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Abstract: Edge AI, an interdisciplinary technology that enables distributed intelligence with edge
devices, is quickly becoming a critical component in early health prediction. Edge AI encompasses
data analytics and artificial intelligence (AI) using machine learning, deep learning, and federated
learning models deployed and executed at the edge of the network, far from centralized data centers.
AI enables the careful analysis of large datasets derived from multiple sources, including electronic
health records, wearable devices, and demographic information, making it possible to identify
intricate patterns and predict a person’s future health. Federated learning, a novel approach in AI,
further enhances this prediction by enabling collaborative training of AI models on distributed edge
devices while maintaining privacy. Using edge computing, data can be processed and analyzed
locally, reducing latency and enabling instant decision making. This article reviews the role of Edge
AI in early health prediction and highlights its potential to improve public health. Topics covered
include the use of AI algorithms for early detection of chronic diseases such as diabetes and cancer
and the use of edge computing in wearable devices to detect the spread of infectious diseases. In
addition to discussing the challenges and limitations of Edge AI in early health prediction, this article
emphasizes future research directions to address these concerns and the integration with existing
healthcare systems and explore the full potential of these technologies in improving public health.

Keywords: artificial intelligence; edge computing; early health prediction; federated learning; wearable
devices; chronic diseases; data privacy; public health; healthcare informatics; data analysis

1. Introduction

Digital technologies have led to an exponential increase in the amount of data gener-
ated by people and devices. In healthcare, this has led to new perspectives on the timely
detection and interception of diseases, improving health outcomes and reducing overall
healthcare spending. The use of AI and edge computing in healthcare is one of the most
promising avenues of advancement, as it can revolutionize the way healthcare providers
investigate and predict disease outbreaks. Healthcare data come from various sources,
such as electronic health records, wearable devices, and various sensors. AI algorithms
can be used to analyze these data to identify patterns and trends that may indicate disease
onset [1,2]. By combining these data with other relevant information, such as demographic
and environmental factors, AI can be used to make accurate predictions about future
health outcomes and develop targeted interventions to prevent disease outbreaks [3,4].
Conversely, the emerging paradigm of edge computing seeks to solve the problems associ-
ated with transmitting and processing vast amounts of data as they are generated. Edge
computing can significantly reduce latency and increase processing speeds by bringing
computing power close to the data source. It is an optimal solution for systems that require
real-time data processing and decision making [5,6]. In healthcare, edge computing is
particularly useful in applications that require real-time monitoring and decision making,
such as wearable devices for patient monitoring and remote diagnosis and treatment [7,8].
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By combining the strengths of AI and edge computing, healthcare providers can create inno-
vative solutions that improve public health outcomes, lower healthcare costs, and improve
the overall patient experience [9,10].

Early health prediction plays a critical role in improving public health by enabling
healthcare providers to identify and address potential health problems before they become
more serious [11,12]. Using a variety of data sources, including electronic health records,
demographic data, and wearable devices, the field of early health prediction manifests as a
multifaceted approach that provides a holistic perspective on a person’s well-being and
proactively anticipates impending health prognoses. This information can then be used
to develop personalized interventions, treatments, and preventive measures to improve
an individual’s health and prevent the onset of chronic diseases [13]. One of the most
important benefits of early health prediction is the early detection of chronic diseases
such as diabetes, cardiovascular disease, and cancer [14–16]. By detecting these diseases
in their early stages, physicians can take therapeutic measures and recommend lifestyle
changes that can improve an individual’s health while preventing the disease’s relentless
progression. It is worth emphasizing that early health prediction promises to reduce
healthcare costs by circumventing the need for later exhaustive and financially burdensome
treatments. Early health prediction has great potential for infectious disease prevention and
control. Careful examination of data obtained from wearable devices and various sources
makes it possible to identify variations in a person’s activity patterns and heart rate that
serve as potential precursors to the onset of an infectious disease. With this knowledge,
proactive measures can be taken to limit the transmission of the disease and strategic
interventions can be made to mitigate its effects.

This article explores the role of Edge AI in early health prediction and highlights its
benefits, limitations, and real-world applications in healthcare. It discusses the current state
of the field and the challenges to be overcome. It also explores the future potential of Edge
AI for improving public health. Within the context of Edge AI’s flourishing significance in
healthcare, it is essential to establish a comprehensive understanding of its applications
and implications. Several prior review papers have explored facets of artificial intelligence
(AI) in healthcare, with a predominant focus on specific diseases, imaging modalities, or AI
techniques. Herein, we delineate how our work distinguishes itself from these review
papers by taking a broader and more inclusive perspective. A paper by Xu et al. [17] offers
an extensive survey of deep reinforcement learning (DRL) in the context of medical imaging
and radiation therapy. It covers DRL’s basic concepts and algorithms and discusses its
applications in lesion localization, classification, registration, segmentation, and treatment
planning. Montagnon et al. [18] provide a primer on the steps involved in developing and
deploying deep learning models primarily tailored to radiology applications. It covers data
collection and preprocessing, model design and training, model evaluation and validation,
model deployment and integration, and model monitoring and maintenance. Furthermore,
Cao et al. [19] reviewed deep learning principles and their applications in various biomedi-
cal domains, such as genomics, proteomics, metabolomics, microbiomics, medical imaging,
drug discovery, and precision medicine. They also discussed the challenges and future
directions of deep learning in biomedicine. Federated machine learning and its use in
disease prediction was covered by Moshawrab et al. [20], who offered a comprehensive
review of federated machine learning (FML) within the healthcare context. The paper also
surveys the recent applications of FML in various disease prediction tasks, such as cancer,
cardiovascular disease, and diabetes prediction. In another work, Moshawrab et al. [21]
conduct a systematic literature review of the state-of-the-art smart wearables that can detect
and monitor cardiovascular diseases (CVDs), the leading cause of death worldwide. They
focus on the types, features, and applications of smart wearables, such as smartwatches,
smart bands, smart rings, and smart glasses, that can measure various physiological sig-
nals, such as electrocardiogram (ECG), photoplethysmogram (PPG), blood pressure (BP),
and heart rate (HR) signals.
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In summary, our work stands out through its exploration of Edge AI applications in
healthcare. It accentuates the potential impact of Edge AI on public health, early prediction
of chronic diseases, and its seamless integration within established healthcare systems.
Although the aforementioned review papers delve into specific niches within healthcare
and AI, our work serves to provide a holistic understanding of the implications of Edge AI
technologies in healthcare, emphasizing the necessity of a comprehensive grasp of Edge
AI’s role in healthcare settings. Our contributions can be summarized as follows:

1. We describe the synergy between AI and edge computing in healthcare to create
opportunities for healthcare providers. These opportunities include cutting-edge tools
that provide instant data and deep insights. These tools help accelerate disease detec-
tion and create tailored treatment plans. The plans consider the unique characteristics
and needs of individual patients.

2. We review the various applications of Edge AI in the early prediction of health issues
and the detection of chronic and infectious diseases.

3. We scrutinize machine learning and deep learning models instrumental in early health
prediction and detection of chronic and infectious diseases.

4. We review the various applications of federated learning for disease and mortality
prediction and highlight the critical dimension of privacy in early health prediction.

5. We identify and elaborate on the challenges faced by Edge AI in the healthcare
domain, such as privacy, data accuracy, model bias, interoperability, and integration
with existing health systems. Furthermore, we outline for each challenge the future
research directions, emphasizing the transformative potential of Edge AI in the context
of early health prediction.

The following sections of this review article are organized as follows: Section 2 pro-
vides background information on Edge AI. Section 3 describes the synergy between AI
and edge computing in healthcare. Section 4 describes the research methodology used
in this review. Section 5 describes the stakeholders of an Edge AI-based system for early
healthcare prediction, reviews the various applications of Edge AI in the early prediction
of health issues and the detection of chronic and infectious diseases, and examines the
machine learning and deep learning models instrumental in early health prediction and
detection of chronic and infectious diseases. Section 6 describes the potential of federated
learning for early health prediction and the training process of the federated learning model
with edge devices. It also reviews the various applications of federated learning for disease
and mortality prediction. Section 7 discusses the challenges and limitations of Edge AI in
early health prediction and the future research directions to address each challenge. Finally,
Section 8 concludes the article.

2. Edge AI Overview

The emergence of Edge AI, an interdisciplinary technology that enables distributed
intelligence with edge devices, is attributed to data analytics, machine learning, and deep
learning taking place at the edge of the network, far from centralized data centers. Several
initiatives are underway to develop Edge AI-based solutions in various application areas,
such as the digital industry, which uses the technology to prevent early failures and
perform predictive maintenance. Moreover, the use of Edge AI goes beyond the boundaries
of specific industries and finds practical applications in various areas that shape our daily
lives. For example, Edge AI is helping to advance smart buildings and efficient smart grids
in the energy sector. In the automotive and transportation industries, as well as in the
development of smart cities, Edge AI also plays a crucial role in optimizing operations
and increasing overall efficiency. In addition, Edge AI is finding application in areas
such as health and wellness, precision agriculture, and numerous other fields, where its
transformative potential is being harnessed to achieve remarkable results.

Artificial intelligence has become a fascinating discipline within computer science,
concerned with the careful development of algorithms and systems designed to mimic
the cognitive abilities of human intelligence. Its overarching goal is to develop machines
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that are capable of learning, reasoning, and making data-driven decisions, similar to the
cognitive abilities of humans. AI is playing a central role in healthcare, unleashing its
potential across a broad spectrum that includes disease diagnosis, treatment modalities,
personalized medicine, and continuous monitoring of patients’ well-being. On the other
hand, edge computing is a distributed computing architecture that brings computing
power closer to the data source [5,6,22]. In today’s dynamic landscape, edge computing has
emerged as a timely and common-sense solution to meet the increasing need for fast data
processing and rapid decision making in a variety of domains. Edge computing is relevant
in various fields, such as the IoT, industrial automation, and the ever-evolving healthcare
industry. Unlike the traditional cloud computing model, which relies predominantly on
centralized data centers, edge computing involves the strategic deployment of compact and
efficient computing devices at the periphery of the network, right where the data originate.
There are notable benefits to be gained from this approach, such as increased processing
speed and reduced latency, as data no longer need to be transferred to a central location.
In healthcare, edge computing is useful in wearable devices for patient monitoring, remote
diagnosis, and treatment. In addition, this approach is a valuable privacy and security
enhancement because it allows sensitive information to be processed locally. By reducing
reliance on the transmission of such data to a central location, the risks associated with
long-distance data transmission are mitigated, and the protection and confidentiality of
critical information are strengthened. Edge computing is an example of an innovative
paradigm that optimizes the handling of data in real time and empowers various sectors,
especially healthcare, with its transformative potential. Figure 1 shows the architecture of
edge computing for healthcare.

Figure 1. Edge computing architecture for healthcare.

A research report from Grand View Research [23] sheds light on the remarkable expan-
sion of the global edge computing market. The report offers a compelling insight into the
market dynamics, highlighting that the edge computing market size is estimated to reach a
remarkable USD 11.24 billion by 2022, representing a significant economic scale. Moreover,
the projected growth trajectory drives the market to an estimated value of USD 16.45 billion
by 2023. Even further, the market is projected to grow at a remarkable compound annual
growth rate (CAGR) of 37.9% from 2023 to 2030, resulting in a substantial market size
of around USD 155.90 billion. The remarkable rise in the market is primarily due to the
ever-increasing demand for real-time data processing and informed decision making across
a wide range of industries. This insatiable appetite for instant data-driven insights spans
multiple sectors, including but not limited to manufacturing, healthcare, and the flourishing
landscape of smart cities. The research findings underscore the dominance of the Industrial
Internet of Things segment in the edge computing industry, which accounts for over 29%
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of the revenue share in 2022. Edge computing has played a significant role in enabling
manufacturers to achieve the goal of digitizing their assets. A significant share of edge
devices is installed in the manufacturing segment. The energy and utilities segment ac-
counted for more than 14% of the revenue share in 2022. After the energy and utilities sector,
the healthcare sector was a significant contributor to the revenue share in 2022, indicating
its strong presence and influence. Moreover, this sector is projected to witness a CAGR
of around 38% during the forecast period. In healthcare, edge computing holds immense
transformative potential that will revolutionize early health prediction. By leveraging
this cutting-edge technology, healthcare providers gain the ability to perform real-time
analytics on large datasets from multiple channels seamlessly. An excellent example of this
application is the effective use of wearable devices equipped with sophisticated sensors
that enable the seamless collection of vital signs, physical activity measurements, and other
key health indicators. These data points can then be seamlessly processed and analyzed,
facilitating the timely detection of early signs of disease. This proactive approach enables
healthcare providers to intervene quickly, prevent disease progression, improve health
outcomes, and ultimately reduce overall healthcare spending.

Growing privacy concerns have led to the emergence of federated learning, an innova-
tive method of machine learning that enables the training of models with distributed data
across numerous devices without the need to aggregate the data in a central repository. This
technique holds great promise, especially in healthcare, where it has significant potential
for predicting and forecasting disease. By leveraging federated learning, physicians can
harness the power of decentralized data while protecting individual privacy, ultimately
advancing the field of predictive analytics in healthcare.

3. AI and Edge Computing Synergy in Healthcare

The advent of artificial intelligence has opened up numerous opportunities in health-
care, giving healthcare providers a set of cutting-edge tools capable of delivering instant
data and deep insights. This technological integration acts as a catalyst, enabling health-
care professionals to accelerate the process of disease detection and reap the benefits of
early intervention. In addition, the use of AI enables physicians to carefully craft tailored
treatment plans that take into account the unique characteristics and needs of individual
patients. The multiple impacts of AI extend beyond diagnostics and treatment, leading to
tangible improvements in patient outcomes and the overall quality of healthcare.

AI in healthcare typically uses electronic health records to identify patients at risk
for chronic diseases such as heart disease and diabetes [24,25]. Using algorithms, various
factors such as age, genetics, lifestyle habits, and medical history are taken into account to
create comprehensive risk profiles. This enables targeted interventions and early disease
surveillance. Another example of healthcare enrichment is the application of AI in drug
discovery and development. Using sophisticated AI algorithms, large amounts of data from
multiple channels such as the scientific literature and clinical trials are subjected to careful
analysis [26–28]. This comprehensive investigation not only facilitates the identification
of novel drug targets but also enables the prediction of drug efficacy. Integrating AI in
this context accelerates the drug discovery process while increasing the precision and
effectiveness of drug discovery efforts. Moreover, the use of AI algorithms is proving to
be valuable as it enhances the capabilities of healthcare providers in making informed
and accurate diagnoses [29]. These algorithms help formulate personalized medical plans
that seamlessly integrate important aspects such as the patient’s genetic makeup, medical
background, and lifestyle habits. By complexly combining this diverse information, medical
professionals can create treatment plans tailored to each patient’s unique circumstances,
ultimately ensuring optimal efficacy and therapeutic outcomes.

Deep learning and reinforcement learning are two powerful AI techniques for medical
data analysis [17,30]. Through rigorous exploration of large and complicated datasets, deep
learning effectively leverages artificial neural network capabilities to acquire knowledge
and make predictions. This versatile approach can be applied to various medical data
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analysis tasks, including image analysis, natural language processing, and time series anal-
ysis. It has been used to analyze medical images such as X-rays and MRI scans, revealing
complex patterns that significantly affect diagnostic accuracy. In addition, the keen eye
of deep learning algorithms sifts through electronic health records, unearthing valuable
insights that pave the way for predicting patient outcomes [31,32]. Machine learning in-
volves the training technique known as reinforcement learning, based on the fundamental
principle of rewarding and punishing favorable behavior. At its core, a reinforcement
learning agent can understand and interpret its environment, enabling informed action and
knowledge acquisition through the iterative process of trial and error. Analysis of medical
data can fine-tune drug dosages for individual patients based on their characteristics and
past responses [33]. The convergence of deep learning and reinforcement learning holds
the potential to improve the analysis of medical data, ultimately leading to better treatment
outcomes. However, the implementation of these techniques depends on large volumes of
carefully curated, high-quality data that require careful validation and rigorous evaluation
to ensure their safety and efficacy. It is equally important to consider ethical issues such as
privacy and mitigating bias when implementing these innovative methods in healthcare.
There is immense potential in integrating AI into healthcare, but there are still challenges to
overcome. Privacy and security issues, representative training data, accurate algorithms,
and prospective clinical trials are critical aspects to consider. Robust solutions are needed
to ensure data privacy, obtain diverse and high-quality training data, develop reliable
algorithms, and conduct rigorous clinical evaluations to integrate medical AI into current
workflows seamlessly.

Healthcare could be significantly transformed by edge computing, which enables the
timely examination of significant amounts of data derived from wearable devices, medical
instruments, and other related sources in real time.

1. Wearable devices: Wearable technology, which includes devices such as fitness trackers
and smartwatches, is evolving into a comprehensive data repository that contains
various details about a person’s physical movements, heart behavior, and sleep dy-
namics during nighttime hours (see Figure 2). The use of edge computing facilitates
the instant processing of data originating from wearable devices. This accelerates
the detection of changes in a person’s health status that may serve as precursors to
the onset of chronic disease. In a recent study by the authors in [21], several research
papers were analyzed to examine the use of wearable devices in detecting and pre-
dicting cardiovascular disease. The study results suggest that wearable devices can
effectively detect, predict, and treat cardiovascular disease. However, more research
is needed to improve their use. In addition, in [34], the authors proposed a secure
edge-computing-based framework for smart health systems. This framework focuses
on real-time health monitoring and ensures data security and confidentiality through
clustering approaches for anomaly detection and attribute-based encryption (ABE)
for secure access to biosignal data. Experimental results of the proposed framework
show an improved performance, an accuracy up to 98.5%, and data security.

2. Medical Devices: IoT sensors integrated into medical devices provide valuable data for
early health prediction and continuous monitoring of patient’s health conditions. Edge
computing is a viable option for processing data obtained from medical devices such
as blood glucose meters in real time. Processing data is an indispensable component
that helps detect changes in a person’s health that could indicate the development of
chronic diseases such as diabetes [35]. Currently, there are several medical devices
that use edge computing technology for their operations:

• Smart insulin pens: Smart insulin pens, used to control blood glucose levels
in diabetic patients, are advanced medical devices that integrate sensors and
connectivity to track insulin doses and blood glucose levels and provide real-time
feedback to patients [36]. These devices can process data in real time and provide
patients with personalized insights through edge computing.
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• Wearable electrocardiogram (ECG) monitors: Wearable ECG monitors are medical
devices used to monitor the patient’s heart’s electrical activity continuously.
These monitors are attached to various areas of the body, such as the wrist,
chest, or torso, and are aimed at individuals struggling with heart problems [37].
By integrating edge computing, these devices are able to analyze ECG data
instantly. As a result, they are able to quickly detect irregular heart rhythms and
other critical abnormalities, warranting immediate medical intervention.

• Smart inhalers: Smart inhalers are devices designed to treat asthma or chronic
obstructive pulmonary disease (COPD). They are equipped with sensors and
connectivity features that allow them to track medication use and provide feed-
back to patients [38,39]. The use of edge computing in smart inhalers has further
enhanced their functionality by enabling real-time data processing and personal-
ized patient insights.

• Vital sign monitors: Vital sign monitors are medical devices that monitor vari-
ous physiological parameters such as heart rate, blood pressure, and oxygen
saturation. These devices can be used in hospitals, clinics, or at home and allow
real-time monitoring of the patient’s health status. Using edge computing, these
devices can analyze vital signs in real time and alert healthcare providers to
anomalies [40,41].

Figure 2. Common wearable devices to monitor several health parameters.

Edge computing facilitates remote patient monitoring and enables healthcare providers
to monitor health statuses in real time and detect changes that signal the possible onset of a
chronic disease [42,43]. It has the potential to significantly improve healthcare outcomes
by enabling healthcare providers to detect chronic diseases at the onset when intervention
is most effective. By processing data instantly and protecting sensitive information, edge
computing can amplify public health outcomes by equipping healthcare providers with the
insights needed to make informed judgments about an individual’s health status. Edge
computing has been used to predict the spread of infectious diseases through real-time
analysis of data from multiple sources, including wearables, electronic health records,
and social media. This method enables healthcare professionals to detect infectious disease
outbreaks at an early stage, monitor the transmission of such diseases, and take proactive
measures to contain their spread [43]. The framework proposed in [44] uses heart rate
and sleep data from wearable devices to predict the progression of COVID-19 outbreaks
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in different countries and cities. The model claims that early detection and warning of
epidemics can be facilitated by such predictive models. Edge computing offers a variety
of advantages that make it particularly suitable for predicting health conditions in their
early stages:

• Real-time data analysis: Edge computing offers the ability to analyze large datasets in
a timely manner, thereby detecting changes in a person’s health status in virtually
real time. Timely detection of potential health problems is critical for early health
prognosis, enabling health professionals to identify potential health problems before
they worsen and become more difficult to treat.

• Shortened latency: By processing data at the periphery of the network and closer to its
source, edge computing effectively reduces the latency that typically occurs when data
are transmitted to a central data center for analysis. Incorporating edge computing
technology can provide significant benefits to healthcare providers by enabling rapid
data analysis and informed decision making regarding a patient’s health status.

• Improved data security: Edge computing is a notable advancement that aims to protect
sensitive data from security breaches through localized data processing at the network
perimeter. Limiting the need for extensive data transmission over the internet provides
a critical solution for early health prognosis. This attribute plays a central role in
maintaining the confidentiality of an individual’s private health information, ensuring
that their information is used only to promote their well-being.

• Cost efficiency: The increased cost efficiency of edge computing makes it particularly
beneficial for healthcare providers, as they have the ability to leverage artificial intelli-
gence and other cutting-edge technologies to improve healthcare outcomes.

• Scalability: Edge computing is a highly scalable framework, making it a suitable
choice for health predictive initiatives that operate at scale. By performing data
processing at the periphery of the network, edge computing can handle large amounts
of data, enabling real-time monitoring of the health status of multiple individuals
simultaneously.

4. Methodology

This review article uses a systematic approach to gathering the relevant literature
related to the article’s focus on “Edge AI for Early Detection of Chronic Diseases and
Infectious Disease Spread”. The search for relevant references used the following keywords:
“healthcare and medicine”, “artificial intelligence”, “machine learning”, “federated learn-
ing”, “edge computing”, “IoT and wearable devices”, “Edge AI”, “predictive models”,
“security and privacy”, “infectious diseases”, and “keywords specific to various diseases”.
Without aiming at complete coverage, the methodology encompasses the systematic collec-
tion, screening, and analysis of academic references from popular databases.

4.1. Search Criteria Formulation

The search criteria used were:

• C1: (“Edge computing” OR “IoT” OR “wearables” OR “wearable sensors”) AND
(“chronic” OR “infectious”) AND (“disease”);

• C2: (“AI” OR “edge intelligence” OR “machine learning” OR “deep learning” OR
“federated learning”) AND (“chronic” OR “infectious”) AND (“disease” OR “health
prediction”);

• C3: (“predictive models”) AND (“chronic” OR “infectious”) AND (“disease”);
• C4: “Privacy” AND “health prediction”.

The purpose of this review paper is to answer the following research questions.

• RQ-1: What are the myriad applications of Edge AI in early health prediction? This
research question seeks to uncover research efforts and breakthroughs in the use of
Edge AI for the early detection of chronic and infectious diseases.
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• RQ-2: What machine learning and deep learning models are used in early health
prediction?

• RQ-3: What techniques and methods are used to preserve privacy in early health
prediction and detection of the onset of chronic and infectious diseases?

• RQ-4: What are the potential open research issues and future directions of Edge AI for
early health prediction and detection of chronic and infectious diseases? This question
seeks to define the unanswered inquiries and unexplored paths that hold the key
to unlocking the full potential of Edge AI in early health prediction. By unraveling
the challenges that can hinder their widespread adoption and delving into research
directions, this query drives researchers to understand the current landscape of Edge
AI and early disease detection, unraveling novel insights and paving the way for
transformative advancements in this domain.

4.2. Source Selection and Approach

An extensive exploration was undertaken utilizing various popular databases and
search engines to gather pertinent research material for this review. Three popular databases
(Scopus, Google Scholar, and PubMed) renowned for their comprehensive coverage were
used to search for scholarly works on the subject. The search strategy was based on the
above search criteria. A time constraint was applied, restricting the search to include
articles published between 2019 and 2023.

Most of the papers reviewed are journal articles or conference papers. They were
selected on the basis of the quality of the journal and relevance to the topic and filtered by
date of publication. The selection of articles is based on titles relevant to the topic of this
review. The initial search for the above search criteria (C1–C4) found 556 references from
Scopus, 565 references from Google Scholar, and 198 references from PubMed. However,
the total number of references, 1319, was reduced to 280 after eliminating duplicates and
incomplete references. Further screening of the title, abstract, and full text allowed the
elimination of 182 references that addressed issues far from the main topic of this review
article. The final number of references eligible for this study was 98. These references do
not include the references we cited in the background sections.

5. Edge AI for Early Health Prediction

This section addresses RQ-1. Here, we discuss the myriad applications of Edge AI in
early health prediction, which is the central focus. It also delves into the machine learning
and deep learning models used for early health prediction, answering RQ-2.

5.1. Stakeholders and Architecture

The synergy of AI and edge computing promises to reshape healthcare by empowering
healthcare providers with instant data and insights to drive early detection and prevention
of diseases. Nevertheless, the full realization of these technologies depends on sustained
investment in research and development, careful management of ethical and regulatory
issues, and strategic management of challenges and constraints inherent in these areas.
These obstacles are discussed in Section 7.

An Edge AI-based early health prediction system, such as the one depicted in Figure 3,
involves several key stakeholders, including patients, healthcare providers, technology
companies, governments and regulators, and research institutions. Each of these stake-
holders plays an indispensable role in developing and implementing Edge AI-enabled
systems tailored to early health prediction. Working together can help ensure the systems’
efficiency, safety, and ethical behavior, with significant benefits for patients and healthcare
providers. Patients are the primary users of Edge AI systems for early health prediction
and are responsible for collecting and transmitting data to healthcare providers. Healthcare
providers are tasked with reviewing the data collected from their patients and using the
information to make informed judgments about patient care. This includes the processes
of diagnosing diseases, developing appropriate treatment plans, and monitoring patient
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well-being over time. The task of developing and implementing Edge AI systems for
healthcare is being undertaken by technology enterprises. This includes the development of
sensors, devices, and AI algorithms in conjunction with the execution of edge computing
and cloud infrastructure. Governmental and regulatory entities assume a central role in for-
mulating benchmarks and guidelines for the use of Edge AI in healthcare. This includes
ensuring compliance with privacy and security laws and protecting patients from potential
harm. Finally, Research Institutions play a key role in advancing the field of Edge AI and
developing new technologies for early health prediction. This includes participating in
research and development projects, conducting clinical trials, and disseminating research
findings through scientific publications.

Figure 3. Main stakeholders of an Edge AI-based system for early health prediction.

As shown in Figure 4, an Edge AI-based architecture for early health prediction
typically consists of several key components, including:

1. Sensors and Devices: The foundation of AI-driven edge systems for early health pre-
diction depends on the use of sensors and devices that collect and transmit patient
data. These devices typically include wearable devices such as fitness trackers and
smartwatches and medical devices such as ECG monitors and glucometers.

2. Edge Computing Devices: Edge computing devices are responsible for processing and
analyzing data at the point of origin. They include a variety of components, such as
edge gateways, edge servers, and edge routers.

3. AI Algorithms: AI algorithms play a central role in carefully examining data col-
lected by sensors and devices and facilitating the detection of latent health anomalies.
By leveraging historical patient data, these algorithms can be trained to improve their
accuracy in detecting patterns and trends indicative of an imminent health problem.
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4. Cloud Platforms: Cloud platforms serve as repositories for data acquired by Edge AI
systems. The information thus obtained can be used for deeper analysis and modeling.
Subsequently, these data are even used to refine AI algorithms through training.

5. User Interfaces: User interfaces allow patients and healthcare providers to access the
data and insights generated by Edge AI systems. Accessible through a variety of
media, including desktop computers, mobile devices, or other internet-connected
platforms, these interfaces play a critical communicative role.

6. Data Management and Security: Edge AI-based early health prediction systems require
robust data management and security systems to protect patient data. This includes
increased data storage, data encryption, and the implementation of strict access
control protocols.

Figure 4. Edge AI-based architecture for early health prediction.

5.2. Early Detection of Chronic and Infectious Diseases

Several studies have investigated the use of AI for the early detection of chronic dis-
eases such as cardiovascular disease, diabetes, cancer, and infectious diseases [14,15,45–52].
These research efforts highlight the ability of AI to significantly improve public health
outcomes by allowing health professionals to detect chronic diseases in their early stages
when interventions are most effective. By analyzing data from multiple sources, AI al-



Future Internet 2023, 15, 370 12 of 34

gorithms comprehensively summarize a person’s health status and predict how health
conditions will evolve. This allows healthcare providers to develop tailored interventions
and therapies to improve an individual’s health and slow disease progression.

Cardiovascular Disease: AI algorithms process data derived from wearables, elec-
tronic health records, and other sources to reveal deviations in a person’s heart rate and
activity metrics [53]. These discrepancies indicate the onset of cardiovascular disease.
In [50], the authors describe recent developments in digital health applications tailored to
cardiovascular disease. They focus on methods for detecting, diagnosing, and predicting
cardiovascular disease using AI models based on data from wearables. They summarized
the literature on wearables and AI in cardiovascular disease diagnosis, followed by a
detailed description of the prevailing AI approaches for modeling and prediction using
data collected from sensors such as wearables. They asserted that machine learning and
AI-driven models outperform traditional statistical methods in predicting cardiovascular
disease. Further confirmation comes from a separate study, as stated in [54], claiming that
machine learning models are the first choice for prediction and classification measures in
heart disease.

Diabetes: AI algorithms are able to decode data from electronic health records and
wearable devices. These algorithms can evaluate changes in a person’s blood glucose levels
and activity parameters that may indicate the onset of diabetes. This idea is supported by
the study in [55], in which the authors meticulously explain machine learning and AI-based
methods capable of detecting and self-treating diabetes mellitus.

Cancer: AI algorithms skillfully analyze medical imaging and electronic health records
to detect health changes that indicate the presence of cancer. This is illustrated in [48],
in which the authors explore the role of AI in the digital pathology of breast cancer, outlining
both the current state and the challenges ahead.

COVID-19: AI holds great promise in several areas of COVID-19 data reviews. Fore-
most is its role in developing predictive models for COVID-19 diagnosis and prognosis.
Using large datasets of COVID-19 patient data, AI algorithms have been refined to identify
predictive patterns and attributes associated with disease severity, mortality, and impor-
tant outcomes. The application of AI also extends to accelerating medical image analysis,
including chest X-rays and CT scans, which critically aids COVID-19 patient diagnosis and
monitoring. The authors in [56] discuss the development of a federated learning model
called EXAM, which predicts the oxygen requirements of COVID-19 patients using data
from 20 institutions worldwide. EXAM achieved a mean AUC (Area Under The Curve) of
0.92 in predicting outcomes within 24 and 72 h, demonstrating an improved average AUC
and a broader applicability in contrast to models trained at only one site. FL facilitated
rapid collaboration without data sharing and enabled a model that could be generalized
across heterogeneous datasets, demonstrating the potential of FL in healthcare.

5.3. Prediction of Future Health Outcomes

Early prediction of health status has attracted considerable research attention in recent
years because of its potential to improve patient care and reduce healthcare costs. Figure 5
shows the different approaches to early health prediction. AI algorithms can analyze
data from multiple sources to predict patients’ future health status. They use machine
learning and statistical methods to find patterns in the data and identify risk factors. AI
algorithms can efficiently analyze data and uncover hidden patterns and correlations that
indicate potential diseases [24]. Table 1 summarizes these research efforts, including using
AI to predict future patient healthcare. By examining data from these various sources, AI
algorithms provide clinicians with a comprehensive picture of an individual’s well-being,
allowing them to predict future health outcomes. Given the previously described findings,
this opens up the possibility of developing personalized interventions, therapies, and pre-
ventive strategies, all aimed at improving a person’s holistic well-being and preventing
the onset of chronic diseases. It is imperative to acknowledge the shortcomings of AI algo-
rithms. Therefore, their predictions must be integrated in the context of variables such as



Future Internet 2023, 15, 370 13 of 34

individual lifestyle, family lineage, and current health status. Nonetheless, the prudent use
of AI algorithms promises to improve public health significantly. By enabling physicians to
identify and address latent health problems in their early stages, these algorithms are an
excellent tool to prevent potential problems from escalating.

Figure 5. Early health prediction approaches.

5.3.1. Predictive Modeling

Predictive modeling uses data and statistical techniques to create models that can
forecast future outcomes or behaviors. In healthcare, predictive modeling can be used for
various purposes, such as identifying patients at a high risk of developing chronic diseases
or complications [57–59], optimizing resource allocation and scheduling, improving quality
of care and patient satisfaction, reducing costs and waste, and enhancing clinical decision
making and diagnosis. Predictive modeling in healthcare requires a multidisciplinary
approach that involves data collection, preprocessing, analysis, validation, and deployment.
It encompasses various models designed to analyze historical data, identify patterns,
and predict future trends. Among the commonly used models are classification, clustering,
and time series models. Classification models are frequently employed in healthcare
settings to make decisions related to improving patient health, optimizing healthcare
services, and detecting health insurance fraud. Clustering models allow for profiling
individuals based on characteristics such as age, inpatient admissions, and the risk of
emergency hospital admission in the next 12 months. Time series models enable the plotting
of observations made over time, such as monthly emergency department admissions or
annual healthcare expenditures. Predictive modeling in healthcare faces many challenges,
such as data quality, privacy, ethics, and interpretability. Therefore, it is important to ensure
that the models are accurate, reliable, transparent, and fair.

5.3.2. Machine Learning Algorithms

Machine learning algorithms are able to analyze information and detect changes that
may indicate a medical problem [60–62]. Early-stage health prediction has been approached
using various machine learning techniques. Notable models and methods in this area
include logistic regression models, ensemble methods, and decision trees [45,61,63–65].
Through rigorous training on large datasets, these algorithms reveal hidden patterns and
relationships in the data structure. Consequently, these detected patterns can be used to
predict individuals’ future health trajectories by gaining insights from their medical history
and a constellation of relevant factors. Logistic regression models have been widely used in
health status prediction because of their simplicity and interoperability [45,66–68]. These
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models are suitable for binary classification tasks that involve predicting the presence
or absence of a particular health state based on patient data. Ensemble methods, such
as random forest and Gradient Boosting, have gained popularity due to their ability to
combine multiple base models to improve prediction accuracy [46,47,69,70]. They have
been applied in the context of early health prediction to capture complex interactions in
health data.

5.3.3. Deep Learning Approaches

Deep learning is a subset of machine learning that relies on neural networks as
a fundamental framework. It has gained prominence due to the convergence of two
factors: the availability of Big Data and the accessibility of cost-effective parallel computing
hardware like Graphical Processing Units (GPUs) and computer clusters. Deep learning
uses computational intelligence to acquire knowledge, learn from experience, and develop
complex concepts from simple ones. Unlike traditional machine learning, deep learning
can autonomously learn features from input data. A deep neural network develops its
classification capabilities by analyzing thousands of labeled images during the training
process. When presented with an input image or video, the neural network layers respond
to complex shapes and structures, comparing them to the training data to identify the
image or extract relevant features. The commonly used models are:

• Convolutional Neural Networks (CNNs). CNNs are pivotal in edge analytics, excelling
in object detection and recognition. Their capacity to handle substantial quantities of
visual data and discern complicated patterns is of utmost importance in the interpreta-
tion of meaningful observations from visual information.

• Recurrent Neural Networks (RNNs). RNNs serve a pivotal function in video analysis
by effectively managing tasks such as tracking, segmentation, and action recogni-
tion. With their proficiency in processing sequential data, RNNs are well suited for
analyzing videos, which are essentially temporal image sequences.

Deep learning excels at recognizing and classifying complex objects. Deep learning
techniques, especially neural networks, have shown remarkable performance in early
disease detection [66,67,71]. CNNs and RNNs have been used to analyze medical images
and time series data for early disease detection [48].

5.3.4. Federated Learning (FL)

By implementing federated learning, healthcare providers can effectively train mod-
els on patient data that come from many different sources. This approach allows for a
more comprehensive and diverse set of data from which the model can learn, leading to
greater accuracy in predicting and detecting diseases in their early stages. In preliminary
health diagnosis, the implementation of federated learning is an effective mechanism to
develop predictive models that can predict the likelihood of diseases such as cancer, di-
abetes, and heart disease [72–74]. By thoroughly analyzing data collected from different
patients, the model can efficiently identify patterns and risk factors that would be difficult
to detect in a single patient. In addition, federated learning can help address privacy issues
in healthcare. The risk of data breaches is significantly reduced because patients’ data
are stored on their devices rather than sent to a central server, which increases patient
privacy [72,75].

5.3.5. Evaluation Metrics of Edge AI Algorithms

Various metrics are commonly employed to assess the efficacy of Edge AI algorithms.
The key metrics of utmost significance include the following:

• Accuracy. Accuracy refers to the measure of how well the algorithm performs in
correctly identifying or classifying data in the edge devices or edge computing systems.
It quantifies the level of agreement between the algorithm’s predictions and the ground
truth or desired outcomes.
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• Precision and Recall. Precision and recall are two important metrics used to evaluate
the performance of classification models. They provide insights into how well the
algorithm is identifying and classifying data at the edge devices or edge computing
systems. Precision measures the accuracy of positive predictions made by the algo-
rithm. It is the ratio of true positives (correctly predicted positive instances) to the sum
of true positives and false positives (incorrectly predicted positive instances). In other
words, precision indicates the proportion of correctly identified positive instances
out of all the instances predicted as positive. A higher precision value indicates a
lower rate of false positives. Recall, also known as sensitivity or the true positive rate,
measures the algorithm’s ability to correctly identify positive instances. It is the ratio
of true positives to the sum of true positives and false negatives (positive instances
incorrectly classified as negative). Recall represents the proportion of correctly identi-
fied positive instances out of all the actual positive instances. A higher recall value
indicates a lower rate of false negatives.

• Intersection over Union (IoU). The IoU metric is particularly useful in evaluating the
performance of object detection algorithms. It helps assess how well the algorithm
accurately localizes and identifies objects within an image or video frame. By compar-
ing the predicted and ground truth regions, IoU provides insights into the algorithm’s
ability to detect and segment objects accurately. It is used in Edge AI algorithms
dealing with visual data to measure the overlap between the predicted bounding
box or region and the ground truth bounding box or region in object detection and
segmentation tasks. It provides a quantitative measure of the accuracy of the algo-
rithm’s predictions. IoU is calculated by dividing the area of intersection between the
predicted and ground truth regions by the area of their union. The resulting value
indicates the extent of overlap between the two regions. A higher IoU value indicates
a better match between the predicted and ground truth regions. IoU is often used as a
threshold to determine whether a predicted bounding box or region is considered a
true positive or a false positive. If the IoU value exceeds a certain threshold (commonly
0.5 or 0.7), the prediction is considered a true positive. Otherwise, it is classified as a
false positive.

• Latency. Latency in Edge AI algorithms refers to the time it takes for an algorithm
to process input data and produce an output on edge devices or edge computing
platforms. It is a measure of the delay or response time experienced during the
execution of the algorithm. In the context of Edge AI, latency is a critical factor
as it directly impacts the real-time performance and responsiveness of the system.
Edge devices, such as smartphones, IoT devices, or edge servers, often have limited
computational resources compared to cloud-based servers. This constraint can lead
to a higher latency in executing AI algorithms on the edge. The latency in Edge AI
algorithms depends on various factors, including the complexity of the algorithm, the
computational power of the edge device, data processing requirements, and network
connectivity. The goal is to minimize latency to ensure efficient and timely decision
making at the edge.



Future Internet 2023, 15, 370 16 of 34

Table 1. Edge AI for early detection of the onset of a disease and mortality prediction.

Ref. Year Application Methods Results

[45] 2022 Identification and
prediction of chronic
diseases using
machine learning.

Data collection from various
sources. Training with CNN
and KNN algorithms

CNN and KNN models outper-
formed Naive Bayes, decision tree,
and logistic regression algorithms.
CNN and KNN achieved a higher
precision, recall, and F1-score.

[75] 2022 A survey on
Federated Learning
for Privacy
Preservation in Smart
Healthcare Systems

FL for privacy preservation
in IoMT. Advanced FL
architectures incorporating
DRL, digital twins,
and GANs

Description of some advanced FL
architectures incorporating deep re-
inforcement learning (DRL), digital
twins, and generative adversarial
networks (GANs) for detecting pri-
vacy threats.

[72] 2022 Review of Federated
Learning for
Healthcare

Systematic literature review
methodology. Definition of
research questions

Systematic literature review on FL
in healthcare. Proposed architecture
for FL applied to healthcare data

[63] 2022 Machine learning
models used for early
diabetes prediction.

SVM-ANN ensemble. SVM,
KNN, NB, C4.5 DT,
Adaboost DT with Bagging,
Bagged DT, K-means
clustering and RF, KNN and
AB, Fusion ML Decision, LR
ensemble, RF, Multilayer
Perceptron, SVM with feed
backward feature
elimination

Random forest (RF) model achieved
the highest accuracy of 82.26% in
predicting diabetes. The Naive
Bayes (NB) model performed the
worst, with an accuracy rate of
70.56%.

[59] 2019 Health risk
prediction models
incorporating
personality data.

Informal rule for
cross-validation error.
Anti-conservative approach
to protect against overfitting

Four-year incidence rate of possi-
ble MCI is roughly 20%. Model C
with personality data shows a signif-
icant improvement in overall perfor-
mance.

[66] 2015 Comparison of
predictive models for
early hospital
readmissions.

Logistic regression with
maximum likelihood
estimator. Logistic
regression with multi-step
heuristic approach

Random forest and penalized logis-
tic regressions are the best methods
for predicting early readmissions.
Deep learning methods outperform
regression methods in the healthcare
literature.

[67] 2021 Predicting mortality
among patients with
liver cirrhosis.

Deep neural network (DNN),
random forest (RF),
and logistic regression (LR)
algorithms. Multiple
imputation for missing
values in variables.

Models with all variables outper-
formed those with four MELD-NA
variables. The DNN model achieved
a higher AUC than the LR and RF
models.

[76] 2022 Clinical prediction
models to estimate
disease probability
and health outcomes.

Split-sample method for
model development and
internal validation.
Resampling methods,
especially the bootstrap
method, for stable estimates

Overview of developing and validat-
ing clinical prediction models by ap-
plying traditional regression models
or machine learning models.

[49] 2023 AI models for
predicting and early
diagnosis of
pancreatic cancer.

Scoping review conducted
following PRISMA-ScR
guidelines. Two reviewers
independently performed
study selection and data
extraction

Initially identified 18,285 ar-
ticles from various databases.
After screening and exclusion,
30 articles were included.

[64] 2022 Edge
computing-based
heart disease
prediction.

Decision-tree-based classifier
for analyzing health data.
Pre-trained machine learning
processing module for
analysis

The decision tree classifier shows
99% accuracy for classifying the sub-
ject’s position. The decision tree clas-
sifier shows 98% accuracy for heart
disease prediction.
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Table 1. Cont.

Ref. Year Application Methods Results

[77] 2023 Clinical language
models for a wide
range of clinical and
operational
predictive tasks.

Pretraining datasets: NYU
Notes, NYU
Notes-Manhattan, NYU
Notes-Brooklyn. Fine-tuning
datasets: NYU Readmission

NYUTron has an AUC of 78.7–94.9%.
NYUTron improves the AUC by
5.36–14.7% compared to traditional
models.

[78] 2023 Prediction of mental
health problems after
military deployment.

Neural network models used
for prediction.
Pre-deployment registry
data combined with
post-deployment
questionnaire data

Approximately 95% of participants
were male. The percentage of indi-
viduals deployed in a combat unit
was highest for the first deployment
(32.7%), compared to the second
(25.6%) and the third (20.8%) deploy-
ment.

[65] 2022 Early-stage
Alzheimer’s
prediction.

Decision tree, random forest,
Support Vector Machine,
Gradient Boosting,
and voting classifiers.
Machine learning techniques
applied to Alzheimer’s
disease datasets.

Evaluation metrics: precision, re-
call, accuracy. Men are more
likely to have dementia than women.
Achieved 83% accuracy on test data

[57] 2014 Risk predictive
modeling for diabetes
and cardiovascular
disease

Collection of data during a
prospective study.
Estimation of regression
coefficients for
predictor–outcome
association

Emphasizes the importance of val-
idating existing CVD and diabetes
prediction models to improve their
adoption in routine practice.

[68] 2019 Identifications of
patients at risk of
uncontrolled
hypertension.

Logistic regression and
recurrent neural networks

Best model achieved an AUROC of
0.719. Linear models performed bet-
ter than recurrent neural networks

[79] 2021 Predicting critical
state after COVID-19
diagnosis

Prognostic model trained on
US electronic health records.
Feature reduction process
based on SHAP values

ROC AUC: 0.861 [0.838, 0.883].
Precision–recall AUC: 0.434 [0.414,
0.485]

[61] 2022 Machine learning for
healthcare wearable
devices.

Homomorphic Encryption
(HE). Secure Multiparty
Computation (SMPC)

Review of different areas of ma-
chine learning research for wearable
healthcare devices.

[58] 2018 Clinical prediction
models (CPMs) with
statistical updating
models.

Regression coefficient
updating. Meta-model
updating

Original ES overestimated mortality
(calibration intercept—1.06, slope—
0.97). All updating strategies im-
proved calibration performance.

[80] 2019 Continuous risk
predictions for acute
kidney injury.

Binary variable prediction
for AKI occurrence. Eight
future time horizons for
predictions.

Model achieves a higher ROC AUC
in shorter time windows. The model
achieves a lower PR AUC in shorter
time windows.

[71] 2019 Deep learning
models for early
prediction of acute
adverse events.

Developing deep learning
continuous risk models.
Integrating domain
knowledge into the technical
specification

Continuous risk models identified
55.8% of AKI cases up to 48 h
early with a false positive rate of
2:1. The model correctly predicted
90.2% of AKI cases requiring dialysis
within 90 days.

[48] 2020 AI in digital
pathology for breast
cancer diagnosis.

Image analysis with deep
learning (DL). Non-CNN
algorithms for segmentation
and detection

Review of the basics of digital
pathology and AI and the challenges
in the field.
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6. Federated Learning for Early Health Prediction

This section addresses federated learning’s role in health prediction. It aligns with
RQ-1. It also examines the issue of preserving privacy in early health prediction, which
relates to RQ-3.

Federated learning holds tremendous potential for early health prediction in scenarios
where healthcare providers equip patients with wearables and various medical devices.
This approach to training AI models offers a variety of benefits that can usher in trans-
formative change in healthcare [81,82]. Let us take a closer look at the reasons for the
promising outlook:

• Preserving Data Privacy: In federated learning, patient data are securely stored on
edge devices such as medical devices and wearables without being transferred to a
central server for storage. This decentralized approach ensures strict data privacy and
security and mitigates the risk of data breaches or violations.

• Access to Multiple Data Sources: Federated learning enables healthcare providers to
access diverse patient data collected by wearables and medical devices. This data
diversity promotes the development of more robust and accurate predictive models
by encompassing a wide range of health-related information from multiple sources.

• Leveraging Large-Scale Data: With federated learning, healthcare providers can lever-
age a vast amount of data from a distributed patient network. By aggregating and
combining these disparate datasets, healthcare professionals can build comprehensive
models capable of capturing nuanced patterns and early health indicators, resulting
in highly accurate predictions and timely interventions.

• Continuous Learning and Adaptation: As patients continuously use wearables and
medical devices, new data become available over time. Federated learning facili-
tates continuous training of the model and adaptation to changing health conditions.
The global model can be periodically updated with the latest aggregated parameters
to incorporate new knowledge and improve the system’s predictive capabilities.

• Personalized and Adaptive Models: Federated learning facilitates the creation of per-
sonalized models tailored to individual patients. By training local models based on
their specific data, the system can tailor predictions and interventions to individual
health profiles, leading to highly personalized healthcare and early detection of health
problems.

• Reduced Data Transfer and Computational Overhead: Federated learning minimizes the
need to transfer huge amounts of raw patient data to a central server. Instead, the focus
is on transferring aggregated model parameters, significantly reducing bandwidth
requirements and computational overhead while carefully protecting the privacy of
patient data.

• Collaborative Research and Knowledge Sharing: Federated learning promotes collaborative
research and knowledge sharing among healthcare providers by pooling anonymized,
aggregated parameters, insights, and discoveries can be shared without compromising
patient privacy. This collective intelligence accelerates medical progress and improves
early health prediction capabilities.

By leveraging the power of federated learning in scenarios where patients use wear-
ables and various medical devices, healthcare providers can improve early prediction
of health statuses, facilitate personalized interventions, and improve overall healthcare
outcomes while carefully protecting patient privacy and data security.

6.1. Federated Learning Methodology

Figure 6 shows the training process of a federated learning model for early health
prediction. The methodology of federated learning with edge devices involves the following
steps:
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1. Data Distribution: The training data are distributed across multiple edge devices.
Each device holds its own local data, which may be collected from different sources
or users.

2. Local Model Training: A local model is trained using its own local data on each
edge device. The training process can be performed using various machine learning
algorithms and techniques.

3. Model Aggregation: After the local model training, the updated models from each
edge device are sent to a central server or aggregator. The aggregator collects the
models and performs model aggregation techniques, such as averaging or weighted
averaging, to create a global model.

4. Model Update: The global model is then sent back to the edge devices, where it
replaces the local models. This updated global model incorporates the knowledge
learned from all the edge devices’ local models.

5. Iterative Process: The above steps are repeated iteratively, allowing the edge devices
to continuously improve the global model by training on their local data. This iterative
process helps capture the data diversity across different edge devices and improve
the overall model performance.

Figure 6. Model training in a federated learning scenario for early health prediction.
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Collaborative training on edge devices is a core aspect of federated learning in this
context. Researchers develop federated learning techniques specifically tailored for edge
devices to enable collaborative model training. Secure aggregation methods are employed
to combine model updates contributed by edge devices. Federated learning aggregation
methods play a critical role in combining local model updates from different edge devices,
resulting in a global model that encompasses the collective knowledge. Let N be the
number of edge devices (1 to N) participating in the federated learning process. Each
edge device i has a local model wi that it trains on its own local dataset. After training,
the local model wi is updated and must be merged with the models of the other edge
devices to form the global model W. The selection of an aggregation approach depends on
certain assumptions, constraints, and properties of the federated learning context. Different
techniques may be more suitable for different implementations, and new aggregation
methods are continuously being sought to increase the effectiveness and efficiency of
federated learning systems.

Averaging is the most widely used aggregation method in federated learning. In this
approach, consensus is reached on the global model by averaging the local model updates.
Each update is treated equally in this approach without considering specific weighting
factors. The averaging approach can be represented mathematically as follows:

W =
1
N

N

∑
i=1

wi

Here:

• ∑ indicates the summation of local models across all edge devices.
• 1

N is the normalization factor to ensure that the aggregation results in an averaged
global model.

In this approach, local models are averaged to create a global model representing the
collective learning of all edge devices. The initial phase of the training procedure involves
using the global model as the basic framework, which is then iterated until a state of
convergence is reached. Algorithm 1 below depicts how averaging can be used in federated
learning with edge devices.

Weighted averaging extends the basic averaging method by assigning different weights
to each local model update. These weights can be determined based on factors such as
the reliability of the edge device, the amount of local data, or the performance of the
local model. Consequently, devices with better performance or more representative data
significantly affect the global model. The weighted averaging approach can be represented
mathematically as follows:

W =
N

∑
i=1

αi · wi

Here:

• αi represents the weight assigned to the edge device i. Factors such as the amount of
locally available data and the computational capacity of the edge device are considered
in determining these weights.

• ∑ represents the sum of the weighted local models across all edge devices.

In this method, the local models are consolidated through the use of weighted av-
eraging, where each edge device’s individual input to the global model is adjusted in
proportion to its corresponding weight [83]. In this way, edge devices with more relevant
or accurate data can impact the global model more. Algorithm 2 below shows how the
weighted averaging method can be used in federated learning with edge devices.

In Algorithm 1, federated learning with averaging, the gradient updates (∇F(wi))
received from each edge device i are equally weighted during aggregation (computation
of the aggregate gradient update as ∆wi =

1
N∇F(wi). This means that each local model’s

contribution to the global model update is treated identically.
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Algorithm 1 Federated Learning with Averaging

Require: Global model W, Edge devices {1, 2, . . . , N}, Learning rate η, Rounds T

Ensure: Updated global model W

1: Initialize global model W

2: for t = 1 to T do

3: Send global model W to all edge devices

4: for each edge device i in {1, 2, . . . , N} do

5: Receive local model wi from edge device i

6: Compute gradient ∇F(wi) on local model wi

7: end for

8: Initialize aggregated gradient ∆W = 0

9: for each edge device i in {1, 2, . . . , N} do

10: Compute gradient update ∆wi =
1
N∇F(wi)

11: Aggregate gradient updates: ∆W = ∆W + ∆wi

12: end for

13: Update global model: W = W − η · ∆W

14: end for

15: Return Updated global model W

Algorithm 2 Federated Learning with Weighted Averaging

Require: Global model W, Edge devices {1, 2, . . . , N}, Learning rate η, Rounds T

Ensure: Updated global model W

1: Initialize global model W

2: for t = 1 to T do

3: Send global model W to all edge devices

4: for each edge device i in {1, 2, . . . , N} do

5: Receive local model wi from edge device i

6: Compute gradient ∇F(wi) on local model wi

7: Compute weight αi based on device-specific factors

8: end for

9: Initialize aggregated gradient ∆W = 0

10: for each edge device i in {1, 2, . . . , N} do

11: Compute weighted gradient ∆wi = αi · ∇F(wi)

12: Aggregate weighted gradient: ∆W = ∆W + ∆wi

13: end for

14: Update global model: W = W − η · ∆W

15: end for

16: Return Updated global model W
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In Algorithm 2, federated learning with weighted averaging, we introduce the concept
of device-specific factors or weights, denoted as αi, for each edge device i. These factors
are based on device-specific characteristics or criteria. The local models’ gradient updates
are multiplied by their respective weights before aggregation (weighted gradient ∆wi =
αi · ∇F(wi)), and the aggregate weighted gradient is computed as ∆W = ∆W + ∆wi. This
allows for individualized contributions to the global model, accounting for device-specific
considerations. Therefore, Algorithm 2 incorporates a level of customization not present
in Algorithm 1. By introducing device-specific factors, it accommodates the potential
variations among edge devices. This customization can be based on factors such as device
capabilities, data quality, or performance history. Doing so provides a mechanism to
incorporate this diversity into the federated learning process.

Secure aggregation methods emphasize privacy and security during the aggregation
process. Techniques such as secure multi-party computation (SMPC) or homomorphic
encryption ensure that local model updates remain confidential. These methods aggregate
updates without disclosing sensitive information to the central server or other parties,
thus maintaining privacy. SMPC allows edge devices to perform computations on their
local models while maintaining privacy. The aggregation process can be represented
mathematically as follows:

W = SMPCAggregation(w1, w2, . . . , wN)

Here:

• SMPCAggregation is the secure multi-party computation aggregation function.

In SMPC, each edge device i contributes its local model wi without revealing the
parameters of the model or the data used for training. Secure protocols such as homo-
morphic encryption or secret sharing facilitate the computation of aggregate statistics,
including gradients, on encrypted data. These encrypted statistics are then combined to
update the global model W. SMPC ensures that individual edge device data remain secret
throughout the aggregation process, making it suitable for scenarios with strict privacy
requirements [84].

6.2. Federated Learning for Disease and Mortality Prediction

A growing body of research is addressing the application of federated learning in the
area of disease prediction and mortality forecasting. The results of these research efforts
are clearly summarized in Table 2.

Table 2. Federated learning for early detection of the onset of a disease and mortality prediction.

Ref. Year Application Methods Results Limitations

[85] 2022 Prediction of ICU
mortality risk

Deep federated learn-
ing, centralized ma-
chine learning, and lo-
cal machine learning.

Federated learning
performs equally
well as the
centralized approach.
Federated learning is
substantially better
than the local
approach.

- The generalizability of the
approach beyond the MIMIC-
III dataset needs to be tested.
- Does not address the per-
formance of the FL workflow
in predicting ICU mortality
at an early stage using other
datasets.
- Does not discuss potential
challenges or limitations of
implementing FL in a health-
care setting.
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Table 2. Cont.

Ref. Year Application Methods Results Limitations

[20] 2023 Review of
federated
learning being
used for early
health prediction
in diseases such
as cardiovascular
disease, diabetes,
and cancer.

Federated learning
and FL aggregation
algorithms.

Federated learning
helps solve privacy
concerns in machine
learning; 32% of
companies plan to
implement federated
learning.

- FL in disease prediction is
still in the early stages.
- Limited real-world examples
and use of smart wearables
- The paper acknowledges
that there is no unified clas-
sification of FL challenges in
the literature

[86] 2023 Early prediction
of cardiovascular
disease.

Modified artificial
bee colony
optimization with
Support Vector
Machine
(MABC-SVM).
Federated matched
averaging for the
HSP server.

The proposed hybrid
technique for
federated learning
improves the
prediction accuracy
by 1.5% and achieves
a 1.6% fewer
classification errors

- The paper does not men-
tion any limitations of the pro-
posed hybrid classifier-based
FL framework.
- The paper does discuss the
limitations or constraints of
the dataset used for testing
and evaluation
- No mention of ethical or le-
gal considerations associated
with the collection, sharing,
and use of biomedical data in
the proposed framework.

[87] 2022 Federated
learning to
predict heart
disease by
training a shared
model while
keeping patient
data distributed
across multiple
locations.

Logistic regression
and Support Vector
Machine (SVM).

Accuracy of around
89% on the UCI
benchmark dataset.

- The paper does not provide
details on the size or diversity
of the dataset used for train-
ing the shared model.
- The paper does not provide
a comparison of the FL ap-
proach with other existing ma-
chine learning methods for
heart disease prediction.

[88] 2022 Federated
learning to
predict chronic
kidney diseases

Federated learning
and image processing
technique to identify
the affected area.

Higher accuracy,
efficiency, specificity,
and sensitivity.
Increased accuracy
through training with
a single image.

- No mention of the size or
diversity of the decentralized
data used for training the al-
gorithm.
- Lack of information on the
dataset used for training and
testing the model
- Insufficient explanation of
the image processing tech-
niques employed for identify-
ing the affected area of the kid-
ney.

[89] 2022 Combining the
IoT and
blockchain in
healthcare. Focus
on individualized
health monitoring
and early disease
detection using
wearable gadgets.

Combining the IoT
and blockchain
technologies and
applying
blockchain-based
federated learning.

Blockchain-based
federated learning
offers benefits such as
smarter simulations,
lower latency, lower
power consumption,
and privacy.

- Limited battery life of IoT de-
vices is a major obstacle to in-
tegrating blockchain with the
IoT.
- High processing and band-
width requirements for
blockchain integration
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Table 2. Cont.

Ref. Year Application Methods Results Limitations

[90] 2023 Dynamic
federated
meta-learning
approach to
improve rare
disease prediction
using federated
learning.

Dynamic federated
meta-learning
(DFML) and
inaccuracy-focused
meta-learning (IFML)
approach.

The proposed model
improves the
prediction accuracy
by 13.28% and
outperforms the
original federated
meta-learning
algorithm in accuracy
and speed.

- Lack of information on the
specific rare diseases stud-
ied and the datasets used
for evaluation.
- Does not provide details
on the computational re-
sources required for im-
plementing the DFML ap-
proach.
- Does not compare the
proposed DFML approach
with other state-of-the-art
methods for rare disease
prediction.

[91,92] 2021 Federated
learning to
predict mortality
in hospitalized
patients with
COVID-19 within
7 days using
electronic health
record data.

Logistic regression
with L1
regularization/least
absolute shrinkage
and selection
operator (LASSO)
and multilayer
perceptron (MLP)

The LASSO federated
model outperformed
the LASSO local
model at three
hospitals. The MLP
federated model
performed better
than the MLP local
model at all five
hospitals.

- The study was limited to
data collected from hospi-
tals within the Mount Sinai
Health System in NYC.
- The study only included
clinical data in the models.
- The study only imple-
mented two widely used
classifiers within the frame-
work.

6.2.1. Cardiovascular Diseases

The authors in [86] introduced an innovative approach to leveraging federated learning
for the prediction of cardiovascular diseases in healthcare settings. Their study proposed a
hybrid classifier-based framework that combines local models on individual health service
providers’ data with a centralized classifier, thereby striking a balance between data privacy
and model accuracy. By harnessing the power of federated learning, this research aimed
to enhance the accuracy of cardiovascular disease predictions while preserving sensitive
patient data, making it a promising solution for healthcare institutions seeking to improve
patient care and outcomes in a privacy-conscious manner.

6.2.2. Heart Diseases

Bharathi et al. in [87] presented a novel application of federated learning in the context
of heart disease prediction. Their research introduced a federated learning framework that
allows multiple healthcare institutions to collaboratively train a predictive model while
keeping patient data decentralized and secure. By aggregating local model updates from
different data sources, this approach achieves improved accuracy in heart disease predic-
tion, facilitating early detection and intervention. The study highlights the potential of
federated learning to harness the collective knowledge of distributed healthcare providers,
enhancing the quality of predictive models without compromising patient data privacy,
which is crucial for advancing cardiovascular disease management in a privacy-aware
healthcare landscape.

6.2.3. Chronic Kidney Diseases

The authors in [88] introduced an innovative approach to predicting chronic kidney
diseases using federated learning. Their investigation leverages the collaborative power of
federated learning to train predictive models on data from various healthcare providers
while preserving the privacy of patient information. By aggregating insights from multiple
sources, their study aimed to enhance the accuracy of chronic kidney disease prediction,
offering valuable early diagnosis capabilities. They underscored the significance of feder-
ated learning in healthcare, particularly in chronic disease management, where privacy
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concerns are paramount. This approach holds promise for improving patient outcomes and
resource allocation while maintaining the highest standards of data privacy and security.

6.2.4. Rare Diseases

Chen et al. in [90] introduced an innovative approach to address the challenging task
of predicting rare diseases using dynamic federated meta-learning. This research presents
a unique framework that adapts to the inherently scarce data associated with rare diseases.
By leveraging federated meta-learning techniques, the study combines knowledge from
diverse sources while allowing models to adjust to each rare disease’s specific characteristics
dynamically. This approach significantly enhances the accuracy of rare disease prediction,
which is often hampered by limited data availability. The paper underscores the potential
of dynamic federated meta-learning to improve healthcare outcomes for individuals with
rare diseases, showcasing the versatility of federated learning in addressing complex and
under-studied medical conditions while safeguarding patient privacy.

6.2.5. ICU Mortality

Randl et al. in [85] presented an innovative application of deep federated learning in
the context of predicting ICU mortality risk. This research introduced a novel framework
that leverages deep learning models while preserving the privacy of sensitive patient data
in intensive care unit (ICU) settings. Their approach aimed to improve the accuracy of
ICU mortality risk predictions by enabling collaborative model training across multiple
healthcare institutions. It highlights the critical role of federated learning in healthcare,
particularly in ICU scenarios, where early risk assessments can lead to better patient
outcomes and resource allocation. Furthermore, it demonstrates the potential of deep
federated learning to enhance critical care by predicting mortality risk while upholding the
highest data privacy and security standards, making it a significant advancement in the
field of healthcare analytics.

6.2.6. COVID-19 Mortality

Vaid et al. in [91] introduced a pioneering application of federated learning to enhance
mortality prediction in hospitalized COVID-19 patients. Their research employed machine
learning techniques in a federated framework, enabling collaborative model training on
electronic health records (EHRs) from various healthcare facilities while maintaining data
privacy. By aggregating insights from different sources, this approach seeks to improve the
accuracy of mortality prediction for COVID-19 patients, a critical aspect of healthcare man-
agement during the pandemic. The paper underscores the significance of federated learning
in addressing urgent healthcare challenges, such as COVID-19, by leveraging distributed
data to enhance patient outcomes without compromising data security, exemplifying the
potential of federated learning in public health emergencies.

In another work, Vaid et al. in [92] presented a significant advancement in healthcare
analytics by applying federated learning to enhance mortality prediction for COVID-19
patients. Their research leverages electronic health records (EHRs) from multiple healthcare
facilities to collaboratively train predictive models while preserving patient data privacy.
By aggregating insights from diverse sources, the study aims to improve the accuracy of
mortality prediction, a crucial aspect of managing patients during the COVID-19 pandemic.
The paper underscores the potential of federated learning in addressing pressing healthcare
challenges, demonstrating how it can harness distributed data to enhance patient outcomes
while ensuring data security and privacy in the context of a global health crisis.

7. Challenges of Edge AI in Early Health Prediction and Future Directions

This section primarily addresses RQ-4, highlighting the challenges in Edge AI for
early health prediction and suggesting future directions to overcome them.
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Notwithstanding the potential benefits of using AI and edge computing for early
health prediction, it remains essential to address a number of challenges and limitations to
ensure optimal application.

7.1. Privacy and Security

Protecting personal health data is a major barrier to using AI and edge computing
to predict health outcomes in advance. With the proliferation of wearable devices and
other connected technologies, there are growing concerns about the security, privacy,
and protection of personal health data [93,94].

7.1.1. Privacy

Here are the key aspects to consider:

• Data collection: Edge AI relies on collecting vast amounts of personal health data,
including medical records, biometric data, and lifestyle information. Safeguarding the
privacy of this sensitive data is crucial.

• Informed consent: Obtaining informed consent from individuals for data collection
and usage can be challenging. Clear communication about the purpose, risks, and ben-
efits of using their data in early health prediction is essential.

• Data anonymization: Anonymizing health data is critical to protecting individuals’
privacy. However, achieving complete anonymity while maintaining data utility for
accurate predictions can be a complex task.

Future research directions to address the privacy challenges in Edge AI for early health
prediction include:

• Privacy-preserving algorithms: Developing advanced algorithms that can perform
accurate health prediction while preserving privacy is a promising research direction.
Techniques like federated learning and differential privacy can help achieve this goal.

• Consent mechanisms: Exploring innovative consent mechanisms that empower indi-
viduals to have more control over their data and make informed decisions regarding
data usage in early health prediction.

• Privacy-enhancing technologies: Investigating the use of privacy-enhancing tech-
nologies such as secure multi-party computation (SMPC), differential privacy, and ho-
momorphic encryption to enable analysis of sensitive health data without compromis-
ing privacy.

• Policy and regulation: Establishing comprehensive policies and regulations that gov-
ern the collection, storage, and usage of health data in Edge AI systems. This includes
ensuring compliance with privacy laws and implementing ethical frameworks.

7.1.2. Security

Here are some key aspects to consider:
Security challenges:

• Data breaches: Edge AI systems store and process sensitive health data, making
them potential targets for cyberattacks. Robust security measures must be in place to
prevent unauthorized access and data breaches.

• Secure communication: Edge AI systems often rely on transmitting data between
devices and cloud servers. Ensuring secure communication channels and encryption
protocols is vital to protect data during transmission.

• Adversarial attacks: Edge AI models can be vulnerable to adversarial attacks, where
malicious actors manipulate input data to deceive the system. Developing robust
defenses against such attacks is crucial to maintaining the integrity of early health
prediction.

Future research directions to address the security challenges in Edge AI for early
health prediction include:
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• Robust authentication: Exploring advanced authentication mechanisms, such as
multi-factor authentication and biometrics, to enhance the security of Edge AI systems
and prevent unauthorized access.

• Secure hardware and firmware: Enhancing the security of edge devices, such as wear-
ables and IoT devices, by implementing secure hardware components and regularly
updating the firmware to mitigate potential vulnerabilities.

• Intrusion detection and prevention: Developing sophisticated intrusion detection
and prevention systems specifically designed for Edge AI in early health prediction.
This helps detect and mitigate potential security breaches.

• Resilient AI models: Designing AI models that are resilient to adversarial attacks and
can identify and reject manipulated input data, ensuring the accuracy and trustwor-
thiness of early health predictions.

7.2. Data Quality and Accuracy

Another obstacle AI algorithms face is the quality and accuracy of the data they
analyze. Information coming from wearable devices and other sources can be inaccu-
rate, inconsistent, or erroneous. All of this can lead to inaccurate predictions and false
warnings [95,96]. Here are the key aspects to consider:

• Labeling and Annotation: High-quality labeled data are crucial for training accurate
and reliable AI models. However, in early health prediction, obtaining ground truth
labels can be challenging. This may require expert knowledge, clinical validation,
or long-term follow-up to confirm the accuracy of predictions.

• Data Variability: Health data collected at the edge can be highly variable due to vari-
ous factors such as device sensors, user behavior, environmental conditions, and data
collection protocols [97]. This variability can impact the performance and generaliz-
ability of AI models, making it essential to address data variability challenges.

• Data Imbalance: In health prediction tasks, class imbalances are common, where cer-
tain health conditions or outcomes may be significantly less frequent than others [98].
This can lead to biased models that perform poorly on minority classes. Techniques
such as data augmentation, oversampling, or ensemble methods need to be explored
to address data imbalance challenges.

• Data Quality Control: Ensuring the quality and reliability of collected health data
is critical. Sensor errors, noise, missing values, and data corruption can negatively
impact the performance of AI models [99]. Quality control mechanisms, data prepro-
cessing techniques, and outlier detection methods need to be developed to improve
data quality.

Future research directions to address data quality challenges in Edge AI for early
health prediction include:

• Data Augmentation Techniques: Exploring data augmentation methods specifically
tailored for health data to increase the diversity and size of the training dataset,
improving model robustness and generalizability.

• Collaborative Data Sharing: Encouraging collaboration and data sharing among
healthcare institutions while ensuring privacy and security. Pooling diverse datasets
can help overcome data variability and improve the representativeness of AI models.

• Data Quality Assessment Frameworks: Developing standardized frameworks to
assess the quality and reliability of health data collected at the edge. This can involve
metrics, guidelines, and best practices for data collection, labeling, and preprocessing.

7.3. Model Bias

AI algorithms may exhibit bias when trained on datasets with inherent biases. This
can result in predictions that are also biased, leading to unfair results, especially in early-
stage health prediction, where the detrimental effects of erroneous predictions can be quite
significant. Here are the key aspects to consider:
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• Dataset Bias: AI models are trained on datasets that may not be representative of the
diverse population they aim to serve. Biases in the data, such as under-representation
of certain demographics or health conditions, can lead to biased predictions and
inequitable healthcare outcomes [100].

• Algorithmic Bias: Biases can also be introduced through the design and implemen-
tation of AI algorithms [101]. If the training data contain inherent biases or if the
algorithm itself is biased, this can perpetuate and amplify existing disparities in
healthcare.

• Interpretability and Transparency: Lack of interpretability and transparency in AI
models can make it challenging to identify and address biases. Understanding how the
model makes predictions and uncovering any underlying biases require explainable
AI techniques [102].

Future research directions to address model bias challenges in Edge AI for early health
prediction include:

• Bias Detection and Mitigation: Designing methods to detect and quantify bias in AI
models and developing techniques to mitigate its impact. This can include techniques
like debiasing algorithms, data augmentation, and fairness-aware feature selection.

• Diverse and Representative Datasets: Collecting and using diverse and representa-
tive datasets that encompass different demographics, health conditions, and socio-
economic backgrounds. This helps reduce dataset bias and improves the generaliz-
ability of AI models.

• Ethical Guidelines and Regulations: Establishing clear ethical guidelines and reg-
ulations for the development and deployment of AI in healthcare. This can help
address biases, promote fairness, and ensure accountability and transparency in early
health prediction.

• Collaboration and Interdisciplinary Research: Encouraging collaboration between
AI researchers, healthcare professionals, ethicists, and policymakers to collectively
address model bias challenges. Interdisciplinary research can provide a holistic per-
spective and help develop comprehensive solutions.

7.4. Interoperability

Ensuring that different devices, systems, and data sources work together is a challenge.
Ensuring smooth data sharing and analysis across many platforms and devices is critical.
This cohesion is critical to enabling effective prediction of health outcomes. Here are the
key aspects to consider:

• Heterogeneous Data Sources: In early health prediction, data are collected from
various sources such as wearable devices, electronic health records, and sensors.
These sources often use different data formats, protocols, and standards, making it
challenging to integrate and analyze data seamlessly.

• Data Integration and Fusion: Aggregating and fusing data from multiple sources
are essential for building comprehensive AI models. However, the lack of interoper-
ability can hinder this process, leading to difficulties in harmonizing and combining
heterogeneous data effectively.

• Connectivity and Communication: Edge AI systems rely on efficient communication
between edge devices, cloud infrastructure, and central servers. Interoperability
issues can arise due to differences in communication protocols, network connectivity,
and compatibility between devices and systems.

• Privacy and Security Concerns: Interoperability can raise privacy and security con-
cerns, especially when sensitive health data are shared or exchanged between different
systems. Ensuring secure data transmission, secure access controls, and compliance
with privacy regulations becomes crucial.

Future research directions to address interoperability challenges in Edge AI for early
health prediction include:
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• Standardization and Data Formats: Developing standardized data formats, proto-
cols, and interfaces for health data exchange. This enables seamless interoperability
between different systems and facilitates data integration and analysis.

• Ontologies and Semantic Interoperability: Utilizing ontologies and semantic models
to establish a common understanding of health data and data relationships. This pro-
motes interoperability by enabling efficient data integration, data mapping, and knowl-
edge sharing across different platforms.

• Interoperability Frameworks and Middleware: Designing interoperability frame-
works and middleware that facilitate data exchange, communication, and integration
among diverse edge devices, cloud systems, and healthcare infrastructure. These
frameworks can provide standard APIs, data transformation capabilities, and connec-
tivity support.

• Secure Data Sharing and Privacy-Preserving Mechanisms: Developing secure and
privacy-preserving methods for data sharing and exchange. Techniques such as feder-
ated learning, differential privacy, and encryption can enable collaborative analysis
while protecting sensitive health information.

• Collaborative Ecosystem: Encouraging collaboration between stakeholders, includ-
ing researchers, healthcare providers, device manufacturers, and policymakers, to es-
tablish interoperability standards, guidelines, and best practices. Collaboration can
drive the adoption of interoperable solutions and facilitate the seamless integration of
Edge AI systems in healthcare.

7.5. Integration with Existing Health Systems

Integrating Edge AI technologies with existing health systems is imperative to realize
their full potential. This effort will require collaboration among healthcare providers, tech-
nology companies, and researchers, all working together to ensure the seamless integration
of AI and edge computing technologies into the existing healthcare infrastructure. Here are
the key aspects to consider:

• Compatibility with Legacy Systems: Many healthcare organizations have established
legacy systems and infrastructure that may not be designed to integrate with newer
Edge AI technologies. These systems often have different data formats, protocols,
and interfaces, making it difficult to seamlessly incorporate Edge AI solutions.

• Data Synchronization and Exchange: Integrating Edge AI for early health prediction
requires smooth data synchronization and exchange between edge devices, cloud
platforms, and existing healthcare systems. Ensuring data consistency, real-time
updates, and bidirectional communication becomes crucial for effective integration.

• Workflow and Process Alignment: Integrating Edge AI into existing healthcare sys-
tems requires careful consideration of workflow and process alignment. The intro-
duction of Edge AI should seamlessly fit into existing clinical workflows, ensuring
minimal disruption and maximizing efficiency.

Future research directions to address the integration challenge with existing healthcare
systems in Edge AI for early health prediction include:

• Interoperability Standards: Developing industry-wide interoperability standards
and guidelines that facilitate the integration of Edge AI technologies with existing
healthcare systems. These standards should address data formats, communication
protocols, and interoperability interfaces to ensure seamless integration [103].

• Application Programming Interfaces (APIs): Creating standardized APIs that enable
easy integration between Edge AI systems and existing healthcare systems. These APIs
should provide clear specifications for data exchange, functionality access, and system
integration, simplifying the integration process.

• Middleware and Integration Platforms: Designing middleware and integration plat-
forms specifically tailored for integrating Edge AI into existing healthcare systems.
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These platforms can provide tools, libraries, and frameworks that facilitate data inte-
gration, process alignment, and workflow integration.

• Proof-of-Concept Projects: Conducting pilot projects and proof-of-concept studies
to demonstrate the feasibility and benefits of integrating Edge AI in early health
prediction with existing healthcare systems. These projects can showcase successful
integration strategies, identify challenges, and provide insights for future implementa-
tion.

• Collaboration and Partnerships: Encouraging collaboration and partnerships be-
tween Edge AI solution providers and healthcare organizations. Close collaboration
can help identify integration requirements, co-design solutions, and establish a mutu-
ally beneficial integration process.

8. Conclusions

Integration of AI and edge computing in early health prediction has transformative po-
tential. These technologies enable real-time data analysis, aiding health risk detection and
prevention. This systematic review analyzes Edge AI’s use in early health prediction and
chronic and infectious disease detection, utilizing predictive modeling, machine learning,
deep learning, and federated learning. As well as enhancing prediction and maintaining
privacy, federated learning collaboratively trains AI models on distributed edge devices,
allowing local processing for instant decision making and reduced latency. However,
challenges like privacy, security, data quality, model bias, interoperability, and system inte-
gration must be addressed. Continued research, collaboration, and strategic investments
are imperative for the improvement and widespread adoption of Edge AI in healthcare.
Furthermore, staying informed about emerging trends and ethical concerns is essential as
Edge AI evolves in early health prediction.
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