of records (blocks)
that are securely linked together via cryptographic hashes. Each block contains a crypto-
graphic hash of the previous block, a timestamp, and transaction data. These blocks are
interconnected to form a chain. Therefore, for a particular block (i.e., nth block), its hash
value is calculated by hashing the whole part of the n 1 block, which in turn includes the
hash of the n 2 block, etc. [49,50].

A key novelty of blockchain technology is that it does not require a central authority
for node identification and verification, but transactions are made on a peer-to-peer (P2P)
basis. In general, blockchain is a decentralized security mechanism, where multiple copies
of blocks are held in different nodes. Therefore, a tampering attempt would have to alter
all blocks in all participating nodes. Moreover, since timestamps are inserted in all related
blocks, it is not possible to alter the encrypted content after it has been published to the
ledger, making it more trustworthy and secure as a result. In addition, timestamps are also
helpful for the tracking of the generated blocks and for statistical analysis.

The integration of blockchain technology in IoT networks faces many technical chal-
lenges since the encryption and decryption process of the blocks requires computational
resources that cannot always be supported by lightweight IoT devices. Recent advances in
the development of “light clients” for blockchain platforms have enabled nodes to issue
transactions in the blockchain network without downloading the entire blockchain [51].
Therefore, by combining blockchain with FL, IoT sensing devices can offload a portion
of their data to an edge server for local model training. However, there are still open
issues to be addressed, such as a common blockchain framework that can be adopted by
all involved entities, which is a key concept towards scalability in large-scale networks.
Blockchain is usually combined with smart contracts, stored on a blockchain, and run
only when predetermined conditions are met [52,53]. Therefore, human intervention is
minimized. Smart contracts do not contain legal language, terms, or agreements—only
code that executes actions. Hence, the need for trusted intermediators is reduced, while at
the same time, malicious and accidental exceptions are minimized.

2.4. Subnetworks

The increased number of wireless applications deployed at the network edge involving
a limited number of network components, such as a sensor network in a manufacturing
environment or vehicle-to-vehicle (V2V) communications, requires minimum latency with
short-range transmission. To this end, the concept of subnetworks has been introduced,
where a network component in the edge acts as a serving AP [54,55]. However, the concept
of subnetworks extends the provision of zero latency to the connected devices, as in cases
where the connection with the core network is lost. In this case, as also mentioned in
the autonomous driving application, the subnetwork should be in a position to operate
autonomously for the provision of uninterrupted E2E connectivity. Sub-networks will be
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a key driving factor towards the 6G architectural concept due to their local topology in
conjunction with the specialized performance attributes required, such as extreme latency
or reliability. Moreover, the concept of subnetworks is crucial for the design of energy-
efficient networks, where topology reconfiguration might take place in time-varying IoT
sensor networks [56].

In 6G terminology, subnetworks are also referred to as ‘in-X’ subnetworks, with the ‘X’
standing for the entity where the subnetwork is deployed, such as a production module in
a smart manufacturing environment, a robot, a vehicle, a house, or even the human body in
cases of wearable devices that can monitor various parameters [57]. A schematic diagram
of such a network is shown in Figure 5, where data flows are categorized according to
their latency requirements: low, such as in the cases of monitoring non-latency-critical
key performance indicators (KPIs); medium, such as task offloading in edge servers; and
high. The latter case includes, for example, control signals from the involved IoT devices in
a smart manufacturing environment that necessitate immediate production termination
in cases of malfunction. Therefore, the highly critical data flows are kept within the in-X
subnetwork, as the tight latency requirement does not allow for external processing. For
this reason, a local edge server can be in close proximity to the AP under consideration (in
this case, an unmanned aerial vehicle—UAV).
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2.5. Device to Device Communications

In an IoT environment, a specific type of content might be requested from several
user terminals or other IoT devices in close geographical proximity. In this case, user-
experienced latency can be improved if the content is requested from adjacent IoT devices
that share the same content, instead of centralized APs. In this case, a particular node
requests content by broadcasting a short-range signal in order to set up a link connection
with the node having the content. Therefore, D2D connectivity should be supported in
this case [58,59]. However, apart from content caching, D2D connectivity can also support
subnetwork organization, as was mentioned in the previous subsection, as well as dynamic
IoT node deployment and reconfiguration if necessary.

In general, D2D communication offers autonomous intelligent services or mechanisms
without centralized supervision. Hence, the provision of ultra-low latency services in the
IEC continuum can be achieved, as D2D communication offers more reliable connectivity
between devices. In addition, the concept of green network deployment can be supported as
well, due to the shorter propagation paths and consequently reduced transmission power.



Future Internet 2023, 15, 383 11 of 27

In the same context, device interconnection can be established via mesh networking [60,61].
A mesh network comprises a type of local area network (LAN) topology, where multiple
devices or nodes are connected in a non-hierarchical manner so that they can cooperate
and provide significant network coverage to a wider area compared to the area coverage
achieved by a single router. As mesh networks consist of multiple nodes, which are
responsible for signal sending and information relaying, every node of the network needs
to be connected to another via a dedicated link. Since mesh networks leverage a multi-hop
wireless backbone formed by stationary routers, they can serve both mobile and stationary
users. Mesh networks have significant advantages such as fast and easy network extension,
self-configuration, self-healing, and reliability, as a single node failure does not result in
total network failure.

3. Indicative Use Cases

In this section, indicative use cases will be presented that can be leveraged by their
potential deployment in an IEC continuum environment. These use cases include IoT
usage in agriculture, effective energy management coupled with a flexible decision support
system, smart manufacturing in the context of Industry 4.0, smart cities, as well as maritime
applications. For each use case, apart from the conceptual approach, data exchange and
task offloading procedures are discussed as well.

3.1. IoT in Agriculture

Due to the large area coverage of agriculture and the variety of production objects,
central cloud storage and processing of related data might significantly increase the com-
putational load and violate latency requirements. Therefore, the IEC continuum can be
beneficial for large-scale data processing and process optimization. In this context, the
use of IoT devices in agriculture allows the development of processes on farms that can
reduce operational costs, improve the effective use of resources, and reduce the amount of
used plant protection products [62]. IoT sensor nodes can be placed in various locations
of the agricultural area and measure a variety of diverse parameters, such as humidity,
temperature, etc. Therefore, planting and harvesting procedures can be optimized. Other
advanced applications include the usage of the so-called weeding robots that can use
digital image processing to look through the images of weeds in their database to detect
similarities with crops and weed out or spray them directly with their robotic arms. In
the same context, harvesting robots may be used to pick crops directly from the field, thus
solving the problem of labor shortages. Finally, UAVs can also be used for a variety of
applications, such as high-definition two-dimensional (2D) images, weeding, etc. [63].

It becomes apparent from the above that IoT usage in agriculture can support a variety
of applications with diverse requirements. These applications can be classified in terms of
latency as non-critical (e.g., optimal harvesting period) as well as time-critical (e.g., field
robots or UAVs on the field). In the second case, edge servers in close proximity to IoT
gateways can facilitate efficient data processing via task offloading. In the same context,
decision-making procedures should be expanded to a variety of field operations that
include a huge amount of heterogeneous data. Therefore, decentralized ML approaches can
effectively support latency/privacy critical scenarios. Finally, uninterrupted connectivity in
real-time conditions and continuous monitoring of device operation when ultra-low latency
is required can be supported by the concept of subnetworks, as previously mentioned.
This case can be highly applicable when the agricultural field covers a wide territory and
short-range network connectivity is required.

3.2. Energy Management and Decision Support System

The roll-out of smart meters around the world is part of a broader transformation
in the energy sector that includes the development of smart grids, microgeneration, and
the transition towards low carbon emissions. Smart meters, used to accurately measure
energy consumption in households or enterprises, enable, among others, customer cost
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awareness, which can lead, in turn, to the shifting of energy consumption to cheaper
times of the day, providing the customer with cost savings and accurate bills based on
actual usage instead of estimates [64]. In addition, smart meters can measure the export of
microgeneration and facilitate remuneration for electricity exported to the grid. Therefore,
customers will be empowered with several advanced services and applications, such as
holistic energy monitoring of their households, as well as optimum policies for buying from
or selling energy to the grid. The latter case is applicable when households are equipped
with renewable source generation infrastructures, such as solar panels or wind turbines,
along with home battery storage. This case is also applicable when end users have electric
vehicles (EVs) with bidirectional charging.

Based on the above, the provision of advanced smart services to domestic customers
may include, among others, personalized and automated optimum energy usage for a
household equipped with a smart meter, as well as maximization of self-consumption or
minimization of carbon footprint based on household goals. Therefore, a fully deployed
energy management and decision support system includes data collection from various
dispersed nodes and appropriate data processing, leveraging security and privacy policies
at the same time. Hence, an IEC continuum infrastructure can effectively address the
aforementioned challenges. Since groups of smart meters are connected to data aggregation
points via neighborhood area networks (NANs) [65], edge servers can optimize efficient
data processing and fast decision-making when required. In the same context, macroscopic
data collected from wide area networks (WANs) can be offloaded to the cloud for big data
analysis and network reconfiguration at a large scale.

This approach may be applied to a smart home scenario, where federated learning
can be employed for energy consumption prediction in households [66]. The considered
structure is also depicted in Figure 6. During training, data remain localized. Hence, on the
one hand, privacy concerns are mitigated, and on the other hand, faster training times can
be achieved, since each local NN in a household is trained on a different sample collection.
The master model is periodically updated, and the new parameters are inferred from the
participating households.
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3.3. Smart Manufacturing

The IoT concept is widely applicable to industry 4.0 environments for process opti-
mization, where sensor nodes are deployed and the collected data are offloaded to edge
or cloud nodes for processing (Figure 7, [67]). In this context, the industrial Internet of
Things (IIoT) is a physical network of things, objects, or devices (that contain embedded
technology) for sensing and remote control in an industrial context that allows much better
integration between physical and cyber worlds. To this end, there are three primary pillars
that support a fully IIoT-enabled operation: (i) smart machines equipped with sensors and
software that can collect and transmit various types of data; (ii) robust edge and cloud
computer systems that can store and process the data; and (iii) advanced data analytics
systems based on appropriate ML techniques [68,69].
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Therefore, with respect to Figure 7, latency-critical tasks can be offloaded to local edge
servers, and production processes can be updated accordingly. In this context, typical
scenarios include failure minimization functionalities, where, for example, high-definition
three-dimensional (3D) images of the products are captured by the IoT devices and com-
pared to well-known prototypes for potential deviations.

3.4. Smart Cities

In a smart city environment, various types of data are collected and processed from
different types of diverse sources: environmental monitoring, data associated with public
transportation, etc. The goal is to facilitate everyday tasks and improve the quality of
life of citizens. For example, end user applications can inform registered users on public
transportation issues (arrivals, delays, etc.), smart traffic systems can reduce daily peaks
in traffic congestion, and lighting, heating, or cooling systems can adapt their operating
hours according to human presence density and thus minimize the energy footprint. All
the above can be made feasible by integrating IoT technology with the edge and cloud
computing [70]. Data collected directly from sensing IoT devices can be offloaded at
edge servers for latency-critical applications (e.g., everyday traffic management to avoid
congestion), while big data analytics can be used in the cloud infrastructure to analyze
long-period time data and reconfigure infrastructure deployment if necessary.

3.5. Maritime Applications

A maritime environment is generally characterized by multiple and diverse entities
dispersed over large geographical areas, including, among others, ships, vessels, ports,
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unmanned surface vehicles (USVs), unmanned underwater vehicles (UUVs), sensors, and
actuators [71,72]. A challenging task in such a heterogeneous environment is proper data
collection and processing for the optimization of various tasks related to the maritime
sector, such as just-in-time arrival for vessels and ships in ports [17], pollution monitoring,
search and rescue (SAR) operations, etc. Therefore, IoT devices can collect and transmit
data to edge servers for proper ML training and process optimization. With respect to
Figure 8, for example, a distributed ML model can be integrated into the hardware of
each vessel (continuously trained with its individual operational data) and can provide
recommendations for the optimized ship’s speed and route planning, taking into account
the time of arrival (as scheduled by the port based on the availability of its services) and
the environmental weather conditions. In the same context, a centralized ML algorithm
deployed at the port will indicate the optimized scheduling for the just-in-time arrival
provision of port services. In this case, the cloud server collects the aggregated data
and updates the corresponding models that are periodically inferred to the hardware of
the vessels.
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Figure 8. IEC cloud architecture in a maritime environment for just-in-time arrival and ML model
training [17].

FL can be also applicable in the maritime sector for security and privacy protection
during process optimization. To this end, various critical processes can be optimized with
local vessel data, such as fault diagnosis, reduction of CO2 emissions, etc. [73,74].

4. Recent Works in IoT-Edge-Cloud Continuum Architectures

In this section, all recent advances in the area of IEC continuum systems are pre-
sented. In this context, in [75], hybrid cloud deployments for supporting data-intensive,
5G-enabled IoT applications were investigated. Moreover, a decentralized hybrid cloud
MEC architecture, resulting in a Platform-as-a-Service (PaaS) is proposed and its main
building blocks and layers are thoroughly described. In this context, a security and privacy
module makes anomaly detection, anonymization, encryption, and identity management
feasible. In addition, serverless computing is supported along with AI optimization. More-
over, two indicative use cases are provided, in particular a smart city scenario as well as
e-health applications. Due to the PaaS deployment of the proposed architecture, potential
stakeholders and business models are identified as well. In [76], an IEC framework is
proposed and evaluated for the visual control of IoT devices in a user’s smartphone. This
approach couples various technologies for DNS naming and indoor localization to support
the visual control of IoT devices. To this end, the DNS Name Autoconfiguration (DNSNA)
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for IoT devices is used, where an IoT device is registered to a router that sends a broadcast
message. Afterwards, a unique DNS name and IPv6 address are generated for the specific
IoT device. Localization is based on periodic WiFi beacon messages from the smartphone
and the received signal strength indicator (RSSI) value for such a beacon message that is
received by each IoT device. In the same context, open research challenges were identified
as well, such as secure communications among the user terminal and the involved IoT
devices, as well as an extension of the proposed approach in multiuser scenarios.

In [77], the UNITE architecture was described, where all available resources across the
entire IEC architecture are classified into three major classes: computing, networking, and
storage. To this end, holistic resource monitoring and management takes place, where the
UNITE framework evaluates certain KPIs, such as latency or throughput. If one of these
KPIs falls below a predefined value, then the appropriate actions take place (e.g., application
migration, network rerouting, etc.) transparently to the end user. Moreover, the UNITE
framework allows agnostic application development, which is not bound to any specific
running environment.

In [78], an optimized IoT-enabled big data analytics architecture for edge-cloud com-
puting using ML is proposed and evaluated. The considered scheme is composed of two
layers, i.e., IoT–edge and cloud processing. In this context, an edge intelligence node is
introduced, which handles and stores big amounts of data at the edges of the network with
the integration of cloud technology. The proposed data design is experimentally simulated
with an authentic data set using Apache Spark. In [79], the goal is to combine edge and
cloud computing for IoT data analytics by taking advantage of edge nodes to reduce data
transfer. In order to process data close to the source, sensors are grouped according to their
locations, and feature learning is performed on the node that is closer to the edge. The
results showed that transmission data and the corresponding network traffic could be re-
duced even up to about 80% without significant loss of accuracy. In [80], a sharing resource
allocation problem among multiple service providers in the edge-cloud is investigated. In
this context, the authors study distributed algorithms to find a near-optimal solution with
fast convergence. In particular, the dual decomposition and alternating direction method
of multipliers were used.

In [81], the concept of volunteer edge-cloud was introduced, where blockchain tech-
nology is used to deal with the problem of service payment and data credibility in a
decentralized system. In this context, performance evaluation in a mobile robot environ-
ment has taken place, where a proof-of-concept system based on Ethereum and KubeEdge
was designed. Results demonstrated that more flexible IoT devices can be supported,
while at the same time software development is improved as well. In [82], an architectural
approach is proposed and evaluated, which combines IoT, cloud, and edge computing for
failure analysis and prediction. According to the presented results, the proposed model can
reduce the number of failed tasks for cloud-IoT applications. In [83], a low-complexity and
secure task offloading algorithm was implemented and evaluated in IEC environments.
Results indicate that the proposed approach can provide a significant reduction in the over-
all execution times compared to other baseline approaches. In [84], the IoT microservice
deployment problem is investigated in heterogeneous edge-cloud environments. In this
context, microservices leverage programming flexibility, as each application can be de-
ployed as a collection of loosely coupled services [85]. Optimum microservice deployment
should take into consideration multiple applications whose execution is based on highly
heterogeneous infrastructures. To this end, a deep reinforcement learning (DRL) method-
ology was presented in [84] that was compared with a random and a genetic algorithm.
According to the presented results, the proposed approach has improved performance
compared to the other benchmark approaches even when scaling up the requests.

In [86], a deep Q-learning (DQL) framework is proposed and evaluated for efficient
task offloading from IoT devices to either edge or cloud servers. To this end, blockchain is
used during task offloading to ensure security and privacy protection. A key novelty of
this work is that it considers the energy status of each device during offloading calculations,
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while at the same time, an energy harvesting process is adopted per device. In [87],
an IEC computing continuum solution is investigated in the context of SAR operations.
These scenarios can be highly demanding both in terms of throughput and latency since
they involve multiple and diverse operations, such as dynamic multi-robot mapping
and fleet management, computer vision for feature extraction, data processing, device
management, orchestration of software components, as well as low latency communications.
The proposed approach, based on the NEPHELE project [88], leverages the virtualization of
IoT devices at the edge part of the infrastructure and supports openness and interoperability
aspects in a device-independent way. In the same context, an orchestration framework is
supported for coordination between cloud and edge computing orchestration platforms,
also considering ML and security protection.

In [89], reference architectures are discussed for industrial IoT, Internet of Vehicles
(IoV) as well as IoT-based smart homes. In [90], a novel approach is introduced that adopts
fuzzy logic algorithms, considering application characteristics (e.g., CPU demand, network
demand, and delay sensitivity) as well as resource utilization and resource heterogeneity.
The presented results indicate that this approach improves overall service time when
compared to other benchmark approaches. In [91], an industrial edge-cloud collaborative
computing platform is presented, namely, the Sophon Edge, which also makes use of AI-
enabled operations. Sophon Edge adopts a pipeline-based computing model for streaming
data from IoT devices. Moreover, this platform supports an iterative way for model
evolution and updating to enable agile and data-driven IoT applications. In [92], an edge-
cloud collaboration in the context of AI-assisted approaches is investigated. To this end,
various aspects are discussed, such as privacy enhancement via federated learning, ML
model training in hardware constraint devices, model compression, inference policies, etc.
In [93], an architectural approach is presented for the IEC continuum able to be federated so
as to support cross-domain services that use different cloud-IoT resources. In this context,
various aspects are taken into consideration, such as content virtualization and cognitive
management of services. In [94], optimum application deployment takes into consideration
both required latency as well as overall power consumption. To this end, simulations were
conducted with the help of the iFogSim [95] simulator, which demonstrates that application
service quality is significantly improved and system power consumption is greatly reduced
when compared with other baseline approaches.

In [96], the authors propose a new Internet of Things Edge-Cloud Federation (IoTEF)
architecture for multi-cluster IoT applications. This new architecture has four layers:
(i) application isolation; (ii) data transport; (iii) distributed operating system (OS); and
(iv) unified federated management layer. This approach provides a common framework
for data management to both edge and cloud, reduced latency, since data processing is
closer to the edge, as well as a unified federated management approach for managing
several clusters from a single management interface. In the same context, experimental
results were provided as well, taking into consideration a smart building scenario. In [97],
quality of service (QoS) is considered to be the main performance metric to solve the
problem of optimum cluster usage in edge-cloud environments. In [98], a model-based
approach to automatically assign multiple software deployment plans to hundreds of edge
gateways and connected IoT devices implemented in collaboration with a smart healthcare
application provider is described.

In [99], a precision agriculture (PA) case that covers extreme PA requirements by using
automation, IoT technologies, and edge and cloud computing through virtualization is
dealt with. In this context, a three-layered architectural approach has been considered,
where IoT devices are located in greenhouse facilities and tasks can be offloaded to vir-
tualized edge servers, while the cloud infrastructure deals with non-latency-critical high
complexity calculations. In [100], an edge-fog-cloud architectural approach for IoT-based
smart agricultural applications is introduced. In this context, an optimization problem is
formulated using mixed-integer linear programming aiming to improve various KPIs, such
as energy consumption, CO2 emission, and network traffic.
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In [101], an architectural approach to edge computing in IoT-based manufacturing
applications is described. In this context, the role of edge computing is analyzed from
four perspectives, in particular the following: edge equipment, network communication,
information fusion, and cooperation with the cloud. In the same context, the architectural
approach of [102] leverages edge-fog-cloud cooperation in a smart manufacturing environ-
ment. In [103], the architecture of an IoT big data ecosystem is presented and analyzed,
based on a three-layer approach: edge layer, cloud layer, and application layer. In this
context, an efficient task execution is carried out between the cloud and the edge layer, in
the context of predictive maintenance.

In [104] edge computing is combined with blockchain technology in a smart manu-
facturing environment. In [105], a hybrid task offloading model is introduced, including
the collaboration of cloud computing and MEC, in the context of smart cities. To this
end, a distributed deep learning-driven task offloading algorithm is proposed to generate
near-optimal offloading decisions over mobile devices, edge-cloud servers, and central
cloud servers. According to the presented results, the proposed approach can significantly
reduce the overall computational burden, when compared with other offloading schemes.
In [106], a lightweight mechanism for security provision in IoT-based e-health applications
is proposed and evaluated. To this end, potential nodes that can be used in the orientation
are acceptable only in the case that can verify their trustiness. In this case, they render
some services to the network, without fully being part of it. Their full admittance is based
on the bootstrapping factor value. Therefore, attack attempts can be minimized. In [107],
FL is used in order to reduce the amount of data sent to MEC servers for the processing
and training of ML models. In this case, considering wearable devices on end users, local
models can be derived based on the corresponding data sets. After the local FL training is
completed, the e-health wearable device sends the corresponding local FL system model
results to the MEC node, which aggregates the local FL system model (i.e., the global FL
model) and broadcasts the updates to all e-health wearable users. In this context, D2D
communications are also exploited. In [108], blockchain technology with smart contracts
has been deployed to leverage data integrity and transaction fairness in e-health applica-
tions. According to the presented results, the proposed approach can resist adaptive chosen
keyword attacks.

In [109], the problem of energy efficiency has been investigated in IEC orientations. In
this context, the mathematical formulation leads to a convex optimization problem that
has been solved with the help of a proposed iterative technique. To this end, the proposed
approach outperforms other baseline technologies according to the resource allocation
policies that have been considered, such as an equal computational load to all involved
servers, a popularity-based and workload-aware assignment, as well as a communication-
based assignment. In [110], the authors deal with anomaly detection in the IEC continuum.
In particular, the inverse distance weighted algorithm and marching squares algorithm
are adopted to generate the boundary of an anomaly in terms of isopleths. Afterwards,
an appropriate filtering mechanism is employed at the edge networks, and related data
are transmitted to the cloud for further analysis only if necessary. The performance of
the proposed approach was evaluated with the help of a sensor telemetry data set, and
the results showed that it can outperform other benchmark approaches. In [111], an IoT
energy management system has been designed for smart city environments, leveraging
DRL for energy-efficient calculations. In this context, two distinct approaches are evaluated:
In the first case, IoT devices offload energy scheduling tasks to an edge server. In the
second case, the edge server offloads NN calculations in the cloud domain to reduce overall
computational times. Results were presented for specific communities with smart homes
and edge servers.

According to the presented results, the proposed schemes can achieve low energy
costs while causing lower delay, compared to traditional schemes. Finally, in [112], an IEC
architecture is proposed and evaluated that integrates ML algorithms for optimum energy
management in microgrids that employ distributed energy sources. In this context, edge
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devices are located in the boundaries of microgrids and collect various types of energy
management data. Edge devices send telemetry data to a cloud-based IoT platform that is
responsible for data monitoring, visualization, storage, and sharing for future planning
purposes. The implementation is based on open-source software, and performance evalua-
tion results address scalability for hundreds of prosumers. In particular, two forecasting
algorithms were considered. As part of their future work, the authors have identified,
among others, the employment of FL approaches, as well as the insertion of historical data
in the considered algorithms via deep learning.

5. Discussion—Open Issues

The aforementioned works are also summarized in Table 2. To this end, the key
considerations along with the adopted methodology per case are presented, along with
open issues and limitations. As it became apparent from the previous analysis, the studied
works consider specific use case scenarios, while at the same time addressing a subset of
the IEC integration challenges, as described in Section 1. In the same context, additional
key points can be outlined.

Table 2. Comparison of the presented studies—key considerations, limitations, and open issues.

Survey Paper Year Contributions Methodology Limitations—Open Issues

[75] 2019 Decentralized hybrid cloud
MEC architecture

AI, security and privacy,
serverless computing

Evaluation in real world
scenarios

[76] 2023 Localization of IoT devices DNS naming, IPv6 Secure communication and
multi-user management

[77] 2022 Resources integration via
virtualization

ML for resource optimization,
agnostic application

development

Security mechanisms, efficient
task offloading

[78] 2023 Parallel data ingestion ML for resource optimization,
ensemble learning Security mechanisms

[79] 2021 Data reduction prior to cloud
processing Feature learning

Extension of the proposed
framework in additional

applications

[80] 2022 Multiple edge/cloud
providers

Resource allocation and
sharing optimization model

Evaluation in real world
scenarios

[81] 2021 Node utilization in IoT
environments

Security via blockchain
technology

Evaluation in real world
scenarios

[82] 2022 Task failure minimization
Task offloading according to

network, security, and latency
requirements

Optimum task offloading for
complex applications

[83] 2021 Efficient task offloading via
security mechanisms

Advanced encryption standard
cryptographic technique

Low complexity load balancing
and computation offloading

ML for efficient computational
offloading

[84] 2021 IoT microservice deployment
problem Deep reinforcement learning

Load balancing in multi-cloud
environment deployment

strategies
Decentralized training
approaches for privacy

enhancement

[86] 2023

Delay, job failure,
computational overhead,

energy
consumption improvement

Deep Post-Decision State (PDS)
for learning efficiency

Blockchain technology during
task offloading

ML in large-scale MEC
orientations
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Table 2. Cont.

Survey Paper Year Contributions Methodology Limitations—Open Issues

[87] 2023
Cloud-to-Edge-to-IoT
Continuum for SAR

applications
NFV, virtual objects at the edge

Advanced AI approaches and
computer vision for additional

post-disaster scenarios

[89] 2023
Integration of multiple use
case scenarios in a common

architectural approach

Reference architecture based on
end-edge, net-edge, cloud-edge

Construction of a multi-tier
EC-IoT architecture with one

central cloud and multiple
edge-clouds with unified
regulation and standards

[90] 2021 Task offloading for latency
minimization

Application characteristics and
heterogeneity of the

infrastructure

Evaluation in real world
scenarios

[91] 2021 AI in edge-cloud-IoT
environments

Sophon edge framework for ML
model training and

inference

Distributed ML for latency
reduction and privacy

enhancement

[92] 2023 Interaction between
Cloud-IoT environments

Cognitive management of
services

Evaluation in real world
scenarios and security

mechanisms

[93] 2016 Software in edge-cloud-IoT
environments

Model-based approach to
automatically assigning

multiple software deployment
plans to hundreds of edge

gateways

Performance evaluation in
additional scenarios apart from

e-Health

[94] 2021 IoT application modules
placement

Particle swarm optimization to
acquire the best application
module placement strategy

Extension in multiple IoT
application services

[96] 2020 Multi-cluster IoT applications Four-layered architecture Extension in additional use case
scenarios

[97] 2021 Optimum cluster usage Task scheduling problem at the
edge

Performance evaluation in real
world scenarios

[98] 2022 Model fleet deployment Model-based techniques Evaluation in real worlds
scenarios

[99] 2019
IoT platform based on edge

and cloud computing for
smart agriculture

Three-tier open-source software
platform at local, edge and

cloud planes.

Performance evaluation in
additional farming scenarios

[100] 2021
IoT-Edge-Fog-Cloud

architecture for agricultural
applications

Optimization of energy
consumption, CO2 emission,

and network traffic
Machine learning approaches

[101] 2018 IoT-based manufacturing Interlayer coordination Performance evaluation in
large-scale orientations

[102,103] 2019,
2023

Smart manufacturing based
on a three-layered

architecture

Edge-fog-cloud cooperation
Efficient task offloading

Performance evaluation in
large-scale orientations

[104] 2020 IoT-based manufacturing

Edge computing with
blockchain

Task assignment based on
particle swarm optimization

Performance evaluation in
large-scale orientations

[105] 2020 IEC collaboration in smart
cities

Distributed deep learning task
offloading

Blockchain-based decentralized
offloading scheme

Metalearning in offloading
decisions



Future Internet 2023, 15, 383 20 of 27

Table 2. Cont.

Survey Paper Year Contributions Methodology Limitations—Open Issues

[106] 2019 IEC in e-health applications
Lightweight security

mechanism based on trusted
nodes

Scalability

[107] 2023 IEC in e-health applications FL for data transfer reduction
D2D communications

Single cell wireless sensor
network scenario with one

MEC server

[108] 2023 IEC in e-health applications Blockchain and smart contacts Efficient consensus algorithms

[109] 2023 Energy efficiency in IEC
systems

Problem formulation, iterative
optimization and comparison to

baseline approaches
Energy prediction algorithms

[110] 2023 Anomaly detection in IEC
systems

Interpolation and marching
squares algorithm

Extension in additional real
world scenarios

[111] 2019 Energy-efficient task
offloading

Deep reinforcement learning in
an IEC smart city scenario

Extension in additional real
world scenarios

[112] 2021 Load forecasting in
microgrids

Edge servers in microgrids,
data collection, ML for load

forecasting

Federated learning, transfer
learning, insertion of historical

data via deep learning

• In the cases of ML model training, in the majority of the studied works, such as
in [79,84,106,111], DRL approaches have been considered, as they can adapt more
effectively to various network deployments and reconfigurations. The alternative
approaches of supervised or unsupervised learning would involve data collection
from scratch and retraining that can increase the computational load and deteriorate
the system’s latency.

• The full deployment of highly demanding latency applications, such as autonomous
driving or zero touch smart manufacturing, could be leveraged by private IEC infras-
tructures to avoid an imbalance in the computational load of edge or cloud servers
from other applications and public networks’ latency. In this case, private 5G infras-
tructures can be deployed within the premises of a manufacturing unit along with
dedicated edge servers that process data and train ML models. In cases of dispersed
units, these data can be then sent to private cloud domains for further analysis and
macroscopic KPI optimization.

• There is a fundamental tradeoff between the enforcement of strict security policies
in every data transfer procedure between IoT nodes and edge-cloud/servers and
computational load. In these cases, the concept of trusted nodes can be applied:
IoT nodes enter the IEC only after their robustness against specific security attacks
has been verified. Even so, this does not rule out the possibility of future attacks.
Therefore, anomaly detection algorithms in the edge or cloud domain can detect
unusual data patterns.

• Serverless computing along with blockchain technology can be quite effective towards
the concept of PaaS in IEC systems, due to the elimination of third-party involvement.
By decomposing service computations as a set of microservices, service providers
could make the most out of cloud and edge computing by exploiting their elasticity.
During its lifetime, the service could scale-in or scale-down to adjust the number
of instances of each microservice to the workload, thus reducing the operational
expenditures of the service.

In the same context, as derived from the presented works, there are still open issues to
be addressed prior to the full deployment of the IEC continuum.

• Resource optimization is important in the IEC continuum, due to the magnitude of
involved infrastructures and applications. Therefore, the employed ML models should
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be in a position to collect and aggregate a vast amount of heterogeneous data from
diverse sources. Moreover, the developed ML models should be applicable to multiple
scenarios in the IEC framework.

• Although hardware and computational complexity along with latency reduction dur-
ing task execution and efficient task offloading are the main KPIs under evaluation
in an IEC ecosystem, the design and development of «green» networks are extremely
important in the new era of 6G communications. In this context, the mass number
of interconnected devices may have a severe impact on the energy footprint, which
should be taken into account during IEC design as well. In addition, ML algorithms
consume more energy compared to regular algorithms due to the increasing com-
plexity of running and training models. Therefore, the design and implementation of
less complex algorithms, while maintaining the accuracy rate, is also a key challenge
towards green-based architectures.

• While some recent ML research works address intelligent orchestration and control of
different edge-cloud systems, there is still a lack of integrated AI solutions to optimize
the edge-cloud continuum. Therefore, it is essential to integrate ML techniques at
different layers of the architecture while dynamically optimizing the edge-cloud con-
tinuum software, data, and resource orchestration as a whole. A range of techniques
such as federated learning for privacy, transfer learning for model reuse at the device,
and different deep reinforcement learning architectures can be applicable to various
optimization goals.

• The vast majority of related works consider performance evaluation of the proposed
approach per case in limited orientations (e.g., laboratory evaluation or a moderate
number of participating nodes). Therefore, large-scale evaluation is important not
only to examine scalability issues but also to identify potential limitations when full
deployment takes place.

• The full deployment of the IEC computing systems is inextricably connected with an
integration of diverse hardware elements and infrastructures, thus leading not only to
a highly heterogeneous environment but also to functions and features that cannot
be anticipated at the time of design. The distributed, dynamic, and programmable
nature of the entire IEC continuum along with the fragmentation of data as well
as the need for supporting cross-platform interoperability, makes the application of
security and trust fundamentally challenging. Since such systems unavoidably lead to
a corresponding increase in the number and types of potential attacks, such attacks
need to be predicted and anticipated with the help of AI systems.

• The IEC framework should be able to provide autonomous reconfigurability according
to network conditions and user and application requirements, as well as according to
other design goals such as minimization of the energy footprint, which was previously
mentioned. Indeed, the requirement for increased autonomous reconfigurability is
emerging due to the ever more demanding services and the impact these services have
on daily human activities (e.g., e-health applications).

• Although there are many open-source frameworks for various functionalities involved
in the IEC continuum, such as Apache Kafka for telemetry and data streaming [113],
TensorFlow for machine learning [114], and Flower for federating learning deploy-
ment [115], there is not until now a unified open-source framework that can support
scalability over large IEC infrastructures. This diversity in programming frameworks
and models hinders the efficient development of the continuum solutions.

6. Conclusions

In this survey paper, all recent advances with respect to IoT-edge-cloud-based operat-
ing systems were presented and analyzed. From the derived analysis it became apparent
that the full deployment of edge-cloud-IoT systems towards the new era of broadband
wireless networks will face many technical challenges, such as a unified data management
system that can support multiple diverse services and applications (such as e-health, smart
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manufacturing, smart cities, agriculture, etc.), appropriate security mechanisms, as well as
optimum resource allocation that can be adapted to various conditions. Currently missing
from the IEC ecosystem is an open, non-proprietary, interoperable, robust, secure, and
sustainable multi-cloud and multi-edge continuum hosting solution aimed at optimizing
the execution of services, especially in data-intensive applications, and able to adapt to
different and adaptable strategies (e.g., execution time reduction, concurrent execution,
edge processing, fog security, locality, high resource utilization, low latency, and high
energy efficiency), while being scalable, extensible, and open to experimentation. This
solution should be able to support various use cases and scenarios that can be leveraged by
the use of IoT technology.

Since 6G standardization is still a work in progress, with an incipient but strongly
growing research effort, it is the right moment to identify the overall set of services,
requirements, and functions in the IoT-cloud-edge continuum for end-to-end systems
management with a strong focus on practical scenarios and applications. This joint design
of the IEC continuum and 6G networks will unavoidably leverage the support of advanced
services and applications in the new 6G era, such as connected intelligent machines, the
Internet of Senses, as well as holoportation.
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Abbreviations
The following abbreviations are used in this manuscript:

2D/3D Two/Three Dimensional
5G Fifth Generation
6G Sixth-Generation
AI Artificial Intelligence
AP Access Point
CCM Container Cluster Manager
CPU Central Processing Unit
D2D Device to Device
DL Deep Learning
DRL Deep Reinforcement Learning
DNS Domain Name Server
DNSNA DNS Name Autoconfiguration
DQL Deep Q-Learning
E2E End-to-End
EC Edge Computing
ECN Edge Computing Node
EV Electrical Vehicle
FL Federated Learning
IEC IoT-Edge-Cloud
IioT Industrial Internet of Things
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IoE Internet of Energy
IoT Internet of Things
IoTEF Internet of Things Edge-Cloud Federation
IoV Internet of Vehicles
ECDriven IoT Edge Computing-Driven IoT
KPI Key Performance Indicator
LAN Local Area Network
MEC Multi-access Edge Computing
ML Machine Learning
NAN Neighborhood Area Network
NB NarrowBand
NN Neural Network
NFV Network Function Virtualization
OS Operating System
P2P Peer to Peer
PaaS Platform-as-a-Service
PA Precision Agriculture
PDS Post-Decision State
QoS Quality of Service
RSSI Received Signal Strength Indicator
SAR Search and Rescue
SDN Software Defined Networking
UAV Unmanned Aerial Vehicle
USV/UUV Unmanned Surface/Underwater Vehicle
V2V Vehicle to Vehicle
VNE Virtual Network Embedding
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