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Abstract: This article presents a review of cutting-edge technologies poised to shape the future of
railway transportation systems, focusing on enhancing their intelligence, safety, and environmental
sustainability. It illustrates key aspects of the energy-transport-information/communication system
nexus as a framework for future railway systems development. Initially, we provide a review of
the existing challenges within the realm of railway transportation. Subsequently, we delve into
the realm of emerging propulsion technologies, which are pivotal for ensuring the sustainability of
transportation. These include innovative solutions such as alternative fuel-based systems, hydrogen
fuel cells, and energy storage technologies geared towards harnessing kinetic energy and facilitating
power transfer. In the following section, we turn our attention to emerging information and telecom-
munication systems, including Long-Term Evolution (LTE) and fifth generation New Radio (5G NR)
networks tailored for railway applications. Additionally, we delve into the integral role played by the
Industrial Internet of Things (Industrial IoT) in this evolving landscape. Concluding our analysis, we
examine the integration of information and communication technologies and remote sensor networks
within the context of Industry 4.0. This leveraging of information pertaining to transportation infras-
tructure promises to bolster energy efficiency, safety, and resilience in the transportation ecosystem.
Furthermore, we examine the significance of the smart grid in the realm of railway transport, along
with the indispensable resources required to bring forth the vision of energy-smart railways.

Keywords: railway transportation challenges; emerging technologies; sustainable transport; remote
sensor networks; weather conditions; transportation safety; smart grid

1. Introduction

The European Union’s long-term goals are based on green energy transition. Thus,
the European Commission has adopted a package of measures aimed at energy efficiency
improvements, along with legally binding guidelines for meeting the objectives of the Paris
Climate Agreement [1]. According to those guidelines, at least 32% of energy consumption
in the European Union (EU) by 2030 must be from renewable sources. Member states,
including the Republic of Croatia, need to ensure that at least 14% of fuel (energy) in the
transport sector is secured from renewable sources, and the overall energy efficiency would
need to be increased by 32.5% by 2030 [2]. Obviously, the strategy for the decarbonisation
of the energy sector also causes significant changes in the transportation sector in terms
of usable energy sources, which, in turn, is reflected upon the propulsion technologies
currently in use, particularly in railway transport [3]. Specifically, 20% of the global
consumption of fossil fuels is currently attributed to the transportation sector [4], which, in
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turn, makes it the second largest carbon dioxide (CO2) emission source [5] contributing
significantly to the alarming increase in atmospheric CO2 concentrations [6] and associated
greenhouse effects [7]. The contribution of railway transportation to the overall emissions
of greenhouse gases (GHGs) varies depending on the country, with 4% of the overall GHG
emissions share having been reported in [8]. The EU Strategic Program for Transport
Research and Innovation developed the first long-term strategic approach to prepare for
the envisaged transportation system transition in terms of research and innovation that
combines innovative low-carbon technologies with connected and automated transport
services and smart mobility [9], wherein a multitude of options is currently available for
railway sector decarbonisation [10].

The need for a transition to more autonomous and connected transport has been
identified as a necessary condition for achieving higher levels of efficiency and the decar-
bonisation of the transportation sector. According to the European Commission (EC), the
goal is that by 2030, high-speed rail traffic will double across Europe, and this is planned
both for urban and intercity collective travel [9,11]. For journeys of less than 500 km, carbon-
neutral automated mobility for smaller groups of people or goods should be available [11].
Also, the EC document [12], “. . . Digitalisation and robotisation in the field of the mobility
of people and the transport of goods provide society with several potential benefits such as
better accessibility and convenience for passengers, efficiency and productivity for logistics,
improved traffic safety and reduced emissions. At the same time, there are concerns relating
to safety, security, privacy, labour and the environment . . .”, recommend that intensive
research and development (R&D) of suitable solutions for intelligent transportation systems
(ITSs) needs to be carried out. This need for additional R&D is especially emphasised in the
fields of communication systems and sensor networks to minimise the risks of deploying
these new technologies [13]. In particular, demands for the accelerated digitalisation of
the transportation sector result in extremely large amounts of data, which mandate the
utilisation of cloud computing. On the other hand, the implementation of long-term evolu-
tion (LTE) or fourth and fifth generation (4G/5G) mobile communication networks [14]
and different remote (networked) sensor nodes [15], as well as robotics [16] and artificial
intelligence (AI) in logistics [17], are seen as key factors for further advances in digitalised
and automated railway transportation [18], including autonomous rail vehicles [19].

Steady progress in the development of sensor networks is visible in all domains, espe-
cially in the field of transport. Therefore, the effectiveness of communication equipment
is particularly important due to requirements on transport volume and speed [20]. To
this end, the Internet of Things (IoT) paradigm [21] or, more precisely, the advanced sys-
tem of machine-to-machine communication (M2M) [22], together with different front-end
intelligent sensors [23], allows for the transparent integration of large numbers of heteroge-
neous external systems [24]. Thus, it can facilitate the development of new digital services
and novel possibilities for their application, especially when transport safety and security
are concerned [25]. Also, the development of communication systems according to 5G
functionalities opens new possibilities in the field of ITS and communications between
traffic entities and their environments, and such internet of vehicles (IoV) paradigm [22] is
especially important in the field of autonomous and cooperative vehicle management [26].
Reference [27] provides an overview of the possible technologies, protocols, and architec-
tures of intelligent systems based on the concept of vehicle communication systems, with
an emphasis on a wide variety of communication types such as vehicle-to-vehicle (V2V),
vehicle-to-infrastructure (V2I) and vice versa (I2V), vehicle-to-pedestrian (V2P) communi-
cation, and, generally speaking, any communication between a vehicle and a heterogenous
communication node (V2X) [26]. Furthermore, future transport systems based on non-fossil
vehicle propulsion technologies are also closely related to smart grid systems and 5G
software-defined vehicle networks that have important roles in that field of research [28].
In particular, 5G communication networks offer distinct advantages in terms of connection
speed and data transfer reliability (up to 20 times faster data rates for the same transmission
quality) compared to the standard Global System for Mobile Communications-Railway
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(GSM-R) systems [29], and this low latency of 5G networks enables the implementation
of various security functions over multiple heterogenous domains [30]. Thus, 5G com-
munications have been suggested for the digitalisation of urban railways [31] and the
telemetric monitoring and automation of railroad networks [32], along with sophisticated
applications in the accurate positioning of railway traffic entities in real time [33]. The
latter is significant in the context of railway traffic safety, especially when atmospheric and
weather conditions at micro-locations are taken into account [34]. This primarily concerns
railway traffic incidents related to weather conditions [35], but it may also refer to the feasi-
bility of the scheduled transportation by rail under adverse weather conditions [36]. The
application of smart remote sensor networks facilitating timely and structured information
about atmospheric conditions may offer an additional advantage in the planning of railway
transportation, as indicated in [36], which is of particular importance when considering
increased weather condition volatility due to climate change [37].

Having the above issues in mind, this paper presents a review of state-of-the art and
emerging technologies needed for the future development of smarter, safer, greener, and
more sustainable railway transportation, while also outlining its inherent challenges. In
that respect, Section 2 deals with energy efficiency and advanced propulsion technologies,
such as the hybridisation of locomotive diesel-electric powertrains, and other measures
of on-board locomotive electrification, including purely battery-based propulsion and the
utilisation of hydrogen fuel cells. Section 2 also discusses the hydrogen economy and
logistics in the context of railway transportation, as well as the utilisation of alternative
fuels such as biofuels, and the production of synthetic fuels for transport using renewable
energy sources. Section 3 deals with advanced information and telecommunication (ITC)
systems based on long-term evolution (LTE) 4G/5G radio networks (RNs) suitable for
railway applications and compares them with the current GSM-R communication standard.
The use of remote sensor networks for the collection and processing of structured data
aimed at improving the transportation energy efficiency and safety under varying weather
conditions is also discussed in Section 3, along with some practical examples of remote
sensor use for improving railway transport safety and energy efficiency. Section 4 discusses
the recent advances in creating a new IoT-based paradigm within the Industry 4.0 concept
for railway transport, with applications such as predictive maintenance, multimodal trans-
port, and railway system resilience improvement measures. The roles and benefits of smart
grids in future railway transport are also assessed. For each of these categories, practical ex-
amples are used to illustrate the benefits of emerging technologies. The concluding remarks
are summarised in Section 5, which also gives guidelines for future research directions.

2. Measures for Improving Railway Transport Energy Efficiency and Sustainability

This section presents an overview of the means and measures for railway transport
energy efficiency improvement, such as those based on hybrid electric powertrain archi-
tectures equipped with different energy storage technologies, along with advanced fully
electric propulsion technologies based on hydrogen fuel cells and high-performance batteries.

2.1. Hybridisation of Conventional Diesel Engine-Based Locomotive Powertrain

The needs of industry and society for cheap energy continue to be largely covered
by fossil fuel sources, and this is becoming an increasingly complex task in the face of
highly fluctuating prices for oil and its derivatives. These arguments are key motivations
for the massive electrification of the transport sector, which is mostly pronounced in road
transport through the introduction of hybrid electric and fully electric vehicles [4]. Such
advanced propulsion technologies, having enabled the penetration of electrified vehicles
in the transport sector, have also been recognised as key factors for the development of
intelligent transport systems [38] and their integration within the smart grid [39], especially
when considering the increased participation of renewable sources in the overall energy
balance of modern society [40].
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The fully electrified railway traction system is based on the distribution of DC or
AC electrical power through the overhead conductor (or third rail in some cases), thus
supplying low voltage (up to 800 V) or medium voltage (up to 25 kV) to the fully electric
locomotive [41], whose main advantage over their diesel-electric counterparts is in a higher
power-to-mass (power-to-weight) ratio [40]. According to reference [42], a notable portion
of existing railway tracks characterised by lower traffic density and rather lengthy routes
have not yet been electrified due to the rather high investment costs of electrification [43].
Therefore, a significant number of diesel locomotives is still retained in the fleets of na-
tional and private railway companies [44]. However, the use of diesel-electric locomotives
requires significant allocations for diesel fuel. Therefore, there is a trend in the R&D of
hybridised diesel-electric propulsion [45] with a special emphasis on the introduction of
energy storage systems based on advanced large-capacity electrochemical batteries. In
that respect, special attention should be given to the safety aspects of battery application,
where high-temperature sodium-nickel chloride (ZEBRA) batteries [46] and lithium bat-
teries such as those using lithium iron phosphate (LiFePO4) and lithium-titanate (LTO)
chemistry stand out from the safety point of view [47]. According to the simulation study in
reference [48], such advanced batteries were successfully applied in the hybridisation of a
diesel powerplant in an isolated production plant micro-grid, indicating significant poten-
tials for diesel fuel savings and a reduction in greenhouse gas emissions, amounting to over
12% compared to the non-hybridised microgrid case. Consequently, it is realistic to expect
that the hybridisation of diesel locomotive propulsion (i.e., by installing a battery storage
system of sufficient capacity and power ratings) could reach similar levels of fuel efficiency.
In that respect, reference [49] reports up to 20% of fuel savings for certain operating modes,
with similar reductions in greenhouse gas emissions and other pollutants [50], and a real
possibility of reducing the acoustic noise emissions of the locomotive due to the use of
stored electricity within the battery with a lower power output from the diesel engine [51].

Optimising energy consumption in rail transport is a multidimensional nonlinear
problem subject to technological traffic constraints, especially when an increased degree
of autonomy is considered, such as in the case of autonomous vehicles. Namely, their
operation is characterised by additional safety constraints in terms of near objects’ proximity
warnings and automatic collision avoidance, which mandate driving mission altering in real
time. Current trends in railway energy saving research have focused on driving strategy,
propulsion, and energy storage systems [52], whereas reference [53] provides a preliminary
solution for predictive monitoring and control system adaptation to optimise the energy
consumption of an autonomous railway vehicle. The approach presented in [54] has shown
that over a 16% reduction in fuel consumption can be achieved by using a relatively simple
rule-based control strategy within the battery-hybrid diesel-electric locomotive for a wide
range of freight loads. The simulation study presented in [54] included a point mass model
of a freight train and a realistic mountainous railway route characterised by realistic track
slopes and velocity limitations, along with a simulation model of a hybridised locomotive
powertrain comprising a quasi-static model of a suitably sized battery energy storage
system (Figure 1a). The overall quasi-steady-state model of the battery hybrid locomotive
from [54] is shown in Figure 1b, wherein the locomotive powertrain sub-models were
modelled by means of static characteristics (maps), which were also originally developed
in [54]. In this model, the train driver (modelled as a proportional gain velocity controller)
tries to maintain the train velocity near its target value, thus commanding appropriate
accelerator (Notch) and braking (Brk) commands to the diesel-electric power plant and
the battery energy storage system, wherein the braking command may also be used to
recuperate kinetic energy and store it into the battery. The battery system is also equipped
with a suitable state-of-charge (SoC) controller, which prevents battery overcharging and
deep discharging regimes (lower portion of Figure 1b). The results presented in [54]
show that the return of investment period of such diesel-electric locomotive hybridisation
effort would be approximately one-fourth of the battery system’s calendar life, so that the
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perceived fuel savings would be compensated by threefold within the expected lifetime of
modern lithium-ion batteries aimed for this application.
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Figure 1. Principal representation of battery-hybrid diesel-electric locomotive (a) and quasi-static
model of proposed battery hybrid locomotive from [54] (b).

Based on the above discussion, great care needs to be devoted to the proper choice of
battery technology and the overall hybrid powertrain design, which is to be used in future
railway propulsion systems. To assess the economic viability, trade-offs, and challenges of
diesel locomotive powertrain hybridisation, several aspects thereof need to be considered:

1. Battery costs in terms of the investment cost, replacement costs, and running (op-
erational) costs, wherein battery durability plays a particularly important role [54].
Typically, the latest generation of lithium-based batteries, such as those based on
LiFePO4 and LTO technologies, are more durable and less susceptible to aging com-
pared to the more commonly used lithium-ion batteries. However, their initial costs
are typically also greater, and their energy density is typically 30–50% lower compared
to other currently available lithium batteries [47].

2. Battery safety, in terms of a wide temperature operating range and the ability to with-
stand large charge-discharge rates, wherein advanced LiFePO4 and LTO technologies
again provide the safest operational margins, especially when thermal runaway is
considered [47].
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3. The costs and complexity of retrofitting the diesel electric powertrain with additional
battery energy storage, primarily in terms of available space and mass constraints,
interfacing with the internal power distribution system (power bus) and the appropri-
ate energy management control strategy [54]. Special attention should also be given
to the primary mover (diesel engine) refurbishment or possible replacement of older
engines with more efficient modern designs, which is also indicated in [54].

4. The choice of adequate hybrid powertrain topology, wherein there are many possible
solutions with varying degrees of complexity for the same achieved powertrain
performance, which should not be inferior to the performance of the conventional
powertrain with similar traction characteristics. In that respect, the requirement of
minimal modifications to the overall powertrain would also be desirable from the
standpoint of production and overall powertrain assembly [54].

5. The utilisation of advanced software tools and communication technologies should
also be considered for the purpose of driving mission energy efficiency optimisation
and operational safety improvement, especially when considering variable driving
conditions along the track [36].

2.2. Utilisation of Battery-Based Locomotive Propulsion

Although the research on battery-electric locomotives and their commercial applica-
tions is definitely on the rise, this topic has been researched rather modestly to date [55]. Ad-
vanced batteries, such as those based on sodium-metal halide and lithium-ion chemistries,
were suggested in [56] as possible alternatives to diesel engine-based propulsion, especially
when light duty hauling (power ratings less than 400 kW) is considered, with the possibility
of periodic kinetic energy recuperation cycles, such as in mining operations [56]. This
claim is further corroborated by the authors of [57], who propose the utilisation of a high
discharge power and high-energy-density lithium polymer batteries for a battery-electric
shunting locomotive.

In fact, viable prototypes of purely battery-electric locomotives were recently intro-
duced for rail yard switching operations and light to medium cargo hauling in industrial
railway sidings and logistics terminals [58]. The authors of [59] showed that retrofitting the
locomotive propulsion to a fully battery-based energy source may even be accomplished
by using new developments of “mature” battery technologies, such as lead-acid batteries
with activated carbon-based negative electrodes. These so-called ultra-batteries [60] su-
persede conventional lead-acid batteries in terms of pulsed power capabilities and service
life while retaining their favourable temperature stability and ease of maintenance, and
they have already been proposed for stationary energy storage use [61]. A lithium-titanate
battery system was recently used to demonstrate the viability of battery-based propulsion
for passenger multiple units in [62]. On the other hand, the authors of [63] investigated
the possible use of battery-based propulsion for the so-called “last mile” regime for a
freight locomotive as an alternative to the so-called “electro-diesel” configuration (with
a diesel generator as a secondary energy source), which is suitable for rail transportation
over electrified and non-electrified railway routes. The authors of [63] also considered the
possibility of using battery recharging waystations, whose benefits and optimal placement
along the railway route were recently investigated in detail in [64]. A techno-economic
study of freight railway electrification by means of an overhead line, hydrogen fuel cells,
and batteries for the railway lines in Norway and the USA [65] has shown that hydrogen
fuel cells and batteries can be competitive technologies provided that renewable energy
sources are available for charging and hydrogen production. Moreover, a comparative
analysis of a 3 kV direct current (DC) electrification system and trains with on-board battery-
ultracapacitor energy storage was carried out as a part of the preliminary techno-economic
study in [66]. The study showed that more favourable economic indices would be obtained
with energy storage-equipped passenger trains rather than investing in the electrification
of lengthy railway routes with infrequent traffic.
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Owing to their exceptionally long cycle life of over 106 charge-discharge cycles charac-
terised by deep discharges and large discharge rates [67], ultracapacitors have shown great
potential in terms of supplementing batteries and hydrogen fuel cells for high-power/short-
duration (pulsed) loading regimes [68]. This has been illustrated for both stationary energy
storage systems in microgrids [69] and those with potential use in transportation applica-
tions [70], wherein LiFePO4 batteries are considered as good candidates in terms of energy
density and operational safety [48]. Moreover, it seems that the energy densities of the next
generation of commercial ultracapacitors are approaching the energy densities of electro-
chemical batteries, thus allowing for prolonged loading compared to ultracapacitors from
just a decade ago [67]. In this sense, the battery energy storage system within a locomotive
would need to be augmented with a relatively low-capacity ultracapacitor module, thus
forming a hybrid energy storage system using an appropriate power converter topology
(see, e.g., the discussion in [71]). The key benefits of such an approach to battery energy
storage hybridisation are related to reduced battery heat stresses and prolonged service
and calendar life [72]. As indicated in [73,74], ultracapacitors and battery cells both require
precise voltage balancing and temperature monitoring for correct operation over a wide
range of operating regimes.

The commercial viability of battery-based locomotive propulsion has even been recog-
nised through patents, such as the one presented in [75], which describes in detail a
future battery-powered all-electric locomotive powertrain, along with different feasible
configurations of batteries and the possibilities for augmenting conventional diesel-electric
propulsion. In that sense, the authors of [76] investigated the utilisation of battery-electric
locomotive use within a heavy-haul freight train, with different combinations of diesel-
electric and battery-electric locomotives having been subjected to a thorough performance
assessment over a realistic mountainous railway route. To be able to meet the predefined
range requirements, a battery-electric locomotive was used in a tandem operation with
conventional diesel-electric locomotives (see Figure 2), thereby providing hauling assis-
tance for very heavy loads over the demanding terrain configuration considered in [76].
The results showed that (i) a single battery-electric locomotive represents the most energy-
efficient solution when relatively light loads are considered (up to 300 t) and when used
in conjunction with mid-journey battery charging; (ii) when a battery locomotive is used
in tandem with diesel-electric locomotives, it can result in notable fuel savings (of up to
30%) and a related reduction in greenhouse gases emissions; and (iii) with the declining
trend of battery costs, it is likely that such solutions may yield notable financial savings
over the lifetime of the battery energy storage system. This clearly indicates that battery-
based railway propulsion has the potential to both aid the transition from the conventional
diesel-based freight haul and to inaugurate the future fully electric railway mobility. It
is also worthwhile to investigate the utilisation of batteries for local railway sub-station
microgrids equipped with renewable energy sources, which ought to further improve the
energy efficiency indices and sustainability in terms of reducing the subscribed power and
associated electricity costs [77].
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Figure 2. Diesel-electric and battery-electric 1.6 MW locomotive combinations investigated in refer-
ence [76] and main results in terms of journey time, fuel consumption, and electric energy expenditure
for a mountainous railway route with respect to freight train load.

2.3. Electric Powertrain Featuring Hydrogen and Other Types of Fuel Cells

As mentioned above, the techno-economic study in [65] showed that hydrogen fuel
cells and batteries can be competitive technologies in rail freight hauling when used in
synergetic relation with renewable energy sources, while at the same time achieving zero
net emissions of greenhouse gases. On a smaller scale, this kind of fuel cell plus battery
hybrid power source was investigated for the case of a hypothetical 200 kW hydrogen fuel
cell stack coupled with a nickel-metal hydride (NiMH) battery for tramway propulsion
in [78], which also provided a component sizing and parameterisation methodology based
on a realistic driving cycle on a metropolitan tramway line.

For larger-scale, high-power applications, i.e., those suitable for freight haul and
passenger transport over greater distances, reference [79] demonstrated that solid oxide
methane-fed fuel cells in combination with a gas turbine, steam, and ammonia-organic
Rankine cycles can be used to produce power in excess of 2900 kW, with waste heat recovery
used for additional power production and the heating of the passenger compartments.
Moreover, the key advantage of solid oxide fuel cells is that, apart from methane, they can
utilise other gaseous fuels for electricity generation such as ammonia and hydrogen, which
is beneficial from the standpoint of their practical use [79]. Polymer electrolyte membrane
fuel cells were proposed in combination with a suitable energy storage system to power
an existing railcar as an eco-friendly solution for short- to medium-length non-electrified
railway lines characterised by an altitude difference between the embarkation and arrival
points [80]. The possibility of using fuel cells for sustained high-power output has moti-
vated the design of a prototype fuel cell shunting locomotive to avoid diesel engine-related
emissions of particulates and nitrogen oxides and acoustic noise emissions [81]. On the
other hand, the authors of [82] investigated the possibility of retrofitting the conventional
passenger train with hydrogen fuel cells as a power source to be used over a non-electrified
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railway route, with the main advantages being reduced energy consumption and the
elimination of greenhouse gas emissions, while at the same time modernising the current
rolling stock and increasing the overall passenger comfort. A similar study carried out
in [83] indicated that fuel cells may provide a viable low-emission solution for a demanding
railway route characterised by steep slopes if they are used with a suitably sized electrical
energy storage system.

A comparison of three characteristic fuel cell-powered railway vehicles presented
in [84] indicated that such solutions are indeed technically feasible, with the main concerns
being their relatively low payloads and the availability of hydrogen fuelling infrastructure.
Even though hydrogen fuel cell trains are still emerging technologies, which are yet to
appear in commercial transportation roles, the costs of hydrogen generation are showing
clear trends towards becoming cost-competitive to conventional fuels [85]. For example,
the results of a study presented in [86] indicated that switching from diesel-based train
propulsion to that based on hydrogen fuel cells would result in an annual saving of
9.5 million litres of diesel fuel, as it would be substituted with 2198 tonnes of hydrogen
annually. This study also indicated that the cost of hydrogen production by means of
electrolysis from renewable energy sources would amount to approximately EUR 6.40/kg
of hydrogen, which makes this a competitive alternative to conventional fuels.

Finally, efficient hydrogen production and distribution infrastructures play crucial
roles in the penetration of fuel cell technologies in future 100% renewable transportation
systems [87]. The key components of the hydrogen supply chain need to be carefully
analysed so that the distribution system can be operated with high efficiency, even when
subject to hydrogen supply uncertainties, as suggested in reference [88]. One important
aspect of hydrogen production is the so-called power-to-x concept, wherein electrical power
is used for the production of hydrogen and relatively simple synthetic fuels that can be
used instead of conventional (fossil-based) ones [89]. To meet the demand for hydrogen
in railway applications, a novel optimisation-based concept for the planning of hydrogen-
based railway train refilling was proposed in [90], whereas the authors of [91] investigated
the performance of an on-site hydrogen production facility in supplying heavy-haul freight
trains. The latter analysis showed that a return-of-investment rate of nearly 19% per year
can be reached, so that such hydrogen production facility may indeed be able to support
heavy-duty rail transport in a sustainable manner [92].

2.4. Alternative Fuels Utilisation

As indicated in [87], alternative fuels may play vital roles in the future 100% renewable
transportation systems. Adopting the tenets of a circular economy and the utilisation
of alternative fuels for heavy machinery in railways was identified in [92] as one of the
potential means to mitigate environmental impacts. Biofuels, such as bioethanol, may
be used alone or within gasoline blends, thus contributing to the reduced utilisation of
petroleum-based fossil fuels [93]. Waste oil from the food industry has already been
recognised as a source of raw material for the manufacturing of diesel fuel substitutes [94]
that can easily be adopted for use in diesel-based railway traction [95]. Naturally, bioethanol
and bio-diesel production would result in an increased use of arable land, especially when
considering the production of corn (maize) and soy as precursors for ethanol and bio-
diesel production [96]. However, the life cycle assessment (LCA) study carried out in [97]
indicated that biofuels in general may have the lowest cumulative environmental effect
compared to other conventional propulsion technologies.

Another promising technology for cleaner transportation is that based on bio-methane
and biogas, which can be used to power both light and heavy-duty transport [98]. Ref-
erence [99] has already shown that such an approach utilising gas engines instead of
diesel-based ones in combination with battery energy storage may lead to significant fuel
savings and a consequent reduction in carbon emissions. In that respect, the utilisation of
dual-fuel locomotives may benefit from the existing distribution infrastructure for liquefied
natural gas (LNG) [100], with one of the key benefits being that the utilisation of gas en-
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gines results in significantly fewer particulate matter emissions [101]. However, one of the
disadvantages of LNG (and other liquefied gases) use is the need for large-scale cryogenic
gas storage [102].

On the other hand, the authors of [103] assert that massive transportation electrifica-
tion is essential to utilise renewable energy sources to their maximum potentials. According
to [103], the inevitable excess power production from renewables that cannot be immedi-
ately absorbed by the energy and transportation sector should be utilised for hydrogen and
synthetic fuel production (the power-to-x concept mentioned earlier). With dimethyl ether
(DME) having been recognised in [103] as a likely substitute for diesel fuel, its production
and subsequent utilisation within conventional railway traction based on internal combus-
tion engine technologies may lead to a significant reduction in railway systems’ carbon
footprint. The power-to-gas concept and the logistical aspects of synthetic gas distribution
pathways were extensively investigated in [104], whereas reference [105] presented a novel
process chain for the sustainable production of synthetic fuels based on renewables, as
illustrated in Figure 3. It is based on the use of renewables for the generation of electric
power, which is subsequently used for water electrolysis and hydrogen production. This
hydrogen can then be stored within hydrogen fuel cells or used for synthetic hydrocarbon
production by combining it with carbon dioxide reclaimed from the atmosphere using
catalytic processes. Reference [105] also points out that railways may likely be able to
achieve the necessary economies of scale, especially when hydrogen infrastructure is con-
sidered, while according to [106], the cost and complexity of alternative fuel infrastructure
for railways could be much lower than that for road vehicles, particularly due to a priori
known schedules (timetables) and traffic volumes.
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A detailed comparative analysis of different alternative fuels and their production
paths was also carried out in [103], and their advantages and disadvantages in terms of
economic and infrastructural barriers are presented in Tables 1 and 2. Currently, biofuels
and synthetic fuels do not require additional (new) infrastructure and supply chains, i.e., the
existing infrastructure for fossil fuels can be used practically without adaptation, whereas
hydrogen use in transport would require extensive new infrastructure to account for the
particularities of hydrogen as fuel (such as aforementioned cryogenic storage facilities).
The production costs of both hydrogen and synthetic fuels are still rather high, but they
could make viable alternatives when excess power production from renewables such as
photovoltaics (PVs) cannot be stored in electrical energy storage systems. In this sense,
hydrogen and synthetic fuels may be considered as long-term energy storage, which could
be used to support the energy and transportation sector when power production from
renewables is low. Finally, the production of biofuels, although relatively inexpensive,
highly efficient, and readily available in terms of technology, has one distinct disadvantage
in terms of arable land use for energy production, thus affecting food prices. A good
overview of the recent advances in low-carbon and sustainable energy technologies can be
found, for example, in reference [107].



Future Internet 2023, 15, 347 11 of 44

Table 1. Economic barriers for alternative fuels and hydrogen use in transport [103].

New
Infrastructure

Production
Costs

Production
Efficiency Food Price

Hydrogen Yes * High Low ** Not affected

Biofuels Not needed Low High Affected

Synthetic fuels Not needed High Low Not affected

PV for synthetic fuels Not needed Low High Not affected
* When distributed PV-based hydrogen production is considered, the existing power grid could be used for
necessary power allocation. ** Low efficiency of the complete production cycle (well-to-wheel).

Table 2. Infrastructure barriers for alternative fuels and hydrogen use in transport [103].

Fuelling
Infrastructure Supply Chain Land Demand Intermittency

Friendly

Hydrogen New New No concern Yes **

Biofuels Existing Existing Yes (arable land) No

Synthetic fuels Existing Existing No concern Yes **

PV for synthetic fuels Existing Existing No concern * Yes
* If photovoltaic systems are located on non-arable land and buildings. ** In case of excess electricity production
from renewables used for hydrogen and synthetic fuel production.

3. Communication Technologies for Improved Energy Efficiency and Safety
in Railways

This section presents a cross section of communication systems for railway trans-
port energy efficiency and traffic safety improvement, focusing on low-cost narrow-band
communication technologies suitable for pervasive sensing, supervision, and control.

3.1. State of the Art in Communication Systems in Railways

According to [108], future railways and related industries are going to be increasingly
reliant on the ITS paradigm, ushering innovative integrated security services, along with
improved fleet management and Industry 4.0 concepts such as the predictive maintenance
of railway vehicles and infrastructure to reduce their operational costs and augment the traf-
fic capacity. These measures are expected to improve the performance of key management
systems, such as those related to traffic scheduling and transportation system capacity plan-
ning, along with railway transportation safety and energy efficiency, interoperability, and
support to multimodal transportation [108]. For that to happen, communication systems
supporting the smart railway paradigm should be characterised by high availability, data
throughput and reliability, along with integrated software support needed to optimise the
utilisation of existing fleets and energy resources within the railway network [108]. Hence,
future smart railways are likely to incorporate many emerging wireless communication
technologies that are capable of offering the desired level of decision-making flexibility and
integrated security features needed to operate the critical infrastructure.

GSM-R networks currently represent the standard paradigm in the field of railway
communication systems, which are used for both voice communication and data trans-
fer [108]. Over time, other communication technologies have been considered for this task,
with the current focus being on the development of long-term evolution radio networks
for railways (LTE-R), which can be broadly considered as counterparts of 4G/5G cellular
communications. These communications are good candidates for the future implementa-
tion of the Industrial Internet of Things (Industrial IoT, or shortly IIoT) concept in railway
transportation, where massive data communications between heterogenous nodes, such
as in the case of V2I, V2V, and infrastructure-to-infrastructure (I2I) communications will
be key for the effective operation of smart railway networks, as illustrated in Figure 4.
The key comparative features of GSM-R and LTE-R radio communication technologies
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according to [108] are summarised in Table 3. These point to the unsurpassed performance
of LTE-R based communication networks in terms of throughput and communication
channel availability. Other communication standards (both proprietary and open ones)
have also been considered for wireless communication in railways, and their comparative
features in terms of their compliance with railway communication systems are listed in
Table 4. Obviously, there does not appear to be a single wireless communication standard
that can fulfil all of these strict requirements, which has further strengthened the case for
LTE (4G/5G)-based communications as a backbone for future smart railways and railway
related the IoT paradigm of smart trains. It should also be noted that even though LTE-R
can provide improved railway communication services compared to the currently used
GSM-R, it cannot support certain emerging railway features such as autonomous driving
and massive IoT applications. A possible solution for these issues may be through the
introduction of railway-adapted 5G communication systems (5G-R), which are expected
to offer highly competitive performance in terms reliability and even higher data transfer
rates [109].
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Table 3. Comparison of GSM-R and LTE-R radio communication technologies in railways [108] in
terms of performance and maturity.

Parameter Frequency Channel
Bandwidth Peak Data Rate Maturity Market Support

GSM-R 921–925 MHz download
876–880 MHz upload 200 kHz 172 kbps Mature Until 2030

LTE-R 450 MHz, 800 MHz,
1.4 GHz and 2.1 GHz From 1.4 to 100 MHz 50 Mbps download

10 Mbps upload Emerging Building standards
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Table 4. Comparison of different wireless sensor networks technologies in terms of compliance with
railway communication requirements [108].

Technology Robustness Real-Time
Performance Range Throughput Network

Scalability
Power-Saving

Awareness

IEEE 802.11 Not compliant Not compliant Full Full Partial Not compliant

IEEE 802.15.4 Partial Not compliant Partial Not compliant Partial Full

Zigbee Partial Partial Partial Not compliant Full Full

Zigbee Pro Partial Partial Full Not compliant Full Partial

IEEE 802.15.1 Partial Full Not compliant Partial Not compliant Partial

Bluetooth Partial Full Not compliant Partial Not compliant Partial

Wireless HART Full Full Partial Not compliant Partial Full

ISA 100.11a Full Full Partial Not compliant Partial Full

WISA Full Full Not compliant Partial Partial Full

These communication systems can be integrated with the railway traffic control system.
For example, the European Rail Traffic Management System (ERTMS) is a system of
standards for the management and interoperation of signalling for railways by the European
Union. The ERTMS system is based on the technical specification for interoperability for
“traffic-control and signal-safety” subsystems, which was designed by the European Union
Railways Agency (ERA). The ERTMS system can be installed at several levels, depending
on the equipment installed on the track and the way information is transmitted to the train.
Figure 4 shows two levels of implementation of such systems:

(a) Level 1, which includes constant monitoring of the train movement and occasional
communication between the train and the track (using so-called Eurobalise). Trackside
signals are required at this level.

(b) Level 2, which includes constant monitoring of the train movement and constant
communication between the train and the track using the GSM-R system. At this
level, signalling equipment is not required along the track.

Fifth generation communications offer some distinct innovations and possible advan-
tages, such as the introduction of Filter Bank Multi-Carrier (FBMC) modulation instead of
the Orthogonal Frequency-Division Multiplexing (OFDM) [108]. In particular, FBMC can
facilitate a higher bandwidth utilisation efficiency, and consequently, better utilisation of
the existing spectrum and synchronisation for simultaneous communication between both
stationary and mobile communication nodes (both V2V and V2I communications) [108]. In
fact, FBMC can provide increased robustness to timing and frequency variations compared
to the OFDM method with lower error probability rates [110], while also being able to
provide better spectral containment of signals, thus offering increased robustness even
for high-volume data rates [111]. These features may become highly attractive in future
high-speed railways, which should feature increased transportation safety levels. For
that to happen, augmented communication capabilities are needed [112] due to inherent
problems with high-velocity train localisation (positioning) using the existing railway com-
munication networks [15]. Radio channel modelling was proposed in [112] to facilitate
the design of a novel communication system that is suitable for high-speed railways and
to assess its performance under realistic operating conditions. Some recent advances in
wireless communication technologies that could be applicable in future smart railways
include (i) intelligent self-powered sensor nodes [113] and related communication sys-
tems for the condition monitoring of freight wagons [114], (ii) stochastic modelling [115]
and the application of radio-over-optical fibre communications [116] aimed at improving
wideband communications in high-speed railways, (iii) energy-efficient communication
protocols [117] and wide-area networks (WANs) in intelligent transportation [118] includ-
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ing the IoT paradigm [119], and (iv) the development of effective high-throughput wireless
networks for railways using 5G communication technologies [120].

V2V communications have not yet been deployed in railways, but there is a clear
research trend in exploring the possibilities of the future incorporation of direct and indirect
(V2I-based) V2V communication systems into smart railway systems. V2I communications
can be viewed as keys for rail transport management, such as by using virtual coupling
between autonomous trains running in platoons and communicating over a centralised
radio link [121]. According to [121], this concept can also be used for the dynamic coupling
and decoupling of individual freight wagons and should notably improve the railway
system capacity and throughput under varying freight transport demand. A comparative
analysis of direct and indirect V2V communication between trains using fifth generation
radio networks for railways (5G-R) for the purpose of platooning was presented in [122],
wherein direct communication, although faster, requires additional means of synchroni-
sation due to the absence of a central clock on the fixed communications node (repeater).
The results in [122] also indicate that using advanced communications characterised by
low latency can facilitate the high-precision synchronisation of train speeds and mutual
distance within a platooning configuration. The introduction of nonlinear train dynamics
and motion resistances due to track gradient and curvature, as well as the locomotive
power limitations and safety constraints at junctions into the rail traffic model based on
high-bandwidth communication for the precise position and speed of the trains, may lead
to significant reductions in headways, thus improving the railway system’s capacity and
throughput [123].

Most of the above efforts are either aimed at developing intra-vehicle communications
over the limited-range wireless sensor networks of on-board trains [113,114,117] or massive
V2V or V2I communication networks [115,116,118,120], which utilise a substantial portion
of the communication bandwidth to carry a wide range of both service-related and user
data. However, from a practical standpoint, it is particularly worthwhile to investigate the
possibility of narrow-band (NB) communications within the IoT paradigm for railways,
wherein limited amounts of highly structured service data could be exchanged during
low-volume V2I communications. These structured data could then be used to improve
the transportation safety and energy efficiency while also preserving the communication
system bandwidth for other tasks [34].

Since autonomous (or driverless) trains are driven remotely with the aid of a central
computer control system augmented with advanced wireless communication technolo-
gies (such as 5G and IoT), advanced sensor suites (e.g., cameras, LIDAR), and artificial
intelligence-based algorithms [124], the main goal is to obtain at least the same level
of transportation safety as in the case when a human driver is present in the driver’s
cabin [125]. In that respect, human-machine cooperative action based on expert know-how
and information sharing [126] has been identified as one of the key aspects of automated
railway transportation safety and reliability [127], which are also necessary for the wider
acceptance of autonomous trains [128]. Recent research in expert systems and artificial
intelligence for railways, including applications for maintenance, traffic planning and
management, safety, and security, and autonomous driving was extensively reviewed in
reference [129]. In the above examples of the utilisations of Industry 4.0 technologies in
automated traffic and autonomous transport, equally important operational aspects for
safe operation are the reliability and cybersecurity of the wireless communication systems
in railways [130] due to their inherent vulnerabilities compared to fixed lines (such as
signal loss and interference) [131]. This applies both to V2X communications [30] and the
utilisation of wireless sensor networks to enhance traffic safety and facilitate automated
and autonomous transport [23]. Different solutions can be used to ensure secure data
exchange, such as the implementation of secure data link architecture, and decentralised
and pairwise secure key exchange between communication nodes [23]. Suitable metrics
are developed to establish the maturity of different cybersecurity models [132] and gauge
their resilience to cyber-attacks [133], wherein risk management techniques play important
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roles in cyber-attack mitigation and communication link recovery [131]. Naturally, these
advanced transportation features are subject to strict regulatory oversight, wherein balance
between traffic safety and the need for innovative solutions needs to be maintained [25].

3.2. Narrow-Band Internet of Things for Distributed Supervision and Control

As mentioned earlier, 5G New Radio (NR) networks have already superseded the
bandwidth and data throughput of GSM-R networks, thus becoming instrumental for
the introduction of novel technologies in future railway Information and Communication
Technologies (ICT). These may include Industrial IoT and other “cross-industry” solutions
for traffic system integration with other industrial or public systems [108]. These can be
broadly classified as wide-bandwidth (i.e., high data rate) services such as real-time video
data feeds, and narrow-bandwidth (low data rate) IoT services such as those related to
metering (low refresh rate sensors) [134].

About two-thirds of total IoT applications are characterised by low data transmission
rates [134], thus making NB-IoT a pervasive technology and emphasising the need for
highly reliable NB communications in the future Industrial IoT framework. Some of
the key characteristics of NB-IoT systems include [134] (i) a low power consumption,
which makes them highly autonomous as they use battery power alone (with battery lives
extending well over 10 years); (ii) enhanced coverage and low latency sensitivity; and
(iii) compatibility with LTE cellular networks. These features make the NB-IoT devices
that are already present within existing mobile networks good choices for a multitude of
services in areas with poor signal coverage [135]. Moreover, there is a possibility to use
these systems for a wide variety of purposes, such as security and safety, logistics and
transport, agriculture, manufacturing, health care, as well as smart city, smart home, retail,
utilities, and energy applications [136], as shown in Figure 5. In railways, user data can be
weather-related (precipitations, wind speed and direction, relative humidity, temperature,
and similar), as well as security information-related (e.g., occupancy and motion detection).
To make the NB-IoT technology even more pervasive, new access methods for multiple
devices are currently being investigated [137], along with data transmission error correction
solutions [138] and intelligent queuing and data traffic prioritisation algorithms [139].
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Since a railway system’s safety integrity level (SIL) primarily depends on the closed
and limited safety functions of a product or a system that is used within it, the utilisation of
extended-reliability components would favourably affect the final SIL level. Since NB-IoT
devices are frequently designed with a long service life, autonomous operation, and high
reliability already in mind, their utilisation may contribute to the SIL level improvement.
This may be achieved by using a transmission code and safety code [140] along with
different cryptographic techniques [141] to ensure the correctness of data transfer, which
can be easily programmed within the NB-IoT node embedded microcontroller system. It is
also critical that the latter possesses a fault-tolerant architecture [142], wherein using tried
and tested hardware would also increase the microcontroller system reliability [143]. By
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using all of these measures, it would be possible to achieve a high SIL 4 level of the NB-IoT
remote sensor node, which would be characterised by less than 10−9 faults per hour (see
discussions in [142,144]), which would be required to reliably monitor the integrity and
safety required by the monitored systems [145]. Naturally, a safety analysis should be
performed at all operational stages of the equipment lifecycle [146].

A principal schematic depicting the structure of an NB-IoT sensor node and its commu-
nication with the host (server) is shown in Figure 6 for the case of collecting the atmospheric
data along the track (i.e., temperature, relative humidity, and wind speed and direction)
presented in [36]. There, the remote sensor node provides unstructured data for process-
ing to obtain useful information about the track conditions. These data are prepared for
transmission by means of quadrature amplitude modulation (QAM) of the radio band
carrier signal (see, e.g., [147]) used in LTE communication networks. The conversion of
the parallel QAM data output into signals that aresuitable for transmission is based on
inverse fast Fourier transform (IFFT). At the receiver side, the inverse process is performed
on the received radio signal, i.e., fast Fourier transform, or FFT is used in conjunction with
the QAM demodulator for data extraction, which is subsequently forwarded to the target
database, and it is accessible to selected subscribers.
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3.3. Some Examples of Remote Sensor Use for Improving Transport Energy Efficiency and Safety

Railway transportation energy efficiency, safety, and security may be significantly
improved through the implementation of ITS [148]. Within the ITS concept, distributed NB
sensor networks may play crucial roles because they can be used for remote data collection
and the interactive signalling of trains with high decision autonomy [34].

In one such example, presented in [149], the problems of adhesion coefficient and head
wind velocity affecting the energy expenditure and transportation safety were analysed.
It was postulated that these influential factors, which can be estimated from measured
atmospheric variables (temperature, humidity, wind speed, and wind direction) can be
subsequently used for the prediction of worsened conditions on the railway track and
for the predictive scheduling of trains depending on the estimation of the journey time
duration using a suitable mathematical model [36]. Thus, the deployment of NB remote
sensor networks could significantly increase the transportation safety and security indices.
Figure 7 illustrates the concept developed in [149], wherein head wind and track adhesion
(estimated based on atmospheric variable measurements) have been used to estimate the
feasibility of the driving (freight hauling) mission over a demanding mountainous railway
route (see also [36]). A suitable knowledge base utilising these structured information sets
from the remote sensors, and the simplified model of the freight train are used to determine
whether the driving mission is feasible or not under the existing weather conditions. It
was indicated in [149] that this kind of approach may be useful for dispatching services
to amend the freight train timetables in real time. Moreover, track conditions can be used
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to optimise the energy (fuel) expenditures based on a suitable computer model supplied
with the real-time track condition information, thus supporting the transportation sector’s
“greening” and sustainability [36].
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Another example of possible NB-IoT sensor use in conjunction with AI for increased
traffic safety was presented in [150]. A traffic entity management algorithm based on fuzzy
logic was designed to reduce traffic congestion in the case of a partial restriction of one of
the two routes of the transport corridor, which is a typical problem in railways (Figure 8).
Under the assumptions of available traffic entity (vehicle) queue lengths (e.g., by using
NB-IoT remote sensor nodes for vehicle registration and tracking) the proposed fuzzy
logic-based traffic entity scheduling algorithm was compared with conventional traffic
scheduling, and it demonstrated the ability to effectively minimise vehicle queue lengths
under stochastic conditions of incoming traffic flows [150].
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4. Industry 4.0 Concept in Railway Transportation

Industry 4.0 is a concept applied to many different industries and enterprises to
make them more intelligent, dynamic, and flexible to meet the challenges of the highly
dynamic global market [151]. This is carried out by integrating information technology
(IT) systems with different physical systems (such as existing conventional industries) to
create the so-called interconnected fully digitalised cyber-physical system [151], whose
implementation also introduces inherent new challenges [152]. The above cyber-physical
system paradigm has ushered a new way of thinking about technical systems, processes,
business models, products, and services, and naturally, the potential new customer pools
opening due to the digitalised approach inherent to Industry 4.0 [153]. Industry 4.0 can
be regarded as the industry’s development stage after previous industry revolutions.
Figure 9 illustrates this on the example of logistics and transportation systems development.
Advances in the transportation and logistics sectors have been closely linked to advances
in other industries [154] and thus may also serve to increase both the competitiveness and
sustainability levels of related enterprises [155].

A railway transportation system consists of many subsystems such as a railway track
and related groundworks, signalling and safety systems, telecommunications, electric
power stations as part of the electrification infrastructure including the overhead power
lines, signalling and safety devices to secure road and pedestrian crossings, and other
auxiliary systems. It is evident that the railway infrastructure is a complex and demanding
system with high operational and maintenance costs. The Industry 4.0 concept and the
related digital transformation can benefit many of these subsystems, especially with the
improvement in energy efficiency, transportation safety, and security. These subsystems
may include (i) autonomous and automated transportation, (ii) multimodal and intermodal
transport systems, (iii) the application of big data analytics and artificial intelligence
for predictive maintenance, (iv) the supervision of critical infrastructure and resilience
improvement measures, and (v) smart grid connection, as outlined below.

It should also be noted that the technologies presented in this work represent the front
end of the more complex and comprehensive railway governing and organisation system,
which includes non-technical systems such as economic and business models, executive
decision making, and an overall transportation and energy policy. However, these aspects
of the transportation system are beyond the scope of this work.
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4.1. Autonomous Trains and Automated Railway Traffic

Due to the demand to reduce automobile traffic in highly urbanised areas, new inno-
vative transportation technologies are introduced that can facilitate high levels of urban
mobility with less traffic congestion and improved energy efficiency. The Autonomous Rail
Rapid Transit (ARRT) vehicles that were proposed recently have the advantages of rapid
implementation, adaptation of the driving mission en route, autonomous management,
and possible integration, coexistence, and cooperation with other urban modes of transport
(so-called intermodality). Some examples of such hybrid transportation systems include an
autonomous personal transit (shuttle) system for public transport [156], shown in Figure 10,
and a tram-like shuttle vehicle using virtual corridors defined for roadways [157], wherein
these vehicles use built-in sensors to drive along the virtual route, with the additional bene-
fit of being able to modify their driving missions in real time. These vehicles can undergo
real-time route adaptation according to current traffic conditions, so the flexibility of road
vehicles can be combined with the simultaneous regulation of such traffic in accordance
with the rules of conventional railway traffic. These advantages make ARRT systems good
candidates for future transportation in medium-sized cities [158].
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Innovative autonomous transport systems can also be made compatible with the
current metro railway infrastructure with the possibility of having significantly lower
implementation costs if they are integrated into the existing traffic infrastructure [159].
With the introduction of IoT, artificial intelligence and Big Data analytics, and next gen-
eration 5G communications, the autonomous vehicle supervision and control combines
sensors, communication, and control and navigation software [160]. Spatial and tempo-
ral information about traffic entities is crucial for the effective management of vehicles
with increased autonomy, such as when multiple independent autonomous high-speed
trains are driven on the same railway track with hard mutual distance constraints [161].
Alternative very close formations may be used for the purpose of implementing advanced
train dynamics control features, such as the concept of seamless inter-changeability (trains
coupling and uncoupling on the move), as presented in [162]. A Global Navigation Satellite
System (GNSS) is typically used for geospatial positioning and vehicle speed estimation,
such as for the predictive control of autonomous transportation systems [163]. Due to the
GNSS limitations of positioning precision and signal availability, high-speed trains also
require alternative positioning methods, such as the use of independent inertial measure-
ment unit (IMU) sensor suites [164] or signals from 5G communication networks. The
latter can indeed provide very accurate location information with much higher availability
that GNSS [15], which can be used for the cooperative control of multiple trains, further
augmented by train-to-train communications [165].

The Industry 4.0 concept can facilitate a more systematic utilisation of information
flows, including Industrial IoT technologies for better interconnectedness of different traffic
entities and big data analytics for the purpose of transportation optimisation. Thus, it
represents a key enabling technology to facilitate automated rail traffic control and energy
use optimisation and their integration in a straightforward fashion. This has been illustrated
by previous examples in references [149,150], wherein the advanced information and
communication technologies, data from remote sensor networks, and artificial intelligence
have been successfully used to improve railway transportation safety and energy efficiency.
Similarly, the utilisation of sensor suites on-board traffic entities coupled with massive data
throughput inherent to 5G radio networks was identified in [156] as enabling technologies
to increase the safety of autonomous transport. To that end, the authors of [154] discuss
the concept of a “digital railroad” aimed to improve transportation safety by means of
digital railway signalling systems, whereas the authors of [155] put forward arguments
for the increased usage of emerging technologies, such as drones, smart sensors, robotics,
blockchain, and artificial intelligence within the framework of Industry 4.0 for transport
and logistics to improve their safety and energy efficiency. These aspects of Industry 4.0 in
railway transport will also be discussed in the following subsections.

4.2. Multimodal Transportation

Railway transport can be divided into passenger transport and freight transport. There
is a strong pressure on technological development and the integration of rail freight trans-
port into the single European railway system (according to EU Directive 2012/34/EU). Also,
with the process of globalisation and environmental requirements, the costs of transport
services are a major factor in the overall business process, so they need to be optimised.
Rail freight transport optimisation is primarily focused on energy efficiency and deeper
integration with other transport and logistics sectors [166]. Due to these requirements,
intermodal freight transport and multimodal transportation in general are developing
rapidly [167]. Intermodal freight transport is the movement of goods stored within the
same loading unit (i.e., a transport container) via successive modes of transport without
handling the goods themselves when changing the mode of transport [168]. By integrating
and coordinating the use of different modes of transport that are available in intermodal
transport networks, intermodal freight transport provides an opportunity for the opti-
mal use of physical infrastructure to ensure cost-effective and energy-efficient transport
services [168]. Figure 11 illustrates the difference between single-modal and multimodal
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transport chains. The number of necessary cargo-handling operations, connecting transport,
and information exchange becomes increasingly complex in the case when multimodal
transport is employed for the cargo to be moved from its origin to its destination [169].
We can conclude that an information and communication infrastructure with a suitable
database that supports the management of this type of transport is needed for efficient
multimodal transport.
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With the aid of information providers, so-called synchronous transport can be achieved
by choosing modalities according to the latest logistical information, such as the transport
requirements of goods and current traffic information [170]. It is therefore evident that
the railway infrastructure needs to accelerate its digitalisation as a key pre-requirement
for the subsequent improvement of rail transport cost-effectiveness [171] and energy ef-
ficiency [172] to increase its sustainability. There is a clear trend towards improving the
energy, economic, and ecological (EEE) indicators in railway transport [173], as well as other
transportation domains such as maritime ports [174], which are keys when considering
the intermodal transport of large volumes of goods and the sustainability of the overall
transport sector [175]. Cutting-edge technical solutions, such as innovative containers and
loading/unloading systems, may further help to achieve higher levels of technical inter-
operability, as well as to lower the overall transportation costs, such as when multimodal
transport is considered compared to the case of railway transport alone [176]. This is also
true when hazardous materials need to be transported [177], where risk assessment also
plays a major role in transport planning and its subsequent implementation.

Optimising energy consumption and transportation time and cost in rail transport
represents a multidimensional nonlinear problem with several technological traffic con-
straints, especially when increased degrees of autonomy are concerned, where a number
of additional safety constraints also appear [19]. It was shown in [178] that a high level
of synergy between facilities and equipment, management, business operations, and in-
formation systems is a key requirement for highly effective logistics and transportation
processes, which may be sought by using optimisation tools. Consequently, these kinds
of optimisation problems usually involve multiple objectives that need to be minimised,
so optimisation methods that are suitable for multi-criteria optimisation problems need to
be employed [179]. Dynamic programming (DP) was used in [167] to obtain an optimal
combination of transport modes for a cargo container multimodal transport problem using
rail, road, and waterborne transport and was subject to overall transport cost and dura-
tion. Since cargo transport routing is subject to optimisation in these kinds of applications,
integer-valued states for routing description and mixed-integer linear programming (MILP)
optimisation algorithms can also be used for that purpose [180].Geographic information
system (GIS) software programs or stochastic programming [171] can be used to optimise
the efficiency of multimodal transport, especially when considering passenger transport
and ticket costs [181]. The optimisation of autonomous vehicles’ traffic for multimodal
transport is a relatively recent field of research [182], so experts from other areas such as
mechatronics are often required [152] to carry out the analysis with sufficient levels of
accuracy (see, e.g., [36]).
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4.3. Predictive Maintenance

Big data is the most important term in today’s digitalisation trend, and it denotes mas-
sive data sets [183] characterised by large volumes and different and complex structures,
together with the requirement of complex analysis tools for the purpose of visualisation
and the subsequent processing of data as input parameters for other systems. M2M data
exchange, associated with smart sensors and IoT devices, and characterised by large data
volumes, may be of particular interest when railway transport safety is concerned because
of its utility in predictive maintenance in conjunction with proper classification and pattern
recognition algorithms [184]. Predictive maintenance or condition-based maintenance rec-
ommends appropriate actions using a large set of collected data subjected to the processing
and extraction of key features that are subsequently used for classification (normal opera-
tion, emerging fault, developed fault, and imminent failure) [185]. The classification result
is subsequently used for timely maintenance decision making (Figure 12), thus reducing
maintenance time and costs and avoiding unscheduled overhauls [185]. Sources of analysis
data in railways can be wide and varied, such as (i) intelligent sensor networks on-board
freight trains [114], (ii) optical sensors such as LIDAR (light detection and ranging) devices
on-board trains, which are used for accident prevention [186], and (iii) cameras and other
sensors aboard unmanned aerial vehicles (UAVs) used for infrastructure monitoring [187],
just to name a few.
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Intelligent sensor networks on-board freight trains can be arranged depending on the
type of transmission medium (wire, optics, or wireless) and type of data transmission, i.e.,
single-hop and multi-hop networks [114] (Figure 13). Naturally, wireless communication
between sensor nodes and the data hub offers some distinct advantages over wire- or
optics-based data links, particularly with respect to the lack of maintenance. In that
respect, an electrical power supply for individual sensor nodes also plays a significant
role, especially with freight wagons, which are typically unpowered, except for braking
system pneumatics and the terminal signal light. Hence, such sensor nodes should either
be equipped with a long-life battery or an energy harvesting system for on-board power
supply [114]. One such case of autonomous sensors used for the online monitoring of the
braking system pressure and mechanical vibrations by means of accelerometers, with a
vibration energy harvesting system based on an inertial pendulum mounted on bogey
suspension, was presented in [113]. The main conclusion in reference [113] was that the
developed energy harvesting and ultracapacitor energy storage systems may need further
miniaturisation and protection from environmental conditions before being deployable
en masse. Other types of sensors that may be used for the online condition monitoring
of railway vehicles include on-board inertial measurement units [188] and smart sensors
within tunnels to facilitate an advanced risk assessment analysis [189]. Note that there are
already commercially available on-board sensor systems that satisfy stringent requirements
in terms of power autonomy (e.g., powered by means of solar panels) and high levels of
robustness and ingress protection (IP class), thus allowing them to operate over a wide
range of environmental conditions [190,191] that are characteristic for rail freight transport.
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Research in intelligent maintenance techniques in railways typically involves the utili-
sation of artificial intelligence, such as fuzzy logic and artificial neural networks (ANNs),
and machine learning (ML) models in the form of support vector machines (SVMs) and
support vector regression (SVR) models [184]. In that sense, the authors of [192] inves-
tigated a fuzzy logic-based thermography system for predictive maintenance in electric
railway traction. Thermal cameras are used to collect thermal imaging data about rails
and the catenary-pantograph system, and a fuzzy logic system utilising complex mem-
bership functions is used for image processing and related condition monitoring. Similar
work related to track condition monitoring was carried out in [193], wherein the support
vector machine (SVM) approach was used to model track geometry deterioration with a
prediction accuracy over 70% reported in the paper. On the other hand, the authors of [194]
utilised measurements from a ground-penetrating radar and compared the conventional
frequency analysis (FFT) approach with the AI approach using long short-term memory
(LSTM) neural networks and convolution neural networks (CNNs) for the prediction of
hazardous conditions such as railway track fouling and deformation, with both AI methods
performing remarkably well. Another example of CNN utilisation for predictive mainte-
nance would be the analysis of features of vibration signals for the purpose of early fault
detection, as shown in [185]. Figure 14 illustrates the ability of the CNN used in [185] to
extract and classify key features of different types of early mechanical faults of rotational
equipment with respect to normal operating conditions. The distribution of test samples
extracted from input signals and the output layer for the CNN are obtained by means of an
appropriate visualisation software tool, which represents the results in a two-dimensional
space of non-dimensional variables [185]. The results show good potential for predic-
tive maintenance in railways when vibration measurements are readily available using
on-board accelerometers, whose deployment was presented in [113].
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With the introduction of battery-based and hybrid propulsion in railway vehicles,
specific aspects of battery energy storage system maintenance also need to be considered,
which can be carried out within a multi-criteria optimisation framework [195]. More-
over, the three-dimensional (3D) reference architecture model from Industry 4.0 can be
adapted to describe intelligent high-speed railways in terms of their (i) intelligent features,
(ii) system levels, and (iii) life cycles, wherein intelligent features encompass different
aspects of the railway vehicle and infrastructure maintenance [196].

4.4. Resilience Improvement Measures and Inspection of Critical Infrastructure

Railways, along with other transport networks, water and gas distribution networks,
and electrical power grids fall into the category of critical infrastructure networks that are
essential for the functioning of society and the economy [197]. The increased transport
demand and the related increase in the railway network congestion results in an increased
complexity in their operation. Increased transport demand and increased complexity of
transport services cause disruptions within the controlled set of transport services. With
climate change-related events affecting the railway infrastructure, such as damaging the
tracks due to heat-related buckling, or flash floods and other extreme weather events
affecting the infrastructure (Figure 15; see also [35]), there is a clear need for measures
aimed at increasing railway systems’ resilience to external events [198], including both
anticipated and unforeseen ones [199].
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According to [197], there are four characteristic approaches to estimate railway systems’
resilience from the available literature:

1. Topological approaches that use network and graph theory to perform assessments
by removing links from the network in a stochastic manner (thus emulating stochastic
disturbances) or according to a predefined strategy (thus emulating deterministic
disturbances) using a well-defined mathematical theory;

2. Simulation approaches, which model traffic flows within the system using software
tools and can overcome the main disadvantage of the topological approach, i.e., the
exponential growth of the problem with the number of combinations;

3. Optimisation approaches, which can handle combinatorically complex scenarios in a
systematic manner without the need to analyse every possible combination of events
(which would be needed if the topological or simulation approach is used);

4. Data-driven approaches, which do not require explicit traffic network modelling and
can provide good a posteriori insights about network resilience using historical data.
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Research on railway traffic network resilience focuses on different aspects of railway
network operation and a wide variety of research methodologies, as indicated above.

For example, the topological approach used in [200] to model the railway trans-
portation system in Paris, France was able to identify which railway system components
have a major effect on the overall system’s functioning, which may be crucial for emer-
gency planning and train routing. Obviously, this kind of approach may also be used
to model and analyse other kinds of traffic networks, with the concept of friability (loss
of resilience) introduced in [201] to evaluate the effect of removing traffic hubs from the
network due to traffic interruption. Object-enhanced time Petri net models were used
in [202,203] to model and analyse the behaviours of railway transportation networks sub-
ject to traffic disturbances. As such, this approach offers a good basis for the development
of future software tools at the strategic and operational levels of traffic management and
control and for resilience assessment [202] practically throughout all the phases of railway
traffic system conception [203]. Machine learning methods [204] and Bayesian network
models [205] have also been used in traffic network resilience and vulnerability assessment
studies. On the low-end side, resilience improvement measures may include advanced
strategies for train platooning and dynamic interval optimisation to minimise departure
delay times and, consequently, to dynamically adapt the train departure timetables [206].
The timetable design is obviously a trade-off between the opposing requirements of stability
and feasibility, and robustness and resilience, wherein the former requirements are typically
met by using deterministic traffic models, whereas the latter require a stochastic-oriented
modelling approach [207]. Other methodologies that are typically used in the resilience
assessment of low-level and small-scale problems may include the use of dedicated traf-
fic simulation suites, such as the Simulation of Urban Mobility (SUMO) [208] and the
hardware-in-the-loop (HIL) approach, to validate the simulation results [209].

Naturally, special attention needs to be paid to cybersecurity challenges associated
with the utilisation of IoT-based technologies and the overall cyber-physical system com-
plexity, cloud services and interconnected infrastructure, and remote access security mea-
sures to prevent or alleviate the hazard of cyber threats and to ensure the availability and
continuity of railway services [210]. A possible example is radio unavailability in tunnels
and logistics facilities, and the presence of local radio interference or intentional jamming
that prevents wireless communication between moving or stationary traffic subjects. The
latter problem may be solved by using spread-spectrum (channel hopping) communica-
tions, wherein channel selection may be based on the game theory approach [211]. These
aspects may be of particular importance when high-speed railway signalling equipment is
concerned [212], as well as in the case of the transport of hazardous materials, whose routing
needs to be carefully planned and executed to minimise the transportation risks [213].

Another crucial aspect of railway transportation system resilience is the comprehen-
sive inspection, surveillance, and supervision of critical railway infrastructure, such as
tracks [192,194]; overhead power supply lines [192]; power stations, communication, and
signalling equipment [214]; and tunnels [179], bridges, and viaducts [215]. To that end, ref-
erence [196] illustrates how the use of numerous inexpensive narrow-band remote sensors
can improve railway transportation safety in the presence of varying tractions due to the
variability of atmospheric conditions (cf. also Figure 7). To automate the surveillance and
inspection processes, novel image acquisition methods using LIDAR-based photogramme-
try are commonly used [187,216] along with high-definition (HD) video cameras [215] and
thermal imaging using forward-looking infrared (FLIR) cameras (Figure 16a). These are
increasingly being mounted on UAV-based platforms to scan the terrain, buildings, and
other parts of railway infrastructure [217], as illustrated in Figure 16b.
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based surveillance platforms (b) based on discussion presented in [218].

The main advantage of UAVs compared to conventional means of surveillance is that
one UAV can carry high-performance sensors and cover a very geographically large area
using mobile data connection for data transmission, while a conventional surveillance
system requires much more expensive information, communication, and energy infrastruc-
ture, a larger number of sensors to cover the entire area that should be monitored [218]
(cf. Figure 16a,b), and possible different transmission systems for high and low data rate
sensors. However, when UAVs are used for surveillance, especially during long missions,
there is a certain risk of collision with the surrounding terrain or other aircraft, as indicated
in [219]. Reference [219] analyses different collision risk sources and possible outcomes
and recommends the utilisation of an emergency parachute for a UAV in order to mitigate
the risk of propulsion failure and the loss of UAV control. To extend the aerial coverage
of the railway infrastructure, hybrid propulsion technologies may be considered for the
surveillance UAVs, such as the internal combustion engine-generator set coupled with
the auxiliary battery energy storage system. It was shown in [220] that such a propulsion
system has at least double the energy density (and therefore endurance) of a conventional
battery-based UAV propulsion while still retaining high control of the flexibility that is
inherent to electric propulsion. Such hybrid propulsion-based UAVs for long-duration
flight missions are already available commercially [221–223], so their more widespread use
in critical infrastructure inspection and surveillance can be expected in the future.

Deep learning methods are frequently used in machine vision applications for critical
infrastructure resilience analysis and protection, with ANNs typically being used for that
purpose [224]. Among different neural network types, CNNs are normally used for feature
extraction in object detection, e.g., to recognise patterns such as edges, shapes, colours, and
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textures in UAV-recorded HD pictures [225]. In the case of LIDAR use, the classification of
features of the so-called “point cloud” has been performed by using the so-called random
forest algorithm, which appears to be well suited for the problem of the classification of
large 3D data point clouds [226]. Other methodologies used for feature detection during an
HD picture analysis may include the Hypercomplex Fourier Transform (HPT) model [218]
and a particular type of CNNs, the so-called Region-based Convolution Neural Networks
(R-CNNs) [227].

4.5. Smart Grid Paradigm in Railway Transport

The concept of a smart grid (SG) does not have a single unambiguous definition.
According to [228], “it combines a set of technologies and end-user solutions and addresses
a wide range of policy drivers” in order to integrate the actions of all users connected into
the electricity network (electrical grid), from electrical power sources to consumers, and the
entities that can perform both tasks (so-called “prosumers”), so that continuous, efficient,
economic, and sustainable energy balance can be maintained within the grid [229]. The
smart grid paradigm encompasses a wide range of hardware, software, and communication
system solutions (Figure 17), thus enabling the following advanced functionalities within
the electricity grid [228]:

1. Demand response and demand-side management, which is accomplished through
the utilisation of smart metering and smart consumers, local or distributed generation
(DG), electrical energy storage (ESS), and, generally, any distributed energy resources
(DERs) coupled with providing timely information about energy prices [230];

2. Renewable energy sources (RES), along with distributed generation, residential micro-
generation, and energy storage (the so-called microgrid concept), which have the
potential to improve the energy sector’s environmental impact [231], and are thus
accommodated within the SG paradigm, which also provides means of resource
aggregation [232];

3. Improved reliability and security of the power supply through an improved resilience
to deterministic and stochastic disturbances such as adverse weather conditions and
cyber threats [233], and through measures such as predictive maintenance, fault
isolation techniques, and an enhancement of the power transfer capabilities [228];

4. The optimisation and efficient operation of assets and opening access to markets by
means of intelligent distribution system nodes [230], wherein efficient asset manage-
ment is carried out based on the timely response to highly dynamic demand using
enhanced power transmission paths and an aggregated power supply [228];

5. Maintaining the power quality, which is key for the correct operation of sensitive
equipment [228].

To be able to provide the above functionalities within the SG paradigm, the following
technologies need to be massively deployed within the electrical grid [228]:

• Information and communication technologies, which enable two-way communication
to ensure the interoperability of automation and control and to ensure connectivity
between heterogeneous communication nodes connected to different energy sources
and loads [234], with the possibility of using the existing electrical network for narrow-
band and broad-band communications (operating network, business network, and
consumer network) (appropriate hardware and software for secure communications
are needed for energy trading and demand-side response [235] and for the seamless
integration of intermittent renewable energy sources into the electricity grid [231]);

• Sensing, control, and automation technologies, such as intelligent electronic devices
for protective relaying, smart metering, fault recording, and any other sensing, control,
automation and ICT systems for rapid diagnosis and event management [235], and
advanced power flow control [232];

• Power electronics and energy storage technologies at different scales (power and
energy ratings), including high-voltage direct current (HVDC), flexible alternating
current transmission systems (FACTSs), and various back-to-back power converter



Future Internet 2023, 15, 347 28 of 44

topologies, which can facilitate the straightforward integration of renewable energy
sources and electrical energy storage systems into the electricity grid [236].
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A smart grid architecture model (SGAM) [237] is used to describe the complex inter-
play between the individual parts of a smart grid system [230] and can be divided into five
individual layers (business, function, information, communication, and component), as
shown in Figure 18. Naturally, the information flow within the model depends on reliable
ICT resources to timely coordinate the interactions between the aforementioned layers.
According to the standard presented in [237], these layers are further divided into different
domains and zones, wherein domains cover the complete energy conversion sequence,
whereas zones are divided to facilitate different hierarchical levels of the energy manage-
ment system (see Figure 18). As discussed in [238], the SGAM concept is also applicable to
the development of advanced energy management control systems in smart railways. A
novel Internet of Energy (IoE) concept is proposed as a way of integrating different energy
technologies into smart power systems using advanced ICT-based tools that were already
developed within the Industrial IoT concept [239].

Although smart grid technologies are market mature and have proven their benefits
through successful implementation and use, such as increased reliability, energy availability,
and energy efficiency using advanced ICT systems [240], there is currently relatively little
effort in the research and development of smart grids for railway projects. The specific
issues of railway transportation safety, security, and availability make the influx of such
new technologies much more challenging. In that respect, a particular emphasis needs to
be paid to reliable and secure broad-band communications to facilitate the integration of
distributed power sources, energy storage systems, and smart energy management systems
into the railway power system [241]. As illustrated in Figure 19, electrified railway power
systems are connected to the main power grid, which provides the bulk power supply
for the railway traction, wherein the electrical system operators (ESO) are tasked with
balancing the power generation and demand, and the electricity market operators (EMOs)
manage energy trading, either via contractual agreements or on energy markets [241]. The
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railway system operator (RSO) is tasked with controlling the railway traffic to ensure safe
and reliable traffic flow, and it is also responsible for controlling the railway power system.
In a smart grid for railways scenario, the RSO would also operate the distributed energy
resources within the railway power system, that is, the energy storages and distributed
generation assets, as shown in Figure 19.
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Figure 19. Railway power system interconnection with power distribution, transmission grid, and
local distributed energy resources [241].

To facilitate the. effective control of a railway smart grid, the railway power system
obviously needs to incorporate many advanced electrical power subsystems alongside
DERs and ESS for local power balancing [241]. The effective power flow control between the
railway power grid and the main power grid requires the non-reversible sub-stations (SSTs)
to be augmented by power subsystems that are capable of real-time energy balancing, such
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as reversible sub-stations (RSSTs) and intelligent sub-stations (ISST), as shown in Figure 20.
Such resources, along with the local ESS, can effectively handle reverse power flows from
electric trains equipped with dynamic on-board energy management (DOEM) systems used
for kinetic energy recuperation [238]. Since such a railway energy management system
(REM-S) interacts with the main power grid and energy markets, its operation needs to be
optimised [238] on a daily basis (day-ahead optimisation), which can take into account the
daily train schedules, and on a short time scale (with schedules that are 15 min ahead being
typical), which needs to fulfil the day-ahead power profile while taking into account the
excesses and restrictions of local power production by coordinating between sub-stations
and DERs. Real-time operators subsequently fulfil the commanded 15 min power profiles
while also taking into consideration the real-time information and power flows from the
local power network [238].
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Obviously, the type of distributed energy resources (DG and ESS) and the means of
their control would play crucial roles both in the day-ahead optimisation and local power
flow control based on short time scale schedules. To this end, reference [242] considers a
railway-to-grid smart energy management system based on advanced power converter
topologies with electrical energy storages for a DC railway network, which can effectively
re-route the energy between the power grid and the railway electrical network and increase
their flexibility. Different power converter topologies for the integration of PV energy
sources into the railway power grid are assessed in [243], whereas the authors of [244]
discuss the use of energy storage systems on-board railway trains and propose a two-level
hierarchical energy management system using AI in the form of a fuzzy logic system.
It reports between 22.3% and 28.7% of improvement in energy efficiency with on-board
ESS. The integration of a regenerative braking energy recuperation system with energy
storage and PV systems into the railway power grid was analysed in [245]. Power flow
optimisation has been performed by means of MILP and has shown the potential to reduce
the cost of operation by about 30% compared to the conventional railway grid scenario.

The expected evolution of the information integration of the modern railway traffic
management system and energy management towards the future smart railway, which
is characterised by a wide use of wireless communication networks, independent power
sources, and wide data processing capabilities of individual transport entities and infras-
tructure, opens up space for new research and areas that are not covered by this work.
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Examples of those are traffic regulations, technological problems of timetable management,
the issues of maintaining new technological systems that are not directly included in the
railway system, and technological systems that have direct consequences on the safety of
railway traffic.

5. Conclusions

This paper presents a detailed overview of the most modern technologies proven
through research projects for the future development of smarter, safer, and greener rail
transport systems. Firstly, this paper focused on emerging propulsion technologies that
are crucial for sustainable transportation, such as those based on battery energy storage
technologies, hydrogen fuel cells, and alternative fuels. The literature review showed that
battery-assisted propulsion, either through the hybridisation of diesel-electric locomotives
or in combination with conventional diesel-electric propulsion, can result in notable fuel
savings and greenhouse gas emission reductions, and it can apparently achieve profitability
using state-of-the-art lithium batteries. Hydrogen fuel cells have become attractive alterna-
tives to conventional propulsion, especially for smaller-scale railway vehicles. However,
hydrogen’s increased penetration is predicated by the deployment of novel hydrogen re-
fuelling infrastructure, which, according to the literature, may become profitable in railway
applications through achieving an economy of scale. In that respect, the utilisation of opti-
misation tools to plan hydrogen-based railway train refilling and using on-site hydrogen
production facilities to supply heavy-haul freight trains may also play an important role
in the future uptake of hydrogen-based railway propulsion systems. Synthetic fuels and
biofuels may also be considered as low-carbon-footprint alternatives for railway transporta-
tion, but their penetrations are much less certain due to the low efficiency of the synthesis
process in the former case and the effect on arable land use and food production in the latter
case. Railway transport energy efficiency measure improvements are likely to encompass
all of the above alternative propulsion systems and energy sources in the near future,
with the end result currently being uncertain due to many technologies currently being
researched, developed, and increasingly deployed and investigated in realistic operating
conditions. The process of selecting optimal propulsion systems for railway traction roles
will likely take years before the field tests ultimately point to solutions that are the most
competitive in terms of investment and running costs while simultaneously satisfying the
ever more stringent environmental regulations.

Secondly, this paper presented the emerging information and telecommunications
systems based on long-term evolution and fifth generation new radio (5G NR) networks,
with an emphasis on communication systems that are suitable for railway applications.
According to the methodology of the integration of experiences from various research
projects and different fields, this work presented successful results through achieved
specific goals such as energy efficiency or ecological consequences, and it presented broader
information so that readers can understand the context and successfully indicate the
possible successful compatibility of the researched technology. In this context, the role
of Industrial Internet of Things was presented with a particular emphasis on wireless
communications and remote sensor networks for railway transportation supervision and
management. Special emphasis was also given to narrow-band remote sensor networks
for the monitoring of railway infrastructure and atmospheric conditions at the track as
key prerequisites for intelligent transport management. Two characteristic cases were
presented, wherein remote sensors were successfully used with expert systems and artificial
intelligence for railway traffic management, resulting in increased traffic throughput and
improved management under adverse weather conditions. It is likely that the new 5G radio
network paradigm is going to make notable inroads into railway transportation due to its
flexibility, versatility, and support for both narrow-band structured data transfer for smart
remote sensor networks and massive broad-band communications, which could support
future autonomous railway transport. The integration of technologies that have proven to
be successful through research projects is moving in the direction of digitisation, which is
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key to the competitiveness of the railway industry, and that is why it has become one of the
priorities that stakeholders in the railway system deal with in order to use technological
opportunities to improve operational processes, i.e., the quality of the provided transport
services. The modern information and communication systems mentioned in the paper
are focused precisely on applications in different business verticals, where transport in
general, especially environmentally friendly rail transport, plays a major role. Modern
railway systems will largely apply communication technologies of the latest generations
paired with new data sources and the application of data science, including artificial
intelligence (e.g., fuzzy logic) in order to optimise processes and provide a competitive,
reliable, safe, and environmentally sustainable transport service. The digitisation of railway
processes, driven by the application of mobile communication networks and information-
communication systems, generates a sufficient amount of data on the basis of which it is
possible to extract and use those that are important for the improvement of operational
processes in railway systems.

Finally, the role of the Industry 4.0 concept was investigated within the framework
of railway transportation. In that respect, the role of information and communication
technologies was investigated for the case of autonomous trains and automated railway
traffic, wherein big data analytics and latest next generation communication technologies
ought to play key roles in future railway transportation. The same conclusion can also
be drawn in the case of multimodal transportation combining railways with other modes
of transport, with a particular emphasis on the role of new technologies in improving
the energy, economic, and ecological indices. In that sense, the utilisation of optimisation
tools may be the key to achieve more efficient, economic, and cleaner transport. On the
other hand, when transportation safety is concerned, the predictive maintenance of railway
vehicles and infrastructure represents one of the key prerequisites for future transportation
safety. In that sense, intelligent sensor networks coupled with big data analytics and
artificial intelligence may provide timely information about equipment and infrastructure
condition deterioration. Obviously, this may also have a profound effect on the railway
network and transportation system resilience. In that sense, the utilisation of specialised
sensors, machine learning and artificial intelligence, and innovative platforms for the
inspection and surveillance of critical railway infrastructure should play key roles in future
intelligent transport. The utilisation of intelligent Industrial IoT sensors and smart metering
is also vital for the introduction of the smart grid concept into the railway transportation
sector. Such synergy between intelligent transport and intelligent energy management is
likely to usher many improvements in energy efficiency and transportation security and
safety. For that to happen, it is crucial that ICT systems for railways can support both
narrow-band and broad-band communications with enhanced security features to support
the integrated smart railway transport and energy infrastructure.
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Nomenclature
3D Three-Dimensional
4G Fourth Generation New Radio Network
5G Fifth Generation New Radio Network
5G-R Fifth Generation New Radio Network for Railways
AC Alternating Current
AI Artificial Intelligence
ANN Artificial Neural Network
ARRT Autonomous Rail Rapid Transit
CNN Convolution Neural Network
R-CNN Region-Based Convolution Neural Network
CO2 Carbon Dioxide
DC Direct Current
DC/DC Direct Current to Direct Current (power converter)
DER Distributed Energy Resource
DGs Distributed Generators
DME Dimethyl Ether
DOEM Dynamic On-Board Energy Management
DP Dynamic Programming
EC European Commission
ECo External Consumer
EEE Energy, Economic, and Ecological (indicator)
EMO Electricity Market Operator
EMS Energy Management System
ERA European Railway Agency
ERTMS European Rail Traffic Management System
ESO Electrical System Operator
ESS Energy Storage System
EU European Union
FACTS Flexible Alternating Current Transmission Systems
FBMC Filter Bank Multi-Carrier (modulation technique)
FFT Fast Fourier Transform
FLIR Forward-Looking Infra-Red (thermal imaging camera)
H2 Hydrogen
HD High Definition (video camera)
HESS Hybrid Energy Storage System
HIL Hardware-in-the-Loop
HPT Hypercomplex Fourier Transform (model)
HVDC High-Voltage Direct Current
IFFT Inverse Fast Fourier Transform
GHGs Greenhouse Gases
GIS Geographic Information System
GNSS Global Navigation Satellite System
GSM Global System for Mobile Communication
GSM-R Global System for Mobile Communication—Railways
I2V Infrastructure-to-Vehicle (communication)
ICT Information and Communication Technologies
IoT Internet of Things
IIoT Industrial Internet of Things
IoV Internet of Vehicles
IMU Inertial Measurement Unit
IP Ingress Protection
ISST Intelligent Sub-Station
IT Information Technology
ITC Information and Telecommunications
ITS Intelligent Transportation System
LCA Life Cycle Assessment
LIDAR Light Detection and Ranging
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LiFePO4 Lithium Iron Phosphate (batteries)
LNG Liquefied Natural Gas
LP Linear Programming
LSTM Long Short-Term Memory (neural network type)
LTE Long-Term Evolution (radio networks)
LTE-R Long-Term Evolution (radio networks) for Railways
LTO Lithium-Titanate (battery chemistry)
M2M Machine-to-Machine (communications)
MILP Mixed-Integer Linear Programming
ML Machine Learning
MPC Model-Predictive Control
NB Narrow-Band
NB-IoT Narrow-Band IoT
NB-LTE Narrow-Band LTE (network)
NiMH Nickel-Metal-Hydride (batteries)
NR New Radio
OFDM Orthogonal Frequency Division Multiplex (modulation technique)
QAM Quadrature Amplitude Modulation
PI Proportional-Integral (control)
PV Photovoltaic
PWM Pulse-Width Modulation
R&D Research and Development
REM-S Railway Energy Management System
RESs Renewable Energy Sources
RN Radio Network
RSO Railway System Operator
RSST Reversible Sub-Station
SG Smart Grid
SGAM Smart Grid Architecture Model
SIL Safety Integrity Level
SoC State-of-Charge (of a battery or an ultracapacitor energy storage)
SST Sub-Station (non-reversible)
SUMO Simulation of Urban Mobility (traffic simulation software)
SVM Support Vector Machine (machine learning model)
SVR Support Vector Regression (machine learning model)
UAV Unmanned Aerial Vehicle
V2I Vehicle-to-Infrastructure (communication)
V2P Vehicle-to-Pedestrian (communication)
V2V Vehicle-to-Vehicle (communication)
V2X Vehicle-to-Anything (communication)
WANs Wide-Area Networks
WLAN Wireless Local-Area Network
ZEBRA Sodium-Nickel Chloride (batteries)
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69. Pavković, D.; Lobrović, M.; Hrgetić, M.; Komljenović, A. A Design of Cascade Control System and Adaptive Load Compensator
for Battery/Ultracapacitor Hybrid Energy Storage-based Direct Current Microgrid. Energy Convers. Manag. 2016, 114, 154–167.
[CrossRef]
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148. Mlinarić, T.-J.; Ðord̄ević, B.; Krmac, E. Evaluating framework for key performance indicators or railway ITS. Promet Traffic Transp.

2018, 30, 491–500. [CrossRef]
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185. Kolar, D.; Lisjak, D.; Pajak, M.; Pavković, D. Fault Diagnosis of Rotary Machines Using Deep Convolutional Neural Network with

Wide Three Axis Vibration Signal Input. Sensors 2020, 20, 4017. [CrossRef] [PubMed]
186. Mujica, G.; Henche, J.; Portilla, J. Internet of Things in the Railway Domain: Edge Sensing System Based on Solid-State LIDAR

and Fuzzy Clustering for Virtual Coupling. IEEE Access 2021, 9, 68093–68107. [CrossRef]
187. Lesiak, P. Inspection and Maintenance of Railway Infrastructure with the Use of Unmanned Aerial Vehicles. Railw. Rep. Probl.

Kolejnictwa 2020, 188, 115–127. [CrossRef]
188. Medeiros, L.; Silva, P.H.O.; Valente, L.D.C.; Nepomuceno, E.G. A Prototype for Monitoring Railway Vehicle Dynamics Using

Inertial Measurement Units. In Proceedings of the 13th IEEE International Conference on Industry Applications (INDUSCON),
Sao Paulo, Brasil, 12–14 November 2018; pp. 149–154. [CrossRef]

https://doi.org/10.1109/ICSTCC.2019.8886073
https://doi.org/10.1007/978-1-4471-2280-7
https://doi.org/10.33012/2017.15312
https://doi.org/10.1109/TITS.2016.2518649
https://doi.org/10.1177/0036850419890491
https://doi.org/10.1016/j.proeng.2016.01.272
https://doi.org/10.1109/ICNSC.2013.6548803
https://doi.org/10.3390/su13168686
https://doi.org/10.1016/j.apenergy.2021.117018
https://doi.org/10.3390/en14185920
https://doi.org/10.3390/infrastructures6080114
https://doi.org/10.1016/j.trpro.2020.02.005
https://doi.org/10.1088/1755-1315/272/3/032078
https://doi.org/10.3390/su12041487
https://doi.org/10.2478/ttj-2021-0010
https://doi.org/10.3390/su11195486
https://doi.org/10.3390/ijgi10050321
https://doi.org/10.1080/03081060.2012.635414
https://doi.org/10.1007/s40171-017-0159-3
https://doi.org/10.1016/j.trc.2018.03.010
https://doi.org/10.3390/s20144017
https://www.ncbi.nlm.nih.gov/pubmed/32707716
https://doi.org/10.1109/ACCESS.2021.3077728
https://doi.org/10.36137/1883E
https://doi.org/10.1109/INDUSCON.2018.8627330


Future Internet 2023, 15, 347 42 of 44

189. Focaracci, A.; Greco, G.; Martirano, L. Dynamic Risk Analysis and Energy Saving in Tunnels. In Proceedings of the 2019 IEEE
International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems
Europe, Genova, Italy, 11–14 June 2019; pp. 1–6. [CrossRef]

190. Nexiot, Globehopper EDGE. Available online: https://nexxiot.com/products/globehopper-edge/ (accessed on 25 August 2023).
191. Nexiot, Globehopper Crossmodal. Available online: https://nexxiot.com/products/globehopper-crossmodal/ (accessed on 25

August 2023).
192. Karakose, M.; Yaman, O. Complex Fuzzy System Based Predictive Maintenance Approach in Railways. IEEE Trans. Ind. Inform.

2020, 16, 6023–6032. [CrossRef]
193. Hu, C.; Liu, X. Modeling track geometry degradation using support vector machine technique. In Proceedings of the 2016 Joint

Rail Conference, Columbia, SC, USA, 12–15 April 2016; Paper No. JRC2016-5736. pp. 1–6. [CrossRef]
194. Massaro, A.; Dipiero, G.; Selicato, S.; Cannella, E.; Galiano, A.; Saponaro, A. Intelligent Inspection of Railways Infrastructure

and Risks Estimation by Artificial Intelligence Applied on Noninvasive Diagnostic System. In Proceedings of the 2021 IEEE
International Workshop on Metrology for Industry 4.0 & IoT (MetroInd4.0&IoT), Rome, Italy, 7–9 June 2021; pp. 231–236.
[CrossRef]

195. Fetter, M.; Csonka, B. Multi-criteria evaluation method for operating battery electric railcars. In Proceedings of the Smart Cities
Symposium Prague 2021, Prague, Czech Republic, 27–28 May 2021; pp. 1–6. [CrossRef]

196. Duan, J.; Shen, H. Three-dimensional system structure model of intelligent high-speed railway. In Proceedings of the 2021
International Conference of Social Computing and Digital Economy, Chongqing, China, 28–29 August 2021; pp. 328–331.
[CrossRef]
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