
Citation: Gratsos, K.; Ougiaroglou, S.;

Margaris, D. kClusterHub: An

AutoML-Driven Tool for Effortless

Partition-Based Clustering over

Varied Data Types. Future Internet

2023, 15, 341. https://doi.org/

10.3390/fi15100341

Academic Editor: Michael Sheng

Received: 21 September 2023

Revised: 13 October 2023

Accepted: 16 October 2023

Published: 18 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Article

kClusterHub: An AutoML-Driven Tool for Effortless
Partition-Based Clustering over Varied Data Types †

Konstantinos Gratsos 1, Stefanos Ougiaroglou 1 and Dionisis Margaris 2,*

1 Department of Information and Electronic Engineering, School of Engineering, International Hellenic
University, Sindos, 57400 Thessaloniki, Greece; kostisgratsos12@gmail.com (K.G.); stoug@ihu.gr (S.O.)

2 Department of Digital Systems, School of Economics and Technology, University of the Peloponnese,
23100 Sparta, Greece

* Correspondence: margaris@uop.gr
† This paper is an extended version of our paper published in the proceedings of 3rd International Conference

on Novel and Intelligent Digital Systems, NIDS 2023, Athens, Greece, 28–29 September 2023.

Abstract: Partition-based clustering is widely applied over diverse domains. Researchers and
practitioners from various scientific disciplines engage with partition-based algorithms relying on
specialized software or programming libraries. Addressing the need to bridge the knowledge gap
associated with these tools, this paper introduces kClusterHub, an AutoML-driven web tool that
simplifies the execution of partition-based clustering over numerical, categorical and mixed data
types, while facilitating the identification of the optimal number of clusters, using the elbow method.
Through automatic feature analysis, kClusterHub selects the most appropriate algorithm from the
trio of k-means, k-modes, and k-prototypes. By empowering users to seamlessly upload datasets
and select features, kClusterHub selects the algorithm, provides the elbow graph, recommends the
optimal number of clusters, executes clustering, and presents the cluster assignment, through tabular
representations and exploratory plots. Therefore, kClusterHub reduces the need for specialized
software and programming skills, making clustering more accessible to non-experts. For further
enhancing its utility, kClusterHub integrates a REST API to support the programmatic execution
of cluster analysis. The paper concludes with an evaluation of kClusterHub’s usability via the
System Usability Scale and CPU performance experiments. The results emerge that kClusterHub is a
streamlined, efficient and user-friendly AutoML-inspired tool for cluster analysis.

Keywords: clustering; k-means; k-modes; k-prototypes; elbow method; autoML; web application;
web service

1. Introduction

Clustering, a fundamental task in machine learning and data mining [1], involves
grouping instances with similar characteristics into clusters. A cluster represents a collection
of instances, where each member is more similar to other members of the same cluster
than to those outside of it. This technique has found numerous applications across various
domains, spanning from market research and search engines to psychology, medicine,
biology, and beyond.

While the concept of clustering dates back to the 1930s, with origins in psychology
and anthropology [1], computational limitations initially hindered the progress of clus-
tering techniques. However, the advancement of computing power from the late 1950s
onward catalyzed the development of the diverse clustering methods that are widely
employed today. Given the intricate calculations and processing necessary for cluster
identification, computer science plays a pivotal role in enabling these techniques to thrive.
Among the plethora of clustering algorithms, partition-based algorithms are popular and
frequently employed.

Future Internet 2023, 15, 341. https://doi.org/10.3390/fi15100341 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi15100341
https://doi.org/10.3390/fi15100341
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0003-1094-2520
https://orcid.org/0000-0002-7487-374X
https://doi.org/10.3390/fi15100341
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi15100341?type=check_update&version=1

Future Internet 2023, 15, 341 2 of 22

K-means [2] is a partition-based clustering algorithm, targeting the partitioning of
instances into k clusters, based on their similarity, leveraging an iterative procedure that
assigns instances to the nearest cluster centroid. K-modes [3,4], a variation of k-means, is
suitable for categorical data, by optimizing the modes of attribute values within clusters.
Unlike traditional numerical-based distance measures, k-modes employs a dissimilarity
measure designed for categorical attributes, enhancing its applicability to datasets where
attributes lack numerical meanings. Additionally, k-prototypes [3,4], an extension that
combines both k-means and k-modes, offers a versatile solution for datasets featuring
mixed data types—both categorical and numeric attributes. K-prototypes combines the
numerical-based distance calculation of k-means with the categorical-based dissimilarity
measure of k-modes to handle hybrid data effectively. This makes k-prototypes a valuable
tool for clustering datasets that include attributes of varying types.

The challenge of selecting the appropriate partition-based clustering algorithm for
different data types (numeric, categorical, and mixed) is a crucial aspect, especially for
non-expert users. This difficulty serves as a motivation behind the present work, as it
aims to provide a user-friendly solution which automatically identifies the most suitable
algorithm for the given data type.

Furthermore, determining the optimal number of clusters, denoted by k, poses a
challenge in k-means clustering and its aforementioned variants. Adjusting the value of
k requires prior knowledge of the true number of clusters, which is often unavailable in
real-world datasets. Additionally, selecting an inappropriate k may lead to sub-optimal
cluster assignments, potentially overlooking meaningful patterns in the data. The elbow
method [5] frequently addresses this challenge by identifying the “elbow point” in the plot
of explained variance versus the number of clusters. The use of the elbow method by the
non-expert user for the automatic determination of the k parameter value constitutes the
motive of the present work.

Moreover, K-means clustering, with or without the incorporation of the elbow method,
is available in numerous dedicated standalone software solutions (e.g., Matlab, Weka [6],
SPSS, Orange [7], etc.) and programming language libraries (e.g., Python scikit-learn [8]
and R clustMixType [9]). K-modes and k-prototypes are not available in the aforementioned
standalone applications. However, they are available in the scikit-learn library. Utilizing
k-means, its variants and the elbow method within these software and programming envi-
ronments often entail considerations, such as software licensing, downloading, installation,
and the need for specialized expertise in these tools and programming skills. This combina-
tion of factors might create barriers, including the need for specific knowledge and skills.
The absence of freely available web applications or services dedicated to partition-based
clustering is notable within the authors’ awareness. This observation serves as another
motivation for the current work.

This paper extends the previous work by introducing kClusterHub, a web application
that builds upon the development of Web-k-means [10], furthering its capabilities to
encompass not only k-means but also k-modes and k-prototypes clustering algorithms.
kClusterhub deals with the difficulties when performing partition-based clustering by non-
experts. The difficulties are summarized as follows: (i) difficulty of the decision of which
partition-based clustering algorithm is appropriate for the different data types, (ii) difficulty
of the determination of the number of clusters, and (iii) need of programming skills and/or
specialized software to perform partition-based clustering.

Therefore, the target users of kClusterHub are researchers and practitioners from
diverse domains who may not have expertise in clustering algorithms, programming skills
and knowledge on specialized software, yet seek an efficient and accessible tool to derive
meaningful insights from their data through partition-based clustering. With kClusterHub,
users can seamlessly perform clustering analyses without the need to download, setup and
use specialized software (e.g., WEKA [6,11]) or write code and use programming libraries
(e.g., Scikit-learn [8]).

Future Internet 2023, 15, 341 3 of 22

The overarching objective of the paper is to create a seamless and user-friendly
AutoML-driven environment for non-expert researchers and practitioners seeking to con-
duct partition-based clustering across numerical, categorical and mixed data. In the spirit of
automated machine learning (AutoML) [12], kClusterHub takes a step further in facilitating
the clustering tasks. By recognizing the attributes’ data types within the uploaded dataset,
the tool selects the suitable clustering algorithm from the trio of k-means, k-modes, and k-
prototypes. Moreover, kClusterHub is capable of suggesting the optimal number of clusters
by utilizing the elbow method. Both aforementioned capabilities are AutoML-inspired.
Thus, kClusterHub empowers users to seamlessly upload datasets, select features and exe-
cute clustering analyses, via a user-friendly interface. The tool presents the insightful elbow
method graph, suggests the optimal number of clusters, and offers a detailed exploratory
plot of the cluster assignments that enables users to understand the characteristics of each
discovered cluster. In essence, the benefit of using kClusterHub is that it empowers even
non-expert users in cluster analysis to effortlessly perform partition-based cluster analyses,
making it an useful tool for researchers and practitioners seeking insights from their data.

In addition, kClusterHub offers a REST API that programmers can use to access
the capabilities of the tool programmatically from their own code. This allows for the
integration of kClusterHub’s functionalities into other applications. Therefore, kClusterHub
not only enhances the accessibility of clustering analyses to non-experts but also aligns
with the direction of automated decision making in machine learning.

Consequently, kClusterhub deals with the difficulties when performing clustering
analysis by non-experts. The difficulties are summarized as follows: (i) difficulty of
the decision of which clustering algorithm is appropriate for the different data types,
(ii) determination of the optimal k value, and (iii) need of programming skills and/or
specialized software.

The rest of the paper is organized as follows: Section 2 reviews the related works.
Section 3 provides an overview of k-means, k-modes, and k-prototypes as well as the cor-
responding cluster centroid’s initialization methods. The same section reviews the elbow
method, which serves as a cornerstone for the optimal number of clusters determination.
The kClusterHub app is presented in Section 4. The system’s evaluation, encompass-
ing CPU time measurements and usability assessments using the System Usability Scale
(SUS) questionnaire, is presented in Section 5. Finally, Section 6 concludes the paper by
summarizing the key findings and outlining directions for future work.

2. Related Work

The development and usage of AutoML tools is one of the machine learning and data
mining research fields that has attracted attention during the last years. However, they
primarily cater to supervised learning tasks, such as classification and regression, rather
than clustering. For instance, auto-sklearn [13] is an AutoML tool for Python that focuses on
classification and regression tasks. It does not directly support clustering algorithms like k-
means, k-modes, or k-prototypes. H2O.ai [14] provides an AutoML platform that supports
various machine learning tasks. While it primarily emphasizes supervised learning, it does
offer clustering capabilities.

On the other hand, there are many specialized standalone machine learning software
tools and libraries of programming languages that support clustering tasks, partition-based
clustering included. However, all of them imply specialized knowledge on these tools
and/or programming skills as well as knowledge on the research field of data mining
and machine learning. Thus, they cannot be used by practitioners who are non-experts.
In addition, the software tools require installation on certain operating systems, and some
of them need licenses. Therefore, they are inappropriate for many devices. Moreover,
the standalone software tools, libraries of programming languages and web-based plat-
forms (e.g., the non-free Amazon SageMaker Canvas [15]), offer a wide range of machine
learning algorithms and extensive capabilities for data preprocessing, modeling, and eval-
uation. However, they entail a steeper learning curve, especially for non-experts, when

Future Internet 2023, 15, 341 4 of 22

compared to the specialized focus of kClusterHub, which prioritizes simplicity, accessibility,
and automation in partition-based clustering tasks, enabling users to analyze their data
without the need for expertise or extensive setup.

For example, WEKA [6,11] stands as a widely recognized and extensively used soft-
ware suite. Developed by the University of Waikato, WEKA provides a comprehensive
collection of machine learning and data mining algorithms and data preprocessing tech-
niques, making it a versatile solution for various data analysis tasks. Its graphical interface
and open-source nature have contributed to its popularity, allowing researchers and prac-
titioners to efficiently explore, preprocess, and model data for classification, clustering,
regression, association rules mining and other machine learning tasks. WEKA must be
downloaded and installed on Linux, Windows or Mac OS operating systems as long as
Java is installed and configured.

Demsar et al. [7] present Orange, an open-source Python-based framework for data
mining and machine learning, which can be used by both researchers and experienced
users. Orange empowers users to construct workflows, visualize data, and experiment with
various machine learning and data mining techniques (k-means clustering included), while
the script-oriented capabilities facilitate the integration of novel methods. Like WEKA,
Orange must be downloaded and installed on Linux, Windows or Mac OS operating
systems. Also, Orange is built on top of the Python language and relies on Python libraries
to provide its functionalities. Therefore, having a Python installation is a prerequisite.

Scikit-learn [8], a widely used machine learning library in Python, offers an extensive
set of tools for various tasks in data analysis and modeling. Developed on the foundation
of NumPy, SciPy, and matplotlib, scikit-learn provides a user-friendly interface for tasks
such as classification, regression, clustering, and more. Its straightforward API and com-
prehensive documentation make it an essential resource for researchers seeking efficient
and accessible implementations of diverse algorithms. Utilizing scikit-learn necessitates
having Python installed on your system and a certain level of programming skills. Since
scikit-learn is a Python-based library, users should have a working Python environment to
leverage its capabilities.

While WEKA, Orange and Scikit-learn provide implementation of the k-means clus-
tering, they do not offer built-in support for k-modes and k-prototypes algorithms. This
limitation highlights the importance of considering alternative libraries or tools when
working with datasets that require these specialized clustering techniques.

Several R libraries offer implementations of the k-means clustering. The “stats” pack-
age, which is included in the base R distribution, provides k-means implementation. Ad-
ditionally, the “cluster” package [16] introduces more advanced variants of the algorithm
which supports various centroids initialization methods. Also, Brock et al. [17] present
clValid, a package in R, that includes a set of functions which validates the cluster analysis
results. The aforementioned R libraries do not offer directly k-modes and k-prototypes
implementations. The clustMixType package [9] offers clustering methods for mixed-type
data. While it does not provide a direct implementation of k-modes or k-prototypes, it offers
various clustering algorithms suitable for mixed data types. Using the aforementioned
libraries require a combination of programming skills, statistical knowledge, and of’ course,
a familiarity with the R environment.

Moreover, MATLAB offers built-in implementations of the k-means clustering. The k-
means algorithm is available as part of MATLAB’s Statistics and Machine Learning Toolbox.
MATLAB’s toolbox focuses on numerical data analysis and does not provide implemen-
tation of the k-modes or k-prototypes algorithm. Lin et al. [18] introduce a consensus
clustering algorithm package, namely KCC, in MATLAB targeting at solving problem
of consensus clustering. Consensus clustering combines multiple clustering solutions
obtained from different algorithms or parameter settings to enhance the stability and relia-
bility of the final clustering results. Lin et al. implement partitions using random sampling
of data features or clustering numbers, utility function selection from multiple k-means
distances, and a knowledge fusion iterative process of basic partitions.

Future Internet 2023, 15, 341 5 of 22

KNIME [19] is an open-source platform for data analytics. KNIME provides a visual
programming interface that allows users to create data workflows by connecting various
data processing and analysis tasks. It supports a wide range of data manipulation, trans-
formation, and analysis tasks, including data preprocessing, machine learning, and data
visualization. KNIME provides extensions that include implementations of k-means, k-
modes, and k-prototypes clustering. These algorithms can be utilized within the KNIME
visual programming interface. KNIME is a standalone software platform that needs to be
installed on a computer with a Windows, macOS, or Linux operating system.

Regarding the k-modes and k-means algorithms, which are not as popular as k-means,
we briefly present some related works. Chaouch et al. [20] introduce an audio fingerprint
DB structure, based on the MongoDB platform, using the K-modes clustering algorithm.
Chadha and Kumar [21] introduce a clustering algorithm, based on the K-modes, that
automatically finds the appropriate number of clusters. The algorithm generates clusters,
by targeting at maximizing the matching values of the number of attributes within a
cluster; however, the time needed for the algorithm to execute is substantially increased
when compared to the original K-Modes algorithm. Jiang et al. [22] present two K-modes
clustering algorithms, based on the partition entropy-based outlier detection method and
on the traditional distance-based outlier detection method, respectively, so as to guarantee
that the initial centroids chosen are not outliers. Furthermore, they adopt a new weighted-
matching distance measure during the initialization step in order to measure the distance
between two items defined by categorical features.

HajKacem et al. [23] present a k-prototypes algorithm parallelization, namely MR-KP,
which uses the MapReduce model. This algorithm is able to cluster a large number of
mixed data efficiently, as well as satisfactorily scaling along with the increasing number
of the datasets. Jia and Song [24] present the weighted k-prototypes clustering algorithm,
an extension of k-prototypes, which is based on the hybrid dissimilarity coefficient. The al-
gorithm improves the plain k-prototypes algorithm by automatically selecting the initial
cluster centroids, using local neighborhood, average and relative distances. As far as
categorical data are concerned, the algorithm uses the type dissimilarity coefficient with
entropy weight, while as far as numerical data are concerned, the algorithm uses the quan-
tized numerical dissimilarity coefficient. Kuo and Wang [25] present a clustering-based
classification method concerning mixed data, which has both clustering and classification
advantages. In order to find the initial centroids and the attribute weights for k-prototypes,
the method employs a sine–cosine algorithm. Also, the method’s objective function is
formulated as a sum-up purity, while it uses the mutation strategy in order to succeed
with better performance for sine–cosine algorithms. Sangam and Om [26] introduce a
k-prototypes dissimilarity measure, which is able to find the similarity between mixed-type
attribute data instances. The weight age Hamming dissimilarity metric introduced is used,
while this dissimilarity metric considers both the relative frequency and the distribution of
each mode category. Jang et al. [27] present a grid-based k-prototypes algorithm, namely
GK-prototypes, that enhances the basic algorithm’s performance. As far as categorical
attributes are concerned, the algorithm takes into account the maximum distance between
a cluster center and a cell, while as far as numeric attributes are concerned, the algorithm
takes into account the maximum and minimum distances.

Last but not least, kClusterHub builds upon the development of Web-k-means [10],
which is a web tool designed specifically for k-means clustering on numeric data. Both
kClusterHub and web-k-means follow the strategy initially introduced by WebApriori [28].
While kClusterHub and web-k-means focus on partition-based clustering, WebApriori
serves a distinct purpose, enabling association rule mining through the utilization of the
Apriori algorithm. For this purpose, WebApriori provides users with both a user-friendly
web interface and a REST API web service.

Future Internet 2023, 15, 341 6 of 22

3. Partition-Based Clustering
3.1. K-Means

K-means clustering [2] is a technique that groups instances based on their similarities.
This process involves iteratively assigning each instance to a cluster by considering its
distance from the cluster’s centroid (the mean of the instances in the cluster). The algorithm
then updates the centroids until they stabilize. Its major objective is to minimize the
within-cluster sum of squares (WCSS), which represents the sum of squared distances
between instances and their assigned cluster centroids. Formally, for a set of instances,
X = {x1, x2, . . . , xn}, k-means aims to assign the n instances to k clusters (k ≤ n) S =
{S1, S2, . . . , Sk} targeting at minimizing the WCSS function:

WCSS =
k

∑
j=1

∑
xi∈Sj

||xi − µj||2

Here, µj represents the mean of cluster Sj, and ||xi − µj|| is the selected distance metric
between the instance xi and the corresponding mean.

The k-means algorithm commences by initializing k centroids randomly, which serve
as the initial cluster centers. Subsequently, each instance is assigned to its closest centroid,
and the centroid is updated to the center of the instances that have been assigned to
it. This process repeats iteratively until the centroids converge. Algorithm 1 provides a
pseudo-code representation of the k-means clustering technique. Initially, the algorithm
takes a dataset X = x1, x2, . . . , xn and forms k clusters (C). The algorithm initially assigns
each instance xi to the cluster with the closest centroid (mean) cj, which is termed as the
assignment step (lines 4–6). Following the assignment, the algorithm computes new means,
by averaging the instances within each cluster (lines 7–9), which can be computed as

cj =
1
|Cj| ∑

xi∈Cj

xi

The assignment step is then repeated, incorporating the updated means. Hence, the means
are continually adjusted throughout the process. The algorithm stops when there is no
change in means (cluster consolidation) between two consecutive iterations (line 10). Given
that each instance is closer to the centroid of its respective cluster, the WCSS function is
minimized, signifying successful clustering.

Algorithm 1 K-means clustering.

Require: X = x1, x2, . . . , xn—dataset, k—number of clusters
Ensure: C = C1, C2, . . . , Ck—set of clusters

1: Select k initial centroids c1, c2, . . . , ck randomly from X
2: repeat
3: Create k empty clusters C1, C2, . . . , Ck
4: for i = 1 to n do
5: Assign xi to the cluster Cj with the closest centroid cj
6: end for
7: for j = 1 to k do
8: Update centroid cj as the mean of all points in cluster Cj
9: end for

10: until no more changes in the assignment of points to clusters

K-means has garnered widespread popularity, giving rise to a plethora of variants.
Among these, k-medians clustering [29] is a notable variant. In k-medians clustering,
the conventional mean calculation is substituted with the median computation. This
alteration has a distinct advantage: heightened resilience to the influence of outliers.
Outliers, notorious for their potential to disrupt the computation of means, are effectively

Future Internet 2023, 15, 341 7 of 22

attenuated by the adoption of k-medians. As a result, the robustness of k-medians clustering
makes it a promising solution for datasets containing outliers.

3.2. K-Modes

K-modes clustering [3,4] is a variant of k-means that is specifically designed for
datasets with categorical attributes, such as customer demographic data, product prefer-
ences, survey responses, etc. The k-modes algorithm partitions the data into a specified
number of clusters based on the similarity of the categorical instances. Therefore, it allows
for the discovery of natural groupings among categorical instances based on their shared
attribute values.

Similar to k-means, k-modes starts by selecting initial cluster centroids. These cen-
troids are initially chosen from the dataset. Then, each instance is assigned to the nearest
centroid according to a distance metric for categorical data. The most commonly used
distance metric for k-modes clustering is the Hamming distance, which calculates the
percentage of attributes that differ between two instances. The Hamming distance is
suitable for comparing categorical values, as it captures the proportion of attributes that
differ between two instances. After assigning all instances to clusters, the centroids are
updated. The new centroid of a cluster is determined as the mode (most frequent value)
of each attribute within the cluster. Like k-means, the aforementioned steps are repeated
iteratively until convergence. In each iteration, the instances are reassigned to the clusters
based on the new centroids. The centroids are recalculated based on the instances within
each cluster. The algorithm continues iterating until the assignments no longer change,
indicating convergence.

Like k-means, the number of clusters is a parameter (k) that needs to be specified by
the user before running the k-modes clustering. Similar to k-means, the selection of an
appropriate value can be determined by the elbow method.

Let us assume the following dataset of categorical attributes representing people’s
preferences for colors and animals: {red, dog}, {blue, cat}, {green, dog}, {green, dog},
and {blue, cat}. Let as also assume that k-modes performs clustering with k = 2, and the
k-modes starts with the initial centroids: {red, dog} and {blue, cat}. The instance {green,
dog} is closer to the centroid {red, dog}, while the instance {blue, cat} is closer to the centroid
{blue, cat}. Therefore, after the assignment step, the two clusters are C1 with {red, dog},
{green, dog}, and {green, dog}, and C2, with {blue, cat} and {blue, cat}. In C1, “green” is
the most common preference for the color, and “dog” is the most frequent preference for
the animal. In C2, “blue” and ”cat“ are the most common values. Thus, the new centroids
(modes) are {green, dog} and {blue, cat}. The assignment step is repeated. The instances
{red,dog} and {green, dog} are closer to the centroid {green, dog}. Also, {blue, cat} is closer
to {blue, cat}. The two clusters are not modified. Thus, the algorithm stops. The final
clusters are C1 with {red, dog}, {green, dog}, and {green, dog}, and C2 with {blue, cat} and
{blue, cat}.

3.3. K-Prototypes

K-prototypes clustering [3,4] is also a variant of k-means that accommodates datasets
with mixed data types, including both categorical and numeric attributes. While k-means
works well for purely numeric data and k-modes works exclusively for categorical data, k-
prototypes effectively handles datasets containing mixed data, providing a comprehensive
and complete clustering solution that captures the structure of mixed data. In effect, k-
prototypes combines the concepts of k-means for numeric attributes and k-modes for
categorical attributes. Therefore, it aims to partition instances into clusters so that the
dissimilarity for categorical attributes and the WCSS distances for numeric attributes
are minimized.

K-prototypes combines the iterative assignment and update steps of both the k-modes
and k-means algorithms. Thus, similar to k-modes and k-means, k-prototypes begins by
initializing the cluster centroids. These centroids consist of both numeric and categorical

Future Internet 2023, 15, 341 8 of 22

attribute values. For each instance, the algorithm calculates either the Hamming or the
Euclidean distance, for categorical and numeric attributes, respectively, from each centroid.
Then, the algorithm assigns the instance to the cluster with the nearest centroid. The update
step includes the calculation of the new centroid for each cluster. For numeric attributes,
k-prototypes computes the mean as in k-means. For categorical attributes, it determines the
mode as in k-modes. Then, the algorithm repeats the steps of (a) assignment and (b) update
iteratively, until the centroids are stabilized.

3.4. Elbow Method

The elbow method [5] is a well-known method which determines the optimal number
of clusters in partition-based algorithms, such as the k-prototypes, k-modes and k-means.
While the original application of the elbow method is for k-means, it can be extended to
accommodate categorical and mixed data types that are prevalent in the k-prototypes and
k-modes clustering.

As far as the k-means clustering is concerned, the elbow method involves plotting
the WCSS (calculated using the formula presented in Section 3.1) against the number of
clusters (k). As the number of clusters increases, the WCSS tends to decrease, capturing
more variance. However, a point is reached where the decrease in WCSS starts to plateau,
forming an “elbow” point on the plot. The “elbow” represents the point of diminishing
returns, in terms of clustering performance, beyond which adding more clusters does not
provide much additional benefit. Thus, the “elbow” point indicates the optimal number of
clusters that balances capturing variance and avoiding overfitting and empowers k-means
to discover compact and well-separated clusters.

To apply the elbow method to the k-modes and k-prototypes clustering, adjustments
are made to the WCSS calculation to account for categorical and mixed data types. In the
k-modes clustering, the WCSS is replaced by the Hamming distance, which quantifies the
dissimilarity between categorical attribute values and their corresponding cluster modes by
calculating the proportion of attributes that differ between two instances. For k-prototypes,
which deals with mixed data, the WCSS incorporates the squared Euclidean and the
Hamming distance, for numeric and categorical attributes, respectively.

Therefore, the elbow method remains consistent regardless of the clustering algorithm
used. The method calculates the appropriate clustering measure (WCSS, Hamming or
mixed distance), for each candidate number of clusters, and then plots the measure against
the number of clusters. The number of clusters corresponding to the “elbow” point is
considered the optimal one.

In Figure 1, the x-axis represents the number of clusters (k), while the y-axis repre-
sents the clustering measure (e.g., WCSS). As k increases, the measure decreases, but at
k = 3, there is a noticeable bend in the plot. This bend represents the “elbow” point,
which indicates that adding more clusters beyond this point does not provide significant
improvements in clustering performance. In other words, increasing the number of clusters
does not significantly decrease the clustering measure. In this case, the optimal number of
clusters might be chosen as 3.

Figure 1. Example of an elbow method plot.

Future Internet 2023, 15, 341 9 of 22

3.5. Initial Centroids Selection

The final clusters discovered by partitional-based algorithms are influenced by the ran-
domly chosen initial centroids. As a consequence, the algorithms will yield varying clusters
when applied to the same data using different initial cluster centroids. Therefore, the main
challenge is that the choice of initial centroids can significantly impact the final clustering
outcome. Poor initial centroids might lead to slow convergence or result in suboptimal
cluster assignments. In contrast, efficient initial centroids may result in well-separated
clusters. Figure 2 presents the result of a poor and an efficient centroids initialization.

(a) Poor initialization (b) Efficient initialization

Figure 2. Example of result of a poor and an efficient centroids initialization in k-means clustering.

K-means++ [30] is a smart initialization technique for k-means clustering. It helps to
spread the initial centroids across the dataset, ensuring that they are not concentrated in a
single area. By choosing centroids that are well distributed, k-means++ aims to provide a
good starting point for the subsequent iterative assignment and update steps of k-means.
K-means++ does so by probabilistically picking initial centroids that are farthest enough
from each other. This strategic approach helps mitigate the common issue of k-means
clustering being susceptible to suboptimal solutions due to inadequate initialization.

K-means++ starts by selecting an initial instance at random as the first centroid.
Each subsequent centroid is then chosen based on their distance from previous centroids,
with a higher probability of selecting instances that are farther apart. More specifically,
the algorithm calculates the distance (usually the Euclidean distance) between each instance
and its nearest existing centroid. Then, it assigns a probability to each instance, based on
the square of its distance to the nearest existing centroid. The farther an instance is located
from the existing centroids, the higher its probability of being chosen as the next centroid.
K-means++ chooses the next centroid probabilistically, based on the calculated probabilities.
The probability ensures that instances which are farther away have a higher chance of being
selected as centroids. The algorithms terminates when the desirable number of centroids
has been selected.

Similar to k-means++ which is designed to initialize the initial cluster centroids in
the k-means clustering, the Cao method [31] is a common initialization technique used for
k-modes clustering. Like k-means++, this method aims to select initial centroids that are
well distributed across the dataset in terms of their Hamming distances. It helps in finding
better starting points for the centroids, which in turn can lead to efficient clustering results.

The Cao method is quite similar to k-means++. However, it uses the Hamming
distance. More specifically, the Cao method begins by selecting the first centroid randomly
from the dataset. For each instance in the dataset, the method calculates the Hamming
distance between the instance and the current centroid. Afterwards, the method calculates
the probability for each instance to be selected as the next centroid. This probability is based
on the distances calculated in the previous step. Instances that are farther away from the
current centroid have a higher probability of being selected as the next centroid. The next
centroid is selected probabilistically, based on the calculated probabilities. Instances with

Future Internet 2023, 15, 341 10 of 22

higher probabilities are more likely to be chosen. The procedure is repeated until the
desired number of initial centroids (k) is selected.

4. The kClusterHub Application
4.1. Description

As mentioned above, the contribution of this work is as follows:

• The development of kClusterHub, a user-friendly web application that allows users to
upload datasets, utilizes the elbow method for finding the optimal number of clusters
and uses partition-based clustering on any data types;

• kClusterHub is able to automatically select the appropriate clustering algorithm for
the selected attributes of the dataset;

• The cluster assignments are presented in a tabular form and in data plots—they can
be downloaded;

• The development of a free REST API which offers all operations to developers who
wish to integrate kClusterHub’s functionality into their own applications.

Following the architecture of WebApriori [28], kClusterHub includes three compo-
nents: (i) the modules for the elbow method and partition-based clustering, (ii) a mod-
ern and user-friendly web interface and (iii) the back-end and the REST API service.
The application is developed using open-source technologies and Git, with its source code
publicly available on GitHub (https://github.com/KostisGrf/WebKmeans, accessed on
1 September 2023), while Python is used to code the modules of the first component. kClus-
terHub uses the k-means implementation, which is available in the scikit-learn library.
Also, it uses the implementations of k-modes and k-prototypes which are available in Ham-
mingkmodes library [32]. The Pandas [33] library is utilized for the datasets manipulation,
and the kneed library [34] is used to obtain the number of clusters from the elbow graph.
PHP is used for the development of the back-end, as well as the REST API. The composer
library is used for the package management and PHPMailer for sending confirmation
emails. A MySQL database is designed to manage users and their access levels (privileges).
For the development of the front-end and the web interface, Javascript with the jQuery
library, AJAX, and the Bootstrap framework are used. kClusterHub utilizes the server’s file
system to store the uploaded datasets. The REST API acts as the interface, where all the
technologies can communicate with each other as shown in Figure 3.

Figure 3. Application architecture.

As presented in Figure 4, in kClusterHub, registered users can upload and select
the dataset, choose the attributes that will be used in the clustering, and finally execute
the partition-based clustering by utilizing the appropriate centroid initialization method.
Partition-based clustering is carried out by k-means, k-modes and k-prototypes, depending
on the data types of the dataset’s attributes. The application offers an auto mode, which
enables kClusterHub to analyze the attributes and automatically choose the appropriate
clustering algorithm. Therefore, kClusterHub exhibits a keen understanding of the nature
of the dataset’s attributes. Furthermore, kClusterHub utilizes the k-means++ initialization

https://github.com/KostisGrf/WebKmeans

Future Internet 2023, 15, 341 11 of 22

method, when the clustering applied on numerical data, and the Cao initialization method,
when clustering is applied on categorical or mixed data. Optimally, kClusterHub displays
the “elbow diagram” and recommends the optimal number of clusters. The auto mode
for automatic algorithm selection, as well as the automatic suggestion of the k parameter,
through the elbow method, constitute the AutoML capabilities, and both enhance the
intelligent decision making in the clustering process. The result of the clustering task is the
cluster assignment of each instance in an exploratory plot and a tabular form. The elbow
graph, the exploratory plot and the dataset with the assigned clusters can be downloaded
for further use and processing.

It is worth noting that the k-modes Python library is not as fast as the scikit-learn library.
In practice, the elbow method requires running the clustering algorithm multiple times,
equal to the maximum number of clusters defined by the user. Our experiments showed
that applying the elbow method for k-modes and k-prototypes takes significantly more time
compared to k-means. Consequently, when running k-modes or k-prototypes on datasets
with more than 1500 instances, kClusterHub employs a strategy of random sampling and
applies the elbow method to the sampled data to enhance speed and efficiency.

Figure 4. Pipeline diagram of tasks in kClusterHub.

Also, kClusterHub provides a REST API that allows developers to submit their data,
execute the elbow method and partition-based clustering and obtain the cluster assignments
from their own applications, by incorporating simple API calls into them. The REST API is
an advantageous feature of kClusterHub, expanding its usability beyond the web-based
interface and allowing for more efficient and automated usage of partition-based clustering.

kClusterHub is a user-centric application that mandates user registration and login as
essential components of its functionality. This login system ensures a secure experience
for users, enabling them to access the capabilities offered by the platform. The datasets
uploaded by the registered users can be designated as either public or private, each carrying
distinct accessibility characteristics. Private datasets are confined to the user who initiates
the upload, ensuring a restricted scope of access. In contrast, public datasets are open to all
registered users of kClusterHub, though exclusive upload privileges are extended solely to
users holding advanced status. This facet holds particular significance for educators who
aspire to impart datasets to their students for educational purposes.

The application introduces a hierarchy of user roles (see Figure 5), comprising three
distinct tiers: (i) simple users, (ii) public dataset creators, and (iii) administrators. Simple
users encompass individuals with the ability to upload private datasets and leverage the
suite of kClusterHub features. Additionally, they can use public datasets contributed by
public dataset creators. The public dataset creators have the same attributes as those of
simple users, while augmenting the capability to upload public datasets. This role caters

Future Internet 2023, 15, 341 12 of 22

to those with a proclivity for sharing data and insights. The higher tier of the hierarchy,
occupied by administrators, wields the authority to elevate user accounts from the status
of simple users to that of public dataset creators. This administrative control facilitates
management in kClusterHub.

Figure 5. Registered users hierarchy.

4.2. Web Interface

To use kClusterHub, users must first register and confirm their email. Then, they can
log in. The main page is divided into three distinct sections. Through the first section,
registered users are able to seamlessly upload their private or public datasets in csv, xls,
or xlsx format (see Figure 6). All registered users can select an uploaded dataset among the
available private and public datasets (see Figure 7) and, of course, can download or delete
it (assuming that the user has the necessary permissions). Then, kClusterHub presents the
selected dataset in tabular form (see Figure 8). Also, the names of the dataset’s attributes
are displayed in check boxes, and this feature enables users to select the attributes that will
be the basis for their clustering analysis (see Figure 9). The default mode is to consider all
the appropriate attributes. However, the users can uncheck the attributes they want to be
ignored during the clustering process.

The application offers the k-means, k-modes and k-prototypes clustering for numer-
ical, categorical and mixed data, respectively. Through the first section of the interface,
the registered users have the option to either manually select their desired algorithm or opt
for the auto mode. The auto mode harnesses the power of automation to determine the
most suitable algorithm for the dataset selected. When the dataset comprises only numeri-
cal data, k-means with the k-means++ initialization is automatically chosen. Conversely,
if only categorical data exist, k-modes is used. K-prototypes is adopted when the dataset
has both categorical and mixed data. In cases of k-modes and k-prototypes, the Cao method
for centroid initialization is used. On the other hand, if a user selects the desired algorithm
(see Figure 10), kClusterHub presents the attributes that can be used, and the user selects
among them (see Figure 9). For instance, if the selected dataset has mixed attributes and
k-means is selected, the numerical attributes are presented for consideration. Similarly,
opting for k-modes exclusively showcases categorical attributes. In essence, ClusterHub’s
auto mode offers an effortless approach, while the manual selection of an algorithm affords
users the control to shape their analysis based on the available attributes.

Subsequently, kClusterHub orchestrates the partition-based clustering process using
the appropriate centroid initialization method. The second section of the interface concerns
the elbow method. The user may use the elbow method for finding the optimal number of
clusters (see Figure 11) by entering the maximum number of clusters, max. The application
utilizes the selected clustering algorithm max times and estimates the clustering metric
(WCSS, Hamming or mixed distance) for each time. Then, by clicking “Get elbow chart”,
kClusterHub presents the elbow diagram which portrays the trade-off between the number
of clusters and the clustering metric aiding users in pinpointing the optimal number of
clusters. In addition, kClusterHub, based on the elbow graph, suggests the appropriate
number of clusters in the range from 2 to max value provided.

Future Internet 2023, 15, 341 13 of 22

Figure 6. Dataset upload screen.

Figure 7. Dataset selection.

Figure 8. Selected dataset in the tabular form.

Future Internet 2023, 15, 341 14 of 22

Figure 9. Attributes selection.

Figure 10. Selection of k-means on mixed data (four numerical attributes and one categorical).

Figure 11. Elbow graph.

The last section of the interface requires users to input their desired number of clusters.
This can be either the number suggested from the elbow method or chosen independently
by the user. Upon clicking the “Get cluster assignment” button, the selected clustering
algorithm runs and a table showcasing the data with the corresponding cluster assignments
is presented (see Figure 12). For a visual exploration of the cluster characteristics, users
can also opt for the exploratory data plots (see Figure 13). Moreover, users have the option
to download the table in CSV format, using the “Download CSV” button. Both the elbow
graph and the exploratory data plot are available for download as well.

It is worth mentioning that kClusterHub was deployed in a Apache web server at
the Department Information and Electronic Engineering of the International Hellenic
University (https://kclusterhub.iee.ihu.gr, accessed on 3 September 2023). It is free and
open source, and therefore users can access the source code on Github and deploy it on
their own server.

https://kclusterhub.iee.ihu.gr

Future Internet 2023, 15, 341 15 of 22

Figure 12. Cluster assignments in tabular form.

(a) Dataset with numerical attributes

(b) Dataset with attributes of mixed data types

Figure 13. Cluster assignments in exploratory plots.

Future Internet 2023, 15, 341 16 of 22

4.3. Web Service

The kClusterHub web service has been crafted as a REST API, boasting eleven end-
points that expose the kClusterHub’s capabilities to external applications via straightfor-
ward HTTP requests. To use this service, users/programmers are required to complete a
registration process and obtain a personalized API key, which then acts as their ticket to
access the full array of functionalities. The integration process is efficient, as every HTTP re-
quest is accompanied by the user’s API key, ensuring a secure and personalized experience.

Table 1 lists the eleven endpoints that the REST API includes. Among these, four
endpoints (Nos. 8, 9, 10 and 11) are for user account management, encompassing essential
tasks, such as registration, login, account editing and deletion. Additional four endpoints
are allocated for dataset management tasks (Nos. 1, 2, 6 and 7). These tasks concern various
operations, including dataset upload, retrieval, deletion, and the ability to access dataset
attributes and characteristics.

The remaining triad of endpoints constitutes the major part of the API since they
concern the clustering process. One of these key endpoints (No. 3) executes the elbow
method, delivering clustering metrics (such as WCSS) and suggesting the optimal number
of clusters. Another pivotal endpoint (No. 4) triggers the clustering algorithm, furnishing
users with cluster assignments for their data. The last endpoint (No. 5) generates the
exploratory plot for cluster assignments. All requests and responses are conducted in JSON
format, facilitating data exchange between the web service and external applications.

Table 1. REST API endpoints.

No. HTTP Method Endpoint

1 GET /api/get-datasets.php?apikey={apikey}

2 GET /api/read-dataset.php?apikey={apikey}&dataset={dataset}

3 POST /api/elbow.php

4 POST /api/clusters.php

5 POST /api/parallel-cords.php

6 POST /api/upload-dataset.php

7 DELETE /api/delete-dataset.php

8 POST /api/register.php

9 POST /api/login.php

10 POST /api/edit-profile

11 POST /api/delete-user.php

A few core examples of endpoint calls, along with their corresponding responses are
examined hereupon.

The endpoint with No. 1 retrieves the datasets’ names, which the user can use. Below,
an example of response of the http GET call is presented.

get-datasets.php?apikey=905a7d7f02b2512fcf3e02b1f6ec52ab

JSON response:
{"personal_datasets":["LIR.csv"],
"public_datasets":["fuel_prices_52.csv","iris.csv",

"letter.csv","magic.csv","penbased.csv",
"satimage.csv","shuttle.csv",
"telco_2023.csv","texture.csv"
]

}

Future Internet 2023, 15, 341 17 of 22

The following request concerns the POST endpoint with No 3. It executes the elbow
method on the columns ’Age’ and ’Salary’ of the ’data.csv’ dataset. This dataset is private and
belongs to the user who possesses the API key: 0a8366a07c0d8fccx48bab2e657f12d0. The elbow
method will operate within the range of 1 to 10 clusters. The algorithm value for this request
is set to ’auto’, enabling the algorithm to be automatically chosen, based on the column types.
Alternatively, the algorithm value can also be set to ’k-means’, ’k-modes’, or ’k-prototypes’,
allowing the explicit selection of the algorithm. In the case of the example, since both columns
are numerical, k-means is used and the corresponding response encompasses the WCSS mea-
surements for various k values, spanning from 1 to 10, along with the recommended optimal
number of clusters.

JSON request:
{"dataset":"data.csv",
"dataset-type":"personal",
"clusters":"10",
"columns":["Age","Salary"],
"algotithm":"auto",
"apikey":"0a8366a07c0d8fccx48bab2e657f12d0"

}
JSON response:
{"metric":["41.2","12.1","6.9","5.5","4.6","4.7","3.8","3.2","3.3","2.7"],
"suggested-k":"3"
}

The following request concerns POST endpoint with No 4. It executes k-means
on the “sepal.length”, “sepal.width”, “petal.length”, and “petal.width” columns of the
“iris.csv” dataset. The dataset is public, and the user is associated with the API key:
905a7d7f02b2512fcf3e02b1f6ec52ab. The k-means algorithm will discover three clusters.
The response contains the cluster assignments for each instance, along with the corre-
sponding attribute values and cluster identifiers. Of course, since all selected columns are
numeric, k-means would be used even if the auto algorithm was selected.

JSON request:
{ "dataset": "iris.csv", "dataset-type": "public",

"clusters": "3",
"columns": ["sepal.length", "sepal.width", "petal.length", "petal.width"],
"algorithm":"k-means"
"apikey": "905a7d7f02b2512fcf3e02b1f6ec52ab"

}
JSON response:
{ "items": [

{"sepal.length": "5.1", "sepal.width": "3.5",
"petal.length": "1.4", "petal.width": "0.2",
"cluster": "1"},

{"sepal.length": "4.9", "sepal.width": "3.0",
"petal.length": "1.4", "petal.width": "0.2",
"cluster": "2"},

// ... (remaining instances)
]

}

The user interface of kClusterHub encompasses a dedicated web page, designed to guide
users through the utilization of the eleven endpoints, all of which are accessible with the user’s
API key. On this informative web page, users are provided with detailed instructions on how
to interact with these endpoints effectively. Moreover, the page serves as a valuable resource
by showcasing examples of potential HTTP requests complemented by the corresponding

Future Internet 2023, 15, 341 18 of 22

responses they can expect to receive. This interface serves to enable users with the knowledge
and practical insights required to utilize the full capabilities of kClusterHub’s API.

5. System Evaluation
5.1. CPU Time Measurements

Addressing the resource-intensive nature of partition-based clustering, particularly in
terms of CPU and RAM utilization, necessitated the strategic integration of the Pandas library.
By leveraging this library, kClusterHub adeptly manages the intricacies associated with pro-
cessing large datasets. It is important to note that the Python scikit-learn and kmodes libraries
were pivotal in facilitating kClusterHub. The experiments were carried out on a virtual ma-
chine running Debian GNU/Linux. The virtual machine was equipped with a 6-core CPU
operating at 2.5 GHz and 4 GB of RAM. This virtual machine was hosted by a Citrix-hypervisor
virtualization server.

To evaluate the efficacy of kCusterHub, an empirical analysis was conducted utilizing
twelve diverse datasets sourced from both the keel dataset repository [35] (https://sci2s.
ugr.es/keel/datasets.php, accessed on 10 October 2023) and Kaggle (https://www.kaggle.
com/datasets, accessed on 10 October 2023). The experimental assessments encompassed
the application of the elbow method to identify the optimal number of clusters in the range
[1–20], alongside the execution of the partition-based clustering algorithms employing the
recommended number of clusters derived from the Elbow method.

Considering the experimental results, as presented in Table 2, it becomes evident
that the execution times are linked to the size (rows and columns) of each dataset. It
is noteworthy that the elbow method’s execution entails a more time-intensive process,
compared to the final execution of the partition-based algorithm. This discrepancy can
be attributed to the fact that the elbow method necessitates multiple clustering tasks
(ranging from k = 1 to k = 20 in our experimentation), ultimately computing the appropriate
clustering metric (WCSS, Hamming or mixed distance) for each clustering iteration.

Table 2. CPU time measurements.

Dataset
Size Number Number of Number of

Algorithm
Time for

Suggested Time for
(Kb) of Numerical Categorical Elbow

k ClusteringRows Columns Columns (k = 20)

penbased 538 10,992 16 0 k-means 1.06 s 6 0.24 s

letter 716 20,000 16 0 k-means 2.49 s 7 0.35 s

magic 1462 19,020 10 0 k-means 1.67 s 5 0.23 s

texture 1495 5500 40 0 k-means 1.02 s 4 0.45 s

shuttle 1559 57,999 9 0 k-means 3.08 s 5 0.31 s

poker 24,563 1,025,009 10 0 k-means 72 s 6 23.25 s

car 53 1728 0 7 k-modes 36.5 s 5 1.5 s

bank 450 4521 0 10 k-modes 55.6 s 4 8.95 s

nursery 1020 12,960 0 9 k-modes 25.2 s 6 14.8 s

marketing 222 2240 7 3 k-prototypes 188.9 s 6 18.5 sData

germanCC 80 1000 7 13 k-prototypes 320.6 s 6 11.4 s

abalone 192 4174 7 1 k-prototypes 116.5 s 3 18.8 s

As mentioned before, the k-modes and k-prototypes algorithms, which are part of the
k-modes python library, appear to have slower performance compared to scikit-learn’s k-
means algorithm. This performance disparity is particularly noticeable when working with
large datasets. To address this issue, we adopt a tactic of utilizing a smaller sample subset of
the data when applying the elbow method with k-modes and k-prototypes. By doing so, we

https://sci2s.ugr.es/keel/datasets.php
https://sci2s.ugr.es/keel/datasets.php
https://www.kaggle.com/datasets
https://www.kaggle.com/datasets

Future Internet 2023, 15, 341 19 of 22

are able to alleviate the computational burden associated with the elbow method for these
algorithms, enabling us to effectively explore a wider range of potential cluster numbers.

An illuminating illustration arises from the Poker dataset, a notably large dataset compris-
ing over a million rows. In this case, the elbow method’s execution spans more than a minute,
whereas k-means clustering concludes within a mere 24 s. To ameliorate the performance of
measurements gleaned from these extensive datasets, a logical consideration lies in migrating
kClusterHub to a more potent computational infrastructure. This strategic move holds the
potential to significantly enhance the efficiency and processing capabilities of the system,
consequently refining the outcomes achieved from handling such voluminous data.

5.2. Usability Testing

The evaluation of kClusterHub’s usability employs the widely recognized System Us-
ability Scale (SUS) questionnaire [36] (https://forms.gle/dUSecKe1pgES661z8, accessed on 15
September 2023). More specifically, SUS was used to measure the users’ overall satisfaction with
kClusterHub, as well as their perception of its effectiveness, efficiency, and ease of use. SUS is a
widely used tool for measuring the usability of web applications. It consists of ten questions that
participants complete to rate their experience. The questions in the questionnaire are as follows:

1. I think that I would like to use this website frequently;
2. I found the website unnecessarily complex;
3. I thought the website was easy to use;
4. I think that I would need the support of a technical person to be able to use this website;
5. I found the various functions in this website were well integrated;
6. I thought there was too much inconsistency in this website;
7. I would imagine that most people would learn to use this website very quickly;
8. I found the website very cumbersome to use;
9. I felt very confident using the website;
10. I needed to learn a lot of things before I could get going with this website.

Participants rate each question on a 5-point Likert scale, ranging from “strongly
disagree” (1) to “strongly agree” (5). Calculating the SUS score involves subtracting 1
from the scores of odd-numbered questions and subtracting their value from 5 for even-
numbered questions. The resulting scores are then summed and multiplied by 2.5 to yield a
final score between 0 and 100. A SUS score of 80 or above is typically considered excellent.

A total of 37 respondents, primarily computer science undergraduate students enrolled
in a data mining course, completed the questionnaire upon our request. The distribution of
responses for each rating range is provided in Table 3. The resulting SUS score was 83.58,
indicating a high level of user satisfaction with the kClusterHub experience. These results
affirm the positive usability of kClusterHub as perceived by its users.

Table 3. Results of SUS questionnaire.

Question 1 2 3 4 5

1. 0 2 4 17 14

2. 23 11 2 0 1

3. 0 0 1 7 29

4. 23 7 3 4 0

5. 0 0 4 11 22

6. 27 7 2 1 0

7. 2 0 4 9 22

8. 16 9 9 2 1

9. 0 0 1 14 22

10. 11 10 11 4 1

https://forms.gle/dUSecKe1pgES661z8

Future Internet 2023, 15, 341 20 of 22

6. Conclusions and Future Work

In this paper, we introduced kClusterHub, a versatile and user-friendly web-based
application designed to streamline the process of partition-based clustering. Our plat-
form bridges the gap between clustering algorithms and the end users by providing an
intuitive interface that enables the easy configuration and execution of clustering tasks.
By incorporating algorithms, such as k-means, k-prototypes, and k-modes, along with an
intelligent auto-algorithm selection feature and efficient centroid initialization methods,
such as k-means++ for numerical data and the Cao method for categorical and mixed data,
kClusterHub is able to manage various data types and perform effortless partition-based
cluster analysis. The integration of the elbow method for optimal number of clusters auto-
determination further enhances the system’s decision-making capabilities. The presentation
of cluster assignments, in both tabular and exploratory plot formats, facilitates insightful
data interpretation. Through empirical evaluations, we showcased the platform’s efficiency
and efficacy across diverse datasets.

Moreover, kClusterHub extends its functionality beyond the web interface by offering
a REST API. This API empowers developers to seamlessly integrate partition-based cluster-
ing tasks into their own applications. Through straightforward API calls, developers can
effortlessly submit their dataset, trigger the execution of the elbow method and subsequent
partition-based clustering, and retrieve the resulting cluster assignments. This seamless in-
tegration allows developers to leverage the capabilities of partition-based clustering within
their applications, providing them with a versatile tool for data analysis. By bridging the
gap between the kClusterHub platform and external applications, the REST API offers
ways for incorporating clustering techniques into a wider array of use cases, from custom
data analytics workflows to automated decision-making processes.

In addition to assessing the performance of kClusterHub through CPU measurements,
the usability of the platform was also evaluated using the SUS questionnaire. The CPU
measurements demonstrated the efficiency of kClusterHub’s algorithmic implementations.
For the usability evaluation, participants, mainly computer science students, were requested
to complete the SUS questionnaire. The results revealed a high SUS score, indicating
excellent user satisfaction with kClusterHub’s web interface and functionality. These
findings underscore the effective performance and user-friendly nature of kClusterHub,
making it a valuable tool for partition-based cluster analysis.

Our future directions are centered around two key aspects. The first is the integration
of density-based clustering (DBSCAN [37]) and hierarchical clustering [38] into kCluster-
Hub. These additions will substantially improve the versatility of the application, enabling
users to perform a broader range of data analysis tasks. Also, we plan to optimize the
platform’s performance by implementing parallelization techniques. By harnessing the
power of parallel processing, we aim to significantly expedite the clustering process, partic-
ularly for larger datasets. Through these extensions, we aspire to solidify kClusterHub as a
complete, efficient tool for effortless data clustering.

Author Contributions: Conceptualization, K.G., S.O. and D.M.; methodology, K.G., S.O. and D.M.;
software, K.G. and S.O.; validation, K.G., S.O. and D.M.; formal analysis, K.G., S.O. and D.M.; investi-
gation, K.G., S.O. and D.M.; resources, K.G., S.O. and G.E.; data curation, K.G.; writing—original draft
preparation, K.G., S.O. and D.M.; writing—review and editing, K.G., S.O. and D.M.; visualization,
K.G., S.O. and D.M.; supervision, S.O. and D.M.; project administration, K.G., S.O. and D.M. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Publicly available datasets were analyzed in this study. These data can
be found here: https://sci2s.ugr.es/keel/datasets.php, accessed on 10 October 2023.

Conflicts of Interest: The authors declare no conflict of interest.

https://sci2s.ugr.es/keel/datasets.php

Future Internet 2023, 15, 341 21 of 22

References
1. Aggarwal, C.C.; Reddy, C.K. Data Clustering: Algorithms and Applications, 1st ed.; Chapman & Hall/CRC: Boca Raton, FL, USA,

2013.
2. MacQueen, J.B. Some methods for classification and analysis of multivariate observations. In Proceedings of the Fifth Berkeley

Symposium on Mathematical Statistics and Probability, Berkeley, CA, USA, 21 June–18 July 1965 and 27 December 1965–7 January
1966; University of California Press: Berkeley, CA, USA, 1967; Voulme 1, pp. 281–297.

3. Huang, Z. Clustering Large Data Sets with Mixed Numeric and Categorical Values. In Proceedings of the First Pacific Asia
Knowledge Discovery and Data Mining Conference, Singapore, 23–24 February 1997; pp. 21–34.

4. Huang, Z. Extensions to the k-Means Algorithm for Clustering Large Data Sets with Categorical Values. Data Min. Knowl. Discov.
1998, 2, 283–304. [CrossRef]

5. Kodinariya, T.M.; Makwana, P.R. A review on the Elbow method in clustering. Int. J. Comput. Appl. 2013, 1, 97–100.
6. Frank, E.; Hall, M.A.; Holmes, G.; Kirkby, R.; Pfahringer, B.; Witten, I.H. Weka: A machine learning workbench for data mining.

In Data Mining and Knowledge Discovery Handbook: A Complete Guide for Practitioners and Researchers; Maimon, O., Rokach, L., Eds.;
Springer: Berlin/Heidelberg, Germany, 2005; pp. 1305–1314.

7. Demšar, J.; Curk, T.; Erjavec, A.; Gorup, Č.; Hočevar, T.; Milutinovič, M.; Možina, M.; Polajnar, M.; Toplak, M.; Starič, A.; et al.
Orange: Data Mining Toolbox in Python. J. Mach. Learn. Res. 2013, 14, 2349–2353.

8. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;
et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

9. Szepannek, G. clustMixType: User-Friendly Clustering of Mixed-Type Data in R. R J. 2018, 10, 200–208. [CrossRef]
10. Gratsos, K.; Ougiaroglou, S.; Margaris, D. A Web Tool for K-means Clustering. In Proceedings of the Novel and Intelligent Digital

Systems: Proceedings of the 3rd International Conference (NiDS 2023); Kabassi, K., Mylonas, P., Caro, J., Eds.; Springer: Cham,
Switzerland, 2023; pp. 91–101.

11. Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann, P.; Witten, I.H. Weka—A machine learning workbench for data
mining. In Data Mining and Knowledge Discovery Handbook; Springer: Boston, MA, USA, 2009; pp. 1269–1277.

12. He, X.; Zhao, K.; Chu, X. AutoML: A survey of the state-of-the-art. Knowl.-Based Syst. 2021, 212, 106622. [CrossRef]
13. Feurer, M.; Klein, A.; Eggensperger, K.; Springenberg, J.; Blum, M.; Hutter, F. Efficient and Robust Automated Machine Learning.

In Advances in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2015; pp. 2755–2763.
14. LeDell, E.; Poirier, S. H2O AutoML: Scalable Automatic Machine Learning. In Proceedings of the 7th ICML Workshop on

Automated Machine Learning (AutoML), Vienna, Austria, 12–18 July 2020.
15. Amazon Web Services, Amazon SageMaker. 2023. Available online: https://aws.amazon.com/sagemaker/ (accessed on 2

October 2023).
16. Maechler, M.; Rousseeuw, P.; Struyf, A.; Hubert, M.; Hornik, K. Cluster: Cluster Analysis Basics and Extensions; R Package Version

2.1.4; R Foundation for Statistical Computing: Vienna, Austria, 2022.
17. Brock, G.; Pihur, V.; Datta, S.; Datta, S. clValid: An R package for cluster validation. J. Stat. Softw. 2008, 25, 1–22. [CrossRef]
18. Lin, H.; Liu, H.; Wu, J.; Li, H.; Günnemann, S. Algorithm xxxx: KCC: A MATLAB Package for K-means-based Consensus

Clustering. ACM Trans. Math. Softw. 2023. [CrossRef]
19. Berthold, M.R.; Cebron, N.; Dill, F.; Gabriel, T.R.; Kötter, T.; Meinl, T.; Ohl, P.; Thiel, K.; Wiswedel, B. KNIME: The Konstanz

Information Miner. Stud. Classif. Data Anal. Knowl. Organ. 2008, 1, 319–326.
20. Chaouch, C.; Sahbudin, M.A.B.; Scarpa, M.; Serrano, S. Audio fingerprint database structure using k-modes clustering. J. Adv.

Res. Dyn. Control Syst. 2020, 12, 1545–1554. [CrossRef]
21. Chadha, A.; Kumar, S. Extension of K-modes algorithm for generating clusters automatically. Int. J. Inf. Technol. Comput. Sci.

(IJITCS) 2016, 8, 51–57. [CrossRef]
22. Jiang, F.; Liu, G.; Du, J.; Sui, Y. Initialization of K-modes clustering using outlier detection techniques. Inf. Sci. 2016, 332, 167–183.

[CrossRef]
23. Kacem, M.A.B.H.; N’cir, C.E.B.; Essoussi, N. MapReduce-based k-prototypes clustering method for big data. In Proceedings of

the 2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA), Paris, France, 19–22 October 2015;
pp. 1–7.

24. Jia, Z.; Song, L. Weighted k-prototypes clustering algorithm based on the hybrid dissimilarity coefficient. Math. Probl. Eng. 2020,
2020, 5143797 . [CrossRef]

25. Kuo, T.; Wang, K.J. A hybrid k-prototypes clustering approach with improved sine-cosine algorithm for mixed-data classification.
Comput. Ind. Eng. 2022, 169, 108164. [CrossRef]

26. Sangam, R.S.; Om, H. An equi-biased k-prototypes algorithm for clustering mixed-type data. Sādhanā 2018, 43, 37. [CrossRef]
27. Jang, H.J.; Kim, B.; Kim, J.; Jung, S.Y. An efficient grid-based k-prototypes algorithm for sustainable decision-making on spatial

objects. Sustainability 2018, 10, 2614. [CrossRef]
28. Malliaridis, K.; Ougiaroglou, S.; Dervos, D.A. WebApriori: A Web Application for Association Rules Mining. In Proceedings of

the Intelligent Tutoring Systems, Proceedings of the 16th International Conference, ITS 2020, Athens, Greece, 8–12 June 2020; Kumar, V.,
Troussas, C., Eds.; Springer: Cham, Switzerland, 2020; pp. 371–377.

29. Sengupta, J.S.; Auchter, R.F. A k-medians clustering algorithm. Appl. Stat. 1990, 39, 67–79. [CrossRef]

http://doi.org/10.1023/A:1009769707641
http://dx.doi.org/10.32614/RJ-2018-048
http://dx.doi.org/10.1016/j.knosys.2020.106622
https://aws.amazon.com/sagemaker/
http://dx.doi.org/10.18637/jss.v025.i04
http://dx.doi.org/10.1145/3616011
http://dx.doi.org/10.5373/JARDCS/V12SP4/20201634
http://dx.doi.org/10.5815/ijitcs.2016.03.06
http://dx.doi.org/10.1016/j.ins.2015.11.005
http://dx.doi.org/10.1155/2020/5143797
http://dx.doi.org/10.1016/j.cie.2022.108164
http://dx.doi.org/10.1007/s12046-018-0823-0
http://dx.doi.org/10.3390/su10082614
http://dx.doi.org/10.2307/2347822

Future Internet 2023, 15, 341 22 of 22

30. Arthur, D.; Vassilvitskii, S. K-Means++: The Advantages of Careful Seeding. In Proceedings of the Eighteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA ’07, New Orleans, LA, USA, 7–9 January 2007; pp. 1027–1035.

31. Cao, F.; Liang, J.; Bai, L. A data clustering algorithm for mixed data. Pattern Recognit. 2009, 42, 1855–1864.
32. de Vos, N.J. Kmodes Categorical Clustering Library. 2015–2021. Available online: https://github.com/nicodv/kmodes (accessed

on 3 September 2023).
33. McKinney, W. Data Structures for Statistical Computing in Python. In Proceedings of the 9th Python in Science Conference,

Austin, TX, USA, 28 June–3 July 2010; van der Walt, S., Millman, J., Eds.; pp. 56–61. [CrossRef]
34. Satopaa, V.; Albrecht, J.; Irwin, D.; Raghavan, B. Finding a “Kneedle” in a Haystack: Detecting Knee Points in System Behavior.

In Proceedings of the 2011 31st International Conference on Distributed Computing Systems Workshops, Minneapolis, MN, USA,
20–24 June 2011; pp. 166–171.

35. Alcalá-Fdez, J.; Fernández, A.; Luengo, J.; Derrac, J.; García, S.; Sánchez, L.; Herrera, F. KEEL data-mining software tool: Data set
repository, integration of algorithms and experimental analysis framework. J. Mult.-Valued Log. Soft Comput. 2011, 17, 255–287.

36. Brooke, J. SUS: A “quick and dirty” usability scale. Usability Eval. Ind. 1996, 189, 4–7.
37. Ester, M.; Kriegel, H.P.; Sander, J.; Xu, X. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with

Noise. In Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, KDD’96, Portland, OR,
USA, 2–4 August 1996; AAAI Press: Washington, DC, USA, 1996; pp. 226–231.

38. Zepeda-Mendoza, M.L.; Resendis-Antonio, O. Hierarchical Agglomerative Clustering. In Encyclopedia of Systems Biology; Springer:
New York, NY, USA, 2013; pp. 886–887. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://github.com/nicodv/kmodes
http://dx.doi.org/10.25080/Majora-92bf1922-00a.
http://dx.doi.org/10.1007/978-1-4419-9863-7_1371

	Introduction
	Related Work
	Partition-Based Clustering
	K-Means
	K-Modes
	K-Prototypes
	Elbow Method
	Initial Centroids Selection

	The kClusterHub Application
	Description
	Web Interface
	Web Service

	System Evaluation
	CPU Time Measurements
	Usability Testing

	Conclusions and Future Work
	References

