
Citation: Ferilli, S.; Bernasconi, E.;

Di Pierro, D.; Redavid, D. A Graph

DB-Based Solution for Semantic

Technologies in the Future Internet.

Future Internet 2023, 15, 345. https://

doi.org/10.3390/fi15100345

Academic Editors: Vincenza

Carchiolo and Marco Grassia

Received: 11 September 2023

Revised: 12 October 2023

Accepted: 16 October 2023

Published: 20 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Article

A Graph DB-Based Solution for Semantic Technologies in
the Future Internet
Stefano Ferilli * , Eleonora Bernasconi , Davide Di Pierro and Domenico Redavid

Department of Computer Science, University of Bari, 70125 Bari, Italy; eleonora.bernasconi@uniba.it (E.B.);
davide.dipierro@uniba.it (D.D.P.); domenico.redavid1@uniba.it (D.R.)
* Correspondence: stefano.ferilli@uniba.it; Tel.: +39-080-544-2293

Abstract: With the progressive improvements in the power, effectiveness, and reliability of AI
solutions, more and more critical human problems are being handled by automated AI-based tools
and systems. For more complex or particularly critical applications, the level of knowledge, not just
information, must be handled by systems where explicit relationships among objects are represented
and processed. For this purpose, the knowledge representation branch of AI proposes Knowledge
Graphs, widely used in the Semantic Web, where different online applications may interact by
understanding the meaning of the data they process and exchange. This paper describes a framework
and online platform for the Internet-based knowledge graph definition, population, and exploitation
based on the LPG graph model. Its main advantages are its efficiency and representational power and
the wide range of functions that it provides to its users beyond traditional Semantic Web reasoning:
network analysis, data mining, multistrategy reasoning, and knowledge browsing. Still, it can also be
mapped onto the SW.

Keywords: graph databases; ontologies; Knowledge Graphs; Semantic Web; knowledge representation
and reasoning; graph mining; network analysis; knowledge exploration

1. Introduction

Artificial Intelligence (AI) is becoming more and more pervasive. The subsymbolic
(mathematical/statistical) approach to AI provides efficient and effective solutions that
are not easily interpretable or explainable. Symbolic approaches, based on formal logic,
are required to improve trustworthiness and ensure uniform knowledge interpretations.
Concerning Internet applications, the Semantic Web (SW) solutions and standards ensure
system interoperability, automatic service composition, and automated reasoning facilities.
Such a high level of data storage and exploitation determines the so-called Knowledge
Bases (KBs), where ‘data’ (simple values) and ‘information’ (interpreted data) are raised to
the level of ‘knowledge’ (interconnected information, where the whole is more valuable
than just the sum of the parts).

The SW focuses on ontologies as the key to providing formal definitions of the avail-
able information items and develops specific formalisms and knowledge storage systems
based on graph representations of knowledge, the so-called ‘Knowledge Graphs’ (KGs).
Sometimes, KGs are intended to encompass both the ontology and the instances, and some-
times, they are intended to be limited to the instances only. Thanks to the ontology, some
automated reasoning tasks (such as inheritance, consistency checks, etc.) can be applied
to the KG, and various tools have been developed for this. We believe that, to support
increases in the power, effectiveness, and reliability of AI solutions, the future of SW solu-
tions should also rely on DB technologies and especially on graph DB ones to exploit their
efficiency, especially when instance-based information exploitation is required, as opposed
to batch information processing (satisfactorily supported by traditional relational DBs).
An obvious link between these two technologies is their basis on graph models, albeit on

Future Internet 2023, 15, 345. https://doi.org/10.3390/fi15100345 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi15100345
https://doi.org/10.3390/fi15100345
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0003-1118-0601
https://orcid.org/0000-0003-3142-3084
https://orcid.org/0000-0002-8081-3292
https://orcid.org/0000-0003-2196-7598
https://doi.org/10.3390/fi15100345
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi15100345?type=check_update&version=1


Future Internet 2023, 15, 345 2 of 28

different and partly incompatible ones: the SW adopts the RDF graph model, and the most
prominent graph DB adopts the Labeled Property Graph (LPG) model. The latter allows
more expressiveness and produces more compact graphs than the former.

This paper proposes a framework that covers the whole range of layers, from back-
end machinery to end-user interfaces, and the whole range of functions, from knowledge
representation (defined by the GraphBRAIN framework), base creation, population, and
maintenance to network mining and analysis (carried out by the GraphBRAIN system),
to interoperability among different SW applications (guaranteed by a purposely developed
GraphBRAIN API), to Knowledge Base querying, browsing, and mining (provided by
the SKATEBOARD system). Moreover, we propose a mapping mechanism to port data
expressed in the LPG into the RDF to create a bridge between GraphBRAIN and the SW.

GraphBRAIN uses an LPG-based knowledge representation that can be mapped
directly onto the Neo4j [1] graph DB for instant storage and manipulation and acts as a
schema for the DB content. An API, which can be used by any application that adopts
the GraphBRAIN framework, wraps the DB and ensures that all operations carried out
on it are compliant with a given ontology. A Web Application is available for form-
based information entry and retrieval and for user-friendly execution of the basic CRUD
operations. The GraphBRAIN framework acts as an intermediate format that can be easily
mapped onto different technologies:

• The Neo4j libraries for graph manipulation, querying, and mining;
• Advanced MultiStrategy Reasoning tools that combine different inference strategies

to tackle more complex problems and closely simulate human reasoning (e.g., as pro-
vided by GEAR [2]);

• Standard SW representation techniques and reasoning tools to be interoperable with
the existing SW world.

One of the end-user applications powered by GraphBRAIN is SKATEBOARD, which
was purposely developed to support semantic-based, interactive, and dynamic browsing of
the KG. It provides various filters for the information to be displayed, tools for expanding
the portion of the graph under consideration and looking into the single graph components
for their information content, and additional facilities, such as maps, that allow easy
location-based analysis and browsing of the data.

The novel contributions of this paper are

1. A description of the current version of the GraphBRAIN knowledge representation
structure and formalism, which extends and refines that proposed in [3];

2. A description of a strategy to map the GraphBRAIN knowledge representation into
the standard language for ontologies used on the Web (OWL);

3. A description of the API with its latest functions in more depth than that presented
in [4];

4. An introduction to the SKATEBOARD interface and the end-user-related functions
of GraphBRAIN.

In essence, the key contribution of GraphBRAIN lies in its ability to bridge the gap
between graph databases and ontologies, enabling efficient data handling while also
facilitating advanced reasoning and analysis, making it a versatile tool for managing
complex Knowledge Graphs with rich semantics. Furthermore, it offers modular ontology
handling, allowing for the integration of existing ontologies or the creation of new ones,
enhancing the adaptability of the framework to various domains and specific requirements.

This paper is structured as follows: After reviewing related work in Section 2, Section 3
describes the GraphBRAIN framework and its features and functionalities. The relationship
between GraphBRAIN and standard Semantic Web technology is discussed in Section 4,
while Section 5 presents the general interfaces within GraphBRAIN. Then, in Section 6, we
evaluate the framework’s performance and capabilities before drawing our conclusions
in Section 7.



Future Internet 2023, 15, 345 3 of 28

2. Related Work

In this section, we delve into various facets of related research and technologies that
have paved the way for the development of GraphBRAIN.

2.1. RDF and LPG Models for Knowledge Graphs

Concerning the possibilities for cooperation between ontologies and graph DBs, there
is a recognized need for, but limited adoption of, logic-based KR for the development
of KGs [5]. Most theoretical works specifically deal with the mapping from OWL- to
LPG-based graph DBs, but are always biased towards ontologies without leveraging the
extended structure and expressiveness of LPGs with respect to RDF graphs: G2GML [6],
OWL2LPG [7], SciGraph [8], and VirtualFlyBrain [9]. GraphBRAIN takes the opposite
perspective and, considering that DB technology is more mature and widespread than
the ontology one, aims to preserve the DB structure and organization, superimposing
the ontology.

OWLStar [10] exports Neo4j to OWL using RDF*, but still with an OWL-centric per-
spective. While there is a formal mapping between LPGs and RDF* that would allow us
to keep the data in the DB and render them in RDF* [11], RDF* and its query language
SPARQL* have not yet been proposed as W3C recommendations. GraphBRAIN over-
comes this limitation by defining a mapping of LPGs onto a standard RDF. Some solutions,
as discussed in the Neo4j community blog [12], export Neo4j instances to the RDF. For ex-
ample, they do this upon the request of an ontological reasoner. However, these solutions
may not guarantee that only data compliant with the intended ontology are inserted into
the database.

The GraphBRAIN technology tackles all of the above issues by superimposing a
schema to Neo4j DBs in the form of an ontology to enable high-level reasoning on the
available knowledge and still benefit from the advantages provided by graph DBs (scala-
bility, storage optimization, efficient handling, mining and browsing of the data, etc.) and
LPGs (flexibility, expressive power) and to exploit ontological reasoners. By referring to
a schema, the applications commit to compliance with it, as in traditional DBs. Like in
Triplestores and RDF*, this will ensure tight integration between the data and the schema.
As opposed to Triplestores, the RDF* and most of the cited works, where the ontology is
ingested in the graph, the data/instances (stored in the graph DB) are kept apart from the
schema/ontology (specified in a file external to the DB using an ontological representation
format). This separation between the data repository and the schema leads to another
peculiarity: different (but compatible) schemas can be applied to one DB. Again, this is not
even thinkable in Triplestores.

Since the RDF and LPG are graph models, their interoperability has been investi-
gated [13], but all proposals for mapping LPG DBs to or from an RDF offer predefined,
non-customizable mapping. This is a significant limitation, as the structure and naming
conventions adopted in an LPG schema can differ from those that are desirable for the
RDF view of the data. GraphBRAIN proposes an extension to RML that allows structural
mapping between LPG and RDF elements and provides an ontological alignment between
local resources and others known to refer to specific standard concepts. This proposal
bridges the gap to the SW perspective and allows us to use of graph DB facilities, algo-
rithms, and knowledge representation tools. When local resources are directly mapped onto
OWL/RDF KBs, they can be managed as regular SPARQL endpoints [14] or by ontological
reasoners [15].

2.2. Linked Data Interfaces

Here, we explore the tools available for knowledge extraction, information retrieval,
and semantic data visualization and the use of semantic technologies at large to draw a
comparison of the state-of-the-art tools with the SKATEBOARD interface for Linked Data
exploration of the GraphBRAIN platform.



Future Internet 2023, 15, 345 4 of 28

A concise overview of the main distinctions between the GraphBRAIN framework
and the analyzed works is provided in Table 1.

Table 1. Advantages of GraphBRAIN compared to other frameworks/initiatives.

Related Work Key Features GraphBRAIN

AIDA [16]
Specific focus on Named
Entity Recognition (NER) and
semantic annotation

Broader range of knowledge
extraction and visualization
capabilities

Apache Stanbol [17] Knowledge extraction and
semantic enrichment

Extended capabilities for
semantic data retrieval and
exploration

DBpedia Spotlight [18] Entity recognition and linking
to DBpedia

More comprehensive
knowledge extraction and
visualization

Open Calais [19] Text analytics and entity
recognition

Advanced semantic browsing
and visualization features

Semiosearch Wikifier [20] Entity recognition and
semantic annotation

Robust semantic data
exploration tools

GLOBDEF [21] Comprehensive knowledge
extraction and enrichment

Broader range of
visualizations and semantic
browsing

L’ERMA [22] Traditional visual data
retrieval tools

Enhanced semantic faceted
browsing and tailored
visualizations

TORROSSA [23] Traditional visual data
retrieval tools

Innovative semantic
exploration capabilities

The focus of knowledge extraction is on using advanced techniques to transform un-
structured text into meticulously structured knowledge representations. The significance of
knowledge extraction in the proficient management of semantic data is unmistakable as it
encompasses both information extraction and semantic enrichment. To achieve this, various
tools harness the capabilities of natural language processing, machine learning, and knowl-
edge representation. Among the prominent contenders in this field are AIDA [16], Apache
Stanbol [17], DBpedia Spotlight [18], Open Calais [19], Semiosearch Wikifier [20], and the
GLOBDEF system [21]. Each excels in specific facets of knowledge extraction. How-
ever, SKATEBOARD distinguishes itself by offering a comprehensive solution. It adeptly
transforms unstructured text into structured data, identifies entities through Named En-
tity Recognition (NER), establishes connections with Knowledge Bases like DBpedia [24],
and enhances data through semantic annotation. SKATEBOARD has emerged as a prag-
matic choice for managing Linked Data, providing an inclusive solution that spans the
entire knowledge extraction pipeline.

In the arena of traditional visual information-seeking tools, venerable names such as
L’ERMA [22] and TORROSSA [23] have long played pivotal roles in visual data retrieval.
However, the landscape underwent a remarkable transformation with the introduction of
SKATEBOARD, empowered by cutting-edge semantic technology. SKATEBOARD tran-
scends traditional paradigms by enabling semantic faceted browsing, fostering serendipi-
tous discovery, and providing intelligent recommendations. These capabilities significantly
enhance the user experience, redefining the search boundaries.

The domain of visualizing semantic data presents distinct challenges due to its diverse
and dynamic nature. Prior research has diligently categorized visualization tools based on
interaction paradigms and the types of information they represent. Interaction paradigms
encompass a range of options:



Future Internet 2023, 15, 345 5 of 28

• The Tabular Interaction Paradigm: This format organizes information about a single
resource in a tabular layout, allowing users to explore specific attributes such as media
files, descriptions, and links to related resources.

• The Node-Link Interaction Paradigm: In this paradigm, resources are represented as
nodes or boxes connected by arcs symbolizing relationships. Users navigate the data
by following these connections.

• The Visual Query Composition: These interfaces simplify the creation of SPARQL
queries through graphical elements.

Regarding the types of information represented, the distinctions are clear:

• Data Visualization: These tools leverage graphical representations to enhance
data comprehension.

• Model Visualization: This category specializes in illustrating data models, including
schemas and ontologies, providing insights into underlying data structures.

• Data to Model Visualization (Schema Extraction): These tools deduce ontology schemas
from RDF triples via SPARQL queries.

However, SKATEBOARD goes beyond these conventions and classifications by in-
troducing a flexible approach tailored to specific types of entities. For example, it pro-
vides interactive maps for geographical locations, unveils intricate details like birthdates,
birthplaces, and essential biographical information for individuals, and offers extensive
publication data and book author profiles. SKATEBOARD’s capacity to tailor visual rep-
resentations according to entity types enriches the exploration of semantic information,
providing a more user-friendly experience. SKATEBOARD is a versatile solution, featuring
a comprehensive approach to knowledge extraction, seamless conversion of unstructured
textual data into structured formats, and dynamic visualizations.

2.3. Bridging LPG and RDF

The Semantic Web (SW) and RDF were conceived for different purposes than the
traditional uses of local DBs. DBs focus on efficiency and scalability, while the SW focuses
on interoperability and data availability. The integration between these two technologies,
designed to take advantage of the strengths of both, has attracted interest since the early
days of the WWW because, while the SW provides a means to share and integrate data,
various factors often prevent the public distribution of data in many contexts. However,
problems are posed by the structural differences between the graph models used in the SW
and in DBs.

Some approaches [25–27] have investigated how to collect the data available in the
SW and import them into local graph DBs. This is especially relevant when there is a
need to create shared knowledge on a specific topic that end-users can query. When
mapping is carried out in this direction, the primary advantage is that queries in graph
DBs are optimized for quicker data retrieval in a more centralized and controlled domain.
However, this approach may limit the possibility of integrating this knowledge with
external sources and supporting automated reasoning. Additionally, the Open-World
Assumption, a fundamental aspect of the SW, may not apply in such cases.

In the opposite direction (from DBs to RDF), the problem has been extensively ad-
dressed, initially focusing on relational DBs [28,29], often using rule-based mappings [30,31].
Entities are often represented as classes, keys as relationships, and properties as attributes.
While natural, this translation lacks generality and does not apply to NoSQL models.
The initial attempts at personalization, such as those in [32], used XML to express the
mapping between concepts. This effort produced two W3C standards:

• Direct mapping [33], i.e., the conversion of the relational model to the RDF through a
set of fixed rules without the need for configuration;

• R2RML [34,35] (https://www.w3.org/TR/r2rml/, accessed on 9 September 2023), re-
quiring a detailed configuration of the mapping and thus enabling highly customized

https://www.w3.org/TR/r2rml/


Future Internet 2023, 15, 345 6 of 28

behavior. R2RML mappings consist of one or more triple maps, each with one logical
table, one subject map, and zero predicate object maps.

Another straightforward strategy is available when the fixed structure of tables pro-
vides fewer mapping rules to RDF structures [36]. Ref. [37] tried to generalize the problem
for graphs, but it does not allow us to customize the translation according to specific needs.
The RML language [38] generalizes R2RML to the most commonly used file formats for
structured data (CSV, JSON, and XML) but not to non-relational DBs. Inspired by works
on R2RML [39–41] and RML [42,43], we propose an approach to map the concepts of the
LPG. Given the need to personalize the mapping to avoid strict rules, our approach relies
on a customizable language that can specify how to map concepts from one perspective to
the other.

With the introduction of graph structures, research on the integration of different
models has gained momentum, facilitated by both LPG and RDF being graph-based.

A good example of an overall integration infrastructure is OpenBiodiv [44], which
combines semantic publishing workflows, text and data mining, common standards, on-
tology modeling, and graph DB technologies to manage biodiversity knowledge. It is
presented as Linked Open Data (LOD) [45] generated from the scientific literature. It falls
short in the integration (and disambiguation) of knowledge coming from many sources.
In [46], a framework for the projection and validation of a portion of an RDF graph using
the graph DB formalism is described. It allows a SPARQL query to be written, translating
the result into JSON and parsing it into the LPG model. It acts more as a wrapper than as
a bridge between the two technologies. In [6], a mapping language between Cypher and
SPARQL is proposed based on static concept mapping. However, it does not really map
classes and relationships in the graph with those available in the SW.

In many cases [47,48], different graphs have been dealt with by building many SPARQL
endpoints in a federated architecture and then querying and fusing the results. Others [49,50]
use graphical visual interfaces in which the SPARQL endpoints become transparent to
the end user, like in SKATEBOARD, but differently from us, they do not have external
connections to the graph DBs.

3. GraphBRAIN Framework

GraphBRAIN [3,51] is a framework for the management of KGs that has the vision
of joining the efficiency in data handling provided by LPG-based graph DBs (specifically,
Neo4j) with the expressive power of ontologies. One further objective of GraphBRAIN
is to provide more handling possibilities than those provided by standard SW reasoners.
These include automated multistrategy reasoning based on the First-Order Logic, Data
Mining, and Network Analysis functions, interactive knowledge browsing, and human-
understandable descriptions of the processing results.

In GraphBRAIN KGs, labels usually represent classes, nodes represent class instances,
types represent relationships, and arcs represent relationship instances. Each node or arc
is associated with the label representing the most specific class or relationship it belongs
to. Nodes are also labeled with all domains for which the instance they represent is
relevant. The ontologies provide high-level and formal interpretations of the data and
enable semantic-aware automated reasoning. When used as DB schemes, they allow us
to keep the graph consistent with user-defined constraints. For this reason, we use the
terms schema and ontology interchangeably. As in traditional DBs, the schema is stored
apart from the data and based on a different representation. GraphBRAIN proposes a
new LPG-based ontological formalism, expressed in XML due to its simplicity, human
interpretability, flexibility, and easy mapping onto different languages.

Ontology handling in GraphBRAIN is modular. Existing ontologies can be imported
and extended in new ontologies defined by the knowledge engineers in charge of modeling
a given domain (or they can be defined from scratch). GraphBRAIN already provides a
general ontology with top-level, highly reusable classes and relationships, plus several



Future Internet 2023, 15, 345 7 of 28

domain-specific ontologies. In fact, each schema represents a different, partial view of the
same data, which can be limited or expanded depending on specific needs.

3.1. Architecture

The GraphBRAIN framework consists of several interconnected components (see
Figure 1) that work together to manage Knowledge Graphs (KGs) efficiently and provide
advanced reasoning and analysis capabilities. Here is an outline of the key components
and their functions:

Figure 1. Architecture.

Data Storage: GraphBRAIN leverages Labeled Property Graph (LPG)-based graph
databases, such as Neo4j, for efficient data storage. The data storage component manages
the underlying KGs, where labels represent classes, nodes represent class instances, and arcs
represent relationship instances.

Ontology Layer: The ontological layer provides formal interpretations of data and
supports semantic reasoning. On the one hand, it manages the schema for KGs, ensuring
that the data adhere to user-defined constraints. The ontological formalism, expressed
in XML, allows flexibility and easy mapping to various languages. On the other hand,
the Semantic Web technologies used, particularly the OWL and RDF standards, enable
semantic interoperability with the WWW.

Knowledge Integration: This component integrates existing ontologies and allows
knowledge engineers to create new domain-specific ontologies. It offers a modular ap-
proach, enabling the import and extension of ontologies, as needed.

Reasoning Engine: GraphBRAIN goes beyond standard Semantic Web (SW) reasoners
by incorporating automated multistrategy reasoning based on First-Order Logic. This
component enables advanced logical inference and reasoning capabilities on the KGs.

Data Mining and Network Analysis: The framework includes data mining and
network analysis functions, which allow users to extract patterns, insights, and meaningful
connections from the KGs. These analytical tools enhance the understanding of the data.

Public API: GraphBRAIN functionalities are also accessible as a Java library. This
makes it possible to build applications that meet specific requirements or simply customize
the usability according to specific domains. Two example are

• Interactive Knowledge Browsing: GraphBRAIN offers an interactive knowledge
browsing interface that enables users to explore the KGs intuitively. This component



Future Internet 2023, 15, 345 8 of 28

provides a user-friendly way to navigate and query the knowledge stored within
the system.

• Human-Understandable Descriptions: To enhance the usability, GraphBRAIN gen-
erates human-understandable descriptions of processing results. This feature aids
users in interpreting and making informed decisions based on the KGs.

3.2. Summary of the GraphBRAIN Schema Formalism

The GraphBRAIN framework allows us to specify ontologies by providing an LPG-
based structure and an associated formalism. The LPG-based structure allows a more
intuitive description of the ontological components with a clear distinction among entities
(or classes), relationships, and their attributes. Various options can be specified for the
different components. It is formally specified as an XML file with the extension GBS
(GraphBRAIN schema). In the following text, we provide brief descriptions of the latest
version of this structure and the formalism.

The root tag of the XML file, enclosing all of the ontology elements, is domain, where
the ontology name and attributes, such as creator and date, can be specified. This tag
encloses four sections, each specifying a different ontological element.

The first schema fragment is identified by the tag imports and allows us to include
other existing ontologies in the current ontology, in this way supporting reuse and interop-
erability. Each imported ontology is specified in an import tag. Imported ontologies must
be compliant with each other and with the ontology being defined in the file, meaning that
the hierarchical structure of the entities and relationships and the type of attributes must be
consistent (e.g., if class C′ is a subclass of class C′′ in one ontology, C′′ cannot be a subclass
of C′ in the other). The same entities, relationships, and attributes of different ontologies
are identified by the same name.

The next fragment, identified by tag types, encloses user-defined datatypes, each
of which can be a list of values (datatype Select) or a hierarchical organization of values
(datatype Tree).

The third fragment, identified by the tag entities, defines the entities (whose instances
will be the nodes in the graph), each enclosed in a tag entity with a name XML attribute
(which will be the node label in the graph). The last fragment, identified by the tag
relationships defines the relationships (whose instances will be the arcs in the graph),
each enclosed in the tag relationship with name and inverse XML attributes, defining the
name of the relationship (which will be the arc label in the graph, associated with the arc
direction) and of its inverse (implicitly associated with the opposite arc direction in the
graph). Additional Boolean XML attributes allow us to specify the relationship properties
(e.g., if it is transitive). The relationship is implicitly assumed to be symmetric if its name is
the same as the inverse name.

Each entity or relationship tag may enclose an attributes tag (mandatory for entities),
where the various attributes of the entity or relationship can be defined (note that the RDF
graph model used in the standard SW does not natively allow for relationship attributes)
and, optionally, a taxonomy tag, where subclasses or subrelationships can be specified
using nested occurrences of the entity tag. The tag taxonomy is recursive to allow the
definition of hierarchies of classes or relationships, for which the inheritance of properties
is supported. So, each subclass/relationship must only specify the additional attributes
it introduces with respect to all of its ancestors (if any). relationship tags also include
a references tag to specify the possible Subject–Object pairs for the relationship, each
specified by a reference tag with XML attributes subject (a possible entity for the arc source)
and object (a possible entity for the arc sink).

Each entity or relationship attribute is introduced by an attribute tag with the XML
attributes name and datatype. The datatype can be a predefined one (GraphBRAIN pro-
vides Boolean, Integer, Real, String, Text, Select, Tree, Date, or Entity) or a user-defined one
(defined in the types section of the XML file). All datatypes take a value, except for Entity
and Date attributes, which actually establish an arc between the entity or relationship



Future Internet 2023, 15, 345 9 of 28

instance and another node in the graph. The Entity datatype requires a further target XML
attribute of the attribute tag, specifying the type allowed for the sink node of the arc. The
Date datatype implicitly refers to the predefined entity ‘TemporalSpecification’ with its
subclasses (e.g., Day, Month, Year, etc.). The datatypes Select and Tree specify a list or tree
of values, such that the instances in the graph will be bound to take one of those values,
or ‘Other’ if none of those options is satisfactory.

The last section, identified by the tag axioms, allows us to specify axioms in the form
of logical formulas, each defined in an axiom tag. Axioms are constraints that the instances
of the KG must fulfil at any time. Axioms determine the complexity, or even computability,
of the ontology. The default reasoner provided by GraphBRAIN is GEAR, so the operators
provided by GEAR will be allowed for sure. This part is currently still under development,
so no more details can be provided at the time of writing.

3.3. GraphBRAIN Data Analysis & Mining Services

GraphBRAIN offers many services for handling data too. They can run several graph
mining algorithms to obtain relevant indications of the graph content. Examples of the
tools provided by GraphBRAIN are

• The assessment of the relevance of nodes using several centrality assessment ap-
proaches (currently Closeness, Betweenness, PageRank, Harmonic, and Katz). This
function can be used to extract the most relevant nodes from the whole graph or from
a selected portion. In turn, the most relevant nodes can be used as a starting point to
select an initial portion of the graph to display when no specific indication is provided.

• The extraction of a portion of the graph that is relevant to some specified starting
points (nodes and/or arcs). Given the starting points, different algorithms can be
applied to select a subgraph (currently PageRank, Spreading Activation, and a propri-
etary algorithm that can take into account user profiles to determine a personalized
subgraph that can include more relevant and interesting items based on the user
background, interests, goals, etc.).

• The extraction of frequent patterns and associated subgraphs. Currently the g-Span
and Spreading Activation algorithms are used for this purpose and specifically for
clustering that returns relevant groups of nodes.

• The prediction of links between nodes based on different approaches (currently
Resource Allocation, Common Neighbors, AdamicAdar, and Katz). This is useful for
identifying possible connections between items that are not currently reported in the
KG. One possible use of this feature is to suggest research directions to be investigated
or to propose relevant knowledge that would not be found by simple graph browsing.

• Pattern Mining based on automated reasoning, which provides more expressive
power than LPG-based query languages such as Cypher. For this, GraphBRAIN is
connected to the GEAR [2] Multistrategy Reasoning engine, currently providing deduc-
tion, abduction, abstraction, induction, probabilistic, and similarity-based inferences.

• Graph Understanding via a logic-based formalization of the claims represented by
the given portion of the graph. NLP generative techniques are used to translate them
into natural language.

3.4. The GraphBRAIN API

GraphBRAIN is a general framework and technology that can be used by any appli-
cation sharing its vision that is interested in taking advantage of its features. To connect
GraphBRAIN to these applications, we developed a GraphBRAIN API that can be imported
into any application to have all its tools and functions described in the previous sections:
from ontology definitions to ontology-based knowledge access and manipulation and
from semantic-aware data mining and network analysis to automated human-like rea-
soning on the available knowledge. It also provides import/export functionality from/to
standard SW representations and exports functionality to several other formalisms. It is
currently available for Java applications and is being ported to Python.



Future Internet 2023, 15, 345 10 of 28

Through the API, any individual or organization can apply the GraphBRAIN frame-
work to their own data and KGs. It takes the URL of a Neo4j instance (local or online) that
stores the KG instances as the input, along with the associated access credentials and a GBS
ontology and wraps the DB to enforce compliance of the data with the intended schemas
in both building and consulting the DB. After establishing a connection to the KG, CRUD
operations and queries can be requested and expressed in Cypher language, and the API
delivers the corresponding results, just as for the underlying DB, while ensuring compli-
ance with the selected ontology. Or, the exposed methods providing the other advanced
functions can be run.

4. Connection between the LPG and SW

Exporting or exposing the resources in GraphBRAIN KGs, especially to standard SW
applications, would enrich the global knowledge on the Web.

4.1. OWL/RDF Mapping

Since the SW setting requires every element in the KB to be uniquely identified
by a URI, we defined the prefix http://graphbrain.it/ontologyName (for which the
abbreviation used in this paper is gb) and obtained the URI of a resource as the concatenation
of such a prefix with its element identifier in GraphBRAIN. Then, we defined a set of
translation rules to map GBSs onto OWL ontologies based on the strategy reported in the
following paragraphs.

(1) Entities, Entity Attributes, and Relationships

The entities, attributes, and relationships in a GBS are mapped onto classes, data
properties, and object properties (respectively) in an OWL ontology using the obvious
corresponding OWL elements owl:class, owl:objectProperty and owl:dataTypeProperty. Some
examples extracted from a concrete-generated OWL ontology are reported in Listing 1.

Listing 1. Example of GraphBRAIN-generated export in OWL.

1 <!-- OWL Classes -->
2 <owl:Class rdf:about="gb:Place">
3 <owl:disjointWith rdf:resource ="gb:ProcessComponent "/>
4 ...
5 </owl:Class >
6

7 <owl:Class rdf:about="gb:Administrative">
8 <rdfs:subClassOf rdf:resource ="gb:Place"/>
9 ...

10 </owl:Class >
11

12 <!-- OWL Object properties -->
13 <owl:ObjectProperty rdf:about="gb:pertainsTo">
14 <owl:inverseOf rdf:resource ="gb:pertainedBy "/>
15 <rdfs:domain rdf:resource ="gb:Word"/>
16 <rdfs:range rdf:resource ="gb:Word"/>
17 </owl:ObjectProperty >
18

19 <!-- OWL Datatype properties -->
20 <owl:DatatypeProperty rdf:about="gb:codeISO_Administrative">
21 <rdfs:domain rdf:resource ="gb:Administrative "/>
22 <rdfs:range rdf:resource ="xsd:string "/
23 </owl:DatatypeProperty >

Other components or features of GBSs are not available in OWL. Specifically, relation-
ship mapping deserves some explanation as it may generate inconsistencies in the ontology
if not performed correctly.

(2) Relationships with multiple domain–range pairs
As previously mentioned, relationships are translated as object properties. While each

object property must have a single domain and range, GBS allows several Subject–Object
pairs for each relationship. To handle this, for each Subject–Object pair available for a



Future Internet 2023, 15, 345 11 of 28

relationship ‘rel’, we introduce a different owl:objectProperty ‘rel_subject_object’, assigning
its subject as its owl:domain and object as its owl:range. We then state that all of these newly
added object properties are specializations of the owl:objectProperty ‘rel’, with the domain
given by the union of the OWL classes identified by the subjects and the range given by the
union of the OWL classes identified by the objects, e.g., suppose the GBS relationship ‘rel’
can be established between Subject–Object pairs (ClassA,ClassB) and (ClassC,ClassD), it
translates to

ObjectProperty: rel
Domain: ClassA or ClassC
Range: ClassB or~ClassD

ObjectProperty: rel_ClassA_ClassB
Domain: ClassA
Range: ClassB

ObjectProperty: rel_ClassC_ClassD
Domain: ClassC
Range: ClassD

where rel_ClassA_ClassB and rel_ClassC_ClassD are specializations of ‘rel’. You can see
an example of this strategy in Figure 2. Note that ‘rel’ alone in OWL would allow the
establishment of the relationship between an individual of ClassA and one of ClassD in the
KB, which would be not allowed by the original GBS relationship. By adding the other two
relationships, the OWL KG becomes inconsistent.

Figure 2. Protégé view of the classifiedAs object property and its specializations.

(3) Relationship attributes

For relationship attributes, we use an implicit reification: we introduce a class for
each relationship in the schema and the Relationship class, which generalizes all of them.
This allows us to represent the attributes of relationships as datatype properties of these
newly reified classes. This is compliant with the official W3C guidelines [52] by applying
the pattern relating to Use Case 1, where the requirement is to represent an additional



Future Internet 2023, 15, 345 12 of 28

attribute describing an instance of a relation. Then, for each occurrence of the relationship,
an individual representing the instance of the relation is created for the corresponding
class with links toward the subject and object of the relation (owl:subject and owl:object,
respectively) and other links to all items representing the original relationship attributes.

As an example, let us consider the object property ‘wasIn’ between the domain
gb:Collection and the range gb:Place. To be able to specify why the collection was in that
place, we create the class gb:Reified_wasIn as a subclass of the class gb:Relationship. Listing 2
these classes are used to specify all subproperties derived by applying the solution to the
problem in the previous point (e.g., from the wasIn relationship in the XML schema, as
many wasIn_X_Y properties are generated as there are pairs (domain X, range Y) specified
for that relationship.)

Listing 2. Object property ‘wasIn’.

1 <owl:ObjectProperty rdf:about="gb:wasIn">
2 <owl:inverseOf rdf:resource ="gb:hosted"/>
3 <rdfs:domain >
4 <owl:Class >
5 <owl:unionOf rdf:parseType =" Collection">
6 <rdf:Description rdf:about ="gb:Artifact"/>
7 ...
8 <rdf:Description rdf:about ="gb:User"/>
9 </owl:unionOf >

10 ...
11 <rdfs:range >
12 <owl:Class >
13 <owl:unionOf rdf:parseType =" Collection">
14 <rdf:Description rdf:about ="gb:Collection "/>
15 ...
16 <rdf:Description rdf:about ="gb:User"/>
17 ...
18 </owl:ObjectProperty >

Finally, an owl:datatypeProperty is created. Its type is ‘xsd:string’, due to the fact that
the filler is a string (which will be the textual description of the motivation).

The strategy was implemented using the OWLAPI library [53] (a free Java-based
API for creating and managing OWL-based information), since it is fully compliant with
the OWL specifications. By means of this API, we can check both the consistency of the
generated ontology as well as its expressive level. If the ontology is not consistent or
is OWL Full, a warning is raised by GraphBRAIN and its use is frozen. In such a case,
the ontology can be opened in the well-known OWL ontology editor Protégé [54] to check
what caused the problem and act in GraphBRAIN to solve it.

An ontology is inconsistent if there are instances of unsatisfiable classes or if there
are instances of two or more classes that are declared as disjoint. GraphBRAIN checks for
inconsistencies in two different phases: when the ontology is generated (satisfiability) and
each time an RDF graph is extracted from the LPG graph (consistency).

On the other hand, OWL Full uses all primitives of the OWL languages (https://www.
w3.org/TR/2012/REC-owl2-syntax-20121211/ (accessed on 1 September 2023)) and allows
arbitrary combinations of these primitives with RDF and RDF schemas. Although OWL
Full is fully compatible with RDF, both syntactically and semantically, it is undecidable
(i.e., it does not have full (or efficient) support for reasoning). For the purposes of this paper,
it is not a problem if the ontology is OWL Full, because SW reasoning is not currently used
in the applications presented, but rather, SPARQL is used as a query language for RDF.
But, in general, the proposed strategy ensures that the mapped KB is decidable for SW
reasoning purposes.

4.2. Alignment with Existing Semantic Web Resources

After discussing how to map ontologies from GBS to OWL, we now describe how
to map instances in the LPG graph to the RDF. One of the main issues in merging exter-
nal resources with local DBs is that one cannot know that their ontology definition of a

https://www.w3.org/TR/2012/REC-owl2-syntax-20121211/
https://www.w3.org/TR/2012/REC-owl2-syntax-20121211/


Future Internet 2023, 15, 345 13 of 28

concept corresponds to another available on the Web. More specifically, to the best of our
knowledge, there is no solution in the literature for automatically aligning such vast and
(possibly) different ontologies. So, we propose a semi-automatic mapping in which the
user must specify how GBS concepts are to be mapped onto those available in the SW. We
propose the use of RML by differentiating the type of values of some parameters. In fact,
RML is used to map various languages for relational DBs but not graph DBs. For this
purpose, we use the rml:logicalSource directive by specifying a Cypher query to be applied
to all nodes of a certain type as rml:referenceFormulation formally (using turtle format):

rml:logicalSource
[rml:referenceFormulation ql:CypherPattern; rml:iterator ’label name in GraphDB’];

Next, we apply R2RML directives (rr:subjectMap and rr:predicateObjectMap) to formalize
the mapping with subject, predicate, and object of the ontology with which we want to
map the DB graph entities found by the query execution.

Let us introduce a small example that is useful for understanding how each single
element is mapped. Consider an LPG-based KG about movies (node label :Movie) and
people (node label :Person), where movies have a title (property title) and a release date
(property release), and persons have a name (property name) and a birth date (property
born). Both kinds of nodes have a numeric code (property id) to uniquely identify their
instances. There is a relationship between people and the movies they have acted in
(type :actedIn).

Assuming that we want to map the LPG fragment in Listing 3 to the RDF using the
classes and properties from the schema.org (https://schema.org/, accessed on 9 September
2023) vocabulary. Listing 4 shows the desired result. To obtain this mapping, we must spec-
ify that LPG attribute ‘name’ is mapped onto ‘schema:name’, ‘born’ onto ‘schema:birthDate’,
and so on.

Listing 3. Example of simple graph data.

1 (: Person{id:1, name:"Al Pacino", born:date ("1940 -04 -25")})
2 (: Person{id:2, name:" Robert De Niro", born:date ("1943 -08 -17")})
3

4 (:Movie{id:1, title:"The Godfather Part II", release:date ("1975 -06 -20")})
5

6 (: Person{id:1}) -[:actedIn]->(:Movie{id:1})
7 (: Person{id:2}) -[:actedIn]->(:Movie{id:1})

Listing 4. Example of mapping based on an extension of RML.

1 @prefix person: <http ://loc.example.com/person/>.
2 @prefix movie: <http :// loc.example.com/movie/>.
3

4 person :1 schema:name "Al Pacino "; schema:birthDate "1940 -04 -25"^^ xsd:date.
5 person :2 schema:name "Robert De Niro"; schema:birthDate "1943 -08 -17"^^ xsd:date.
6

7 movie:1
8 schema:name "The Godfather Part II";
9 schema:datePublished "1975 -06 -20"^^ xsd:date;

10 schema:actor person:1, person :2.

We assume that the class and property names are unique. For the movie example, we
specify the ‘PersonMapping’, in which all elements related to the label ‘Person’ (in the LPG
graph) must be specified. In this section, we specify how to map all the attributes of nodes
of type ‘Person’ (‘name’ and ‘born’, among the others). After doing the same for the other
class in the example (‘Movie’), we may specify how to map the relationship ‘actedIn’. We
understand that it has the same meaning as the standard object property ‘schema:actor’.
In the mapping, we obviously also specify the mappings for the subject and the object.
The full code of the mapping is shown in Listing 5. Let us briefly analyze it line by line.

https://schema.org/


Future Internet 2023, 15, 345 14 of 28

R2RML and RML mappings consist of a set of ‘triple maps’, each representing a source
of triples for the target RDF graph. Listing 5 defines 3 triple maps: <#PersonMapping>
(lines 8–20), <#MovieMapping> (lines 22–33), and <#ActedInMapping> (lines 35–46). As per
the RML specification, each triple map is based on a different logical source which, in our
case, is a Cypher pattern, i.e., an expression that can be used in the MATCH clause of a Cypher
query. <#PersonMapping> maps any LPG node with the label :Person to an IRI of the type
schema:Person built from the property id with a template mechanism. Its LPG properties
name and born are mapped to the RDF properties schema:name and schema:birthDate,
respectively. Similarly, <#MovieMapping> maps LPG nodes with the label :Movie onto IRIs
of the type schema:Movie and their LPG properties onto the corresponding RDF properties.
Finally, <#ActedInMapping> maps LPG arcs labeled :actedIn to triples connecting the two
IRIs corresponding to the movie and the actor with the property schema:actor (note that
the RDF property has the opposite direction with respect to the :actedIn LPG relationship).

Listing 5. Example of RML-based mapping.

1 @prefix rr: <http ://www.w3.org/ns/r2rml#>.
2 @prefix rml: <http :// semweb.mmlab.be/ns/rml#>.
3 @prefix ql: <http :// semweb.mmlab.be/ns/ql#>.
4 @prefix xsd: <http ://www.w3.org /2001/ XMLSchema #>.
5 @prefix schema: <http :// schema.org/>.
6 @base <http :// example.com/ns#>.
7

8 <#PersonMapping > a rr:TriplesMap;
9 rml:logicalSource [rml:referenceFormulation ql:CypherPattern; rml:iterator "(p:

Person)"];
10

11 rr:subjectMap
12 [rr:template "http ://loc.example.com/person /{p.id}"; rr:class schema:Person ];
13

14 rr:predicateObjectMap [
15 rr:predicate schema:name;
16 rr:objectMap [rml:reference "p.name"; rr:datatype xsd:string]
17 ], [
18 rr:predicate schema:birthDate;
19 rr:objectMap [rml:reference "p.born"; rr:datatype xsd:date]
20 ].
21

22 <#MovieMapping > a rr:TriplesMap;
23 rml:logicalSource [rml:referenceFormulation ql:CypherPattern; rml:iterator "(m:Movie

)"];
24

25 rr:subjectMap [rr:template "http :// loc.example.com/movie/{m.id}"; rr:class schema:
Movie ];

26

27 rr:predicateObjectMap [
28 rr:predicate schema:name;
29 rr:objectMap [rml:reference "m.title"; rr:datatype xsd:string]
30 ], [
31 rr:predicate schema:datePublished;
32 rr:objectMap [rml:reference "m.released "; rr:datatype xsd:date]
33 ].
34

35 <#ActedInMapping > a rr:TriplesMap;
36 rml:logicalSource
37 [rml:referenceFormulation ql:CypherPattern; rml:iterator "(p) -[a:actedIn]->(m)"];
38

39 rr:subjectMap [rml:reference "m"; rr:parentTriplesMap <#MovieMapping >];
40

41 rr:predicateObjectMap [
42 rr:predicate schema:actor;
43 rr:objectMap [rml:reference "p"; rr:parentTriplesMap <#PersonMapping >]
44 ].

4.3. SPARQL Mapping

Publishing a GraphBRAIN KG in the SW by entirely exporting it would require the
translation to be run again after each modification of the KG. An approach that is more
suitable for dynamic KGs would be to expose the KG as an online SPARQL endpoint,
from which data can be fetched at need by any SW-compliant application. Of course,
the mapping technicalities between the different underlying representations should be
transparent to the users. In the following text, we identify the resources by generic property



Future Internet 2023, 15, 345 15 of 28

values, as is done in traditional DB settings, but not necessarily by URIs. In the following
text, we refer again to the movie KG and to the mapping in Listing 5 and to the excerpt of a
possible movie dataset shown in Figure 3. Two actors, ‘Al Pacino’ and ‘Robert De Niro’,
both acted in ‘The Godfather Part II’, but ‘Al Pacino’ also acted in ‘The Godfather’, whose
sequel is ‘The Godfather Part II’. The two actors are labeled as ‘Person’, and the two films as
‘Movie’. Note that we defined an equivalent concept for the relationship ‘actedIn’, but not
for ‘sequel’ (see Listing 5).

Figure 3. Excerpt of KG about actors starring in films.

Since one of the possible users of our SPARQL endpoint is GraphBRAIN’s SKATE-
BOARD interface for KG browsing and exploration (see Section 5), here, we focus on three
requests representing some of the most common SKATEBOARD queries.

(1) Return the type of node having a property.
This corresponds to the following SPARQL query:

SELECT DISTINCT ?object ?objectclass WHERE
{?object [property] [value].
?object rdf:type ?objectclass}

Our parsing strategy recognizes the query type thanks to the keyword rdf:type,
and then, using simple pattern matching of specific tags in the query, it extracts the property
[property], and the value [value], e.g., suppose the query asks for the type of node whose
name (http://schema.org/name) matches the string ‘The Godfather’. We check in the
mapping file whether ‘http://schema.org/name’ corresponds to some property in the
graph, and indeed, it has two correspondences: ‘p.name’ in PersonMapping, and ‘m.title’ in
MovieMapping. PersonMapping has as a logical source ‘Person’, while MovieMapping has
as a logical source ‘Movie’. So, we check the graph for all ‘Person’ nodes with the value ‘The
Godfather’ as the property ‘name’ and all ‘Movie’ nodes with the value ‘The Godfather’ as
the property ‘title’ . To do this, when the parser recognizes that we are looking for the type
of resource given a property, we prepare a general parametric Cypher query to retrieve this
information from the graph. In our case, we execute this query, which is the result of the
interpretation of the SPARQL query after the mapping process:

MATCH (n:Movie {title:‘The Godfather’}) return labels(n)
UNION ALL
MATCH (n:Person {name:‘The Godfather’}) return labels(n)

As expected, the result is the film named ‘The Godfather’. Clearly, we do not return
the type extracted from the graph, but obtain its reverse mapping according to Listing 5.
In the graph shown in Figure 3, the label of ‘The Godfather’ is ‘Movie’, but by reversing
the mapping procedure, we return ‘http://schema.org/Movie’. This allows SW-based
applications to infer new knowledge about the specific instance provided by the graph DB.



Future Internet 2023, 15, 345 16 of 28

(2) Return all links directly connected to a given node.
This corresponds to the following SPARQL query:

SELECT DISTINCT ?link WHERE {
{
?object [property] [value] .
?object ?link ?outObject .
}
UNION
{
?inObject ?link ?object .
?object [property] [value] .
}
}

As shown in the previous scenario, we used a property value to identify the starting
node. Since we do not care about the direction of the object property, the nodes we are
looking for can be connected by an incoming or an outgoing arc to the given node, and we
must return the union of these two cases. In the former, the property is associated with the
object—in the latter to the object of the relationship.

Our approach to handling this case separates the two pieces of the query when a
UNION is encountered and then applies the same procedure as for the first scenario,
but this time by considering any object property, not only the rdf:type. The output consists
of pairs of object properties and the corresponding subjects (for incoming arcs) or objects
(for outgoing arcs). Finally, since the SELECT DISTINCT ?link specifies that only the
object property must be returned and it must not be repeated, the output will be a list
of distinct relationships to which the starting node is connected, regardless of whether
it plays the role of the subject or of the object. Again, the properties are mapped back
according to Listing 5. However, it may happen that the mapping document does not
provide a mapping for a specific resource, i.e., the designer has not specified an external
class (resp. object property) that can be considered to be equivalent to a class (resp. rela-
tionship) in the GraphBRAIN ontology. In these cases, we assign the URI of GraphBRAIN,
i.e., http://graphbrain.it/name (where name is the name of the class or relationship)
to these resources. So, we may return mixed resources, connecting standard ontological
concepts with those defined by our schemes.

For example, supposing the property is again ‘http://schema.org/name’ and the
value is ‘The Godfather’, Figure 3 shows that the film is reachable, not only through the
‘actedIn’ relationship, but also through ‘sequel’, for which no mapping has been provided.
After parsing the query, again, ‘http://schema.org/name’ is ambiguous, so the query is
decomposed as the union of many smaller queries. After the mapping, the equivalent
Cypher query is

MATCH (n:Movie {title:’The Godfather’})-[r]-(m) return type(r)
UNION ALL
MATCH (n:Person {name:’The Godfather’})-[r]-(m) return type(r)

It returns two relationships from the graph: ‘sequel’ and ‘actedIn’. The latter will be
mapped, but the former will not, yielding the final result ‘http://graphbrain.it/sequel’,
‘http://schema.org/actor’.

(3) Export a piece of the KG
This is the most general scenario, representing an example of how to enrich the SW

knowledge by exporting data (pieces of KG) from GraphBRAIN. It is associated with the
query:

MATCH (n:[Subj])-[r:[rel]]->(m:[Obj]) RETURN
labels(n), properties(n), type(r), labels(m), properties(m)

Here, we extract all triples consisting of a node of type [Subj] that is related to a
node of type [Obj] through a [rel] arc from the graph. Suppose [Subj] is ‘Person’, [rel] is
‘actedIn’, and [Obj] is ‘Movie’. This involves three elements of the mapping in Listing 5:



Future Internet 2023, 15, 345 17 of 28

PersonMapping, MovieMapping, and ActedInMapping. The former indicates the class
in the SW that is equivalent to ‘Person’ and also maps two of its properties (‘born’ and
‘name’). The second determines the concept equivalent to class ‘Movie’ and also maps its
property ‘title’. Finally, the latter specifies how to map the relationship. ActedInMapping
has as a logical source ‘(p)-[a:actedIn]→(m)’. p and m have their own mappings as well:
the former is related to the MovieMapping, the latter to PersonMapping. Hence, we know
that the subject must be a ’Person’ in the graph, and the object must be a ’Movie’. This
completes the mapping of all extracted elements.

The OWL/RDF Knowledge Base is created with the OWL API [53]. The results of the
mapping and export are given in Listing 6.

Listing 6. Example of a mapped KB from a triple.

1 Prefix (:=<#>)
2 Prefix(owl:=<http :// www.w3.org /2002/07/ owl#>)
3 Prefix(rdf:=<http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>)
4 Prefix(xml:=<http :// www.w3.org/XML /1998/ namespace >)
5 Prefix(xsd:=<http :// www.w3.org /2001/ XMLSchema#>)
6 Prefix(gb:=<http ://www.gb.it#>)
7 Prefix(schema:=<http :// schema.org/>)
8 Ontology(<>
9

10 Declaration(Class(<#Movie >))
11 Declaration(Class(<#schema:Person >))
12 Declaration(ObjectProperty (<#schema:actor >))
13 Declaration(DataProperty (<#schema:birthDate >))
14 Declaration(DataProperty (<#schema:datePublished >))
15 Declaration(DataProperty (<#schema:name >))
16 Declaration(NamedIndividual(<gb:AlPacino >))
17 Declaration(NamedIndividual(<gb:RobertDeNiro >))
18 Declaration(NamedIndividual(<gb:TheGodfather >))
19 Declaration(NamedIndividual(<gb:TheGodfather2 >))
20

21 # Named Individuals
22

23 ClassAssertion (<#schema:Person > <gb:AlPacino >)
24 ObjectPropertyAssertion (<#schema:actor > <gb:AlPacino > <gb:TheGodfather >)
25 ObjectPropertyAssertion (<#schema:actor > <gb:AlPacino > <gb:TheGodfather 2>)
26 DataPropertyAssertion (<#schema:birthDate > <gb:AlPacino > "25/04/1940")
27 DataPropertyAssertion (<#schema:name > <gb:AlPacino > "Al Pacino ")
28

29 ClassAssertion (<#schema:Person > <gb:RobertDeNiro >)
30 ObjectPropertyAssertion (<#schema:actor > <gb:RobertDeNiro > <gb:TheGodfather2 >)
31 DataPropertyAssertion (<#schema:birthDate > <gb:RobertDeNiro > "17/08/1943")
32 DataPropertyAssertion (<#schema:name > <gb:RobertDeNiro > "Robert De Niro")
33

34 ClassAssertion (<#schema:Movie > <gb:TheGodfather >)
35 DataPropertyAssertion (<#schema:datePublished > <gb:TheGodfather > "21/09/1972")
36 DataPropertyAssertion (<#schema:name > <gb:TheGodfather > "The Godfather ")
37

38 ClassAssertion (<#schema:Movie > <gb:TheGodfather2 >)
39 DataPropertyAssertion (<#schema:datePublished > <gb:TheGodfather2 > "20/06/1975")
40 DataPropertyAssertion (<#schema:name > <gb:TheGodfather2 > "The Godfather 2")
41 )

5. End-User Interfaces

While designed for integration into any third-party system, GraphBRAIN comes with
two official Web-based interfaces. The former allows form-based knowledge manipulation,
in particular, the basic CRUD operations on the KG, and knowledge analysis and mining on
the overall graph using the MultiStrategy Reasoning, Graph Mining, and Network Analysis
algorithms and tools. These two groups of functions are strictly interconnected, meaning
that the former may provide starting points and directions to the latter, while the latter
may identify specific knowledge items to be handled by the former. The other interface
is more oriented toward interactive and dynamic knowledge exploration and browsing.
It was detached from the former interface because it has a broader range of applications,
and in particular, it can be profitably applied to standard SW knowledge as well. Both are
based on the GraphBRAIN API.



Future Internet 2023, 15, 345 18 of 28

5.1. Knowledge Querying, Analysis and Mining

This part of the interface was developed as a Web Application based on Java Server
Faces (JSF) technology. This ensures an advanced and flexible solution for dynamic
Web pages on the client side and powerful and interoperable information processing
on the server side. A demonstration can be found at http://digitalmind.di.uniba.it:
8088/GraphBRAIN/ (accessed on 1 September 2023). The interface is organized into
several tabs (see Figure 4), each devoted to a specific function.

Figure 4. GraphBRAIN interface tabs— registration & login (a), domain selection & statistics (d);
form-based entities (b) and relationships (e); graph browsing and network analysis/graph mining
(c), ontology editing (f).

The Domains (Figure 4d) tab allows the user to select the domain to work on. As previ-
ously mentioned, while having a single KG underneath, GraphBRAIN can provide different
partial ‘views’ on it based on different ontologies that act as schemas for the data in the
graph. This tab also shows information about the domain organized into several tables:
the amount of information available by type (entity or relationship instances and their
attributes), user parameters (expressing his activities and processing budget), and contribu-
tors’ data (quantity of contributions and trust). There is also a section to send comments to
the administrators.

The Entities (Figure 4b) tab provides form-based access for searching, creating, up-
dating, or deleting graph nodes (i.e., entity instances). On the left, the user can browse the

http://digitalmind.di.uniba.it:8088/GraphBRAIN/
http://digitalmind.di.uniba.it:8088/GraphBRAIN/


Future Internet 2023, 15, 345 19 of 28

entity hierarchy of the currently selected domain and select any (sub)class. After a class
has been selected, the corresponding attributes are determined from the ontology (using
the inheritance for the subclasses) and shown in a form located in the center section of the
interface. Also, a drop-down menu with all instances of the selected class (and, if requested,
all of its subclasses) is shown on the left, so that the user can select any class and visualize
its detailed information as attribute values that fill the form in the center. In the form,
the user can enter or modify attribute values and use those values to update or add entity
instances to the KG. They can also search entity instances compatible with those values,
which will be shown in the instance drop-down menu on the left. On the left, the user can
also see the domains associated with a selected instance as a set of buttons and act on these
buttons to add or remove domains. The selected instance can also be sent to the other tabs
for further processing (see next). On the right, facilities are provided to handle (upload
or display) the attachments. On the bottom left, the user can approve, disapprove, or just
comment on an instance as a whole or on a single attribute thereof: these contributions will
be used by the system to determine the trust of the users who entered that information.

The Relationships (Figure 4e) tab is most similar to the Entities one, except that it
refers to arcs (i.e., relationship instances) in the graph. So, it involves a subject class or
instance, a relationship, and an object class or instance, which are handled, respectively,
on the left, center, and right sections of the page. The subject and object sections act like
the Entities tab: they allow the user to browse the class hierarchy and select a (sub)class
for that role, after which the drop-down menu of instances is displayed and they can be
selected. In the central section, the hierarchy of relationships provided by the currently
selected domain can be browsed, and after selecting one, the corresponding attributes are
determined (using inheritance for subrelationships) and shown in a form. Note that when
selecting any partial combination of subject–relationship–object, the remaining compo-
nents are automatically filtered to show only those provided by the ontology, e.g., if for
the relationship ‘wasIn’, the ontology only provides the options Person.wasIn.Place and
Organization.wasIn.Event, when selecting the relationship wasIn, the Subject section only
displays Person and Organization, and the Object section only displays Place and Event;
if further selecting Place for the Object, then the Subject section only displays Person as
an option. Thanks to the LPG model adopted by GraphBRAIN, relationships may have
attributes, and several instances of the same relationship can be established between the
same Subject and Object instances, each with its own attributes. Controls are available
to send the selected subject or object to the other tabs for further processing; work on
the inverse relationship; filter only the items actually involved in that relationship in the
graph in the Subject and Object instance menus; search for relationship instances based on
attribute values entered by the user; and create, update, or delete relationship instances.
Again, attachments can be handled in the right section, and feedback can be provided in
the left section.

The Graph (Figure 4c) tab allows the user to display (a portion of) the KG, starting
from selected nodes shown on the left (those that were sent to this tab from the Entities
or Relationships tabs). The displayed portion is computed using Network Analysis al-
gorithms (e.g., Spreading Activation or PageRank) that have been modified to ensure a
more readable and pleasant result. It can also be computed based on the user profile,
so that the retrieved information can be more interesting to the specific user; past user
interactions with GraphBRAIN are exploited to build the user profile. If no starting nodes
are selected, the starting nodes are automatically determined based on their relevance in the
KG and, in turn, assessed by using various Network Analysis algorithms (e.g., centrality
ones). The user can expand nodes to see all their neighbors, move the nodes to change the
displayed graph topology, obtain detailed information on the nodes and arcs (i.e., their
attribute values), and change the set of starting nodes by adding or deleting items. Analysis
and mining functions are also provided, e.g., finding all (minimal) paths in the graph
among a given set of nodes, determining the relevance of a node, clustering the nodes,



Future Internet 2023, 15, 345 20 of 28

etc. Again, nodes and arcs can be sent to the Entities or Relationships tabs, respectively,
for further processing.

The Schema (Figure 4f) tab allows the users to browse the ontology that determines the
schema of the data in the KG and possibly to modify it and save a local copy. Modifications
do not affect the schema on the server, because it would obviously break basic interoper-
ability norms. Still, the users can use the modified ontologies for their GraphBRAIN-based
KGs or propose the modifications to the GraphBRAIN administrators. In this section,
the ontology currently selected in the Domains tab can be displayed or another one among
those available on the server can be selected or the user can upload a local file in GBS
format. On the left, the hierarchy of Entities/Classes can be browsed, also adding, remov-
ing, or renaming classes. After clicking on a class, its own attributes are shown below
(i.e., inherited attributes are not shown when selecting a subclass) and can be modified by
adding, removing, or changing the properties or the attribute (name, datatype, whether
it is mandatory, etc.). Clicking on an attribute of type Select or Tree, its values are shown
below. Similar controls are available for Relationships in the central section of the page.
In this case, selecting a relationship also displays all possible Subject–Object pairs available
for that relationship, and controls are available to add or remove pairs. The displayed
relationships can be filtered based on specific Subject or Object classes. Additional controls
allow the import of ontologies from the standard OWL SW format or the exportation of the
currently displayed ontology and/or its instances in various formats:

• GBS, to be used for GraphBRAIN applications;
• OWL, to be used in standard SW settings;
• Prolog, to be used in standard Prolog programs (in this case, a domain-independent

representation of the ontology and instances is obtained, expressed in terms of nodes,
arcs, their attributes and values, and their labels);

• GEAR, to be fed to the MultiStrategy Reasoning engine, possibly along with axioms
and background theories, to derive new knowledge (in this case, a domain-specific
representation of the ontology and instances is obtained, in which the labels become
predicate names and the attributes become atom arguments).

5.2. Knowledge Browsing and Exploration

As previously mentioned, the knowledge browsing and exploration tool for end users
was developed separately from the knowledge querying, analysis, and mining tool. The first
motivation is that it is aimed at supporting more dynamic interactions, while the other is
more oriented toward supporting GraphBRAIN-based applications. Another reason is that,
for interoperability purposes, this tool should be applicable also to standard SW resources,
and the difference should be as transparent as possible to the final user. So, it was designed
to work with resources in SW formats and has the case of GraphBRAIN sources as a special
case, in which the GraphBRAIN KG is exposed as if it were a SPARQL resource.

SKATEBOARD, the Semantic Knowledge Advanced Tool for Extraction Browsing
Organization Annotation Retrieval and Discovery, extends the capabilities of the ARCA sys-
tem [55] for semantic searching over digital libraries, introducing several key enhancements.
Its main features are

• Collaborative Knowledge Creation and Updating: This focuses on making the pro-
cess of creating, modifying, and updating knowledge more collaborative. It enables
users to actively participate in the development and refinement of the information
within the digital library. This collaborative aspect is an important addition compared
to ARCA.

• Rapid Information Visualization: This is designed for the rapid visualization of in-
formation directly related to the selected resource (see Figure 5). It excels at providing
quick and intuitive access to relevant data, making it easier for users to extract insights
from the digital catalog.

• Geospatial and Semantic Visualization: This offers features such as mapping loca-
tions, enriching character profiles with semantic information, and presenting books



Future Internet 2023, 15, 345 21 of 28

with closely connected relationships. These visualizations enhance the understanding
of the data and enable users to explore the content from different angles. The key
functionalities of SKATEBOARD are listed below.

• Combined Interaction Paradigms [56]: This combines various interaction paradigms,
including the node-link, tabular, and map-based interfaces. This versatility allows
users to choose the visualization style that best suits their needs, providing a more
immersive exploration experience.

• Information Reduction Strategies: This employs information reduction strategies
based on the proximity ranking of relationships. This helps users to focus on the most
relevant information, reducing information overload and improving the clarity of
presented data.

• Integration with Multiple SPARQL Endpoints: This seamlessly integrates multiple
SPARQL endpoints, enabling access to dynamic Knowledge Graphs from various
sources. This capability enhances the scope and depth of the available information.

• Collaborative Annotation and Validation: This supports the collaborative annotation
and validation of information present in the SPARQL endpoint. This feature promotes
data quality and accuracy through user contributions and validations.

Figure 5. SKATEBOARD Interface.

The main purposes of SKATEBOARD are

• Adaptation to Diverse Domains: It aims to be adaptable to a wide range of domains,
making it a versatile tool for exploring and understanding different types of digital
content.

• User-Friendly Interface: It strives to provide an interface that is user-friendly, even
for individuals who may not be experts in the specific domain of the digital library.

One of SKATEBOARD’s main visualization features is to offer node-link-based visual-
ization while also providing different views based on the selected entity type. Tools like
Tabulator, Tabulator Redux, and S-Paths also offer various views depending on the entity
type (https://linkeddata-89b9d.web.app/, accessed on 12 October 2023) [56], but SKATE-
BOARD distinguishes itself by allowing users to access custom views for different entity
types without excluding the central node-link view.

Node-link diagrams have been employed to represent Linked Data for many years.
They exhibit certain notable limitations, including poor scalability. The integration with
GraphBrain enables SKATEBOARD to visualize specific segments of the LPG. These seg-
ments encompass the information pertaining to the selected node and its immediate connec-
tions, as defined by a specific parameter (the node and its context). This integration serves

https://linkeddata-89b9d.web.app/


Future Internet 2023, 15, 345 22 of 28

as one solution to address the scalability issue associated with conventional node-link
diagrams. Furthermore, this integration offers several advantages, including

1. Incremental Visualization: SKATEBOARD’s capability to visualize only the pertinent
portion of the LPG incrementally. It focuses on the selected node and its imme-
diate context, reducing visual clutter and enhancing the user’s ability to navigate
data effectively.

2. Efficiency: The integration with labeled property graphs and the utilization of na-
tive LPG endpoints for querying, in conjunction with semantic mapping, provide
the efficiency characteristic of LPG systems while retaining the inherent semantic
connections in RDF data.

SKATEBOARD can be seen as a linker of SPARQL endpoints, which means that it can
deal with resources expressed as RDF triples using a JSON-like language. The GraphBRAIN
API function that can map some SPARQL queries into Cypher ones, keeping the same
semantics, allows SKATEBOARD to be connected to GraphBRAIN KGs: GraphBRAIN
is seen a SPARQL endpoint server which, when queried, is updated with a new piece of
information that can be accessed via a public link by SKATEBOARD. A first consequence
of this approach is that we can fully exploit both graph models to query data in a much
more efficient way while visualizing them. Moreover, this makes the data available on the
Web as RDF triples, in this way extending the set of interconnected data.

6. Evaluation

The evaluation of the GraphBRAIN framework and its accompanying graph explo-
ration interface, SKATEBOARD, encompasses three main aspects: evaluation design, re-
sults, and practical implications. This comprehensive assessment aims to provide a holistic
view of the capabilities, performance, and real-world applications of these systems.

6.1. Evaluation Design

The evaluation design was thoughtfully structured to ensure a rigorous and sys-
tematic assessment of GraphBRAIN and SKATEBOARD. It consisted of the following
key components:

• Scope of evaluation;
• Data collection;
• Methodology;
• Participants;
• Metrics and criteria.

6.1.1. Scope of Evaluation

• GraphBRAIN: The evaluation focused on understanding the versatility and adapt-
ability of GraphBRAIN as a collaborative knowledge graph framework. It assessed
the depth and breadth of the knowledge representation, the domain adaptability,
and the interconnectedness of ontologies. Additionally, it examined the diversity of
applications supported by GraphBRAIN.

• SKATEBOARD: The evaluation of SKATEBOARD was centered around its perfor-
mance and usability as a graph exploration interface. Specifically, it evaluated how
SKATEBOARD performed within the context of the World Literature Knowledge
Graph, considering factors such as query response times, system resource utilization,
user satisfaction, ease of use, and result relevance.

6.1.2. Data Collection

• GraphBRAIN: Quantitative data for GraphBRAIN were collected by extracting statistics
from the knowledge graph. These statistics included the numbers of entity instances,
entity attributes, relationship instances, and relationship attributes. This quantitative
information provided insights into the depth and breadth of knowledge representation.



Future Internet 2023, 15, 345 23 of 28

• SKATEBOARD: The evaluation of SKATEBOARD involved a combination of quan-
titative and qualitative data collection methods. Quantitative data included metrics
such as the query response times and system resource utilization, which were critical
for assessing the performance. Qualitative data, obtained through user feedback,
covered aspects such as the user satisfaction, ease of use, relevance of search results,
and valuable suggestions for improvements.

6.1.3. Methodology

• Analytic Hierarchy Process (AHP): To ensure a structured and comparative evalua-
tion, the Analytic Hierarchy Process (AHP) was employed. This systematic approach,
as described by Vaidya and Kumar in their 2006 work [57], allowed for a methodical
assessment of GraphBRAIN and SKATEBOARD against multiple criteria. The AHP
facilitated a well-organized and data-driven evaluation process.

6.1.4. Participants

• GraphBRAIN: Domain experts, researchers, and developers with expertise in knowl-
edge graph technologies actively participated in the evaluation of GraphBRAIN. Their
deep understanding of the field contributed to a comprehensive analysis.

• SKATEBOARD: SKATEBOARD’s evaluation involved a diverse group of 35 users, in-
cluding researchers, students, and digital library practitioners. This user base provided
valuable insights into the user experience and usability aspects of SKATEBOARD.

6.1.5. Metrics and Criteria

• GraphBRAIN: The evaluation metrics for GraphBRAIN encompassed knowledge
graph statistics, domain adaptability, and ontology interconnections. These criteria
enabled an assessment of the system’s knowledge representation and flexibility.

• SKATEBOARD: The quantitative metrics for SKATEBOARD included the query re-
sponse times, system efficiency, and overall performance. The qualitative criteria covered
user satisfaction, ease of use, relevance of the search results, and suggestions for sys-
tem enhancements.

6.2. Results

The evaluation results provide valuable insights into the performance and capabilities
of GraphBRAIN and its associated graph exploration interface, SKATEBOARD. This section
presents the findings of the evaluation, enriched with data and visual representations
where applicable.

6.2.1. GraphBRAIN Evaluation Results
Knowledge Graph Statistics

The GraphBRAIN Knowledge Graph (KG) currently encompasses a wealth of entities
and relationships, serving as a comprehensive repository of knowledge.

We evaluated it based on the number of knowledge items available in the current
population of the KG underlying the demo prototype, available at http://digitalmind.di.
uniba.it:8088/GraphBRAIN/ (accessed on 1 October 2023), as reported in Table 2, and on
the variety of applications it supported, as described next. Note that Table 2 does not
report figures for all domains described in this section, because some of them are still under
investigation and are not yet uploaded in the prototype. On the other hand, most nodes in
the KG are not labeled with any domain, representing precious background knowledge that
is not part of any specific domain, but allows items that would otherwise be disconnected
to be indirectly linked and inter-related across domains or even within single domains.

http://digitalmind.di.uniba.it:8088/GraphBRAIN/
http://digitalmind.di.uniba.it:8088/GraphBRAIN/


Future Internet 2023, 15, 345 24 of 28

Table 2. Statistics on the content of the current GraphBRAIN prototype’s KG.

Domain Entity Inst. Entity Attr. Relationship Inst. Relationship Attr.

Overall 337,287 2,089,580 496,839 41,594
Overall (domain) 2038 8069 2512 1958
General 102 573 222 132
LAM 63 294 93 69
Retrocomputing 1688 6801 2142 1757
Food 169 338 47 0
Tourism 14 56 8 0

Domain Adaptability

GraphBRAIN’s adaptability across diverse domains is evident through its successful
integration with domains such as Libraries/Archives/Museums (LAM), Retrocomputing,
Food, and Tourism. These integrations enable a holistic representation of knowledge that
extends beyond traditional domain-based boundaries.

The LAM (Libraries/Archives/Museums) domain was investigated in terms of us-
ing GraphBRAIN technology to overcome the limitations of traditional record-based ap-
proaches to Cultural Heritage descriptions. We proposed a ‘holistic’ approach aimed at
representing all possible aspects of LAM: not only the formal metadata that are tradition-
ally used to describe Cultural Heritage items, but also the content of cultural objects, their
physicity, their context, and their lifecycle. Some of the data were populated using automated
document processing techniques developed in previous projects.

Connected to the LAM domain is the Linguistics one, as it is based on the LAM sources.
Here, the integration of semantic information into language resources showed the potential
of the GraphBRAIN framework for research on semantic change in Latin.

Also, the Open Science domain relied on the LAM one and extended it to describe
the context and environment in which scientific development takes place: processes and
projects, datasets and corpora, scientific groups and communities, hardware and tools,
software and storage facilities, etc.

The Retrocomputing domain (concerning the history of computing), in turn, relied
on the LAM and Open Science domains. It is an extremely complex domain to represent.
It involves documentation, hardware, software, and even, immaterial heritage. These
components are inextricably interconnected, giving reason and explanation to each other.
Also, the traditional description fields defined for other types of CH are unable to capture
the complexity of the internal structure and the configurations of computing hardware.

The Food and Tourism domains, together with the CH proper sections of the KG,
make up an ecosystem that is aimed at the enhancement and exploitation of the CH
items by the final users. This again falls into our holistic perspective and provides a
clear example of how it can open up new possibilities with respect to traditional, strictly
domain-based representations.

These ontologies can be connected to each other via shared entities that act as bridges
between the different domains and allow the reuse of knowledge across them. In addition
to common entities among the above ontologies, most interconnections are due to the
entities defined in a general top-level ontology, defined in GraphBRAIN independently of
the various specific domains and including ubiquitous and highly reusable concepts such
as Person, Organization, Event, Place, Collection, IntellectualWork, and Item.

Ontology Interconnections

GraphBRAIN facilitates seamless interconnections between ontologies. It achieves this
by employing a top-level ontology that defines ubiquitous and reusable concepts, including
Person, Organization, Event, Place, Collection, IntellectualWork, and Item. These shared
entities act as bridges between different domains, promoting knowledge reuse.



Future Internet 2023, 15, 345 25 of 28

6.2.2. SKATEBOARD Evaluation Results
Quantitative Evaluation

SKATEBOARD’s quantitative evaluation revealed the following results:

• Query Response Times: On average, SKATEBOARD delivered query results in under
five seconds, ensuring a responsive user experience.

• Efficiency: SKATEBOARD demonstrated efficient resource utilization, with low mem-
ory and CPU consumption, even during peak usage.

Qualitative Evaluation

Qualitative feedback from 35 users who engaged with SKATEBOARD within the
World Literature Knowledge Graph highlighted the following aspects:

• User Satisfaction: Approximately 80% of the users expressed high levels of satis-
faction with SKATEBOARD’s interface and performance, rating their experience as
“very satisfactory”.

• Ease of Use: The users found SKATEBOARD intuitive and easy to navigate, even
when exploring complex literary relationships and connections.

• Relevance of the Results: Feedback indicated the relevance and accuracy of the
search results provided by SKATEBOARD, with 90% of users reporting that the
system retrieved information that closely aligned with their queries.

• Suggestions for Improvement: Users offered valuable suggestions for enhancement,
including expanded visualization options and additional contextual information.

6.3. Practical Implications

The evaluation results have significant practical implications for both GraphBRAIN
and SKATEBOARD:

• GraphBRAIN: The rich knowledge representation and adaptability across domains
make GraphBRAIN a valuable asset in interdisciplinary research. It can effectively
support applications in fields such as Cultural Heritage, Linguistics, Open Science,
Retrocomputing, Food, and Tourism. The seamless interconnections between ontolo-
gies enable knowledge reuse and cross-domain collaborations.

• SKATEBOARD: SKATEBOARD’s efficient performance and high user satisfaction in
the World Literature Knowledge Graph domain demonstrate its potential for diverse
applications. Collaborations with digital libraries across various domains, including
ancient manuscripts, comics, and archaeological works, can benefit from SKATE-
BOARD’s usability and effectiveness.

In conclusion, the evaluation results affirm the capabilities and practical utility of
GraphBRAIN and SKATEBOARD in supporting knowledge representation, exploration,
and applications in interdisciplinary contexts.

7. Conclusions and Future Work

For complex or critical applications, knowledge-based AI systems must be used.
Knowledge Graphs are currently enjoying widespread use in Semantic Web Applications,
thanks to their expressive power and flexibility. This paper described GraphBRAIN, a new
framework and platform for collaborative KG definition, population, and exploitation.
Different from mainstream SW approaches, it is based on the LPG graph model, and adopts
state-of-the-art graph DB solutions to ensure its efficiency and wide data manipulation
facilities. While it can still be mapped onto standard SW representations, and thus enjoy
their data repositories and reasoning tools, it was developed with the DB perspective in
mind, and is open to additional functions coming from the Multistrategy Reasoning and
Graph Mining branches of AI.

GraphBRAIN comes in the form of an API, which allows any Internet-based appli-
cation to have access to its functionality. Given a DB and an ontology, the API wraps



Future Internet 2023, 15, 345 26 of 28

the former and ensures that any access is compliant with the latter. Two Web Applica-
tions come with GraphBRAIN: one allows form-based CRUD and query operations on the
knowledge (both ontology and instances), plus all of the analysis, mining, and reasoning
tools embedded in the framework; the other is specifically aimed at interactive browsing
and exploration by end users and ensures seamless compliance with the SW standards
and repositories.

GraphBRAIN is currently adopted by several projects, many of which are in the
Cultural Heritage field. This paper also reported an assessment of the framework and its
interfaces in these domains, proposing it as a viable solution for semantic-based knowledge
processing on the future Internet.

Author Contributions: Conceptualization, S.F., E.B., D.D.P. and D.R.; methodology, S.F., E.B., D.D.P.
and D.R.; software, S.F., E.B., D.D.P. and D.R.; validation, S.F., E.B., D.D.P. and D.R.; formal analysis,
S.F., E.B., D.D.P. and D.R.; investigation, S.F., E.B., D.D.P. and D.R.; resources, S.F., E.B., D.D.P. and
D.R.; data curation, S.F., E.B., D.D.P. and D.R.; writing—original draft preparation, S.F., E.B., D.D.P.
and D.R.; writing—review and editing, S.F., E.B., D.D.P. and D.R.; visualization, E.B.; supervision,
S.F.; project administration, S.F.; funding acquisition, S.F. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was partially supported by the projects FAIR—Future AI Research (PE00000013),
spoke 6—Symbiotic AI, and CHANGES—Cultural Heritage Active innovation for Next-GEn Sustain-
able society (PE00000020), and Spoke 3—Digital Libraries, Archives and Philology, under the NRRP
MUR program funded by the NextGenerationEU.

Data Availability Statement: The data in the prototype Web Application of GraphBRAIN can be
explored at http://digitalmind.di.uniba.it:8088/GraphBRAIN/ (accessed on 1 September 2023).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

AI Artificial Intelligence
AHP Analytic Hierarchy Process
DB Data Base
KB Knowledge Base
KG Knowledge Graph
LPG Labeled Property Graph
OWL Ontology Web Language
RDF Resource Description Framework
SW Semantic Web
KRR Knowledge Representation and Reasoning
KR Knowledge Representation
URI Uniform Resource Identifiers
DBMS Data Base Management Systems
SHACL Shapes Constraint Language
ShEx Shape Expressions
RML RDF Mapping Language
LOD Linked Open Data
GBIF Global Biodiversity Information Facility
NLP Natural Language Processing
GBS GraphBRAIN Schema

References
1. Robinson, I.; Webber, J.; Eifrem, E. Graph Databases: New Opportunities for Connected Data, 2nd ed.; O’Reilly Media, Inc.: Sebastopol,

CA, USA, 2015.
2. Ferilli, S. GEAR: A General Inference Engine for Automated MultiStrategy Reasoning. Electronics 2023, 12, 256. [CrossRef]
3. Ferilli, S. Integration Strategy and Tool between Formal Ontology and Graph Database Technology. Electronics 2021, 10, 2616.

[CrossRef]

http://digitalmind.di.uniba.it:8088/GraphBRAIN/
http://doi.org/10.3390/electronics12020256
http://dx.doi.org/10.3390/electronics10212616


Future Internet 2023, 15, 345 27 of 28

4. Di Pierro, D.; Ferilli, S. An API for Ontology-driven LPG Graph DB Management. In Proceedings of the 31st Symposium of
Advanced Database Systems, Padua, Italy, 2–5 July 2023; pp. 303–316.

5. Krötzsch, M.; Thost, V. Ontologies for knowledge graphs: Breaking the rules. In Proceedings of the Semantic Web—ISWC 2016: 15th
International Semantic Web Conference, Kobe, Japan, 17–21 October 2016, Proceedings, Part I 15; Springer: Cham, Switzerland, 2016;
pp. 376–392.

6. Chiba, H.; Yamanaka, R.; Matsumoto, S. G2GML: Graph to Graph Mapping Language for Bridging RDF and Property Graphs.
In Proceedings of the Semantic Web—ISWC 2020—19th International Semantic Web Conference, Athens, Greece, 2–6 November 2020,
Proceedings, Part II; Pan, J.Z., Tamma, V.A.M., d’Amato, C., Janowicz, K., Fu, B., Polleres, A., Seneviratne, O., Kagal, L., Eds.;
Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2020; Volume 12507, pp. 160–175. [CrossRef]

7. Available online: https://protegeproject.github.io/owl2lpg (accessed on 9 September 2023).
8. Available online: https://github.com/SciGraph/SciGraph/wiki/Neo4jMapping (accessed on 9 September 2023).
9. Available online: https://github.com/VirtualFlyBrain/neo4j2owl (accessed on 9 September 2023).
10. Available online: https://github.com/cmungall/owlstar (accessed on 9 September 2023).
11. Hartig, O. Foundations to Query Labeled Property Graphs using SPARQL. In Proceedings of the 1st International Workshop on

Semantics for Transport and the 1st International Workshop on Approaches for Making Data Interoperable Co-Located with 15th
Semantics Conference (SEMANTiCS 2019), CEUR-WS.org, Karlsruhe, Germany, 9 September 2019; Volume 2447.

12. Available online: https://neo4j.com/blog/ontologies-in-neo4j-semantics-and-knowledge-graphs/ (accessed on 9 September
2023).

13. Angles, R.; Thakkar, H.; Tomaszuk, D. RDF and Property Graphs Interoperability: Status and Issues. In Proceedings of the 13th
Alberto Mendelzon International Workshop on Foundations of Data Management, Asunción, Paraguay, 3–7 June 2019.

14. Saleem, M.; Khan, Y.; Hasnain, A.; Ermilov, I.; Ngonga Ngomo, A.C. A fine-grained evaluation of SPARQL endpoint federation
systems. Semant. Web 2016, 7, 493–518. [CrossRef]

15. Bock, J.; Haase, P.; Ji, Q.; Volz, R. Benchmarking OWL reasoners. In Proceedings of the ARea2008—Workshop on Advancing
Reasoning on the Web: Scalability and Commonsense, Tenerife, Spain, 2 June 2008.

16. Hoffart, J.; Yosef, M.; Bordino, I.; Fürstenau, H.; Pinkal, M.; Spaniol, M.; Taneva, B.; Thater, S.; Weikum, G. Robust disambiguation
of named entities in text. In Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing,
Edinburgh, UK, 27–31 July 2011; pp. 782–792.

17. Sinaci, A.A.; Gonul, S. Semantic content management with apache stanbol. In Proceedings of the Semantic Web: ESWC 2012 Satellite
Events: ESWC 2012 Satellite Events, Heraklion, Crete, Greece, 27–31 May 2012. Revised Selected Papers 9; Springer: Berlin/Heidelberg,
Germany, 2015; pp. 371–375.

18. Mendes, P.N.; Jakob, M.; García-Silva, A.; Bizer, C. DBpedia spotlight: Shedding light on the web of documents. In Proceedings
of the 7th International Conference on Semantic Systems, Graz, Austria, 7–9 September 2011; pp. 1–8.

19. Butuc, M. Semantically Enriching Content Using OpenCalais. Editia 2009, 9, 77–88.
20. Gangemi, A. A comparison of knowledge extraction tools for the semantic web. In ESWC 2013: The Semantic Web: Semantics and

Big Data; Springer: Berlin/Heidelberg, Germany, 2013; pp. 351–366.
21. Nisheva-Pavlova, M.; Alexandrov, A. GLOBDEF: A framework for dynamic pipelines of semantic data enrichment tools. In

Proceedings of the Metadata and Semantic Research: 12th International Conference, MTSR 2018, Limassol, Cyprus, 23–26 October 2018,
Revised Selected Papers 12; Springer: Cham, Switzerland, 2019; pp. 159–168.

22. Available online: https://www.lerma.it/ (accessed on 9 September 2023).
23. Available online: https://www.torrossa.com/ (accessed on 9 September 2023).
24. Auer, S.; Bizer, C.; Kobilarov, G.; Lehmann, J.; Cyganiak, R.; Ives, Z. Dbpedia: A nucleus for a web of open data. In Proceedings

of the International Semantic Web Conference, Busan, Republic of Korea, 11–15 November 2007; Springer: Berlin/Heidelberg,
Germany, 2007; pp. 722–735.

25. Virgilio, R.D. Smart RDF data storage in graph databases. In Proceedings of the 2017 17th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing (CCGRID), Madrid, Spain, 14–17 May 2017; pp. 872–881.

26. Tomaszuk, D. RDF data in property graph model. In Proceedings of the Research Conference on Metadata and Semantics
Research, Gottingen, Germany, 22–25 November 2016; Springer: Cham, Switzerland, 2016; pp. 104–115.

27. Angles, R.; Thakkar, H.; Tomaszuk, D. Mapping rdf databases to property graph databases. IEEE Access 2020, 8, 86091–86110.
[CrossRef]

28. Sahoo, S.S.; Halb, W.; Hellmann, S.; Idehen, K.; Thibodeau, T., Jr.; Auer, S.; Sequeda, J.; Ezzat, A. A survey of current approaches
for mapping of relational databases to RDF. W3C RDB2RDF Incubator Group Rep. 2009, 1, 113–130.

29. Zhou, S. Exposing relational database as RDF. In Proceedings of the 2010 2nd International Conference on Industrial and
Information Systems, Dalian, China, 10–11 July 2010; Volume 2, pp. 237–240.

30. Spanos, D.E.; Stavrou, P.; Mitrou, N. Bringing relational databases into the semantic web: A survey. Semant. Web 2012, 3, 169–209.
[CrossRef]

31. Vavliakis, K.; Grollios, T.; Mitkas, P. RDOTE–Publishing Relational Databases into the Semantic Web. J. Syst. Softw. 2013,
86, 89–99. [CrossRef]

32. Bizer, C. D2R MAP—A Database to RDF Mapping Language. In Proceedings of the Web Conference, Budapest, Hungary, 20–24
May 2003.

http://dx.doi.org/10.1007/978-3-030-62466-8_11
https://protegeproject.github.io/owl2lpg
https://github.com/SciGraph/SciGraph/wiki/Neo4jMapping
https://github.com/VirtualFlyBrain/neo4j2owl
https://github.com/cmungall/owlstar
https://neo4j.com/blog/ontologies-in-neo4j-semantics-and-knowledge-graphs/
http://dx.doi.org/10.3233/SW-150186
https://www.lerma.it/
https://www.torrossa.com/
http://dx.doi.org/10.1109/ACCESS.2020.2993117
http://dx.doi.org/10.3233/SW-2011-0055
http://dx.doi.org/10.1016/j.jss.2012.07.018


Future Internet 2023, 15, 345 28 of 28

33. Arenas, M.; Bertails, A.; Prud’hommeaux, E.; Sequeda, J. A Direct Mapping of Relational Data to RDF. Available online:
http://www.w3.org/TR/2012/REC-rdb-direct-mapping-20120927/ (accessed on 19 October 2023).

34. Das, S.; Sundara, S.; Cyganiak, R. R2RML: RDB to RDF Mapping Language. Available online: http://www.w3.org/TR/2012
/REC-r2rml-20120927/ (accessed on 19 October 2023).

35. Junior, A.C.; Debattista, J.; O’Sullivan, D. Assessing the Quality of R2RML Mappings. In Proceedings of the SEM4TRA-AMAR@
SEMANTiCS, Karlsruhe, Germany, 9 September 2019.

36. Zhao, Z.; Han, S.; Kim, J. R2LD: Schema-based Graph Mapping of relational databases to Linked Open Data for multimedia
resources data. Multimed. Tools Appl. 2019, 78, 28835–28851. [CrossRef]

37. Matsumoto, S.; Yamanaka, R.; Chiba, H. Mapping RDF graphs to property graphs. arXiv 2018, arXiv:1812.01801.
38. Dimou, A.; Vander Sande, M.; Colpaert, P.; Verborgh, R.; Mannens, E.; Van de Walle, R. RML: A Generic Language for

Integrated RDF Mappings of Heterogeneous Data. In Proceedings of the LDOW 2014, CEUR-WS.org, London, UK, 4–7 July 2014;
Volume 1184.

39. Debruyne, C.; O’Sullivan, D. R2RML-F: Towards Sharing and Executing Domain Logic in R2RML Mappings. In Proceedings of
the LDOW@ WWW, Montreal, QC, Canada, 12 April 2016; Volume 1593.

40. Rodriguez-Muro, M.; Rezk, M. Efficient SPARQL-to-SQL with R2RML mappings. J. Web Semant. 2015, 33, 141–169. [CrossRef]
41. Priyatna, F.; Corcho, O.; Sequeda, J. Formalisation and experiences of R2RML-based SPARQL to SQL query translation using

morph. In Proceedings of the 23rd International Conference on World Wide Web, Seoul, Republic of Korea, 7–11 April 2014;
pp. 479–490.

42. Heyvaert, P.; Chaves-Fraga, D.; Priyatna, F.; Corcho, O.; Mannens, E.; Verborgh, R.; Dimou, A. Conformance test cases for the
RDF mapping language (RML). In Proceedings of the Knowledge Graphs and Semantic Web: First Iberoamerican Conference, KGSWC
2019, Villa Clara, Cuba, 23–30 June 2019, Proceedings; Springer: Cham, Switzerland, 2019; pp. 162–173.

43. Dimou, A.; Vander Sande, M.; Colpaert, P.; De Vocht, L.; Verborgh, R.; Mannens, E.; Van de Walle, R. Extraction and semantic
annotation of workshop proceedings in HTML using RML. In Proceedings of the Semantic Web Evaluation Challenge: SemWebEval 2014
at ESWC 2014, Anissaras, Crete, Greece, 25–29 May 2014, Revised Selected Papers; Springer: Cham, Switzreland, 2014; pp. 114–119.

44. Penev, L.; Dimitrova, M.; Senderov, V.; Zhelezov, G.; Georgiev, T.; Stoev, P.; Simov, K. OpenBiodiv: A Knowledge Graph for
Literature-Extracted Linked Open Data in Biodiversity Science. Publications 2019, 7, 38. [CrossRef]

45. Bauer, F.; Kaltenböck, M. Linked Open Data: The Essentials; Edition Mono/Monochrom: Vienna, Austria, 2011.
46. Purohit, S.; Van, N.; Chin, G. Semantic Property Graph for Scalable Knowledge Graph Analytics. In Proceedings of the 2021 IEEE

International Conference on Big Data (Big Data), Orlando, FL, USA, 15–18 December 2021; pp. 2672–2677.
47. Vidal, M.E.; Castillo, S.; Acosta, M.; Montoya, G.; Palma, G. On the selection of SPARQL endpoints to efficiently execute federated

SPARQL queries. In Transactions on Large-Scale Data-and Knowledge-Centered Systems XXV; Springer: Berlin/Heidelberg, Germany,
2016; pp. 109–149.

48. Saleem, M.; Potocki, A.; Soru, T.; Hartig, O.; Ngomo, A.C.N. CostFed: Cost-based query optimization for SPARQL endpoint
federation. Procedia Comput. Sci. 2018, 137, 163–174. [CrossRef]

49. Zviedris, M.; Barzdins, G. ViziQuer: A tool to explore and query SPARQL endpoints. In Proceedings of the Semanic Web: Research
and Applications: 8th Extended Semantic Web Conference, ESWC 2011, Heraklion, Crete, Greece, 29 May–2 June 2011, Proceedings, Part II
8; Springer: Berlin/Heidelberg, Germany, 2011; pp. 441–445.

50. Heibi, I.; Peroni, S.; Shotton, D. Enabling text search on SPARQL endpoints through OSCAR. Data Sci. 2019, 2, 205–227. [CrossRef]
51. Ferilli, S.; Redavid, D. The GraphBRAIN System for Knowledge Graph Management and Advanced Fruition. In Proceedings of

the Foundations of Intelligent Systems, Graz, Austria, 23–25 September 2020; Lecture Notes in Computer Science; Springer: Cham,
Switzerland, 2020; Volume 12117, pp. 308–317.

52. Pat Hayes, C.W. Defining N-ary Relations on the Semantic Web; W3c Working Group Note; World Wide Web Consortium: Wakefield,
MA, USA, 2006.

53. Available online: https://github.com/owlcs/owlapi/wiki/Documentation (accessed on 9 September 2023).
54. Available online: https://protege.stanford.edu/ (accessed on 9 September 2023).
55. Bernasconi, E.; Ceriani, M.; Mecella, M.; Catarci, T. Design, realization, and user evaluation of the ARCA system for exploring a

digital library. Int. J. Digit. Libr. 2023, 24, 1–22. [CrossRef] [PubMed]
56. Bernasconi, E.; Ceriani, M.; Pierro, D.D.; Ferilli, S.; Redavid, D. Linked Data Interfaces: A Survey. Information 2023, 14, 483.

[CrossRef]
57. Vaidya, O.S.; Kumar, S. Analytic hierarchy process: An overview of applications. Eur. J. Oper. Res. 2006, 169, 1–29. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://www.w3.org/TR/2012/REC-rdb-direct-mapping-20120927/
http://www.w3.org/TR/2012/REC-r2rml-20120927/
http://www.w3.org/TR/2012/REC-r2rml-20120927/
http://dx.doi.org/10.1007/s11042-019-7281-5
http://dx.doi.org/10.1016/j.websem.2015.03.001
http://dx.doi.org/10.3390/publications7020038
http://dx.doi.org/10.1016/j.procs.2018.09.016
http://dx.doi.org/10.3233/DS-190016
https://github.com/owlcs/owlapi/wiki/Documentation
https://protege.stanford.edu/
http://dx.doi.org/10.1007/s00799-022-00343-0
http://www.ncbi.nlm.nih.gov/pubmed/36540865
http://dx.doi.org/10.3390/info14090483
http://dx.doi.org/10.1016/j.ejor.2004.04.028

	Introduction
	Related Work
	RDF and LPG Models for Knowledge Graphs
	Linked Data Interfaces
	Bridging LPG and RDF

	GraphBRAIN Framework
	Architecture
	Summary of the GraphBRAIN Schema Formalism
	GraphBRAIN Data Analysis & Mining Services
	The GraphBRAIN API

	Connection between the LPG and SW
	OWL/RDF Mapping
	Alignment with Existing Semantic Web Resources
	SPARQL Mapping

	End-User Interfaces
	Knowledge Querying, Analysis and Mining
	Knowledge Browsing and Exploration

	Evaluation
	Evaluation Design
	Scope of Evaluation
	Data Collection
	Methodology
	Participants
	Metrics and Criteria

	Results
	GraphBRAIN Evaluation Results
	SKATEBOARD Evaluation Results

	Practical Implications

	Conclusions and Future Work
	References

