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Abstract: Several cities have been greatly affected by economic crisis, unregulated gentrification, and
the pandemic, resulting in increased vacancy rates. Abandoned buildings have various negative
implications on their neighborhoods, including an increased chance of fire and crime and a drastic
reduction in their monetary value. This paper focuses on the use of satellite data and machine learning
to provide insights for businesses and policymakers within Greece and beyond. Our objective is
two-fold: to provide a comprehensive literature review on recent results concerning the opportunities
offered by satellite images for business intelligence and to design and implement an open-source
software system for the detection of abandoned or disused buildings based on nighttime lights and
built-up area indices. Our preliminary experimentation provides promising results that can be used
for location intelligence and beyond.

Keywords: satellite imagery; business intelligence; location intelligence; machine learning;
small–medium enterprises

1. Introduction

Remote sensing (RS), while having a lot of interpretations, mainly refers to the ac-
quisition of Earth surface features, objects, or phenomena, as well as information about
their geophysical and biophysical properties with the use of propagated signals, such as
electromagnetic radiation, without coming in contact with the object.

RS systems have been growing rapidly due to developments in sensor system tech-
nology and digital processing and include satellite- and aircraft-based sensor technologies.
These systems allow data collection from all ranges of the electromagnetic spectrum, in-
cluding energy emitted, reflected, and/or transmitted, which subsequently can be turned
into information products. These products have features that make them important for
systematic and/or managerial decision making regarding local area studies or worldwide
analyses, using either manual or machine-assisted interpretation.

RS has been applied successfully in a plethora of fields, ranging from commerce to
public policy, such as land surveying, planning, economic, humanitarian, and military
applications. However, the complexity of these data makes their use quite difficult, since
it requires background knowledge and computational ability to process them. Machine
learning makes satellite data more accessible to businesses and, in particular, small and
medium enterprises (SMEs) that do not have experience working with or benefiting from
them. In this sense, apart from the traditional use of satellites in telecommunications,
weather forecasting, and military, satellite data have a lot of interesting applications that
can improve many fields that the majority of people take no notice of.

Furthermore, satellite data are commonly used nowadays by governments, big enter-
prises, or researchers to make informed decisions for large-scale regions. However, despite
their importance, they were until recently mostly ignored by SMEs (in Greece and around
the globe) due to a lack of information, expertise, and funds.
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There is a demand for simple, easily accessible, and user-friendly environments to
leverage satellite data. Such a platform should also be open-source so that its operational
overhead can be alleviated to an extent appropriate for SMEs. There are numerous examples
among the field of successful open-sourced geospatial analytic tools, such as Open Data
Cube. This paper aims to design and implement a proof-of-concept open-source platform
that assists the decision making and management of small and medium-scale businesses,
as well as policymaking, through the use of satellite data and machine learning.

To prove our concept of business intelligence through remote sensing and to investigate
the effectiveness of particular approaches, we focus on detecting abandoned buildings. The
unregulated urbanization, the financial crisis that plagued Greece for almost a decade, and
the economic implications of the COVID-19 health crisis have resulted in the emergence
of disused and abandoned buildings. Abandoned buildings and unmaintained structures
are a regular occurrence in urban centers. These vacant areas are responsible for increased
crime rates (drug use, prostitution, etc.);increased danger to public health and safety, since
they can be prone to collapsing and fires due to deterioration, devaluation of nearby
property values; and generating low property taxes, increasing costs for local governments
(to secure, inspect, provide additional police and fire services, etc.). Thus, abandoned
buildings contribute to a decline in a city’s quality of life by providing an unappealing
urban landscape for residents, visitors, and potential investors.

Although there are several ways to identify vacant properties, such as driving around
an area of interest, reaching out to local authorities and banks, and even advertising, they
cannot be automated, require the cooperation of said parties, and can often be ineffec-
tive. This may have negative results, especially in competitive markets where finding the
property ahead of the competition may be crucial for a successful investment. Thus, a
system able to automatically and accurately locate a vacant property in a specific area of
interest could prove to be quite helpful for investors and local or government authorities
that intend to alleviate the affected neighborhoods.

Furthermore, businesses could utilize the system as a means for better site selection.
Business sites should, among other things, be placed in locations that forecast long-term
economic growth and safety, as well as take advantage of financial incentives such as tax
credits and tax breaks. So, the ability to leverage satellite data to make educated guesses
when census data, such as crime rates, regional GDP, and population density, are outdated
or unavailable can not only give a significant advantage over others but also reduce costs.

Most related remote sensing studies mostly focused on estimating vegetation and
water levels. They have led to applications in various fields, such as those mentioned
in our literature review. Traditional land use and land cover studies mostly focus on
city expansion and suburban sprawl, while they pay almost no attention to the state of
the buildings themselves. Recently, there have been studies focusing on building data
extraction based on traditional image detection methods [1], using Google Street View
images [2], or even images taken from mobile phones [3]. Nevertheless, they do not
focus on the time series extracted from the derived spectral indices. Finally, studies that
indeed use spectral indices derived from satellite images rely on difficult-to-access, very
high-resolution images, resulting in expensive operational systems [4].

The main innovation of our study is that it proposes a system that offers an easily ac-
cessible platform that does not require either high-resolution images or high-computational
resources for anyone interested in performing experiments related to abandoned buildings,
enabling further research on the subject. So, our study contributes to the effectiveness
of the application of remote sensing in understanding the implications of socioeconomic
phenomena in general.

The rest of this paper is organized as follows. The next Section offers a brief introduc-
tion to remote sensing satellite data and an overview of important satellite characteristics
and derived data products. In Section 3, we present a comprehensive literature review on
the use of remote sensing machine learning for selected business intelligence sectors. Our
model creation efforts, as well as the design and implementation of a prototype software

https://www.opendatacube.org/
https://www.opendatacube.org/
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system that they utilize, are given in Section 4. An extensive presentation of the experi-
mentation and its evaluation is given in Section 5, together with the outcome reasoning.
Section 6 contains our synopsis and plans for future work.

2. Satellite Systems in Remote Sensing

An artificial satellite is an item that is placed in orbit, usually with the use of a rocket,
to be used in a variety of fields. It is typically equipped with an antenna that enables
communication with a space station and a source of power (i.e., battery, solar panel, etc.),
and it can operate individually or within a larger system. Their positioning varies as they
are placed at different heights and follow different paths/orbits depending on their use
case. Geostationary orbits (GEO), Low Earth Orbit (LEO) and Medium Earth Orbit (MEO),
Polar Orbit and Sun-Synchronous Orbit (SSO), Transfer Orbit, Geostationary Transfer Orbit
(GTO), and Lagrange points (L-points) are some of the common satellite orbits. LEO is
relatively close to Earth, with an altitude of fewer than 1000 km, and Polar Orbit reaches
down to 160 km, while GEO is where the satellite circles above the equator.

Since the launch of the first satellite in 1957, they have been used for various purposes,
which can be categorized into communications, navigation, and weather satellites but also
as military or civilian Earth observation satellites.

Satellites have a variety of features, the comprehension of which is important to select
the best one for our use case. Therefore, next, we briefly present the main characteristics of
the compounds that can impact our study and the accuracy of our analysis.

2.1. Satellite Sensors and Satellite Instruments

Satellite sensors are divided into active and passive depending on the way they
transmit signals, while microwave remote sensing instruments are combinations of active
and passive remote sensing.

Active sensors are equipped with radiation-transmitting equipment, such as a transponder,
which allows the transmission of a signal directed towards a target (usually Earth) and
the detection of the target-reflected radiation to be measured by the sensor, emulating a
source of light. They are fully functional at any time, since they are relatively independent
of atmospheric scatterings and sunlight. These devices usually employ microwaves due to
their relative immunity to weather conditions and different techniques based on broadcasts
(e.g., light or waves) and measures (e.g., distance, height, atmospheric conditions, etc.).
Some active sensors are SAR, Lidar, Sounder, and Scatterometer.

Passive sensors measure naturally emitted energy, such as reflected sunlight, because they
do not streamline their own energy to the investigated area. They require appropriate
weather conditions and sunlight. Multispectral and hyperspectral sensors are used to
measure the desired quantity using various band combinations. Passive remote sensing
devices include (1) spectrometers to distinguish and analyze spectral bands; (2) radiometers
to measure the strength of electromagnetic radiation in some spectral bands; (3) spectro-
radiometers to measure parameters regarding cloud features, sea color, temperature, atmo-
sphere chemical traces, or vegetation; (4) imaging radiometers that provide a 2D array of
pixels for image generation; and (5) accelerometers to detect changes in speed to distinguish
between those caused by the influence of gravity and those caused by atmosphere air drag
on the satellite.

2.2. Resolutions of Satellite Instruments

Satellite imagery is a satellite product used by businesses and governments. Its
resolution varies based on the instruments used and the altitude of the satellite’s orbit and
can be split into five types:

Spatial resolution is a satellite image’s pixel size representing the size of the surface area
measured on the ground. This resolution refers to the smaller discernible feature of a
satellite image. A spatial resolution of 10 m means that a pixel of the image represents a
ground area of 10 × 10 m.

https://en.wikipedia.org/wiki/Synthetic-aperture_radar
https://en.wikipedia.org/wiki/Lidar
https://cimss.ssec.wisc.edu/sage/remote_sensing/lesson1/concepts.html
https://en.wikipedia.org/wiki/Scatterometer
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Spectral resolution is determined by the size of the wavelength interval and the number of
intervals measured by the sensor. In other words, it refers to the sensor’s capacity to detect
specific wavelengths of the electromagnetic spectrum. Higher spectral resolution segments
the electromagnetic spectrum into finer wavelength ranges, allowing the identification of
more specific classes (i.e., rock type vs. vegetation).

Temporal resolution is defined by the time interval between imagery collection for the
same surface location. Satellites’ ability to take photos of the same geographic region more
regularly has drastically improved over the years, offering more accurate data.

Radiometric resolution is the capacity of a sensor to capture a variety of brightness levels,
such as contrast, and its actual bit depth. i.e., the number of gray-scale levels.

Geometric resolution defines a sensor’s capability to successfully display a patch of the
earth’s surface within a single pixel.

2.3. Spectral Bands and Spectral Indices

A spectral band is a defined portion of a spectral range that is generally used to
attribute data collected from a sensor. Different satellite instruments measure the central
wavelength (CW) for each band differently. For reference, NASA and ESA used differ-
ent algorithms to measure CW for Landsat-8 and Sentinel-2. For Landsat-8, the center
wavelength is calculated using the Full Width at Half Maximum (FWHM) method, which
essentially uses the average from a large percentage of the centered distribution. The “lower
and upper” values are the FWHM boundaries. On the contrary, center wavelength values,
in the case of S-2 values, are calculated using the average derived from the metadata files
for each satellite. These metadata indicate the minimum, maximum, and central values for
each band. It seems that ESA uses a weighted average.

The spectral index is a quantity that depends on the various spectral bands of an image
per pixel and is calculated using the band values. The selected bands differ depending
on the index we would like to calculate; however, the majority of them are computed
using the normalized difference formula (Bx − By)/(Bx + By): the difference between two
selected bands normalized by their sum. This method minimizes the effects of illumination
from shadows and clouds while also enhancing the spectral features that are not initially
visible. There is a great variety of spectral indices used for different tasks. The Normalized
Difference Vegetation Index (NDVI) and the Normalized Difference Water Index (NDWI)
are some common spectral indices.

2.4. Overview of Major Satellite Missions and Their Derived RS Products

In this section, we introduce selected major satellite missions across the United States
and Europe. We also introduce latency and processing levels related to data products and
describe their use cases in remote sensing applications, as well as their differences.

At least 77 government space agencies are operating as of 2022, 6 of which (NASA
(USA), ESA (EU), CNSA (China), ISRO (India), JAXA (Japan), and RFSA or Roscosmos
(Russian)) have launch capabilities. Besides NASA, in the United States, two other major
federal agencies are involved in Earth observation satellites, USGS and NOAA.

The USGS scans the whole surface of the earth with a 30 m resolution approximately
every two weeks, including atmospherically corrected multispectral and thermal data, It
has been used widely in remote sensing for shoreline mapping, forest monitoring, disaster
management, and precision agriculture, to name a few.

The NOAA operational satellite system for environmental monitoring consists of
geostationary and polar-orbiting satellites. The Geostationary Operational Environmental
Satellite (GOES) server is mainly used for national, regional, and short-range warning
and “nowcasting”, while the polar orbiting ones, such as Polar Operational Environmental
Satellites (POES) and the Suomi National Polar Orbiting Partnership (Suomi-NPP), are
used for long-term forecasting and environmental monitoring on a global scale.

The VIIRS, one of the key sensors of the Suomi-NPP satellite, has been actively used for
fire monitoring, urban expansion, and economic development monitoring. It is a scanner

https://en.wikipedia.org/wiki/Visible_Infrared_Imaging_Radiometer_Suite
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radiometer that measures Earth radiation on the surface and atmosphere levels in the visible
and infrared spectra. VIIRS has different spatial resolutions among the data that it collects
among 22 different spectral bands of 750 m and 375 m at nadir. Its Day/Night Band (DNB),
is ultrasensitive to low-light conditions and enables the generation of quality nighttime
products with substantial improvements compared with older systems (DMSP/OSL).

EU features the EUMETSAT Polar System that consists of Metop, three polar-orbiting
meteorological satellites that orbit the world via the poles from an altitude of 817 km and
continuously collect data. These satellites carry eight main instruments, and their collected
data are essential for climate monitoring and weather forecasting.

ESA operates the Copernicus Program, which includes the development of the sentinel
satellites, a constellation of satellites responsible for various satellite missions of different
purposes. For example, Sentinel 5p provides data for the quality of air, while Sentinel 3 is
responsible for climate and environmental monitoring. For revisit and coverage purposes,
each Sentinel mission is built on a constellation of two satellites that offer a higher temporal
frequency. In the case of Sentinel-2, for example, S2-A and S2-B offer a combined 5-day
revisit time.

Apart from the various government-launched successful satellite missions, many
private organizations are also innovating the remote sensing space, offering very high
spatial and temporal resolution imagery.

Planet Labs specializes in public Earth imaging that aims to provide daily monitoring
of the entirety of Earth and pinpointing trends [5]. They design and manufacture Doves,
which are Triple-CubeSat miniature satellites that get into orbit as payloads on other rocket
launch missions and are equipped with high-performance devices (telescopes and cameras)
that capture different swaths of Earth and send high-quality data to a ground station. Dove-
collected images, which provide information for climate monitoring, precision agriculture,
and urban planning, can be accessed online and sometimes fall under the open data access
policy. They have roughly 200 satellites in orbit that offer crucial services for disaster
management and decision making in general.

Airbus Defense and Space have launched more than fifty satellites, such as TerraSAR-
X NG, featuring the X-band radar sensor, an instrument that allows the acquisition of
images with different resolutions, swath widths, and polarizations, offering geometric
accuracy unmatched by other space-borne sensors.

Another constellation of satellites is the Pleiades, which has found successful remote
sensing applications in the fields of cartography, geological prospecting, agriculture, and
civil protection. Pleiades features the High-Resolution Imager, which delivers very high
optical resolutions of 0.5 m, making it an ideal data source for civil and military projects.

Data collected from satellite missions can be distributed raw or processed at various
levels. Depending on the speed at which they become available to users, they can be
split into different categories. Different data providers use different names for these
categories. In the context of this paper, we use the terminology proposed by NASA. Since
the terminology regarding data latency varies between the various Earth science data
providers (e.g., NASA, NOAA, etc.), in the context of this paper, we use the one provided
by NASA (https://earthdata.nasa.gov/learn/backgrounders/data-latency, accessed on
1 September 2023). One of the key differences between standard data products and Near-
Real-Time (NRT) is that the latter makes use of predictive orbit information for geolocation.
Furthermore, the NRT processing algorithm can use ancillary data from other sources
whose accuracy may vary. The standard products, on the other hand, are processed
utilizing precise geolocation and instrument calibration, and as a result, they offer a reliable,
internally consistent record of Earth’s geophysical characteristics that can aid a scientific
investigation. Even though NRT products may include information that makes their
analysis harder, they can be very important in various applications.

https://en.wikipedia.org/wiki/CubeSat
https://earthdata.nasa.gov/learn/backgrounders/data-latency


Future Internet 2023, 15, 355 6 of 29

3. State of the Art and Related Products

Remote sensing satellite data have found application in a plethora of different business
intelligence fields. In this paper, we focus on the ones highly correlated with the Greek
economy, such as the tourism and agriculture industries. We pay particular attention
to applications related to nighttime lights and urbanization, which are good proxies of
the economy.

3.1. Peer Review Literature
3.1.1. Satellite-Data-Driven Agriculture

There has been tremendous progress in remote sensing, enabling substantial spa-
tial resolution, temporal frequency, and spectral availability of satellites. Experts in the
agricultural field are committed to the evolution of traditional agriculture into precision
agriculture (PA) driven by data. Deep Learning (DL) has been employed extensively in
tasks regarding identification, classification, detection, quantification, and prediction. At
the field scale, it can be used for predicting crop yield, as well as for land cover mapping
and crop identification at the land scale.

Neural Network architectures, such as Convolutional Neural Networks (CNNs),
and more recently techniques including Transfer Learning (TL), make up a powerful
framework that allows real-time crop production prediction from RGB or spectral images.
We further note that Transfer Learning is important, since it can be applied in order to
transfer information gained from tasks where there is an abundance of large labeled datasets
to other tasks where training data are scarce [6]. When the domains share many similarities,
TL offers a quick and affordable solution to training data scarcity.

The ability of CNN-based frameworks to classify multispectral remote sensing data
from SAT4 and SAT6 datasets has been evaluated in [7]. The proposed architectures
achieved a classification accuracy of more than 99%, indicating the potential of deep layer
architectures to design operational remote sensing classification tools back in 2016. Since
then, the rapid advances in network architectures, and the computational power making
the use of more deep layers feasible along with benchmark framework improvements,
have managed to eliminate the effects of overfitting (i.e., the inability of a model to pre-
dict ‘unseen’ data) and to increase classification accuracy. One such example is Residual
Neural Networks.

Ref. [8] uses WorldView-3 and PlanetScope imagery to derive raw multispectral and
temporal satellite data to predict corn and soybean yield. Specifically, 4 and 25 sets of
WorldView-3 and PlanetScope cloud-free images were acquired and fed into a 2D and 3D
model that explained roughly 90% variance in field-scale yield. The 3D CNN performed
better accuracy-wise on PlanetScope data than the 2D CNN due to its ability to digest
temporal features extracted from said data.

However, most freely available satellite data originate from satellites with medium
spatial and spectral resolution and may not be suitable for several scenarios of classification
and monitoring [9,10]. In [11], a deep neural network model is developed to predict the
output of wheat crops using MODIS data with spatial resolutions of 250 m, 500 m, and
1000 m, significantly coarser than Worldview-3. The proposed CNN-LSTM model works
without the need for dimensionality reduction or feature extraction due to its ability to
‘digest’ raw satellite images

The paper by [12] focuses on quantifying the increase in precision that could be
achieved by using NDVI derived from higher-resolution images, specifically masked for
cropland. This study, based on the NDVI data of three different resolutions (250 m, 500 m,
1 km) in US states for over 11 years, monitors soybeans, corn, spring, and winter wheat.
The developed regression models for each crop type showed improved R-squared scores as
the spatial resolution increased.

Other studies [13–15] compare freely accessible satellite data (i.e., Sentinel-2, Landsat-8)
with paid ones (i.e., Worldview) in different applications. Ref. [13] compares and evaluates
Sentinel-2 satellite vegetation and spectral data with those of Dove nanosatellites, such as
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Planetscope, in the detection and mapping of Striga hernonthica weed. While Ps performed
5% better with a 92% accuracy in detecting the weed, the study demonstrates the ability
of S2 to provide near-real-time field-level detection, a task that was quite difficult with
previous multispectral sensors.

It is also worth mentioning that image quality acquired from multispectral, hyperspec-
tral, and RGB cameras depends on weather conditions, making the Synthetic Aperture
Radar (SAR) images an essential tools for RS in agriculture. However, backscatter noise for
vegetation dynamics often results in difficulties in image interpretation. Deep Learning
frameworks for object detection have been proposed to overcome this problem [16].

Ref. [17] suggests an improved MCNN-Seq model to forecast optical time series
using SAR data even when optical data are not available. They used Sentinel-1 SAR and
Sentinel-2 optical images collected over a period of two months each. However, the coarse
spatial resolution and low temporal resolution of satellite imagery make it difficult to obtain
multitemporal, large-volume, and high-quality datasets, which impedes the application of
Deep Learning in low-resolution satellite-borne remote sensing, making them insufficient
for small-scaled detailed observations.

Thus, grape yield prediction and vineyard monitoring are important to maintain
quality while not impeding the supply chain, providing farmers with the ability to better
manage their fields and obtain higher income. Yield prediction maps also allow them
to view spatial variations across their field and determine the best harvesting time and
marketing strategy, which are greatly affected by the grape’s growth stages. Different
methods are employed to estimate yield; nevertheless, because of constraints related to
time and labor, large-scale estimation is problematic.

Machine learning and satellite remote sensing can provide quick and accurate assess-
ments over wide areas for less money and in less time. Specifically, ref. [18] attempts to
monitor vine growth in a Protected Designation of Origin (PDO) zone using freely available
and high-temporal-resolution Sentinel-2 imagery. They selected 27 vineyards for their study
and calculated vegetation indices (i.e., NDVI, EVI) for each one. The results indicate a high
negative correlation with the elevation topographic parameter during the flowering stage
of the vines. The performed ANOVA between the vegetation indices of each subregion also
showed that they have statistically significant differences, with most of them being able to
detect the fruit at the flowering and harvest stage but only NDVI and Red-Edge band Vis
during the veraison period (the onset of the ripening of the grapes). These data proved to
be useful for monitoring on a regional scale, since the S2 imagery captured all vineyards at
the same time and under the same atmospheric conditions.

Machine learning models for yield prediction using vegetation index time series are
proposed in [19]. They used Landsat 8 surface reflectance products during 2017–2019
and built a regression analysis model to map NDVI, LAI, and NDWI. The exponential
smoothing methods and moving averages used on the satellite images detected different
stages of growth. The indices were highly correlated at the time that canopy expansion
reached its maximum. The ANN approach indicated the superiority of NDVI, which had
the highest accuracy across all years, with R equal to 0.94, 0.95, and 0.92, respectively.
The models were evaluated with ground-truth yield datasets. The results of this research
showcase that Landsat vegetation indicators can be used to calculate site-specific vineyard
management and forecast yields.

Ref. [20] examines the capability of Sentinel-2 to infer field-size dryland wheat yields,
as well as how using a simulated crop water stress index could improve predictability (SI).
The S2-derived VIs observed from 103 study fields over the period between the 2016 and
2017 cropping seasons explained approximately 70% of the variance, showing fairly high
accuracy in predicting yield. The best model with RMSE = 0.54 t/ha featured a combination
of OSAVI, CI, and SI.

For the administration of cotton agriculture and international trade, accurate and
prompt distribution monitoring is mandatory.
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Ref. [21] uses unsupervised classification to evaluate the potential of freely accessible
satellite imagery for cotton root rot detection over methods involving aerial multispectral
imagery. Although Sentinel-2A missed some small rot patches, overall, it outperformed
the airborne images on both field and regional levels. These findings show that images
acquired through the Copernicus program may be utilized to identify cotton root rot and
provide prescription maps for disease treatment at specific locations.

However, most prior studies on cotton identification using remotely sensed pictures
have relied heavily on training samples, which are time-consuming and expensive to obtain.
To get around this restriction, ref. [22] attempts to develop a new index to identify cotton
within an area of interest, termed the Cotton Mapping Index (CMI). Time series generated
from S-1 SAR and S-2 MSI images were used for automatic cotton mapping and were
assessed on both American and Chinese locations, achieving an accuracy of 81.20% for
cotton classification. The advantage of the suggested index over traditional supervised
classifiers such as Random Forests is that it requires no training samples and can obtain the
map of cotton distribution before the harvest. We therefore claim that CMI calculated from
Sentinel imagery can be used for accurate cotton mapping.

Reliable crop yield prediction at the field level is crucial for managing difficulties and
mitigating climate variability and change impacts during production. While the studies
that were already presented achieved considerable results, we note that there is still a lack
of accurate disaster vulnerability models that can be used to estimate yield losses and their
pure insurance rate, which will ultimately assist the farmers and public sectors in planning
their crops.

3.1.2. Urbanization: Effects on Greece and Solutions Provided by Satellite Imagery

Urbanization in developed countries is known to be accompanied by economic expan-
sion and industrialization [23]. While urbanization is positively correlated with economic
growth, the Greek (just like in several other countries) urban system is characterized mainly
by the growing dynamism of one or two metropolitan areas accommodating half of the
country’s population. Moreover, lack of metropolitan governance, lack of land use regula-
tion, lack of adequate infrastructure [24], and unregulated urban development, in general,
have led to multiple deprivations in the capital city of Athens, unable to compete with
other major cities in the majority of sectors [25] (https://urbact.eu/greece, accessed on
1 September 2023). It is thus mandatory to develop models that can assist policymakers in
facilitating urbanization in a way that contributes to economic growth, employment growth,
and environmental sustainability, rather than the pursuit of speeding up the process of
urbanization [26].

Ref. [27] uses Landsat 5 TM and Landsat 8 OLI images to investigate the spatial
distribution and modeling of changes in urban landscapes, as well as their economic impact.
Their Markov model with NDVI masks achieved a score of 0.9 in differentiating LULC
classes and correlating them with economic changes in their area of study (Lahore District).

Moreover, ref. [28] takes advantage of Landsat time series characteristics and proposes
a method for the extraction of economic features based on Earth’s morphological changes
due to regional economic growth. After collecting the Landsat data, they analyzed the
correlation between economic indices and land use types. The proposed model showed the
importance of construction land to infer the Gross Domain Product of an area. Although
these studies prove the effectiveness of Landsat products in detecting changes in land
use and land cover, worldwide-scale urbanization has brought about diverse types of
urban LULC changes. These issues have been mostly understudied, with the focus of past
research being on urban growth [29].

Another area that has gained interest in the past years is nighttime lights and their
capability of detecting changes in LULC as well as the economy. The efforts in [29] focus
on filling gaps in the literature by proposing a framework using VIIRS monthly time
series to characterize diverse urban land changes. They fit the VIIRS-derived data to a
Logistic–Harmonic model, taking into account the uniqueness of urban land change and

https://urbact.eu/greece
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the temporal information of the VIIRS time series. They produced BU area maps and
disentangled the observed changes into five categories. The results show that classification
based on temporal features’ classification can significantly improve the accuracy of mapping
regions with heterogeneous BU and NBU landscapes and promote temporal consistency
and classification efficiency.

Ref. [30] estimates city growth using nighttime lights. After preprocessing the data
with propriety techniques in order to correct blurring, saturation, and compatibility issues
with other satellite temporal and spatial resolutions, they developed a protocol to isolate
stable nighttime lit pixels that constitute an urban footprint. Their measured metropolitan
area size can be used along with geo-referenced population datasets (i.e., GHSL) and
calculate the rate of urbanization and urban density.

Although the VIIRS instrument has outperformed the DMSP OLS nighttime lights in
terms of image quality and has found extensive use in urban and economic studies, the
fact that it is relatively new compared with the latter means there is still space for research
and improvement.

Ref. [31] proves the ability of VIIRS to estimate cross-sectional and Gross Domain
Product time series compared with NTLs derived from DMSP OLS across the US and
metropolitan areas. VIIRS showcased better results when predicting GDP for MSAS,
suggesting a higher correlation with urban sectors than rural ones. This is in accordance
with the results of previous studies for DMSP OLS nighttime lights. Additionally, VIIRS
lights predict metropolitan statistical areas’ GDP with higher accuracy compared with
state GDP, suggesting that nighttime lights may be related to a bigger extent to urban
sectors than rural ones. It is important to take into consideration possible biases that can
impact hypothesis testing when trying to understand socioeconomic phenomena based on
nighttime lights.

Apart from the possible existence of bias in economic prediction through nighttime
lights, there are also potential nonlinearity and measurement errors in the light production
function. Ref. [32] studies DMSP nighttime lights for the economic evaluation of small
geographies across six counties with high statistical capacity, i.e., their ability to gather,
examine, and share high-quality information on their people and economy. Their results
indicate the inability of nighttime lights to respond to higher baseline GDP changes, higher
population densities, or agricultural GDP. While changes in night luminosity correlate with
GDP changes, even in small geographical spaces, the documented nonlinearity implies
that some studies may be unable to identify policy-relevant effects or misinterpret this as
the treatment effect of their model’s variables in areas where lights do not react much to
economic activity.

Urban areas can reflect the spatial distribution of commercial activities via nighttime
lights, but data collection difficulties make traditional methods unable to easily detect
them. Ref. [33] proposes a method for urban commercial area detection through the use
of NTL satellite imagery. First, they preprocessed the images by setting the brightness
value range between 0 and 255, a step necessary for improved cluster analysis efficiency.
Then, they performed an exploratory data analysis where spatial patterns and optimal
distribution characteristics were identified. Finally, after discerning hotspots through
clustering analysis, they constructed standard deviation ellipses to detect the direction/
trend of the development of commercial areas. Comparing the results of their study
with ground-truth data, nighttime lights can indeed identify urban commercial areas,
but the accuracy can be hindered by various factors, including weather conditions and
vegetation coverage.

Gross Domain Product enables policymakers and organizations to identify the state
of the economy, i.e., if it is contracting or expanding. Satellite imagery offers the ability
to estimate the Gross Domain Product almost in real time and even in small geograph-
ical areas compared with traditional statistical analyses, thus allowing businesses and
economists to analyze the impact of changes (e.g., taxes, economic shocks, etc.) with
relatively high precision.
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3.1.3. Tourism Intelligence through Satellite Data

Tourism has been a valuable source of revenue within Greek economic activity, being
one of its most important economic sectors. Greece, just like many other countries around
the globe, has been a major tourist destination and attraction, with the number of tourists
increasing each year dramatically according to data from the World Bank, hitting a record
high of 33.1 mil international arrivals in 2018 [34].

It is thus important to find ways to create an environment where tourism and tourism-
related businesses can flourish while accounting for safety, enough accommodation, and
easy transportation. Tourism planning and administration can benefit from quick, afford-
able, and easy identification of popular tourist destinations. Using open-source, Near-Real-
Time data sources like social media, many studies have been conducted to examine and
assess a location’s tourism circumstances. Up until recently, research heavily relied on the
annual stats of small sample sizes and/or on the integration of high-resolution statistical
datasets and generally conventional big data sources that ignore spatial heterogeneity and
drivers of tourism demand, while also being often unavailable [35,36]. Remote sensing
satellite data, which offer Near-Real-Time data over large-scale geographies and are good
indicators of the economy and spatial distribution, have been used for tourism intelligence.

Tourism’s spatial dispersion significantly affects both its operational effectiveness
and regional relevance, and the continuous satellite observation and in-depth study of
nighttime lights can pave the way to clarify human activities and socioeconomic dynamics.

The ability of nighttime light emission to estimate the touristic activity within Euro-
pean countries was examined by [37]. The correlation of touristic activity with seasonal
changes in nighttime light satellite imagery collected between 2012 and 2013 from both
DMSP-OLS and VIIRS was investigated.

To evaluate their findings, they used statistical tourism data on the country level, which
after preprocessing with GIS, were used in linear and geographically weighted regression.
The results of their statistical tests show that there is a strong correlation between nighttime
light emissions and tourist activity. The GWR has proven to be a useful tool for examining
this relationship, but some additional factors should be taken into account before judging
its ability and accuracy.

In a similar fashion, ref. [38] uses OLS and GWR to investigate nighttime light’s
seasonal changes and their relation to tourism in 112 regions of Hunan Province, China.
According to their studies’ results, the intensity of luminous radiation is highly correlated
with tourism points of interest. Furthermore, spatial heterogeneity and seasonal differences
in tourism activities’ were also observed across different regions. These findings, related to
the social environment and resource allocation, can be helpful when studying tourism at
the county level.

Ref. [39] demonstrates the capability of nighttime lights and crowd-sourced data
(i.e., OpenStreetMaps, Twitter) to detect tourism areas of interest. They generated active
tweet clusters through the DBSCAN clustering algorithm to identify the touristic places
where essential facilities related to travelers’ needs were available. They then examined the
adequacy of NTL remotely sensed data to recognize proper tourism areas in Nepal, where
social media penetration is relatively low. They successfully detected important tourism
areas in remote and urban regions with an F1 score of 0.72.

Greek tourist resorts and attractions are distributed mainly across coastal areas. The
preservation of these areas, as well as measures to ensure safety and conditions that will not
hinder access by tourists, is really important. Nearshore bathymetry estimation is crucial
for understanding coastal processes and enabling many industries, including offshore
construction, fishery, and tourism, among others. Common survey methods, based on
monitoring via ships or airplanes, are costly and time-consuming. Moreover, currently,
the estimation of bathymetry usually requires in situ depth measurements in order to
train inversion models, a difficult or even impossible process for many areas. Cover maps
regarding seagrass and corals have been created using machine learning and Senintel-2 MSI
data to support coastal management of small islands [40]. Apart from traditional machine
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learning techniques, Deep Learning techniques have been used in ocean remote sensing,
making the precise, efficient, and intelligent mining of ocean data possible [41].

Ref. [42] showcases the ability of Sentinel-2 to find patches of plastic in coastal waters.
Their study indicated the detectability of floating macroplastics and their distinction from
naturally occurring objects (i.e., seaweed) in optical satellite data. They used a combination
of the novel spectral index, the Floating Debris Index (FDI), and the Naive Bayes classifier to
highlight the existence of plastic debris, with an accuracy of 86% in all their case study areas.

Ref. [43] implements both unsupervised and supervised classification algorithms
for the same task using multispectral Sentinel-2 remote sensing imagery from Cyprus
and Greece.

Their models have been developed using a mix of six reflectance data bands and the
NDVI and FDI indices, which were proven to be the most effective at spotting floating
plastics. Their results vary depending on the algorithms they use, with support vector
regression having the highest accuracy. It should be noted though that they use a small
number of grids to train and evaluate their models, possibly hindering their performance.

Ref. [44] investigates the data fusion of S-2 and ICESat-2 data for vathymetric inversion.
Their results were compared with data collected from an integrated lidar system called
CZMIL; they had an RMSE of 0.35 m in waters with similarities in turbidity and bottom
reflectivity. This demonstrates the ability of the fused imagery to estimate the depth of
water of optically clear coastal waters.

Apart from traditional tourism, rural tourism has gained interest among native tourists.
Rural tourism can support sustainable development but also combat the impeding eco-
nomic growth that comes from the extreme urbanization that has plagued Greece [26].

Ref. [45] studies the effects of rural tourism using multisource data, including satellite
images. Specifically, they investigated changes and their drivers in the morphology and
social evolution of the countryside from a touristification perspective. Results from their
specific study area, Jinshitan, which showcased nonagricultural employment increase,
support the notion that rural revitalization can be beneficial to rural communities, enabling
their economic growth.

Since tourists’ preferences regularly shift in reaction to new risks, safety in tourist
areas is of the utmost significance. Given how dangerous they can be, natural hazards must
be taken into account in efforts to promote safe travel. Systems that monitor and forecast
extreme natural phenomena in points of tourist and cultural interest allow for effective risk
management and response.

Ref. [46] integrates satellite imagery and meteorological forecasts to develop an early
warning and incident response system for the protection of tourists in outdoor Greece. The
system includes wildfire, flood, and extreme weather warning modules. Their findings
may be applied to the creation of further natural risk management strategies for cultural
and natural heritage sites.

These studies and their outcomes for the implementation of satellite remote sensing
in regions of touristic interest can provide valuable information for Greece’s stakeholders.
Tourism planners and policymakers, as well as entities of the private sector, can use satellite
imagery for decision making regarding site selection, investment, and general improvement
of the country’s highest revenue-generating economic sector.

3.1.4. Site Selection for Renewable Energy Platforms via Satellite Imagery

One of the goals of sustainable development is affordable and clean energy (SGD7).
Europe has consistently increased its renewable energy production and, in 2020, it repre-
sented 22.1 % of the energy consumed in the whole continent, which is almost 2 percentage
points above the target of 20 %. Greece has seen an unprecedented increase in renewable
energy consumption in the past decade, with renewable energy source shares being nearly
doubled. According to the World Bank and Eurostat data, this increase went from 6.9% in
2004 to 15.5 % in 2017, and 21.7% of gross final energy consumption exceeded the set goal.
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The Greek energy sector, however, still largely depends on imported fossil fuels. As
of 2017, almost half of its energy needs were covered by petroleum products, used in the
transport sector but also converted into electricity. Greece’s electrical independence relies
heavily on lignite, making it one of the only nine EU member states that still produce it
endogenously and place it among the top three countries that still use it for electricity
consumption and heat (https://ec.europa.eu/eurostat/statistics-explained/index.php?
title=Production_of_lignite_in_the_EU_-_statistics, accessed on 1 September 2023). How-
ever, there have been concerns with the surge in solar plant installation, including possible
instability in ecologically fragile regions (i.e., biodiversity loss, local climatic change, and
food sovereignty). In order to better monitor and prevent these problems, geo-referenced
data are a necessity, which are unfortunately lacking. High-quality data to build accurate
models for predicting the behavior of solar radiation are required for optimal solar energy
systems management. The impact of a PV plants’ installation can be monitored efficiently
with the use of spatial distribution and dynamic data generated through remote sensing.

The need for Greece to abide by the EU standards and the decreasing consumption
of fossil fuels, the fact that the energy sector has a higher contribution to gross value
added than most European countries, and the generation potential of electricity due to
its climate along with government support make Greece a great place for investment and
economic growth. A lot of public and private organizations have invested in solar and wind
renewable energy (https://www.enterprisegreece.gov.gr/en/invest-in-greece/sectors-for-
growth/energy, accessed on 1 September 2023). Next we present some applications of
data-driven remote sensing for photovoltaic and wind turbine site selection as well as
monitoring environmental change detection due to the extensive use of lignite.

Ref. [47] proposes an ML methodology for site selection and solar radiation forecasting.
Specifically, they combined solar radiation ground-truth data and satellite solar radiation
data from geostationary meteorological satellites to obtain long-term solar information
with improved spatiotemporal information (site adaptation). Then, they constructed an
LSTM Deep Learning model that takes these improved data as input and makes accurate
predictions regarding solar radiation over a particular region, offering an almost 40%
performance increase over traditional statistical methods.

Ref. [48] uses freely accessible Landsat 8 OLI images to identify and map the spatial
distribution of photovoltaic (PV) plants on a local and global scale. They combined spectral
bands and indices for PV extraction, such as NDVI, BI, and BUAI, from the satellite imagery
and fed them to high-performance machine learning models. The XGBoost performed
better in the raster-based extraction of PV plants with 99.65% accuracy but was unable to
identify distributed power plants due to the images’ limiting spatial resolution.

Apart from solar panel plantations, Greece has the appropriate topology for the instal-
lation of Offshore Wind Farms (OWFs) and wind turbines in general for long-term energy
production [49–51]. The fact is that there has been a growing interest in the installation
of OWFs, since they offer available free space for large-scale construction, reduction, and
avoidance of environmental disturbance due to noise, lights, and changes in topology.
Greece has many uninhabited islands that could prove to be ideal for OFWs.Through
observational activities and data from remote sensing, suitable locations across vast oceanic
areas can be found, evaluated, and identified.

Ref. [52] evaluates the potential of Sentinel-1 data to assess the wind source potential
on the island of Sardinia using a machine learning forecasting model. The model blends
wind speed assessment, mapping, and forecasting to identify offshore and nearshore wind
potential through the use of image processing methods, Adaptive Neuro-Fuzzy Inference,
and the Bat algorithm. Ten hotspots have been recognized as being particularly intriguing
due to their high energy potential, making them possible locations for the future installation
of Wind Turbine Generators (WTGs).

Please note that machine learning can be applied to almost any step of satellite re-
mote sensing, already exhibiting several success stories in areas not directly connected to
business intelligence.

https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Production_of_lignite_in_the_EU_-_statistics
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Production_of_lignite_in_the_EU_-_statistics
https://www.enterprisegreece.gov.gr/en/invest-in-greece/sectors-for-growth/energy
https://www.enterprisegreece.gov.gr/en/invest-in-greece/sectors-for-growth/energy
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3.2. Existing Commercial Software and Services

Apart from the various accomplished case studies within the research sphere, there
are various companies that offer proprietary software or services in order to assist various
businesses in their efforts to modernize and improve. A selected and indicative list of such
companies is given below:

Descartes Lab offers a plethora of business intelligence services through the use of satellite
imagery and their fusion with their clients’ integral data. Their clients range from pri-
vately owned businesses to governments, and they have solutions for mining, agriculture,
and other areas. An interesting case study of Descartes Labs is their use of the Google
Cloud Platform to provide accurate predictions for global food supplies and detect early
warnings of famine (https://cloud.google.com/customers/descartes-labs, accessed on
1 September 2023).

LiveEO offers satellite monitoring solutions for various industries, including the monitor-
ing of various infrastructures. They can detect changes in very high-resolution images and
create risk-monitoring models.

Blackshark.ai is a geospatial platform that combines satellite imagery and machine learning
to provide insights into infrastructure at a global scale. Their AI-enriched methods have
the ability to complement missing image attributes. They offer various enterprise solutions
such as visualization, simulation, and mapping, updated in real time. An interesting
application of Blackshark.ai is the display of the entire planet Earth in Microsoft’s Flight
Simulator game.

Iceye is a small and agile radar satellite constellation that provides effective change de-
tection of any location on Earth multiple times during the day and night, independent of
weather conditions. Iceye has been used by the insurance industry, and their SAR ecosys-
tem may well support government agencies, environmental groups, emergency response
units, and companies in general.

AgroApps is a Greek company that provides crop and weather monitoring and forecasting
services using ML and satellite imagery.

Agrotech is similar to AgroApps; it is a Greek company that uses satellite imagery to
monitor crop growth cycles for optimal fertilizer use.

3.3. State of the Art: Key Takeaways

Taking all of the above into consideration, we realize the importance of satellite remote
sensing and machine learning. We presented various successful applications from the
agriculture, tourism, energy production, and urban studies domains that can greatly benefit
many countries. These studies offer insights into the efficient combination of data science
and satellite imagery by providing information about the many satellite data products and
their benefits and limitations. Various spectral indices have been evaluated depending on
the case study, including vegetation, water, and imperviousness, with NDVI being the most
commonly used across all sectors. This is probably due to its conceptual simplicity and
‘tangibility’. Moreover, nighttime light imagery, even with its reduced spatial resolution,
can be a good estimator of economic growth and human activity in the majority of sectors.

These various studies also provide methodologies for satellite data acquisition and
prepossessing techniques and machine learning model evaluation metrics. Through this,
albeit not extensive, literature review, we can derive the growing interest in the use of
Landsat and Sentinel products. These images are of high to medium spatial resolution and,
compared with private endeavors, can be limiting in cases where extremely high precision
is required (e.g., military). On the other hand, they are free even for commercial usage
and hence easily accessible by most businesses and organizations. Their accessibility and
interoperability, which were showcased via their combination in several research works,
coupled with their proven ability to estimate economic trends and detect and forecast
changes in Earth’s landscape, as well as human activity, make them ideal for our software.

https://descarteslabs.com/
https://cloud.google.com/customers/descartes-labs
https://live-eo.com/
https://blackshark.ai/
https://www.iceye.com/
https://agroapps.gr/
http://www.agrotechniki.gr/
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Additionally, the increasing use of Deep Learning methods, as well as the rethinking
of older machine learning methods (e.g., Random Forests) in the remote sensing sphere, is
another main point in the existing literature. Both approaches have their advantages and
disadvantages (e.g., computational constraints, simplicity, robustness, scalability, etc.), but
both can automate several procedures while offering knowledge for decision making in
the public and private sectors. In the case of our approach, taking these characteristics into
account, we chose to implement shallow machine learning methods that do not require
huge computational capabilities. This is due to the fact that our proposed software needs
to be able to execute in completely free cloud platforms that often have restrictions.

Finally, as far as Greece is concerned, the solutions provided by ‘local’ companies are,
to the best of our knowledge, narrowly limited to the agricultural and weather forecasting
sectors. Furthermore, and this is prevalent in all the aforementioned commercial products,
they are ‘locked’ behind paywalls, making them prohibitive for the majority of SMEs.

4. System Design and Implementation

We designed and implemented a software system that provides information for busi-
ness intelligence and policymaking through the use of spatial satellite data and machine
learning. Our proposed system is open-source and open-architecture, and its main feature
is its ability to detect abandoned buildings over an area of interest and display them to the
user over map imagery. What differentiates it from similar recent software [4,53] is the fact
that it uses freely available satellite imagery and explores areas where ground-truth data
are scarce.

Another key difference is its extensibility, since new applications do not require
changes in the core architecture. Thus, the software is suitable for SMEs that do not have
the expertise to implement their own solutions but also do not have the ability to invest in
commercial solutions. Leveraging our platform, they can make informed decisions about
optimal site selection and thus reduce the costs of outsourcing it.

4.1. Data Collection

Our methodology leverages nighttime light data from the VIIRS instrument aboard the
Suomi-NPP satellite and various spectral indices derived from Sentinel-2 surface reflectance
imagery, since it has been proven that both can be used for the successful detection of
urbanization population density and economic activity. This has also been confirmed
through our experimentation given in Section 5.

The data are collected through Google Earth Engine (GEE), a cloud platform engi-
neered by Google, that combines a huge catalog of satellite imagery from various sources,
such as NOAA, NASA, and USGS. It also features preprocessed geospatial datasets that
make large-scale analysis possible. Scientists, researchers, and developers use Earth Engine
to detect changes, map trends, and quantify differences on Earth’s surface [54]. Earth
Engine is available for commercial use, while remaining free for academic and research use.

We chose GEE over other platforms, such as Sentinel Hub, because of its ease of use,
its clear documentation, and its huge user community. GEE also provides an API for easier
integration with Python, which is our programming language of choice because of its
data science libraries. Finally, the fact that GEE is capable of executing the majority of
the needed computations on the cloud (albeit with some limitations) makes it ideal for
the platform we envisioned, i.e., one that is accessible by anyone, without the need for
a powerful computational system or abundance of storage. Finally, GEE is enhanced by
contributions from the open-source community, with libraries such as geemap and eemont
which are the main tools we used.

Using the eemont and Awesome Spectral Indices libraries, we can calculate the time
series for the average radiance from the VIIRS DNB collection, NDVI, NDBI, EMBI, PISI,
VgNIRBI, VrNIRBI spectral indices. We chose these indices because they have been used
extensively in applications where the evaluation of vegetation and impervious surfaces
over an area of interest is important. eemont extends the original GEE capabilities by adding

https://developers.google.com/earth-engine
https://eemont.readthedocs.io/en/latest/
https://awesome-ee-spectral-indices.readthedocs.io/en/latest/
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automation of various kinds, such as histogram matching for data fusion, panchromatic
sharpening, and cloud masking.

The prefecture of Magnesia and the city of Volos (where we are located) were selected
as our study case area. Unfortunately, we were unable to extract ground-truth data regard-
ing abandoned buildings for our study area, Volos municipality, Greece. Ground-truth
data are essential to train and evaluate our machine learning model’s performance. To
accomodate this, we explored two solutions. The first one involves the collection and
use of data from other regions. The second methodology focused on the acquisition of
crowd-sourced data for not-abandoned buildings and a really small hand-labeled dataset
for vacant ones. Both methodologies follow a similar structure based on the existing litera-
ture, where house and land vacancy are in general correlated with increased vegetation [4]
as well as nighttime light radiance [55].

For our first method, we selected datasets from the city of Chicago that had ground-
truth labels, as well as the exact geometry features of each building. Specifically, the Chicago
dataset was pulled from the city’s data portal and includes requests such as water quality
reports, illegal construction, etc., and has been updated daily since the end of 2018. This
dataset contained requests for abandoned buildings and vacant land; however, there was
not a feature for not-abandoned buildings, so we assumed that requests related to water
quality and illegal building were indications of their existence. There is a similar dataset
for Philadelphia https://www.opendataphilly.org/dataset/vacant-property-indicators
(accessed on 19 May 2023) that enjoys more or less the same characteristics, although with
a rather limited size. We also created a small dataset of hand-labeled features for the city
of Volos.

For the second method, we obtained data for nonvacant buildings from OpenStreetMaps
using the Turbo Overpass API. These data include spatial information for residential areas,
public facilities (e.g., schools), and amenities (e.g., cafes). As for the abandoned buildings’
data, we hand-crafted a small dataset by searching through the city of Volos and generating
their coordinates through geojson.io.

4.2. Data Preprocessing

The preprocessing pipeline, depicted in Figure 1, consists of cloud masking, scaling
the images retrieved via GEE, creating monthly image composites, and finally comb-
ing our retrieved time series into one single dataset, ready to be fed into the classi-
fiers. Cloud masking is a vital preprocessing step in any geospatial analysis applica-
tion (https://medium.com/google-earth/more-accurate-and-flexible-cloud-masking-for-
sentinel-2-images-766897a9ba5f, accessed on 1 September 2023), since clouds captured in
satellite imagery can interfere with the results of our analysis. To solve this problem, we
chose the Sentinel-2 surface reflectance product, which offers information about the cloud
probability within an image. It is a collection of cloud probability images, where for every
image in the Sentinel-2 archive, a cloud probability per pixel at a 10 m scale is calculated
through a joint effort between Sentinel Hub and Google. This provides a flexible method
to mask cloudy pixels to create composites ready for classification tasks. While Sentinel-2
already offered the Quality Assurance band (QA60), a binary classifier for thick and cirrus
clouds, the new algorithm called s2cloudless offers the ability to fine-tune the cloud masking
procedure by choosing a probability threshold between 0 and 100.

Figure 1. Machine learning pipeline diagram.

https://data.cityofchicago.org/
https://www.opendataphilly.org/dataset/vacant-property-indicators
https://geojson.io/
https://medium.com/google-earth/more-accurate-and-flexible-cloud-masking-for-sentinel-2-images-766897a9ba5f
https://medium.com/google-earth/more-accurate-and-flexible-cloud-masking-for-sentinel-2-images-766897a9ba5f
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To perform cloud masking for our Sentinel-2 images, we used the method provided
by eemont (https://eemont.readthedocs.io/en/0.1.7/guide/maskingClouds.html, accessed
on 1 September 2023). We used the default option to filter all the images with more than
60% cloud probability, a moderate threshold that captures the majority of cloudy pixels
while not removing clear pixels from the images.

The second preprocessing step involves the Scale and Offset operations on the GEE
images. Most images in Google Earth Engine are scaled to fit into the integer datatype.
To obtain the original values, we multiplied them with the associated retrieved scalars.
While the scaling procedure changes based on the bands and for the supported platforms
(e.g., Landsat, Sentinel, etc.), the eemont method automates the scaling for all supported
bands (https://eemont.readthedocs.io/en/0.2.0/guide/imageScaling.html, accessed on
1 September 2023).

Another important part of preprocessing is the creation of monthly composites.
Sentinel-2 SR has a temporal resolution of 1 image every 5 days for the same region. On the
other hand, VIIRS Monthly Composites are monthly average radiance composite images us-
ing nighttime data from the Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night
Band (DNB).To be able to match these products, we used a library called wxee, which also
extends GEE’s capabilities. Specifically, we generate time series for our selected spectral
indices by performing a temporal aggregation from almost daily to monthly frequencies.

4.3. Machine Learning Models

For each of the aforementioned approaches for the detection of abandoned buildings,
we utilized the Random Forest and the One-Class Support Vector Machine models. We
constructed various classifiers provided by the sklearn python library to evaluate the effect
of different band combinations as well as different parameter values on final performance.

Picking the indices manually is surely an exhausting and probably redundant process;
so, we created the rest of the combinations based on the results of their correlation matrix,
shown in Figure 2. Here, we should point out that it is worth comparing the correlation
matrices related to the city of Chicago (on the left) with the city of Volos (on the right). It is
known that when two features have a high correlation, we can omit one of them. While
there are various techniques like dimensionality reduction, we decided to select the features
manually based on our intuition, regarding both their usage and correlation. In our case,
we disregarded the IBI index, since it contained outliers as well as features that have an
absolute value of 50. Random Forest is an ensemble-based learning method that has found
extensive applications in different domains, including remote sensing [13,56,57]. Random
Forest algorithms have three main hyperparameters which need to be set before training.
These include node size, the number of trees, and the number of features sampled.

Figure 2. Correlation matrix for index time series generated for Chicago (left) and Volos (right).

The Random Forest algorithm is a combination of decision tree predictors, comprising
a data sample drawn from a training set with replacement, called the bootstrap sample.
One-third of the training sample is used as test data (out-of-bag sample (OOB)). Another

https://eemont.readthedocs.io/en/0.1.7/guide/maskingClouds.html
https://eemont.readthedocs.io/en/0.2.0/guide/imageScaling.html
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instance of randomization is then injected into the dataset using feature bagging, which
increases diversity and decreases the correlation among decision trees. The forecast determi-
nation will differ depending on the type of task (i.e., regression, classification). Individual
decision trees will be averaged for a regression task, and a majority vote (i.e., the most
common categorical variable) will produce the predicted class for a classification problem.
Finally, the OOB sample is used for cross-validation, which finalizes the prediction process.
Because the averaging of uncorrelated trees reduces variation and prediction error, Ran-
dom Forests lessen the danger of overfitting. Furthermore, they are adaptable, because
they can accommodate missing information and can be utilized in both classification and
regression issues.

As we mentioned, hyperparameter optimization is an essential task in machine learn-
ing; so, we tried different combinations that would deliver the highest possible accuracy.
Firstly, for each feature combination, we tested the number of tree estimators from 50 to
600 at 50-tree intervals and the depth parameter from 10 to 100 at increments of 10. The
minimum number of data points placed in a node before the split, the minimum number of
data points allowed in a leaf node, and the bootstrap method were kept the same during
the whole optimization. For example, in the case of using all available features to build the
classifier and increase the number of estimators, the model’s accuracy kept increasing till
we reached the 450 threshold, and it started decreasing slightly after the 500 mark. At the
same time, increasing the maximum number of levels in each decision tree increased the
accuracy by a little till we reached a maximum of 0.697% at a max depth of 30, before the
results started fluctuating at smaller values.

A similar process was followed for the tuning of the other classifiers. The results are
summarized in Table 1. The parameter selection and the related accuracy are presented in
Table 1.

Table 1. Selected Feature Combinations for Random Forest Experiments.

Parameters
Features

Max Depth # of Estimators
RF Accuracy

NDVI, NDBI 20 400 0.663%

NDVI, NDBI, Average Radiance 20 350 0.681%

VgNIRBI, Average Radiance 20 600 0.666%

Apart from the Random Forest method, we implemented an algorithm introduced
by [58] called One-Class Support Vector Machine (OSVM). This technique is used to
perform classification when the negative class is either absent, poorly sampled, or poorly
characterized. The method solves this problem by defining a class boundary just with the
knowledge of the provided positive class. This technique has found application in many
fields, with concept learning and outlier detection being some of them [59].

In our case, the scarcity of abandoned buildings for our study area prevents us from
using solely the aforementioned Random Forest classifier. In this context, and since data
for nonvacant buildings are available, we chose to use OSVM. We set the not-abandoned
buildings as the positive class and assumed that buildings that did not fulfill all the
criteria set by the OSVM would be classified as negative, in other words, abandoned.
The model was trained on various combinations of spectral indices and NTLs, with its
accuracy varying.

To evaluate the performance of OSVM, we constructed a hand-labeled geo-referenced
dataset for abandoned and not-abandoned buildings across the municipality of Volos. The
dataset consists of the buildings’ geometries, which were extracted from OpenStreetMaps
using the Overpass API and/or by hand where exact coordinates were not available.

Similarly, with the Random Forest approach, we performed some statistical tests on
our selected parameters. Specifically, we used the Spearman and Pearson coefficients to
check if their correlation was significant at a 0.05 significance level (a = 0.05). The Null

https://overpass-turbo.eu/
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Hypothesis that the correlation coefficient was significantly different from 0 (no correlation)
was rejected in all index combinations; so, their correlation matrix was also computed
(Figure 2) to choose the ones that correlated less than 0.5.

4.4. User Interface

The user interface depicted in Figure 3 is based on the one provided in the geemap
geospatial package [60,61] and deployed via Streamlit. This approach not only offers
additional capabilities apart from the ones we implemented but also highlights our soft-
ware’s openness and compatibility with existing ones. For the applications adapted
to our needs, but not originally created by us, you can refer to the repository (https:
//github.com/giswqs/streamlit-geospatial, accessed on 1 September 2023). When the user
first lands on the main page, they are greeted by a short description of the app. On their
left side, they can choose between different applications, including Random Forest classifi-
cation of abandoned buildings, One-Class SVM classification of abandoned buildings, Map
Visualization, Timelapse, Marker Cluster for Greek Cities, and Population Heat-map for
Greek Cities.

Figure 3. User interface snapshot.

In the case of our applications regarding abandoned building detection, the user is
asked to provide their desired geojson file. This file contains the spatial information for the
area of interest (AoI). If no such file is available, they can generate one by simply drawing
a polygon on the provided map, exporting it, and then uploading it. In addition, we
have been experimenting with other ways (e.g., APIs for landviewer and geo4j) to further
automate the generation of the geojson file with success.

After the AoI is selected, we can specify the number of equally sized grids to discretize
the AoI. However, the number of polygons that the area can be split into is limited in the
current implementation due to GEE’s computational limits. During the computation, the
signal for each operation will be displayed on the main screen. When complete, the grids
identified by our method will be displayed on a map as green or red polygons depending
on the absence or existence of abandoned buildings, respectively. Moreover, the user could
create time-lapses for the defined AoI by simply specifying their desired imagery source
(e.g., VIIRS, Landsat, etc.), as well as the time frame. Moreover, the user should be able to
just enter the desired location, such as country, city, etc., and let our system take care of
the rest.

The user may in addition select one or more additional types of analysis related to
Land Use and Land Cover (LULC) prediction, crop monitoring (we used NDVI/EVI or
similar indexes to show current vegetation health and predict possible changes if possible),

https://streamlit.io/
https://github.com/giswqs/streamlit-geospatial
https://github.com/giswqs/streamlit-geospatial
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and finally checking nighttime lights and predicting the GDP of the desired area, inference
population density, and other interesting facts about the AoI. The system could return
related graphs (see, for example, Figure 4) of these Business-Intelligence related products
or just give the user a simple answer.

Figure 4. Average radiance plot for Oikonomaki street.

5. Experimentation and Evaluation

Before proceeding with our model experimentation, we would like to validate the
correlation of nighttime lights to human activity. Specifically, we generated a time series for
the Oikonomaki street in Volos, which contains mostly cafes and nightlife amenities. The
data were collected for the 2015 to 2022 period and their value changes in relation to various
important events were evaluated (Figure 4). For example, the rise around the end of 2018 is
connected with the increasing number of bars in the area, while the drop in 2020 is related
to the COVID-19 pandemic and the lockdowns. This is also emphasized by the fact that we
can see fluctuations after 2021, around the times that the lockdowns were relaxed. Apart
from that, we also created some map visualizations for the whole region of Magnesia for the
years from 2016 to 2021. The average radiance values were normalized by subtracting the
mean values and dividing the results by the variance to make the relatively low-resolution
viirs images more discernible. Although it is difficult to notice in the provided images
(Figure 5), we can identify an increase in nighttime lights between these four years, possibly
related to urban expansion and increasing human activity. Some lights became invisible
in areas such as Trikeri, but that is probably an artifact of the normalization. The ability
of our methods to detect abandoned buildings was evaluated through the platform we
created and whose user interface is depicted in Figure 3. The experimentation followed the
following steps. For each experiment, we selected areas with different characteristics, such
as dense urban core, residential areas near city outskirts, and coastal areas within the Volos
municipality. These areas were relatively big, containing roughly 2/3 of the whole city.
Each region of interest is split into smaller equally sized polygons (grids) using a fishnet
method. This method takes as input the area of interest and discretizes it, according to
user input, into n columns and k rows. As these numbers increase, the size of the polygons
decreases in order so that we can fit more inside the initial area. We experimented with
using different sizes, varying between 5 × 5, 15 × 15 and 25 × 25. Next, we evaluated the
capability of different classifiers to detect a building’s vacancy property on the set grids. In
some interesting cases, where the models seemed to perform worse due to their placement
inside the polygon, we evaluated them in smaller parts of these areas. The results vary
greatly depending on the model, grid size, and selected features.
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Figure 5. Nighttime Llights over the Magnesia region before (left) and after (right) preprocessing.

5.1. Random Forest Experiments

Using the constructed classifiers for the various feature combinations, we evaluated
the ability of data from the metropolitan areas of foreign nations, where data are available,
to generalize in an average-sized Greek city.

For our first experiment, we used a Random Forest classifier trained on all the features
of the Chicago dataset we have constructed. The first area we experimented on was the
city center, which contains the majority of the city’s cafes, pubs, and shops and where
a large number of buildings in general are located. Selecting a 5 × 5 fishnet, the model
detects, as expected, a lot of False Positives, especially in not-well-lit areas, and while it
detects many True Negatives (e.g., Koumoundourou street), most of them fell outside the
selected area of interest. Increasing the number of discretization grids lead to an increase
on the number of correctly classified areas and to an increase of False Positives, with
some of Koumoundourou’s amenities being misclassified as abandoned. The area near
Oikonomaki street was concerning as well, since the results were consistent with each
grid size iteration; so, we evaluated this area independently. Selecting a 5 × 5 fishnet, we
noticed that the model misclassifies the majority of grids within this area. Grids with
increased vegetation and no buildings were classified as not-abandoned (False Negative),
while the rest of the grids were completely falsely detected as abandoned (False Positives).
Increasing the number of grids lead to an increase on the number of correctly detected
areas as not-abandoned, it did not detect vacant places, thus indicating the inability of the
model to assert a property in dense urban areas.

The next area that assessed was the one expanding between the port, the Old Town,
and Epta Platania, which is characterized as being mostly residential, with parks and the
train and bus stations nearby. In this case, the model correctly detects the majority of
areas with zero buildings, such as roads or parks, as abandoned, as well as schools and
train and bus stations as not-abandoned. Many of the houses were also classified correctly
as not-abandoned, indicating the ability to classify correctly nonvacant buildings in not-
dense residential areas. While the various pubs and clubs of the Old Town were classified
correctly, there was a part of the AoI that featured some restaurants that was detected as a
False Positive. This is probably because this area is dimly lit and has increased vegetation.

Finally, we selected the coastal area of the city where we had the most True Positives
and Negatives detected on a 25 × 25 grid. The majority of areas without buildings are
correctly categorized as abandoned and the majority of cafes by the coast as not-abandoned.
Nevertheless, there were instances where some hotels were misclassified as abandoned.
Generally, the model can detect the majority of nonvacant properties but fails to detect
abandoned buildings confidently (Figure 6).

The second experiment involves the classifier with VgNIRBI spectral index and the
average radiance. When split into 5 × 5 fishnets, the previously misclassified restaurants
and the museum in the Old Town area, were detected as not-abandoned and the completely
barren areas (e.g., behind the bus station) as abandoned. On the other hand, areas that
included amenities but fell into the same grid with barren land were misclassified, with
the bus and train stations being the most interesting. The majority of houses were also
misclassified. Increasing the grid size alleviated some of the issues regarding amenities, but
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the model could not identify the single-story houses as not-abandoned. The coastal area,
consistently across all different grid sets, had the majority of False Positives, with most
of the amenities being classified as abandoned and areas without buildings with mostly
vegetation as not-abandoned.

Figure 6. Experimentation results on central area using all spectral indices in Random Forest.

This model performed the worst in the city center case, with the majority of grids
being classified as False Positives. Overall, the model did not perform well and seems
sensitive to changes in the landscape, making it inconsistent and generally unable to detect
abandoned buildings.

The third experiment was performed using the NDVI and NDBI index combination.
In all three areas, and with the three different fishnet sizes, the model was unable to not
only detect abandoned houses but also identify the nonvacant ones correctly, a behavior
not shared by previous models. Parts of the seaside area were identified as not-abandoned,
while the nearby shops were. Moreover, the rest of the True Negative results seem random,
with the only common part being the inclusion of roads.

In the fourth experiment, we evaluated the performance of NDVI and NDBI along
with the average radiance. The model predicted the majority of split polygons in the various
areas of interest as False Positives, as depicted in Figure 7. While in most cases the Random
Forest models using spectral index and nighttime light radiance from Chicago seem to
be capable of detecting the majority of not-abandoned buildings, they fail dramatically to
identify the abandoned ones and thus are not suitable for our needs. This can be due to
various reasons, such as our wrong assumptions regarding the index selection and errors
during the computation of said indices. Apart from bias generated by our decisions and
assessment of the results, the data themselves may vary significantly compared with the
ones we are trying to test our methods on. To test this, we performed some statistical
tests. The indices, derived from Chicago and Volos, were computed for the dates between
1 January 2021 and 1 May 2022 to counter possible outliers related to the pandemic and
because of data availability.

Firstly, we performed a Levene test to check the variance in both cases. Since the
returned p-value was equal to zero in all our cases, we rejected the Null Hypothesis and
assumed that the two populations had significantly different variances. Next, we performed
a t-test to assess the means of the two independent samples. Since this method assumes
by default that the samples have equal variance, something not relevant in our case, we
used Welch’s implementation. The calculated p-values were equal to zero at a 0.05 level of
significance (a = 0.05), and thus the samples have a statistically significant mean difference.
Spectral data derived from Chicago were considerably different from the ones regarding
our area of interest and thus not suitable for accurate classification tasks.
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Figure 7. Experimentation results on all areas (25 × 25) using NDVI/NDBI (top three pictures) and
NDVI/NDBI/average radiance (bottom three) in Random Forests.

5.2. One-Class SVM Experiments

The second approach involves the use of One-Class SVM models using indices derived
from the previously mentioned correlation tests. The model’s hyperparameters were set
to default for most of the classifiers, with only one case where we decided to reduce the
nu parameter by 0.1 (https://scikit-learn.org/stable/modules/generated/sklearn.svm.
OneClassSVM.html, accessed on 1 September 2023).

The experiment using just the EMBI index was conducted first. Using this method,
with a 15 × 15 fishnet in the city center area, resulted in the detection of some abandoned
buildings but not to a satisfying degree. Some of the bars and restaurants, especially the
ones including some vegetation, were misclassified as abandoned. Increasing the number
of polygons provided similar results, with the only difference being that some buildings
were classified correctly as True Negatives. Moving to the area with sparse buildings, the
results were a bit more promising, with some unused storage buildings and pubs being
classified correctly. Unfortunately, the model classified various houses as abandoned due to
the increased presence of vegetation in their yards. Contrary to our expectations, increasing
the number of polygons in this case provided worse results, with errors in some previously
correctly detected areas. In the case of the coastal areas, the model performed similarly
where increased vegetation was present but classified some of the cafes as abandoned.
Generally, the model cannot provide adequate results for the detection of vacant buildings.

Since the EMBI made correct predictions but failed in cases of various buildings whose
activity is more pronounced during the night, we combined it with the average radiance of
nighttime lights. Checking the central area in various split instances, the majority of not-
abandoned buildings were classified now correctly, including shops, pubs, and restaurants,
independently of the vegetation presence. Some of the abandoned buildings or vacant lots
were also categorized appropriately. When evaluating the area near the Old Town, the
model’s predictive capability was hit. Most of the nightlife amenities, as well as department
stores, were False Positives. The only instance where the model was accurate was in areas
with no buildings.

The results in the coastal area followed the same pattern. Areas that are less busy
during the night, such as restaurants, or that did not have a lot of buildings were classified
as abandoned, regardless of other characteristics. However, this was also the case for some
cafeterias. Splitting these larger areas to fit polygons more accurately did not improve the
results by a lot.

Overall, the model seems sensitive to nightlights, and since it performed better than
the previous ones, we decided to tune some of its parameters. To be precise, we modified
the nu parameter specified in [62], which fine-tunes the trade-off between overfitting and

https://scikit-learn.org/stable/modules/generated/sklearn.svm.OneClassSVM.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.OneClassSVM.html
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generalization. Nu specifies a lower bound for the number of samples that are support
vectors and an upper bound for the number of samples that are on the wrong side of the
hyperplane. The default is 0.1. The nu parameter must be in the range [0, 1]. For instance,
for an nu value of 0.1, the decision boundary will allow a maximum of 10% of the training
samples to be incorrectly classified or to be regarded as outliers. After experimenting with
different values of nu using our constructed Volos dataset, we decided to use a nu equal
to 0.4 to allow less of the training dataset to be misclassified and since it is less than the
default value of 0.5.

In the area that covers the Old Town and Epta Platania, we noticed a big improvement
in the classification of pubs and restaurants. All of the amenities in the Old Town and near
the train station were True Negatives. Various points of interest were misclassified in bigger
grids but showed considerable improvements as they decreased in size. Issues regarding
vegetation were still present but at a smaller degree than previously.

The identification of amenities across the coastal area was consistent in all different
fishnet sizes. The park near Agios Konstantinos was classified as abandoned on its whole
in bigger-sized grids, but as we increased the number of polygons, the included buildings
were classified correctly as not-abandoned. While there were cases of False Positives in
areas with increased vegetation, this is due to how they are topologically located within
the grids. Thus, since we were able to increase the grid number without exceeding the
computational limits of GEE, we tested the area in a 30 × 30 fishnet. The results concerning
the amenities were similar, but there were also not-abandoned buildings with increased
vegetation that were classified correctly.

Finally, the central area was classified with a low degree of identified False Positives
or Negatives. The model was able to identify all cafes and restaurants that are prevalent
in the area (Figure 8). Hyperparameter tuning using more sophisticated methods seems
mandatory to evaluate our method more efficiently.

Figure 8. Experimentation results on all areas (25 × 25) using EMBI index (top three pictures) and
EMBI average radiance (bottom three) in One-Class SVM.

5.3. Ground-Truth Comparisons and Neural Network Implementation and Testing

Even though the One-ClassSVM approach seems promising for tackling the lack of
ground-truth data for the city of Volos, we would like to present selected findings from the
Chicago dataset. As mentioned, these were retrieved from the city’s open-data repository,
and as such, we can efectivelly validate our models’ performance.

We performed various tests using different algorithms, including a Convolutional
Neural Network and state-of-the-art time series classifiers (e.g., HIVE-COTE 2.0) from the
sktime library, keeping their default parameters and calculating their accuracy, precision,
and F1 score. Please recall that precision refers to how close measurements of the same
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item are to each other and that precision is independent of accuracy. We refer the reader to
https://arxiv.org/abs/2104.07551 and https://inria.hal.science/hal-03558165/document
(accessed on 1 September 2023) for all the details available. Our results are given in Table 2.

Table 2. Performance comparison for the Convolution Neural Network and the Time Series Forest
Classifier for the city of Chicago dataset.

Classifier Accuracy Precision F1

Convolution Neural Network 0.641148 0.563805 0.409708
Time Series Forest Classifier 0.607582 0.609809 0.594830

In Figure 9, we present the performance of the two classifiers through their maps
resulting from two different experiments for each classifier (the top two for the Convolution
Neural Network and the bottom two for the Time Series Forest Classifier. We mention that
the general behavior depicted in these maps is indicative of the behavior of almost all the
related experiments we performed.

Specifically, in these maps:

• Light green or light red dots represent abandoned buildings falsely classified as
not-abandoned by our models.

• Dark green or dark red dots represent abandoned buildings correctly classified as
abandoned by our models.

• Gray dots represent not-abandoned buildings falsely classified as abandoned by
our models.

Figure 9. Experimentation with Neural Net (on the two color labeled maps on the top of the figure)
and with Time Series Forest (on the two color labeled maps on the bottom of the figure).

Certain issues or observations are worth mentioning. The Chicago dataset does not
include polygon shapes for the individual buildings (valued for longitude and latitude on

https://arxiv.org/abs/2104.07551
https://inria.hal.science/hal-03558165/document
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the x- and y-axis) but only points with their coordinates. This hinders the calculation of
accurate time series for each building, since we can calculate only a part of it. A possible
solution is to infer the building polygon and perform the computations involved, which is
a rather demanding process.

A problem with the use of more advanced models is that they are resource-intensive
and cannot be easily loaded on free cloud-based hosting platforms (e.g., streamlit).

5.4. Overall Evaluation of Our Methodology

Taking the above experiments into consideration, we can reach several conclusions,
vital for the improvement of the current methodology. First of all, it can be derived that it
is very difficult to use data originating from other cities, or at least ones that do not share
similar characteristics. In the case of the Random Forest approach, Chicago and Volos
unfortunately had statistically significant differences in the majority of indices and night
light emission. Thus, the models created under the assumption that we could use these
data failed to perform as intended across most experiments, and even when they did, their
overall precision was not reassuring.

On the other hand, in the case of One-Class SVM, where data were collected from
the case study area, the results were promising. In contrast with single urban extraction
indices (e.g., EMBI case), nighttime lights seem essential in detecting abandoned or disused
buildings. Using the combined approach resulted in considerably fewer False Positives
or Negatives in the classification scheme of dense and coastal areas, where the model was
able to detect various vacant properties. The model, while not adequate, performed better
in suburban parts of the city than in other parts.

Both approaches were hindered, however, since the hyperparameter tuning process
was unfortunately manual and intuitive we are far from sure that we have selected the best
parameters. Moreover, all models seem to be affected by the size of the fishnet which splits
the area of interest. In most cases, increasing the number of available polygons improved the
model’s precision, but there were still various problems, such as the unwanted inclusion of
roads, nearby barren land, or vegetation. Equal-sized polygons, while easier to implement,
oftentimes cannot capture the characteristics of the AOI efficiently, creating ‘noise’ that
the classifiers were sensitive to. Thankfully we can combat that by either using other
shapes to split the area with or selecting the building’s exact shape and creating a mask.
Ref. [63] proves the ability of polygonal grids to cover the areas of interest more efficiently
across regions with different topologies, and ref. [4] uses high-resolution imagery to extract
individual vacant house parcels.

Finally, there is possible bias and error introduced in the way we evaluate the perfor-
mance of these algorithms in both cases. Since there was no available data for abandoned
buildings, and the creation of a large dataset was a difficult process, we verified our results
by either using Google Street View imagery, which can in many cases be outdated, or by
visiting the sites ourselves. As crowd-sourcing platforms such as OpenStreetMaps and
GeoWiki become more popular, a lot of stress can be alleviated [64,65].

6. Synopsis and Future Work

Satellite remote sensing has gained a lot of interest, with many successful applications
in various different sectors and industries proving its importance. Satellite-produced data
are difficult for a human to analyze and use efficiently; so, machine learning has been em-
ployed in the majority of geospatial analyses. In particular, it is widely accepted that small
and medium enterprises cannot benefit from satellite-based business intelligence products.

In this paper, we first offer a comprehensive and up-to-date overview of existing
research efforts, results, and tools for selected related BI products. We then focus on the
particular BI service of the detection of abandoned buildings in a city, a task that seems to
be much more challenging than several others.

More specifically, we discuss how satellite imagery and machine learning can be
utilized in order to improve the sectors that greatly affect SMEs in general and the Greek
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economy in particular, focusing on agriculture and tourism. Apart from these, we in-
troduced means, through satellite imagery, for better policymaking and management in
Greece, which has been plagued with unregulated large-scale urbanization.

Motivated by the many remote sensing and machine learning achievements, we
proposed a method to detect abandoned buildings in an area of interest. Abandoned
buildings mainly result from the daunting economic situation in Greece and elsewhere,
and their existence can impact the performance of several businesses.

Our research and development efforts are surely far from complete. They mostly focus
on a single city. Nevertheless, according to our results, outlier detection seems promising
for detecting vacant buildings.

Our proposed open-source software can identify vacant and disused buildings in areas
with different topology properties successfully, making it a great tool for Business/Location
Intelligence. Small and medium-scale businesses can use it in order to validate a location
for its economic sustainability (via nighttime lights) and possible dangers due to aban-
doned buildings, while policymakers can identify problematic areas and proceed to take
necessary action.

Light pollution can be described as the phenomenon of excessive or unwanted artificial
light and may have multiple implications.

One case of light pollution is stray light. For an optical system, stray light implies
unwanted rays reaching the detecting surfaces that come from an unintended source or
from an intended source that follows an unintended path. For example, you might have
a dark suburban backyard where a neighbor’s bright patio intrudes. This may have a
serious impact on the satellite’s optical payload, and there have been various studies on
the suppression of stray lights in order to improve measurement uncertainties; see, for
example, [66].

Significant studies have already been devoted to stray light suppression in socioeco-
nomic studies; see [67] and references therein. We clearly see the importance of reducing
stray light in obtaining more accurate results for our study. Nevertheless, taking into
account the low spatial resolution of our dataset, such an effort is beyond the scope of
our paper.

One of our software’s fundamental issues is the way we split our areas of interest using
equal-sized polygons. These shapes are neither effective nor efficient, in a variety of cases, to
capture the characteristics of a building, resulting in misclassification. The use of alternative
shapes such as hexagons should improve the model’s predictability significantly. Moreover,
the current hyperparameter tuning methods are manual and thus not tested extensively.
The use of Gridsearch Cross-Validation or similar but faster techniques (e.g., TuneSearchCV
Bayesian Optimization) would enhance our model’s accuracy and counter overfitting.

Furthermore, further experimentation regarding preprocessing should be conducted
in order to increase the information we can gain from free-of-cost satellite imagery. Methods
that increase image resolution with the use of GANs and techniques that reduce image
noise could improve the software’s performance. Alternatively, we could implement Deep
Neural Networks, proposed in the existing literature, that take raw, unprocessed images as
input and have promising results.

Finally, the proposed software currently suffers from inefficient accuracy metrics;
hence, future work should use methods of automatic evaluation through existing very
high-resolution image datasets, such as SAT4, SAT5, and Google Street View (https://
github.com/Sardhendu/PropertyClassification, accessed on 1 September 2023).

It is worth noting that all software and data considered in this study are publicly
available at https://github.com/ckyriakos/thesis_front_end (accessed on 1 September
2023). Furthermore, all references considered (regardless of whether they are presented
explicitly in this paper or not) are also available at the above GitHub address.

Author Contributions: Conceptualization, M.V.; methodology, M.V. and C.K.; software, C.K.; val-
idation, M.V. and C.K.; investigation, M.V. and C.K.; resources, M.V. and C.K.; data curation, X.X.;
writing—original draft preparation, C.K.; writing—review and editing, M.V.; visualization, M.V.

https://github.com/Sardhendu/PropertyClassification
https://github.com/Sardhendu/PropertyClassification
https://github.com/ckyriakos/thesis_front_end


Future Internet 2023, 15, 355 27 of 29

and C.K.; supervision, M.V.; project administration, M.V. All authors have read and agreed to the
published version of the manuscript.

Funding: The research efforts of M.V. have been cofinanced by the European Union and Greek
National funds through the Operational Program Competitiveness, Entrepreneurship, and Inno-
vation, under the call RESEARCH–CREATE–INNOVATE (Project acronym: IME, project code:
T1EDK-02151).

Data Availability Statement: Publicly available datasets are analyzed in this study. This data can be
found here: https://github.com/ckyriakos/thesis_front_end.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Benchabana, A.; Kholladi, M.K.; Bensaci, R.; Khaldi, B. Building Detection in High-Resolution Remote Sensing Images by

Enhancing Superpixel Segmentation and Classification Using Deep Learning Approaches. Buildings 2023, 13, 1649. [CrossRef]
2. Zou, S.; Wang, L. Detecting individual abandoned houses from google street view: A hierarchical Deep Learning approach.

ISPRS J. Photogramm. Remote Sens. 2021, 175, 298–310. [CrossRef]
3. Informatics, U.; Li, Y.; Meng, X.; Zhao, H.; Li, W.; Long, Y. Identifying abandoned buildings in shrinking cities with mobile

sensing images. Urban Inform. 2023, 2, 1–12. [CrossRef]
4. Zou, S.; Wang, L. Individual Vacant House Detection in Very-High-Resolution Remote Sensing Images. Ann. Am. Assoc. Geogr.

2019, 110, 1–13. [CrossRef]
5. Frazier, A.E.; Hemingway, B.L. A technical review of planet smallsat data: Practical considerations for processing and using

planetscope imagery. Remote Sens. 2021, 13, 3930. [CrossRef]
6. Zhuang, F.; Qi, Z.; Duan, K.; Xi, D.; Zhu, Y.; Zhu, H.; Xiong, H.; He, Q. A Comprehensive Survey on Transfer Learning. Proc. IEEE

2020, 109, 43–76. [CrossRef]
7. van Klompenburg, T.; Kassahun, A.; Catal, C. Crop yield prediction using machine learning: A systematic literature review.

Comput. Electron. Agric. 2020, 177, 105709. [CrossRef]
8. Sagan, V.; Maimaitijiang, M.; Bhadra, S.; Maimaitiyiming, M.; Brown, D.R.; Sidike, P.; Fritschi, F.B. Field-scale crop yield prediction

using multi-temporal WorldView-3 and PlanetScope satellite data and Deep Learning. ISPRS J. Photogramm. Remote Sens. 2021,
174, 265–281. [CrossRef]

9. Mansaray, A.S.; Dzialowski, A.R.; Martin, M.E.; Wagner, K.L.; Gholizadeh, H.; Stoodley, S.H. Comparing planetscope to landsat-8
and sentinel-2 for sensing water quality in reservoirs in agricultural watersheds. Remote Sens. 2021, 13, 1847. [CrossRef]

10. Moon, M.; Richardson, A.D.; Friedl, M.A. Multiscale assessment of land surface phenology from harmonized Landsat 8 and
Sentinel-2, PlanetScope, and PhenoCam imagery. Remote Sens. Environ. 2021, 266, 112716. [CrossRef]

11. Sharma, S.; Rai, S.; Krishnan, N.C. Wheat Crop Yield Prediction Using Deep LSTM Model. arXiv 2020, arXiv:2011.01498.
[CrossRef]

12. Roznik, M.; Boyd, M.; Porth, L. Improving crop yield estimation by applying higher resolution satellite NDVI imagery and
high-resolution cropland masks. Remote Sens. Appl. Soc. Environ. 2022, 25, 100693. [CrossRef]

13. Mudereri, B.T.; Dube, T.; Adel-Rahman, E.M.; Niassy, S.; Kimathi, E.; Khan, Z.; Landmann, T. A comparative analysis of
planetscope and sentinel sentinel-2 space-borne sensors in mapping striga weed using guided regularised random forest
classification ensemble. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 42, 701–708.

14. Xian, G.; Shi, H.; Dewitz, J.; Wu, Z. Performances of WorldView 3, Sentinel 2, and Landsat 8 data in mapping impervious surface.
Remote Sens. Appl. Soc. Environ. 2019, 15, 100246. [CrossRef]

15. Wilson, K.L.; Wong, M.C.; Devred, E. Comparing Sentinel-2 and WorldView-3 Imagery for Coastal Bottom Habitat Mapping in
Atlantic Canada. Remote Sens. 2022, 14, 1254. [CrossRef]

16. Zhang, T.; Zhang, X.; Shi, J.; Wei, S. HyperLi-Net: A hyper-light Deep Learning network for high-accurate and high-speed ship
detection from synthetic aperture radar imagery. ISPRS J. Photogramm. Remote Sens. 2020, 167, 123–153. [CrossRef]

17. Zhao, W.; Qu, Y.; Chen, J.; Yuan, Z. Deeply synergistic optical and SAR time series for crop dynamic monitoring. Remote Sens.
Environ. 2020, 247, 111952. [CrossRef]

18. Tassopoulos, D.; Kalivas, D.; Giovos, R.; Lougkos, N.; Priovolou, A. Sentinel-2 imagery monitoring vine growth related to
topography in a protected designation of origin region. Agriculture 2021, 11, 785. [CrossRef]

19. Arab, S.T.; Noguchi, R.; Matsushita, S.; Ahamed, T. Prediction of grape yields from time-series vegetation indices using satellite
remote sensing and a machine-learning approach. Remote Sens. Appl. Soc. Environ. 2021, 22, 100485. [CrossRef]

20. Zhao, Y.; Potgieter, A.B.; Zhang, M.; Wu, B.; Hammer, G.L. Predicting wheat yield at the field scale by combining high-resolution
Sentinel-2 satellite imagery and crop modelling. Remote Sens. 2020, 12, 1024. [CrossRef]

21. Song, X.; Yang, C.; Wu, M.; Zhao, C.; Yang, G.; Hoffmann, W.C.; Huang, W. Evaluation of Sentinel-2A satellite imagery for
mapping cotton root rot. Remote Sens. 2017, 9, 906. [CrossRef]

22. Xun, L.; Zhang, J.; Cao, D.; Yang, S.; Yao, F. A novel cotton mapping index combining Sentinel-1 SAR and Sentinel-2 multispectral
imagery. ISPRS J. Photogramm. Remote Sens. 2021, 181, 148–166. [CrossRef]

https://github.com/ckyriakos/thesis_front_end
http://doi.org/10.3390/buildings13071649
http://dx.doi.org/10.1016/j.isprsjprs.2021.03.020
http://dx.doi.org/10.1007/S44212-023-00025-5
http://dx.doi.org/10.1080/24694452.2019.1665492
http://dx.doi.org/10.3390/rs13193930
http://dx.doi.org/10.1109/JPROC.2020.3004555
http://dx.doi.org/10.1016/j.compag.2020.105709
http://dx.doi.org/10.1016/j.isprsjprs.2021.02.008
http://dx.doi.org/10.3390/rs13091847
http://dx.doi.org/10.1016/j.rse.2021.112716
https://doi.org/10.48550/ARXIV.2011.01498
http://dx.doi.org/10.1016/j.rsase.2022.100693
http://dx.doi.org/10.1016/j.rsase.2019.100246
http://dx.doi.org/10.3390/rs14051254
http://dx.doi.org/10.1016/j.isprsjprs.2020.05.016
http://dx.doi.org/10.1016/j.rse.2020.111952
http://dx.doi.org/10.3390/agriculture11080785
http://dx.doi.org/10.1016/j.rsase.2021.100485
http://dx.doi.org/10.3390/rs12061024
http://dx.doi.org/10.3390/rs9090906
http://dx.doi.org/10.1016/j.isprsjprs.2021.08.021


Future Internet 2023, 15, 355 28 of 29

23. Martin, P.; Ottaviano, G.I. Growth and agglomeration. Int. Econ. Rev. 2001, 42, 947–968. [CrossRef]
24. Hastaoglou, V.; Hadjimichalis, C.; Kalogirou, N.; Papamichos, N. Urbanisation, Crisis and Urban Policy in Greece. Antipode 2006,

19, 154–177. [CrossRef]
25. Karadimitriou, N.; Maloutas, T.; Arapoglou, V.P. Multiple deprivation and urban development in athens, greece: Spatial trends

and the role of access to housing. Land 2021, 10, 290. [CrossRef]
26. Nguyen, H.M.; Nguyen, L.D. The relationship between urbanization and economic growth an empirical study on ASEAN

countries. Int. J. Soc. Econ. 2018, 45, 316–339. [CrossRef]
27. Akbar, T.A.; Hassan, Q.K.; Ishaq, S.; Batool, M.; Butt, H.J.; Jabbar, H. Investigative spatial distribution and modelling of existing

and future urban land changes and its impact on urbanization and economy. Remote Sens. 2019, 11, 105. [CrossRef]
28. Chen, C.; Wang, L.; Chen, J.; Liu, Z.; Liu, Y.; Chu, Y. A seamless economical feature extraction method using Landsat time series

data. Earth Sci. Inform. 2021, 14, 321–332. [CrossRef]
29. Zheng, Q.; Weng, Q.; Wang, K. Characterizing urban land changes of 30 global megacities using nighttime light time series stacks.

ISPRS J. Photogramm. Remote Sens. 2021, 173, 10–23. [CrossRef]
30. Ch, R.; Martin, D.A.; Vargas, J.F. Measuring the size and growth of cities using nighttime light. J. Urban Econ. 2021, 125, 103254.

[CrossRef]
31. Chen, X.; Nordhaus, W.D. VIIRS nighttime lights in the estimation of cross-sectional and time-series GDP. Remote Sens. 2019, 11,

1057. [CrossRef]
32. Bluhm, R.; McCord, G.C. What can we learn from nighttime lights for small geographies? measurement errors and heterogeneous

elasticities. Remote Sens. 2022, 14, 1190. [CrossRef]
33. Duan, X.; Hu, Q.; Zhao, P.; Wang, S.; Ai, M. An approach of identifying and extracting urban commercial areas using the

nighttime lights satellite imagery. Remote Sens. 2020, 12, 1029. [CrossRef]
34. Dr. Kasimati, E. Economic Impact of Tourism on Greece’s Economy: Cointegration and Causality Analysis. Int. Res. J. Financ.

Econ. 2011, 79, 79–85.
35. Batista e Silva, F.; Marín Herrera, M.A.; Rosina, K.; Ribeiro Barranco, R.; Freire, S.; Schiavina, M. Analysing spatiotemporal

patterns of tourism in Europe at high-resolution with conventional and big data sources. Tour. Manag. 2018, 68, 101–115.
[CrossRef]

36. Ma, X.; Yang, Z.; Zheng, J. Analysis of spatial patterns and driving factors of provincial tourism demand in China. Sci. Rep. 2022,
12, 2260. [CrossRef]

37. Krikigianni, E.; Tsiakos, C.; Chalkias, C. Estimating the relationship between touristic activities and night light emissions. Eur. J.
Remote Sens. 2019, 52, 233–246. [CrossRef]

38. Wei, J.; Zhong, Y.; Fan, J. Estimating the Spatial Heterogeneity and Seasonal Differences of the Contribution of Tourism Industry
Activities to Night Light Index by POI. Sustainability 2022, 14, 692. [CrossRef]

39. Devkota, B.; Miyazaki, H.; Witayangkurn, A.; Kim, S.M. Using volunteered geographic information and nighttime light remote
sensing data to identify tourism areas of interest. Sustainability 2019, 11, 4718. [CrossRef]

40. Lazuardi, W.; Wicaksono, P.; Marfai, M.A. Remote sensing for coral reef and seagrass cover mapping to support coastal
management of small islands. IOP Conf. Ser. Earth Environ. Sci. 2021, 686, 012031. [CrossRef]

41. Li, X.; Liu, B.; Zheng, G.; Ren, Y.; Zhang, S.; Liu, Y.; Gao, L.; Liu, Y.; Zhang, B.; Wang, F. Deep-learning-based information mining
from ocean remote-sensing imagery. Natl. Sci. Rev. 2020, 7, 1584–1605. [CrossRef]

42. Biermann, L.; Clewley, D.; Martinez-Vicente, V.; Topouzelis, K. Finding Plastic Patches in Coastal Waters Using Optical Satellite
Data. Sci. Rep. 2020, 10, 5364. [CrossRef]

43. Basu, B.; Sannigrahi, S.; Basu, A.S.; Pilla, F. Development of novel classification algorithms for detection of floating plastic debris
in coastal waterbodies using multispectral sentinel-2 remote sensing imagery. Remote Sens. 2021, 13, 1598. [CrossRef]

44. Albright, A.; Glennie, C. Nearshore Bathymetry from Fusion of Sentinel-2 and ICESat-2 Observations. IEEE Geosci. Remote Sens.
Lett. 2021, 18, 900–904. [CrossRef]

45. Yang, J.; Yang, R.; Chen, M.H.; Su, C.H.J.; Zhi, Y.; Xi, J. Effects of rural revitalization on rural tourism. J. Hosp. Tour. Manag. 2021,
47, 35–45. [CrossRef]

46. Psaroudakis, C.; Xanthopoulos, G.; Stavrakoudis, D.; Barnias, A.; Varela, V.; Gkotsis, I.; Karvouniari, A.; Agorgianitis, S.; Chasiotis,
I.; Vlachogiannis, D.; et al. Development of an early warning and incident response system for the protection of visitors from
natural hazards in important outdoor sites in Greece. Sustainability 2021, 13, 5143. [CrossRef]

47. Narvaez, G.; Giraldo, L.F.; Bressan, M.; Pantoja, A. Machine learning for site-adaptation and solar radiation forecasting. Renew.
Energy 2021, 167, 333–342. [CrossRef]

48. Chen, Z.; Kang, Y.; Sun, Z.; Wu, F.; Zhang, Q. Extraction of Photovoltaic Plants Using Machine Learning Methods: A Case Study
of the Pilot Energy City of Golmud, China. Remote Sens. 2022, 14, 2697. [CrossRef]

49. Fantidis, J.; Bandekas, D.; Vordos, N.; Karachalios, S. Wind Energy Potential in Greece Using a Small Wind Turbine. In
Proceedings of the 4th WSEAS International Conference on Theoritical and Applied Mechanics (TAM ‘13), Cambridge, MA, USA,
30 January–1 February 2013.

50. Bertsiou, M.M.; Theochari, A.P.; Baltas, E. Multi-criteria analysis and Geographic Information Systems methods for wind turbine
siting in a North Aegean island. Energy Sci. Eng. 2021, 9, 4–18. [CrossRef]

http://dx.doi.org/10.1111/1468-2354.00141
http://dx.doi.org/10.1111/j.1467-8330.1987.tb00157.x
http://dx.doi.org/10.3390/land10030290
http://dx.doi.org/10.1108/IJSE-12-2016-0358
http://dx.doi.org/10.3390/rs11020105
http://dx.doi.org/10.1007/s12145-020-00564-4
http://dx.doi.org/10.1016/j.isprsjprs.2021.01.002
http://dx.doi.org/10.1016/j.jue.2020.103254
http://dx.doi.org/10.3390/rs11091057
http://dx.doi.org/10.3390/rs14051190
http://dx.doi.org/10.3390/rs12061029
http://dx.doi.org/10.1016/j.tourman.2018.02.020
http://dx.doi.org/10.1038/s41598-022-04895-8
http://dx.doi.org/10.1080/22797254.2019.1582305
http://dx.doi.org/10.3390/su14020692
http://dx.doi.org/10.3390/su11174718
http://dx.doi.org/10.1088/1755-1315/686/1/012031
http://dx.doi.org/10.1093/nsr/nwaa047
http://dx.doi.org/10.1038/s41598-020-62298-z
http://dx.doi.org/10.3390/rs13081598
http://dx.doi.org/10.1109/LGRS.2020.2987778
http://dx.doi.org/10.1016/j.jhtm.2021.02.008
http://dx.doi.org/10.3390/su13095143
http://dx.doi.org/10.1016/j.renene.2020.11.089
http://dx.doi.org/10.3390/rs14112697
http://dx.doi.org/10.1002/ese3.809


Future Internet 2023, 15, 355 29 of 29

51. Nezhad, M.M.; Neshat, M.; Groppi, D.; Marzialetti, P.; Heydari, A.; Sylaios, G.; Garcia, D.A. A primary offshore wind farm site
assessment using reanalysis data: A case study for Samothraki island. Renew. Energy 2021, 172, 667–679. [CrossRef]

52. Majidi Nezhad, M.; Heydari, A.; Groppi, D.; Cumo, F.; Astiaso Garcia, D. Wind source potential assessment using Sentinel 1
satellite and a new forecasting model based on machine learning: A case study Sardinia islands. Renew. Energy 2020, 155, 212–224.
[CrossRef]

53. Xu, S.; Ehlers, M. Automatic detection of urban vacant land: An open-source approach for sustainable cities. Comput. Environ.
Urban Syst. 2022, 91, 101729. [CrossRef]

54. Mugiraneza, T.; Nascetti, A.; Ban, Y. Continuous monitoring of urban land cover change trajectories with landsat time series and
landtrendr-google earth engine cloud computing. Remote Sens. 2020, 12, 2883. [CrossRef]

55. Wang, L.; Fan, H.; Wang, Y. An estimation of housing vacancy rate using NPP-VIIRS night-time light data and OpenStreetMap
data. Int. J. Remote Sens. 2019, 40, 8566–8588. [CrossRef]

56. Nguyen, L.H.; Joshi, D.R.; Clay, D.E.; Henebry, G.M. Characterizing land cover/land use from multiple years of Landsat and
MODIS time series: A novel approach using land surface phenology modeling and Random Forest classifier. Remote Sens.
Environ. 2020, 238, 111017. [CrossRef]

57. Valero Medina, J.A.; Alzate Atehortúa, B.E. Comparison of maximum likelihood, support vector machines, and Random Forest
techniques in satellite images classification. Tecnura 2019, 23, 3–10. [CrossRef]

58. Schölkopf, B.; Williamson, R.; Smola, A.; Shawe-Taylor, J.; Piatt, J. Support vector method for novelty detection. Adv. Neural Inf.
Process. Syst. 1999, 12, 582–588.

59. Khan, S.S.; Madden, M.G. One-class classification: Taxonomy of study and review of techniques. Knowl. Eng. Rev. 2014, 29,
345–374. [CrossRef]

60. Wu, Q. geemap: A Python package for interactive mapping with Google Earth Engine. J. Open Source Softw. 2020, 5, 2305.
[CrossRef]

61. Wu, Q.; Lane, C.R.; Li, X.; Zhao, K.; Zhou, Y.; Clinton, N.; DeVries, B.; Golden, H.E.; Lang, M.W. Integrating LiDAR data and
multi-temporal aerial imagery to map wetland inundation dynamics using Google Earth Engine. Remote Sens. Environ. 2019, 228,
1–13. [CrossRef]

62. Chang, C.C.; Lin, C.J. Training ν-support vector classifiers: Theory and algorithms. Neural Comput. 2001, 13, 2119–2147.
[CrossRef] [PubMed]

63. Goldblatt, R.; Stuhlmacher, M.F.; Tellman, B.; Clinton, N.; Hanson, G.; Georgescu, M.; Wang, C.; Serrano-Candela, F.; Khandelwal,
A.K.; Chen, W.-H.; et al. Mapping Urban Land Cover: A Novel Machine Learning Approach Using Landsat and Nighttime
Lights. RSOE Technical Report, Number 021517; University of California San Diego: San Diego, CA, USA, 2017. Available online:
https://gps.ucsd.edu/_files/faculty/hanson/hanson_research_RSOE_021517.pdf (accessed on 1 September 2023).

64. Mazumdar, S.; Wrigley, S.; Ciravegna, F. Citizen science and crowdsourcing for earth observations: An analysis of stakeholder
opinions on the present and future. Remote Sens. 2017, 9, 87. [CrossRef]

65. See, L.; Schepaschenko, D.; Lesiv, M.; McCallum, I.; Fritz, S.; Comber, A.; Perger, C.; Schill, C.; Zhao, Y.; Maus, V.; et al. Building a
hybrid land cover map with crowdsourcing and geographically weighted regression. ISPRS J. Photogramm. Remote Sens. 2015,
103, 48–56. [CrossRef]

66. Wei, L.; Yang, L.; Fan, Y.P.; Cong, S.S.; Wang, Y.S. Research on Stray-Light Suppression Method for Large Off-Axis Three-Mirror
Anastigmatic Space Camera. Sensors 2022, 22, 4772. [CrossRef]

67. Lee, S.; Cao, C. Soumi NPP VIIRS Day/Night Band Stray Light Characterization and Correction Using Calibration View Data.
Remote Sens. 2016, 8, 138. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.renene.2021.03.045
http://dx.doi.org/10.1016/j.renene.2020.03.148
http://dx.doi.org/10.1016/j.compenvurbsys.2021.101729
http://dx.doi.org/10.3390/rs12182883
http://dx.doi.org/10.1080/01431161.2019.1615655
http://dx.doi.org/10.1016/j.rse.2018.12.016
http://dx.doi.org/10.14483/22487638.14826
http://dx.doi.org/10.1017/S026988891300043X
http://dx.doi.org/10.21105/joss.02305
http://dx.doi.org/10.1016/j.rse.2019.04.015
http://dx.doi.org/10.1162/089976601750399335
http://www.ncbi.nlm.nih.gov/pubmed/11516360
https://gps.ucsd.edu/_files/faculty/hanson/hanson_research_RSOE_021517.pdf
http://dx.doi.org/10.3390/rs9010087
http://dx.doi.org/10.1016/j.isprsjprs.2014.06.016
http://dx.doi.org/10.3390/s22134772
http://dx.doi.org/10.3390/rs8020138

	Introduction
	Satellite Systems in Remote Sensing
	Satellite Sensors and Satellite Instruments
	Resolutions of Satellite Instruments
	Spectral Bands and Spectral Indices
	Overview of Major Satellite Missions and Their Derived RS Products

	State of the Art and Related Products
	Peer Review Literature
	Satellite-Data-Driven Agriculture
	Urbanization: Effects on Greece and Solutions Provided by Satellite Imagery
	Tourism Intelligence through Satellite Data
	Site Selection for Renewable Energy Platforms via Satellite Imagery

	Existing Commercial Software and Services
	State of the Art: Key Takeaways

	System Design and Implementation
	Data Collection
	Data Preprocessing
	Machine Learning Models
	User Interface

	Experimentation and Evaluation
	Random Forest Experiments
	One-Class SVM Experiments
	Ground-Truth Comparisons and Neural Network Implementation and Testing
	Overall Evaluation of Our Methodology

	Synopsis and Future Work
	References

