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Abstract: Machine learning techniques have emerged as a transformative force, revolutionizing
various application domains, particularly cybersecurity. The development of optimal machine
learning applications requires the integration of multiple processes, such as data pre-processing,
model selection, and parameter optimization. While existing surveys have shed light on these
techniques, they have mainly focused on specific application domains. A notable gap that exists
in current studies is the lack of a comprehensive overview of machine learning architecture and
its essential phases in the cybersecurity field. To address this gap, this survey provides a holistic
review of current studies in machine learning, covering techniques applicable to any domain. Models
are classified into four categories: supervised, semi-supervised, unsupervised, and reinforcement
learning. Each of these categories and their models are described. In addition, the survey discusses
the current progress related to data pre-processing and hyperparameter tuning techniques. Moreover,
this survey identifies and reviews the research gaps and key challenges that the cybersecurity field
faces. By analyzing these gaps, we propose some promising research directions for the future.
Ultimately, this survey aims to serve as a valuable resource for researchers interested in learning
about machine learning, providing them with insights to foster innovation and progress across
diverse application domains.

Keywords: artificial intelligence; data pre-processing; machine learning; supervised learning; semi-
supervised learning; optimization techniques; reinforcement learning; unsupervised learning

1. Introduction

Machine learning (ML) applications have recently found extensive use across various
domains, including cyber-security [1]. These cyber-security applications have attained
widespread adoption in research and commercial systems, establishing themselves as indis-
pensable components [2,3]. Building a compelling and influential secure ML application is
a complex and time-consuming undertaking. It requires high-quality data and the selection
of an appropriate model, which can achieve optimal architecture through hyperparam-
eter tuning [4]. Numerous factors have to be taken into consideration when building a
successful machine learning model. To develop a thriving security ML application, the
initial step involves collecting raw signals and generating a dataset. However, this process
often encounters challenges, such as inconsistencies, imputations, and redundancies, which
can lead to inaccurate results [5–7]. Therefore, employing proper data pre-processing
techniques becomes imperative in the development of any successful machine learning
application [8,9]. The second step is to choose a machine learning model. These ML models
can be classified into four categories: supervised, semi-supervised, unsupervised, and
reinforcement learning. Supervised models use a labeled dataset for the training process
to achieve the desired outputs [3]. In contrast, unsupervised models are trained using
unlabeled datasets without any supervision. Semi-supervised models are combinations
of supervised and unsupervised models, which train the model using a small number
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of labeled samples and a high number of unlabeled samples [4,5], while reinforcement
learning models are trained based on rewarding the desired actions or punishing undesired
behaviors. In such models, the agent attempts to interpret the environment, act, and learn
via trial and error [6–8].

The subsequent step is to ensure that the trained model achieves optimality. ML
models involve many parameters. These parameters have to be optimized using hyperpa-
rameter tuning techniques [9–15]. A hyperparameter tuning technique is an algorithm that
finds the best parameters of an ML model with the best performance. Examples of these
tuning techniques include genetic algorithms, random search, and grid search [13]. For in-
stance, in the work described in [14], the authors used a tuning technique, a tree-structured
parzen estimator, to optimize the parameters of several boosting-based models, such as
adaptive boosting, categorical boosting, and gradient boosting. Examples of the parameters
that have to be optimized are the estimator number and learning. The number of estimators
indicates the number of the trees in the forest, whereas the learning rate shows how fast
the model learns. The number of the estimators and the learning rate were set to 100 and
0.29, respectively, after applying the tree-structured parzen estimator tuning technique.
The simulation results showed exponential improvements in the performance of these
selected ML models as a result of optimizing their parameters using a hyperparameter
tuning technique.

Another study [16] used a grid search to improve the performance of several traditional
and ensemble ML models, namely K nearest neighbor, naïve bayes, random forest, and
stacking in detecting intrusions on the smart grid. Examples of the hyperparameters are
the number of neighbors, weight, and size of the leaves used in the K nearest neighbor
model. The number of neighbors refers to the number of the nearest neighbors in the voting
procedure which occurs in K nearest neighbor model, while the weight in this model refers
to the given weights to the nearest K point using the kernel function. The size of the leaves
manages the minimum number of points in a node and effectively adjusts the tradeoff
between the cost of node traversal and the cost of a brute-force distance estimate. Their
results showed a significant improvement using the optimized parameters.

The hyperparameter tuning process varies significantly across different types of ma-
chine learning models due to the various hyperparameter types (discrete, categorical, and
continuous) that need to be optimized for each model [16–19]. This process can be carried
out through manual testing or automatic optimization. However, manual testing comes
with several limitations, including difficulties in dealing with numerous parameters [20],
complex models, extended and costly evaluations, and non-linear hyperparameter inter-
actions [17]. Consequently, automatic hyperparameter optimization has emerged as a
practical solution for numerous domain applications [18,21,22]. The primary objective
of automatic hyperparameter optimization is to streamline the hyperparameter tuning
process effectively [23,24]. By employing these techniques, the model performance can
be significantly improved while reducing the need for human efforts. Consequently, the
models can make accurate predictions and their performance analyzed using performance
metrics [9,19,25].

In this survey, we aim to provide a review of recent techniques related to the entire
machine learning process, encompassing data pre-processing, models, and optimization
approaches. We provide an in-depth exploration of various security machine learning
models, including supervised, semi-supervised, unsupervised, and reinforcement learning.
Furthermore, we analyze some of the challenges and potential research directions within
the domain of machine learning. In summary, the main contributions of this paper are as
follows:

• Brief discussion of data pre-processing;
• Detailed classification of supervised, semi-supervised, unsupervised, and reinforce-

ment learning models;
• Study of known optimization techniques;
• Challenges of machine learning in the field of cybersecurity.
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The survey is organized as follows. First, we discuss related published surveys in the
domain of machine learning in Section 2. Then, we discuss the existing machine learning
models in Section 3. Section 4 discusses the different phases of machine learning and
summarizes several existing approaches in each phase. Section 5 explores the current
challenges and future directions. Finally, Section 6 gives a conclusion.

2. Related Work and Research Methodology

A number of surveys related to machine learning in various domains, including cy-
bersecurity, have been published over the last decade. Table 1 gives an overview of some
of these surveys with the covered and uncovered topics. As shown in this table, some
of these surveys only focused on one or two specific learning categories. For instance,
in [26–30], the authors surveyed several supervised learning models applied to different
applications and explored fundamental concepts in machine learning. In addition, the
authors of [26] analyzed several hyperparameter techniques and their significance in de-
veloping successful machine learning systems. Other surveys focused on unsupervised
or reinforcement learning. For example, the authors of [31] provided a comprehensive
analysis of unsupervised models, while the authors of [32] emphasized the importance of
semi-supervised models and provided a concise discussion of these models. In contrast, the
authors of [33] focused solely on the hardware architecture of reinforcement learning mod-
els, offering an overview of various reinforcement learning approaches with an emphasis
on their hardware implementations.

Other surveys compared various learning approaches. Examples of such surveys can
be found in [34–37], where the authors discussed well-known supervised and unsuper-
vised models, highlighting their respective strengths and limitations. In [38], the authors
categorized machine learning models into three main classes, unsupervised, supervised,
and reinforcement learning, providing a detailed description of these categories specifi-
cally in the context of computer architecture and system design. In [39], the authors also
provided a comparison of three different machine learning models: supervised, unsuper-
vised, and semi-supervised models. In [40], the authors focused on comparing self-, semi-,
and unsupervised models for classifying images. The authors of [41–45] also discussed
different machine learning models, namely supervised, semi-supervised, unsupervised,
and reinforcement learning algorithms. These surveys focused on particular domains, such
as software-defined networking and the Internet of Things.

However, the existing literature reviews [26–45] did not focus on all four types of
machine learning models, particularly in the cybersecurity research field which affects
many types of networks, including 5G/6G, unmanned aerial systems/vehicles, the Inter-
net of Things, smart vehicles, and wireless sensor networks. In all these research areas,
systems use Internet for communication, which is prone to cyberattacks. In addition, these
studies [26–45] did not cover other crucial phases of machine learning, such as data pre-
processing and hyperparameter tuning techniques. In this paper, we provide a survey on
machine learning, data pre-processing methods, and hyperparameter tuning approaches.
Additionally, we propose a taxonomy for machine learning classification models that covers
supervised, unsupervised, semi-supervised, and reinforcement learning models. Through
this taxonomy, our goal is to offer the readers a comprehensive understanding of the diverse
landscape of machine learning models. In summary, this survey aims to address these gaps
in the existing studies by providing a comprehensive resource that sheds light on data
pre-processing, machine learning techniques, and hyperparameter tuning.

Offering the readers a holistic understanding of machine learning applications in
different domains, such as cybersecurity.
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Table 1. List of related review papers.

Reference Year Study Highlights

Coverage of Data Pre-Processing
and Hyperparameter Tuning Coverage of Machine Learning

Data Pre-
Processing

Hyperparameter
Tuning Approach

Supervised
Learning

Unsupervised
Learning

Semi-Supervised
Learning

Reinforcement
Learning

[34] 2021 Describes the known deep learning models,
their principles, and characteristics. 4 4

[41] 2019
Focuses on limited machine learning
techniques on only software-defined

networking.
4 4 4 4

[39] 2022
Investigates the known issues in the field of

system designs that can be solved using
machine learning techniques.

4 4 4

[26] 2021
Presents a detailed description of a few

supervised models and their optimization
techniques.

4 4

[32] 2021
Provides an overview of semi-supervised

machine learning techniques with their
existing algorithms.

4

[38] 2022
Provides the state of the art, challenges, and

limitations of supervised models in the field of
maritime risk analysis.

4

[33] 2022 Reviews hardware architecture of
reinforcement learning algorithms. 4

[28] 2022
Presents the existing algorithm for wireless
sensor networks and describes the existing

challenges of using such techniques.
4

[29] 2016 Describes most of the known supervised
algorithms for classification problems. 4

[35] 2019 Provides a description of known supervised
and unsupervised models. 4 4
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Table 1. Cont.

Reference Year Study Highlights

Coverage of Data Pre-Processing
and Hyperparameter Tuning Coverage of Machine Learning

Data Pre-
Processing

Hyperparameter
Tuning Approach

Supervised
Learning

Unsupervised
Learning

Semi-Supervised
Learning

Reinforcement
Learning

[36] 2021
Discusses supervised and unsupervised deep

learning models for intrusion detection
systems.

4 4

[37] 2021 Surveys existing supervised and unsupervised
techniques in smart grid. 4 4

[40] 2021 Explains known algorithms for image
classifications. 4 4 4

[31] 2022 Illustrates the unsupervised deep learning
models and summarizes their challenges. 4

[42] 2023 Discusses techniques for energy usage in
future 4 4 4 4

[43] 2020 Reviews various ML techniques in the security
of the Internet of Things. 4 4 4 4

[44] 2020
Proposes a taxonomy of machine learning

techniques in the security of Internet of
Things.

4 4 4 4

[38] 2019 Surveys the taxonomy of machine learning
models in intrusion detection systems. 4 4 4

[45] 2022 Gives ML techniques in industrial control
systems. 4 4 4 4 4

[30] 2022 Proposes the taxonomy of intrusion detection
systems for supervised models. 4
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3. Machine Learning Models

As previously mentioned, machine learning models can be classified in four cate-
gories: supervised, semi-supervised, unsupervised, and reinforcement learning. Each of
these categories includes several types, as shown in Figure 1. The supervised models can
be grouped into six types: tree, Bayesian, instance, regularization, neural network, and
ensemble-based models. Unsupervised models are categorized into clustering, dimen-
sionality reduction, and neural network techniques. Semi-supervised models can also be
categorized into inductive and transductive models, whereas reinforcement models are
classified into model-based and model-free techniques [46–56]. The following subsection
gives a detailed description of each of these categories, as well as a list of the models used
in each category.

Future Internet 2023, 15, x FOR PEER REVIEW 6 of 29 
 

 

Offering the readers a holistic understanding of machine learning applications in dif-

ferent domains, such as cybersecurity. 

3. Machine Learning Models 

As previously mentioned, machine learning models can be classified in four catego-

ries: supervised, semi-supervised, unsupervised, and reinforcement learning. Each of 

these categories includes several types, as shown in Figure 1. The supervised models can 

be grouped into six types: tree, Bayesian, instance, regularization, neural network, and 

ensemble-based models. Unsupervised models are categorized into clustering, dimen-

sionality reduction, and neural network techniques. Semi-supervised models can also be 

categorized into inductive and transductive models, whereas reinforcement models are 

classified into model-based and model-free techniques [46–56]. The following subsection 

gives a detailed description of each of these categories, as well as a list of the models used 

in each category. 

 

Figure 1. Classification of machine learning models. 

3.1. Supervised Learning 

Supervised learning models learn from labeled training data, where the input-output 
pairs are provided. The model generalizes patterns in the data to make predictions or classify 
new, unseen inputs. It relies on a supervisor to guide the learning process and correct predic-
tions. Therefore, human intervention plays an important role in creating the labeled data 

and precise models based on known parameters. In the following, a mathematical concept 

of a supervised model is provided as follows. 

A supervised ML model is a parametrized function 𝑓𝑝 which can show the input 

data 𝑥 ⃗⃗⃗   ∈  𝕏d to the output data y ∈ 𝕐. In general, input data are defined as a vector of 

features. For a classification, 𝕏d is a d-dimensional vector space and 𝕐 is the set of clas-

ses. This function trains the data to predict the label of the new data precisely, which has 

not been seen previously. In concrete, the main steps of such an approach can be divided 

into two steps [56]. 

Model Training: The aim of the training process is to identify the optimal parameters 

which can precisely achieve the relationship among 𝕏 and 𝕐. To address such an aim, a 

training dataset 𝐷 = {x⃗ i, yi}  i=1 
N with N samples is required. The loss function is employed 

to compute the difference between two outputs, such as the ground truth 𝑦𝑖  and the 

Figure 1. Classification of machine learning models.

3.1. Supervised Learning

Supervised learning models learn from labeled training data, where the input-output
pairs are provided. The model generalizes patterns in the data to make predictions or
classify new, unseen inputs. It relies on a supervisor to guide the learning process and
correct predictions. Therefore, human intervention plays an important role in creating
the labeled data and precise models based on known parameters. In the following, a
mathematical concept of a supervised model is provided as follows.

A supervised ML model is a parametrized function fp which can show the input data
→
x ∈ Xd to the output data y ∈ Y. In general, input data are defined as a vector of features.
For a classification, Xd is a d-dimensional vector space and Y is the set of classes. This
function trains the data to predict the label of the new data precisely, which has not been
seen previously. In concrete, the main steps of such an approach can be divided into two
steps [56].

Model Training: The aim of the training process is to identify the optimal parameters
which can precisely achieve the relationship among X and Y. To address such an aim,
a training dataset D =

{→
x i, yi

}
N
i=1 with N samples is required. The loss function is

employed to compute the difference between two outputs, such as the ground truth yi and
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the predicted fp (
→
x i). In such training, the loss function has to be minimized, as presented

in Equation (1):
po= arg min

(
∑ iL(yi, fp

(→
x i

)
) + Ω(p)

)
(1)

where po is the optimal parameter, Ω is a regularization term for penalizing model com-
plexity and avoiding overfitting problems, and p is defined as a parameter that is not
optimized.

Model prediction: After model training has been performed and optimal parameters
po are achieved, from the given input

→
x i the corresponding output can be obtained as

y = fp

(→
x i

)
. This process is called prediction or inference. The prediction accuracy over a

testing dataset Dt can be calculated to evaluate the model’s performance [57].
As shown in Figure 2, the supervised ML models can be classified into six classes: tree,

Bayesian, tree, regularization, instance, neural network, and ensemble-based models.
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Bayesian models provide a robust framework for handling uncertainty, offering com-
prehensive probability distributions for parameters. This helps in decision-making under
ambiguity, which is an important advantage. Additionally, they excel at integrating prior
knowledge, enhancing predictive accuracy, particularly in data-scarce environments. Their
adaptability to complex relationships and ability to prevent overfitting through regulariza-
tion are further strengths. However, Bayesian models can be computationally demanding,
especially for complex models or large datasets. In addition, subjectivity in choosing priors
may introduce bias, and interpreting results can be challenging for non-experts. Scalabil-
ity issues may also arise with extensive datasets, necessitating careful consideration of
computational resources.

In this study, we discuss seven supervised Bayesian-based models, namely multinomial
naïve Bayes, hidden Markov chain, Gaussian naïve Bayes, Bernoulli naïve Bayes, complement
naïve Bayes, Gaussian process classifier, and average one-dependence estimators.

In tree-based models, predictions are generated by building a tree-like structure using a
hierarchy of if-then rules to partition the features in the training dataset. The basic elements
of a tree are branches and nodes, which can be root, internal, or leaf nodes. The partitions
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can be selected according to different metrics, namely entropy, Gini index, classification
error, information gain, gain ratio, and twoing criteria [58]. Tree-based models provide
several benefits, such as high accuracy and ease of interpretation without any excessive
data preprocessing. These models, as shown in Figure 2, consist of several supervised
models, including classification and regression tree, cervical segment 4/5, cervical segment
5/0, iterative dichotomiser 3, chi-square automatic interaction detection, and Hoeffding
decision tree.

Instance-based learning, memory-based learning, refers to a group of ML techniques
that can adapt to unseen data and are commonly used for real-time data processing. These
methods use the concepts of the nearest neighbor optimization algorithm to classify or
predict data. The memory-based algorithms mainly follow the simplest instance-based
learning framework, instance based one (IB1), which includes three core functions, namely
similarity function, concept description updater, and classification function [59]. These algo-
rithms, based on the previous functions’ description, require a large amount of memory to
store the data. Memory-based models delay the processing until a new instance is classified
or predicted, which is known as the lazy learning pattern. Lazy learning has the advantage
of estimating the target function locally and differently for each new instance [60,61]. As a
result, instance-based methods have a lot of flexibility and multiple options when it comes
to designing the objective functions. They are frequently used to build test instance models
which consist of five techniques, namely radius neighbor, K-nearest neighbors, C-support
vector machine, linear support vector machine, and nu-support vector machine, as shown
in Figure 2.

Regularization-based models are critical learning algorithms that are used to appro-
priately fit a function on the training set and prevent overfitting problems by adding some
extra information to the models [62]. In these models, an additional penalty term, extra
information, in the error function is added to tune the models and control the fluctuating
function [63]. The reduction in the value of an error is called the shrinkage method, and
it is the core aspect of the regularization-based technique. The shrinkage function may
lead to variance reduction, which is very effective in large datasets, especially when the
data are from a high dimensional environment [64]. Regularization-based models can
be classified into ridge classifier, least absolute shrinkage and selection operator, elastic
net, one rule, zero rule, stochastic gradient descent, passive aggressive classifiers, logistic
regression, linear discriminant analysis, quadratic discriminant analysis, stepwise classifier,
and multivariate adaptive regression spines, as shown in Figure 2.

Neural networks, also known as artificial neural networks (ANN), are an impor-
tant subset of machine learning techniques that are inspired by the human brain. These
techniques can be effectively used in classification, clustering, pattern recognition, and
predictions. The great potential of such techniques is to provide high-speed processing
in parallel implementation. ANNs are widely used universal function approximations
for different numerical paradigms due to their high rate of self-learning, adaptivity, fault
tolerance, and nonlinearity features of these techniques [65,66]. A universal function ap-
proximation refers to how a neural network can approximate any function used in its
training and validation. In addition, these techniques are easy to use and more precise in
comparison with techniques with large inputs [67]. Supervised neural networks can also
be classified into four categories: multi-layer perceptron, convolutional neural networks,
deep neural networks, and recurrent neural networks, as illustrated in Figure 2.

Ensemble-based machine learning techniques, also known as multiplier classifier
systems, train and integrate several learners to address a problem. In these techniques,
the generalization capacity of an ensemble learner is broadly stronger than an individual
learner [68,69]. Although this theory holds more for weak learners, strong traditional learn-
ers give better performance results. Additionally, ensemble models usually provide better
results when there is a diversity among the combined base learners [70]. These models
provide several benefits, including low variance, high performance, and the removal of
noise and biased data. Moreover, these models are robust, which can decrease the spread or
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dispersion of the predictions. Despite the benefits of these models, they deal with several
shortcomings, including the lack of simplicity and explainability, generalization, and high
prediction time [71].

Ensemble-based models are classified into three different types, bagging, boosting,
and stacking, as shown in Figure 3. The Bagging model, known as the bootstrap aggre-
gation technique, can minimize the variance and thereby improve the prediction [71,72].
Boosting models use a sequential iterative technique to combine multiple weak individual
learners into one strong learner with a better performance. To generate the output of this
strong learner, a relationship based on a weighted average or voting is established between
the basic learners with different distributions [73]. Finally, stacking, known as stack gen-
eralization, is another type of ensemble learning technique that includes heterogeneous
weak learners. Stacking models may provide some benefits, such as increasing the robust-
ness and improving the performance [74]. These techniques ensure a higher performance
in comparison with any single contributing model. Table 2 provides the characteristics,
advantages, and disadvantages of these supervised classification techniques.

Table 2. Characteristics, limitations, and strengths of classification categories [56–74].

Classification
Category Characteristics Advantages Disadvantages

Bayesian-
Based

• Dealing with
uncertain data.

• Ability to quantify the uncertainty;
• Capacity for the incorporation of prior

knowledge in a principled manner;
• Useful for small datasets.

• High computational
costs;

• Difficulty with selecting
priors.

Tree-
based

• Data splitting-based;
• Non-parametric

method.

• High accuracy;
• Ease of interpretation;
• Handling large datasets.

• Prone to overfitting;
• Non-robust.

Instance-
based

• Adapting for new
and real-time data.

• Capacity to adapt to new and
real-time data;

• Ability to change the similarity
function for each instance at each
prediction step;

• Fast training process.

• High computational
costs;

• Expensive memory
usage.

Regularization-
based

• Regularizing the
coefficient estimates
towards zero;

• Generalization.

• Reduction in model variance with no
increase in bias;

• Reducing the overfitting issues;
• Simplicity;
• Computational efficiency.

• Dimensionality
reduction;

• High bias error.

Neural
network-based

• Storing information
on an entire network;

• Distributed memory;
• Ability of parallel

processing.

• Ability to detect all possible
interactions between predictor
variables;

• Availability of multiple training
processes;

• High rate of adaptability.

• Requiring large datasets;
• High computational

power;
• Black box nature;
• Prone to overfitting;

Ensemble-based • Combine multiple
learners

• Low variance;
• High performance;
• Removing noise and biased data.

• High inference time;
• Lack of simplicity;
• Lack of generalization.
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3.2. Semi-Supervised Learning

Semi-supervised learning models are algorithms that learn from both labeled and
unlabeled data. They use a small set of labeled examples alongside a larger pool of
unlabeled data to make predictions or classifications. These models are advantageous
when labeling data is costly or time-consuming, as it maximizes the utility of available
resources. Semi-supervised learning often achieves higher accuracy than purely supervised
models. However, it relies heavily on the quality of initial labeling, which can introduce
bias, and may struggle with highly complex tasks that require a substantial amount of
labeled data for effective training [60].

The following are the main mathematical concepts of semi-supervised learning models.
In semi-supervised models, the set of training samples is defined as

L =
{
(Xi, Yi)

∣∣∣ Xi ∈ Rd, Yi ∈ Ω, i = 1, . . . , L
}

. In these models, every sample consists of
a dimensional feature space, d, where Xi is the input sample, Yi is the class label Xi, and Ω =

{T1, . . . . . . . . . . . . TK} presents the target classes. In addition, U =
{

X∗j
∣∣∣ j = 1, . . . . . . . . . , u

}
is the set of unlabeled data. Semi-supervised models consist of different categories, namely
dimensionality reduction, clustering, and regression. In this survey, we only focus on
classification semi-supervised models. The main steps of semi-supervised models can be
divided, as follows:

Model training: The important process is to use unlabeled data samples to create a
learner that performs better than the one based on labeled data. Thus, a set of learning
training samples L is presented. Using these models, a loss functions can be applied to
weights representing class labels and cluster assumptions (based on the defined model).

Model Prediction: Once the model has been trained with the optimal parameters, it
predicts the learners’ accuracy over test data samples, which they exceed compared to
learners using labeled data.

Semi-supervised models are generally considered direct extensions of supervised
models. These models can be divided into inductive- and transductive-based models, as
illustrated in Figure 4. Table 3 outlines the characteristics, advantages, and disadvantages
of these models. Inductive-based models can create predictions for any objects in the input
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vector, while unlabeled data samples can be applied when training the classifier [75,76].
When the training process concludes, the predictions of new samples will be completely
independent of each other. In inductive-based models, cluster-label and pre-training-based
models, the given data can be extracted from unlabeled data [77]. However, wrapper-
based inductive models, including self-training, co-training, and boosting models, only
use labeled data to train classifiers, and then use the predictions to create more labeled
data. Afterwards, the unlabeled data are pseudo-labeled in a wrapper-supervised manner,
and an inductive classifier is constructed. While, intrinsically semi-supervised models
combine unlabeled data with optimization functions to extend the process of labeled data
to unlabeled data [78].
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Table 3. Characteristics, limitations, and strengths of semi-supervised models [76–81].

Classification Category Characteristics Advantage Disadvantage

Inductive-
Based

Generates a model that can create
predictions for any sample in the

input space

The predictions of new
samples are independent of

old samples

The same model can be used
in training and predicting new

data samples

Transductive-
based

Predictive strengths are limited to
objects that are processed during

the training steps

No difference between the
training and testing steps

No distinction between the
transductive algorithms in a

supervised manner

Transductive models are another category of semi-supervised learning models that do
not create a model for the whole input space. These models do not differentiate between
the training and testing phases. They are widely performed based on the graph-based
approach, in which data samples are connected via graphs, and their data are grown
with the edges of the graph [79]. These graph-based models (generative, manifold, and
maximum margin) deal with three phases, namely graph construction, weighting, and
inference [80]. In graph construction, the set of input data is used to generate the graph
where the nodes show data samples are connected via the edge [79,81]. In graph weighting,
the edges are weighted to show pairwise similarity between the data samples. In graph
inference, the graph is applied to highlight the labels compared to the unlabeled data
samples. More details about these models and characteristics can be found in [80].

3.3. Unsupervised Learning

Unsupervised machine learning methods analyze and cluster unlabeled outputs using
a set of inputs. Clustering of samples is widely used to uncover hidden patterns, structures,
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or data knowledge in unlabeled datasets [24,57]. The following are mathematical concepts
of unsupervised models.

An unsupervised machine learning model is a parameterized function gθ which
consists of the input data

→
x ∈ Xd with no outputs. In this model, input data refers to

a feature’s vector. In addition, Xd is a d-dimensional vector space. The data have to be
trained accurately to predict the data label, which is not known. The steps of unsupervised
models are described as follows.

Model Training: This process involves the identification of the optimal parameters
that can help more accurately find a pattern between data samples and their outputs. So,

a training dataset D =
{→

x i

}N

i=1
with N number of samples is provided. A loss function is

defined to compute the difference between data inputs and the outputs. The aim of training
unsupervised models is to diminish the loss function in the training set and achieve the
optimal results.

Model Prediction: After model training and when optimal parameters have been
presented from the input

→
x , the model can discover the inherent structure of unlabeled

data, and the prediction accuracy over a testing dataset Dt can be computed to evaluate the
performance of the model.

Unsupervised models can be divided into cluster-based, dimensionality reduction-
based, and neural network-based models, as illustrated in Figure 5. A clustering-based
model groups the data into categories based on their characteristics and similarities and
clusters them together. This group is capable of finding homogeneous subgroups in the
given data, and their results can be used to group observations (features) into distinct
groups. These groups help the interpretation and assessment of data. These methods are
usually easy to implement; however, their complexity is high [75]. As shown in Figure 5,
cluster-based models include K-means, C-means, linear discriminative analysis, hierar-
chical clustering, non-negative matrix factorization, and density-based spatial clustering
with noise.
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Dimensionality reduction-based models refer to the number of features in a dataset,
which are represented as columns. In unsupervised learning, such models aim to decrease
the features’ number in training and testing. Models like these can summarize relationships
between samples with a reduced number of dimensions. Using these approaches facilitates
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the visualization and preprocessing of complicated datasets. Dimensionality reduction-
based models can reduce time and storage, although they may face data loss [75]. AS
shown in Figure 5, these categories include self-organization maps, principal component
analysis, multidimensional scaling, and independent component analysis.

Another category of unsupervised models is neural network-based models, which
belong to both supervised and unsupervised categories. These models can identify in-
teractions between predictors and have high adaptability. Despite these benefits, they
require huge datasets to process and have a high tendency to overfit. In addition, neural
network-based models usually face high computational power. Auto-encoders, generative
adversarial neural networks, Boltzmann, and belief neural networks, are among the neural-
network-based unsupervised models, as shown in Figure 5. Table 4 lists the characteristics,
the limitations, and strengths of these models.

Table 4. Characteristics, limitations, and strengths of unsupervised models [74,75].

Classification Category Characteristics Advantages Disadvantages

Cluster-based Divides uncategorized data
into similar groups; • Easy implementation. • High complexity.

Dimensionality
reduction-based

Decreases the number of
features in the given dataset;

• Decrease time and
storage. • Data loss.

Neural network-based Inspiration of human brains.

• Can detect the
interactions among
predictor variables;

• Availability of multiple
training processes;

• High adaptability.

• Require huge datasets;
• High computational

power;
• Tendency to overfit.

3.4. Reinforcement Learning

Reinforcement learning (RL) models are another ML category that trains an agent
to learn in an interactive environment by getting feedback from its own experiences and
actions. Reinforcement learning trains the models to learn the optimal actions in an
environment to get maximum rewards. These optimal actions can be performed through
interactions with an environment and their responses. In the absence of a supervisor,
the learner has to explore the sequence of their actions independently, which maximizes
the rewards [82]. Advantages of reinforcement learning include their ability to handle
dynamic and complex environments, making them suitable for tasks like robotics control
and game playing. They also excel in scenarios with sparse or delayed feedback. However,
they often require extensive training and may struggle with high-dimensional state spaces.
Additionally, defining a suitable reward function can be challenging, and poorly designed
rewards may lead to suboptimal behavior. Furthermore, exploration strategies need to be
carefully balanced to avoid excessive trial-and-error.

In general, an agent attempts to sequentially learn the decision-making challenges
through modeling the Markov Decision Process (MDP). At a timestep t, the agent receives
an observation of an environment Pt ∈ P, where P indicates the state space, and the agent
can choose a behavior Bt ∈ R(Pt) based on the environment reaction. In this context, B(Pt)
is the set of all possible actions of state Pt. Then, the agent has a reward Rt+1. Then, the state
Pt+1 and reward Rt+1 depend on the previous state of Pt and the behavior of Rt. During
the learning process, the agent also learns to maximize the cumulative rewards, shown as
the expected reward return Et, using a discount rate Y using the following equation [83]:

Dt = ∑ ∞
k=0YkRt+k+1 0 ≤ Y ≤ 1 (2)
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The agent also follows a rule that maps from the states to the probabilities of every
action. The value of such a rule depends on the expected discounted return, calculated as
follows:

Vπ (p) = Eπ [Dt | Pt = p] (3)

Moreover, the action value function Tπ (p, b) refers to the expected return from state
p and behavior b:

Tπ (p, b) =Eπ [Dt | Pt = p, Bt = b] (4)

The optimal action value with rule π is defined as follows:

q∗(p, b) =max
π

Tπ (p, b) (5)

In reinforcement learning models, optimal equations can be used to improve the rule
followed by an agent iteratively.

RL models can be classified into model-based and model-free-based techniques, as
shown in Figure 6. Model-based techniques are defined as learning an optimal behavior
by making predictions about the consequence of the actions. This process can happen by
taking actions and observing the outcomes that include the next state and the immediate
reward. In contrast, model-free-based techniques, such as policy optimization and Q
learning-based techniques, are data-based optimal control methods that aim to learn an
optimal control policy in the absence of a process model. The main difference between the
model-based and model-free-based techniques is the interaction between the agent and
the environment [84]. Table 5 summarizes the characteristics, strengths, and limitations of
model-based and model free-based techniques. More details can be found in [15,82–113].
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Table 5. Characteristics, advantages, and disadvantages of classification categories of reinforcement
Learning [15,82–113].

Classification
Category Characteristics Advantage Disadvantage

Model-based Optimal actions are learned
via a model

• Few interactions between
the agent and the
environment;

• Quick convergence to
optimal solutions.

• Relies on transition models;
• Accuracy of the model can

positively/negatively
impact the learning process.

Model free-based

No transition of a probability
distribution or reward

associated with the Markov
decision process

• No prior transition
knowledge needed;

• Easy implementation.
• High damage rate.

4. Machine Learning Processes

In general, this process begins with data collection and pre-processing, involving the
acquisition and curation of relevant datasets. Subsequently, an ML model is selected based
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on the problem’s nature, such as classification, regression, or clustering. The model selection
is followed by the training phase, during which the model learns patterns and relationships
in the data by iteratively adjusting its parameters to minimize a predefined error metric.
This phase involves the division of the given dataset into training and validation sets to
evaluate the performance of the model.

After training, the model undergoes evaluation using a separate test dataset to assess
its generalization ability. If the performance of the model meets the desired criteria, it
can be configured for real-world security applications. ML processes are characterized by
a continuous cycle of refining and iterating performed on the models to achieve higher
accuracy and robustness, making them an essential tool for solving complex problems
across various domains. To briefly discuss these steps, overviews of data pre-processing,
tuning approaches, and evaluation metrics are provided.

4.1. Data Pre-Processing

One of the main key factors on developing a successful ML system is the availability
and quality of the utilized datasets and benchmarks [15,49]. However, data collection
in various fields can present several challenges, including the difficulty in establishing
real datasets due to safety [48], security [50], privacy [48,50,101], and other concerns. To
address this issue, numerous studies have focused on identifying rare conditions and
simulating datasets to uncover essential data patterns [15,51–53,101–109]. Ensuring the
optimal performance of ML models requires high-quality datasets, making data prepro-
cessing a crucial step in the machine learning process. In the preprocessing phase, raw
data are converted into a practical format. In addition, dataset often contain imperfections
like inconsistencies, redundancy, noise, and missing values [54], which can impact model
performance. Therefore, proper processing steps are important to enhance the quality and
reliability of the model’s decisions [55]. Data preprocessing encompasses data reduction,
data transformation, discretization, data cleaning, and imbalanced learning to prepare the
data for effective ML [110].

Table 6 presents a comprehensive summary of key data pre-processing techniques
across various processes, including data transformation, cleaning, reduction/increasing,
discretization, and imbalanced learning. Data transformation techniques convert data from
one format to another one. This is achieved through two main techniques: normalization
and standardization. Data cleaning includes tasks such as filling in missing values, handling
noisy data, and treating outliers. In the context of data reduction/increasing, redundant and
irrelevant information can be identified and removed or added using techniques like feature
extraction, feature selection, and instance generation. Discretization is an approach that
reduces the number of data values by converting them into a smaller set of discrete values.
In cases of imbalanced class distribution, balanced learning techniques are crucial to avoid
low performance. Balancing the class distribution is achieved through under-sampling and
over-sampling techniques, ensuring the best performance results [56,110–113].

Table 6. Summary of data preprocessing steps with their techniques [15,31–56,101–113].

Data Preprocessing
Steps Methodology Technique Highlights

Data transformation
Standardization

and
normalization

Unit vector normalization

Extract the given data, and
convert them to a usable

format

Max abs scalar

Quantile transformer scalar

Robust scalar Min-max scaling

Power transformer scalar

Unit vector normalization

Standard scalar
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Table 6. Cont.

Data Preprocessing
Steps Methodology Technique Highlights

Data cleaning

Missing value imputation

Complete case analysis

Loss of efficiency, strong bias,
and complications in handling

data.

Frequent category imputation

Mean/median imputation

Mode imputation

End of tail imputation

Nearest neighbor imputation

Iterative imputation

Hot and cold deck imputation

Exploration imputation

Interpolation imputation

Regression-based imputation

Noise treatment
Data polishing

Noise filters

Data reduction/
increasing

Feature selection

Wrapper

Decrease or increase the
number of samples or features
that are not important in the

process of training

Filter

Embedded

Feature extraction

Principle component analysis

Linear discriminative analysis

Independent component analysis

Partial least square

Multifactor dimensionality reduction

Nonlinear dimensionality reduction

Autoencoder

Tensor decomposition

Instance generation

Condensation algorithms

Edition algorithms

Hybrid algorithms

Discretization Discretization-based
Chi-squared discretization Loss of information,

simplicity, readability, and
faster learning processEfficient discretization

Imbalanced learning

Under-sampling

Random under-sampling

Presents true evaluation
results

Tomek links

Condensed nearest neighbor

Edited nearest neighbor

Near-miss under-sampling

Oversampling

Random oversampling

Synthetic minority oversampling
technique

Adaptive synthetic

Borderline-synthetic minority
oversampling technique
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4.2. Tuning Approaches

The performance of ML models relies on the engineered features or the hyperparame-
ter settings [89,90]. Creating a successful machine learning model requires a complicated
process, which involves identifying an appropriate algorithm and using an optimal archi-
tecture by tuning its hyperparameters (HPs) [91–95]. These parameters can be categorical,
discrete, and continuous values.

Hyperparameter tuning methods can be manual or automatic [96–100]. Manual tuning
is an ineffective approach due to the complex ML models and non-linear hyperparameter
interactions [15,101,102]. However, automatic tuning techniques speed up the process of
detecting the optimal parameters of a model using specific optimization methods. Several
hyperparameter tuning techniques exist. These types, as shown in Table 7, have different
strengths and limitations [89,103].

Table 7. Characteristics, advantages, and disadvantages of tuning approaches [89,103–113].

Hyperparameter Methods Strengths Limitations

Grid search • Simple.
• Only effective with categorical

hyperparameters;
• Takes a long time to find

hyperparameters.

Random search • Performs parallelization;
• More effective than a grid search.

• Does not rely on previous results;
• Cannot perform well with

conditional hyperparameters.

Genetic algorithm
• No need for good initialization;
• Performs well with all types of

hyperparameters.

• Weak performance for
parallelization.

Gradient-based techniques • Quick convergence speed for
continuous hyperparameters.

• Detects local optimum;
• Supports continuous

hyperparameters.

Bayesian optimization-Gaussian process • Quick convergence speed for
continuous hyperparameters.

• Weak performance for
parallelization.

Particle swarm optimization
• Good with parallelization;
• Performs well with all types of

hyperparameters.
• Needs good initialization.

Bayesian optimization-tree structure
parzen estimator

• Maintain conditional dependencies;
• Performs well with all types of

dependencies.

• Weak performance for
parallelization.

Hyperband • Good performance with
parallelization.

• Does not provide satisfactory results
with conditional hyperparameters.

Bayesian optimization-SMAC • Good performance with
parallelization.

• Weak performance for
parallelization.

Population-based

• Simultaneously optimizes the
parameters and trains the model;

• Improves the flexibility of the
machine learning model;

• Finds adaptive parameters rather
than a fixed set of hyperparameters.

• Can be challenging to find
hyperparameters in some scenarios;

• Finding adaptive parameters may
not be suitable for some cases.

4.3. Evaluation Metrics

Evaluation metrics are essential to investigate the performance of ML models. These
metrics differ depending on the application and the category of the models. For instance,
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supervised learning models require different metrics than reinforcement learning models.
Below are short descriptions of the most common metrics and their mathematical equations.

4.3.1. Evaluation Metrics for Supervised Learning

Accuracy: This represents the correct predictions made by an ML model. It is calcu-
lated, as presented in Equation (6), where TP presents the true positive, TN denotes the true
negative, FP is the false positive, and FN is the false negative.

Accuracy =
TP + TN

TP + TN + FP + FN
∗ 100 (6)

Precision: This shows the number of true positives divided by the total number of true
positive and false positive. It can be calculated by:

Precision =
TP

TP + FP
∗ 100 (7)

Recall (Detection Rate): This metric computes the number of the positive samples
correctly classified to the total number of the positive samples. This metric, as shown in
Equation (8), can indicate the model’s ability to classify positive samples among other samples.

Recall =
TP

TP + FN
(8)

F1-Score: This metric is derived from the recall and the precision, where the precision
is defined in Equation (7) and the recall is given by Equation (8). It is given by:

F1-Score
2TP

2TP + Fp + FN
(9)

Area under the receiver operating characteristics curve (AUC): The receiver operating
characteristic (ROC) can visualize a tradeoff among sensitivity and specificity in an ML
model. This curve is considered as a plot of the true positive rate (TPR) to the false positive
rate (FPR). This metric is calculated using Equation (10), where x presents the varying AUC
parameter.

Area Under Curve =
∫ 1

x=0

TP
TP + FN

(
(

FP
FP + TN

)
−1

(x)

)
dx (10)

False Alarm Rate: False alarm rate, false positive rate, is the probability of a false alarm
being raised. This metric can be computed by:

False Alarm Rate =
Fp

TN + FP
(11)

Misdetection Rate: It indicates the percentage of misclassified samples. It is given by:

Misdetection Rate =
FN

TP + FN
(12)

Mean Absolute Percentage Error: It is used to evaluate the accuracy of forecasting
models. It calculates the average percentage difference between the predicted and the
actual values.

Mean Absolute Percentage Error =
1
n ∑ n

t=1

∣∣∣∣At−Ft

At

∣∣∣∣ (13)

where, n is the number of the summation times that the iteration happens, At denotes the
actual value at time t, and Ft is the predicted value at time t.
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Processing Time: This refers to time taken to train, test, and predict the results. It
can represents the time required to predict or analyze malicious signals compared to
non-malicious signals.

Training Time per Sample: This refers to the time taken to train a model on a single
sample of the dataset. It represents the amount of time required to process and learn from
the features and labels of an individual sample during the training phase.

Memory Usage: This is the amount of memory or storage space that is required
by a model during its entire process. It represents the amount of memory resources
utilized to store and process the model’s parameters, intermediate computations, and other
relevant data.

4.3.2. Evaluation Metrics for Unsupervised Learning Models

Silhouette Score: It computes the similarity of each data point in one cluster to data
points of the neighboring clusters. The higher values indicate that the data points are
well-clustered and have clear separation.

Davies–Bouldin Index: It calculates the average similarity among every cluster and
its most similar clusters. A lower Davies–Bouldin index indicates better clustering, with
smaller values representing tighter and more distinct clusters.

Calinski–Harabasz Index: This index evaluates the ratio of the between-cluster vari-
ance to the within-cluster variance. Higher values indicate a better separation between
clusters, implying that the data are well-clustered.

Dunn Index: This metric assesses the rate of the minimum inter-cluster distance to
the maximum intra-cluster distance. A higher Dunn index presents better clustering, as it
shows smaller distances within clusters and larger distances between clusters.

Inertia (Within-Cluster Sum of Squares): Inertia calculates the total distance among
data points within the same cluster. Lower inertia values presents denser and more
compact clusters.

Gap Statistic: The gap statistic compares the clustering algorithm performance to the
performance of random clustering. A larger gap indicates that the algorithm’s clustering is
better than random.

Adjusted Rand Index: It measures the similarity between true class labels and the
labels assigned by the clustering algorithm, correcting for chance. The higher values
indicate better clustering agreement.

Normalized Mutual Information: It measures the mutual information between true
class labels and cluster assignments, normalized to account for chance. A higher Normal-
ized Mutual Information indicates better clustering quality.

Homogeneity, Completeness, and V-measure: These three metrics, homogeneity,
completeness, and their harmonic mean (V-measure), assess different aspects of clustering
quality. Homogeneity computes how pure each cluster is with respect to a single class.
Completeness measures how well all instances of a given class are assigned to the same
cluster. V-measure combines both homogeneity and completeness into a single metric.

Spectral Gap: The spectral gap measures the gap between eigenvalues of a similarity
matrix or Laplacian graph. A larger spectral gap indicates more distinct clusters.

4.3.3. Evaluation Metrics for Semi-Supervised Learning Models

Log-Likelihood: In semi-supervised learning, where generative models like Gaussian
mixture models (GMMs) or variational autoencoders (VAEs) are used, log-likelihood can be
a crucial metric. It measures how well the model captures the underlying data distribution.

Pseudo-label Accuracy: In semi-supervised learning, pseudo-labels are assigned to
unlabeled data points based on model predictions. Pseudo-label accuracy measures the
accuracy of these pseudo-labels, providing insights into how well the model is utilizing
unlabeled data.
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Consistency Regularization: Some semi-supervised learning methods use consistency
regularization as a metric to quantify the model’s stability by comparing predictions on
perturbed versions of the same input. Higher consistency indicates better generalization.

Active Learning Metrics: In semi-supervised learning with active learning, metrics
such as query density and query diversity are used. Query density measures how well
the model selects informative data points for labeling, while query diversity assesses the
variety of data points selected.

Entropy: Entropy measures the uncertainty of model predictions. Lower entropy
indicates a higher confidence in predictions, which can be a valuable metric when dealing
with unlabeled data.

4.3.4. Evaluation Metrics for Reinforcement Learning Models

Cumulative Reward (Return): Cumulative reward, also called return, is the sum of
rewards received by the agent over a sequence of actions in an episode. It measures the
agent’s ability to maximize its long-term objectives.

Average Reward: Average reward calculates the expected value of the rewards re-
ceived per time step or per episode. It provides a measure of the agent’s efficiency and
effectiveness in achieving its goals.

Discounted Sum of Rewards: In some cases, it is important to consider future rewards
with less weights. The discounted sum of rewards applies a discount factor,(gamma, to give
more importance to immediate rewards while still considering long-term consequences.

Episodic vs. Continuing Tasks: Depending on the task, you may need to use different
evaluation methods. Episodic tasks have a clear beginning and end for each episode,
while continuing tasks continue indefinitely. The choice of evaluation metric can vary
accordingly.

Exploration Rate: Exploration is crucial in reinforcement learning. Evaluating the
agent’s exploration rate assists in determining if it is effectively exploring the environment
to uncover optimal policies or if it is becoming trapped in suboptimal ones.

Learning Curve: A learning curve plots the agent’s performance (e.g., cumulative
reward) over time, showing how quickly it converges to an optimal or near-optimal policy.
It helps to monitor the learning progress.

Q-value Convergence: In Q-learning and other value-based methods, the convergence
of Q-values can be evaluated to assess whether the agent has learned an accurate value
function.

Policy Convergence: For policy-based methods, such as policy gradients or REIN-
FORCE, the convergence of the agent’s policy can be evaluated to determine if it has found
an optimal or near-optimal policy.

Exploration–Exploitation Trade-off Metrics: Metrics like epsilon (ε)-greedy exploration
rate, Boltzmann exploration, or UCB (Upper Confidence Bound) help assess how well
the agent balances exploration (attempting new actions) and exploitation (selecting the
best-known actions).

Success Rate: In tasks where there is a specific goal or objective (e.g., reaching a
target in a maze), the success rate measures the percentage of episodes in which the agent
successfully achieves the goal.

Entropy of Policy: Policy entropy quantifies the level of uncertainty in the agent’s
action selection. Higher entropy indicates more exploration, while lower entropy suggests
a more deterministic policy.

Time to Solve: This metric measures the time or number of steps it takes for the agent
to achieve a predefined level of performance or solve a task. It helps assess efficiency.

Sample Efficiency: Sample efficiency evaluates how quickly the agent learns from its
interactions with the environment, considering the number of episodes or steps required to
reach a certain level of performance.

Table 8 summarizes the possible evaluation metrics for each ML category, as discussed
above.
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Table 8. Evaluation metrics for supervised, semi-supervised, unsupervised, and reinforcement
learning models.

Category Metric Name

Supervised Learning

• Accuracy;
• Recall;
• F1-score;
• False alarm rate;
• Precision;
• AUC;
• Misdetection rate;
• Mean absolute percentage error;
• Processing time;
• Prediction time;
• Memory size;
• Training time per sample.

Unsupervised Learning

• Silhouette score;
• Dunn index;
• Inertia (within-cluster sum of squares
• Gap statistic;
• Davies–Bouldin index;
• Adjusted rand index;
• Normalized mutual information;
• Homogeneity, completeness, and

V-measure;
• Calinski–Harabasz index;
• Spectral gap.

Semi-Supervised Learning

• Accuracy;
• Precision;
• Recall;
• F1-score;
• AUC;
• False alarm rate;
• Misdetection rate;
• Mean absolute percentage error;
• Processing time;
• Prediction time;
• Memory size;
• Training time per sample;
• Log-Likelihood;
• Pseudo-label Accuracy;
• Consistency Regularization;
• Active Learning Metrics;
• Entropy.

Reinforcement Learning

• Cumulative reward (return);
• Average reward;
• Discounted sum of rewards;
• Episodic vs. continuing tasks;
• Exploration rate;
• Learning curve;
• Q-value convergence;
• Policy convergence;
• Exploration–exploitation trade-off

metrics;
• Success rate;
• Entropy of policy;
• Time to solve;
• Sample efficiency.
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5. Challenges and Future Directions

Machine learning has witnessed remarkable advancements in recent years, but it still
faces numerous challenges and ongoing research directions. Some of the prominent areas
of focus are shown in Table 9.

Table 9. Current challenges in ML [114–125].

Challenges Descriptions

Interpretability and Explain-ability

• Complex model architecture;
• Black-box models;
• User-friendly explanations;
• Interpretable features;
• Trade-off with performance.

Bias and Fairness

• Data and algorithm bias;
• Inadvertent exhibition of biases or

discrimination against specific groups;
• Biases in decision support systems.

Adversarial Robustness

• Adversarial data poisoning;
• Computation and resource constraints;
• Data model complexity;
• Adversarial attacks and their transability.

Privacy and Security

• Safeguarding user data and models
against privacy breaches and attacks;

• Secure federated learning, and differential
privacy.

Reinforcement Learning

• Low efficiency;
• Low stability;
• Low generalization capability;
• Exploration–exploitation trade-offs,

off-policy learning, and safe
reinforcement learning.

Quantum Computing

• Conflicting objectives;
• Multiple criteria optimization;
• Algorithm development;
• Non-convexity;
• High-dimensional search spaces;
• Computational resource constraints.

Multi-Criteria Models

• Trade-off complexity;
• Non-convexity;
• High dimensionality;
• Preference modeling;
• Computational resources;
• Interpretability;
• Scalability.

Interpretability and Explain-ability: Machine learning models are considered black
boxes because of their complexity. Therefore, their outputs are usually not understood.
Thus, there is a pressing demand for understanding and explaining their decision-making
processes. Achieving interpretability and explain--ability is vital for establishing trust and
ensuring best efficiency [114–122].

Bias and Fairness: Machine learning algorithms use datasets built by humans, so
these models can inadvertently exhibit biases or discriminate against specific groups.
Consequently, reducing overfitting and promoting fairness in machine learning models
are important research objectives. This entails the development of methods to classify
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biases, as well as the design of algorithms that exhibit fairness and lack bias across diverse
demographic groups [114–117].

Adversarial Robustness: Machine learning models are vulnerable to adversarial at-
tacks, wherein slight, imperceptible alterations to input data can result in misclassification
or erroneous predictions. Research is actively focused on constructing robust models that
resist adversarial attacks. Techniques such as adversarial training, defensive distillation,
and robust optimization are employed to enhance model resilience [117,118].

Privacy and Security: The increased utilization of machine learning in sensitive do-
mains raises concerns regarding privacy and security. Safeguarding user data and models
against privacy breaches and attacks becomes crucial. Research directions involve the
development of privacy-preserving machine learning techniques like secure multi-party
computation, federated learning, and differential privacy [114–122].

Reinforcement Learning: In some fields and cases, there are limited real data available.
For instance, in cybersecurity, data from attacks can be very limited and, in some cases,
performing attacks to obtain data is not allowable. Reinforcement learning addresses the
limited data availability challenge. However, existing reinforcement models have lower
efficiency than conventional machine learning models. Therefore, research efforts concen-
trate on enhancing the efficiency, stability, and generalization capabilities of reinforcement
learning algorithms. Topics include exploration–exploitation trade-offs, off-policy learning,
and safe reinforcement learning [115–122].

Multi-Criteria Models: In the rapidly evolving landscape of machine learning, new
trends are emerging to enhance decision-making and computational capabilities. For ex-
ample, multi-criteria models are gaining prominence, enabling more sophisticated and
nuanced decision-making processes. These models can be considered to account for multi-
ple, often conflicting, criteria and objectives [123]. Multi-criteria models in machine learning
involve optimizing decision-making processes when there are multiple conflicting objec-
tives to consider, such as cost, accuracy, and interpretability. Developing machine learning
algorithms that can handle these conflicting objectives and make trade-offs between them
efficiently remains a significant challenge. Common approaches include multi-objective
optimization techniques, Pareto front exploration, and preference modeling. Integrating
these approaches into machine learning models effectively is complex due to several issues,
including non-convexity, high-dimensional search spaces, and computational resource
constraints. Addressing these problems is crucial for creating robust multi-criteria machine
learning models capable of making informed decisions that balance diverse objectives and
preferences in real-world applications.

Quantum Computing: Quantum computing represents a revolutionary frontier in
machine learning. Quantum computing can offer the potential for exponential speed up in
solving complex optimization and pattern recognition tasks. By harnessing the principles
of quantum mechanics, quantum computing may revolutionize the field, opening doors
to previously insurmountable challenges and unlocking new frontiers in ML and data
analysis [124,125]. Quantum computing holds significant promise for addressing complex
problems in machine learning by leveraging quantum phenomena such as superposition
and entanglement. One prominent challenge in classical machine learning is solving opti-
mization problems, and quantum algorithms like the quantum approximate optimization
algorithm and the variational quantum eigensolver show potential for faster optimization
convergence. Additionally, quantum ML models, such as quantum support vector ma-
chines and quantum neural networks aim to provide quantum advantages over classical
counterparts in tasks like classification and regression. However, quantum computing in
machine learning is still in its infancy, facing challenges related to error correction, hard-
ware scalability, and the need for quantum data encoding schemes. As the field matures
and quantum technologies advance, quantum computing can be a potential candidate
to revolutionize ML by tackling complex optimization and modeling challenges more
efficiently.
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These challenges and research directions represent only a fraction of the vast landscape
within machine learning. These challenges underscore the complexity of machine learning
and researchers and practitioners strive to overcome the limitations and advance the capa-
bilities of these systems. The field continues to rapidly evolve, driven by the necessity to
confront these challenges and extend the frontiers of what is achievable with these models.

6. Conclusions

This paper highlights a summary of machine learning cyber-security applications, cov-
ering data pre-processing, models, and optimization techniques applicable across various
domains. The survey discusses fundamental concepts, current advancements, components
of machine learning cyber-security applications, and existing challenges. A major contri-
bution of this survey is the classification of machine learning models into four categories:
supervised, semi-supervised, unsupervised, and reinforcement learning. Through this
classification, we introduce a taxonomy of existing developments in machine learning classi-
fication models based on their shared characteristics. Optimization techniques are necessary
techniques in developing optimal and successful machine learning algorithms, and we
provide a concise discussion of these techniques. Additionally, we outline open challenges
and potential research directions to inspire practical and future research endeavors.
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