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Abstract: With the evolution towards the interconnected future internet spanning satellites, aerial
systems, terrestrial infrastructure, and oceanic networks, availability modeling becomes imperative
to ensure reliable service. This paper presents a methodology to assess end-to-end availability in com-
plex multi-tiered architectures using a Markov model tailored to the unique characteristics of cloud,
fog, edge, and IoT layers. By quantifying individual tier reliability and combinations thereof, the
approach enables setting availability targets during the design and evaluation of operational systems.
In the paper, a methodology is proposed to construct a Markov model for the reliability of discrete
tiers and end-to-end service availability in heterogeneous multi-tier cloud–fog–edge networks, and
the model is demonstrated through numerical examples assessing availability in multi-tier networks.
The numerical examples demonstrate the adaptability of the model to various topologies from con-
ventional three-tier to arbitrary multi-level architectures. As connectivity becomes ubiquitous across
heterogeneous devices and networks, the proposed approach and availability modeling provide an
effective tool for reinforcing the future internet’s fault tolerance and service quality.

Keywords: multi-tier networks; availability; cloud computing; internet of things; Markov models

1. Introduction

The internet, in its present form, is an intricate mosaic of interconnected networks,
devices, and protocols. As we journey towards a more connected world, the imminent
influx of the Internet of Things (IoT), coupled with advancements in edge and fog comput-
ing, promises to add layers of complexity to this landscape. This evolution, coupled with
the impending amalgamation of space–air–ground–ocean networks, foreshadows an even
more sophisticated internet architecture on the horizon.

1.1. Evolution and Significance of Multi-Level Communication Networks

From its inception, the internet’s expansive web has grown in complexity and im-
portance. Currently, with the emergence of IoT and the nascent fields of edge and fog
computing, we are on the cusp of more comprehensive integration. The merger of space–
air–ground–ocean networks into this fold foretells an even more nuanced future for the
internet’s structure.

As our technological era progresses, a surge in devices connecting to the internet
is evident, ranging from domestic sensors in smart homes to industrial robots. These
multi-level communication networks, now an integral part of modern connectivity, are
distinguished by their multiple tiers. Each layer, whether it be cloud, fog, or edge, comes
with unique computing, storage, and communication capacities. Central to this evolution
is the cloud–fog–edge computing dynamic, which is decentralizing intelligence and trans-
forming service delivery. At the core of this system, robust centralized cloud data centers
stand tall, processing and storing colossal amounts of data from myriad endpoints.
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1.2. The Imperative of High Availability

In this digital age, the global populace expects uninterrupted, seamless online service,
spanning leisure activities to mission-critical tasks like remote surgeries. The gravity of
ensuring consistent availability grows as we further transition to a world deeply interwoven
with digital threads. Here, downtime is not merely an inconvenience. For businesses, brief
lapses can cause substantial financial dents, tarnish brand images, and erode consumer
trust. The future internet is not merely a tool for browsing or entertainment; it is poised to
be the linchpin in pivotal systems, from autonomous transit and smart city frameworks to
healthcare and defense mechanisms.

The pressing question now is: How do we guarantee this indispensable availabil-
ity across the labyrinthine multi-tiered internet? As we integrate more layers into the
internet, each with its own potential pitfalls, the challenge intensifies. The concept of
service availability, pivotal to a system’s operational effectiveness, emerges as a primary
metric alongside others like throughput and latency. Yet conventional reliability modeling
techniques falter when faced with these multi-tiered behemoths.

1.3. Objective and Contributions of the Paper

This paper rises to the occasion, bridging this gap with a tailored methodology of mod-
eling for comprehensive analysis of end-to-end availability in multi-tier communication
setups. This technique not only sheds light on current systems but also provides additional
insight for future designs, ensuring the reliability and efficacy of next-generation systems.

While traditional cloud–fog–edge models have three main tiers, modern multi-level
architectures can be more complex. In large-scale systems covering expansive geographic
areas, additional hierarchical levels may emerge.

However, traditional reliability modeling techniques have limitations when applied to
complex, multi-level architectures.

This work aims to address this gap through a novel modeling approach tailored
to analyze end-to-end availability in multi-tier communication systems. The proposed
technique offers new ways to evaluate existing systems and set availability requirements
during the design phase.

2. Related Works

In recent years, the evolving landscape of geographically distributed networks, espe-
cially with the integration of cloud, fog, and edge computing, has received considerable
attention in both academia and industry. The intersection of these architectures with
Quality of Service (QoS), specifically availability, has also been a focal point of numerous
studies. This section delves into the seminal and contemporary works that have laid the
groundwork for the current understanding and guided the research presented in this article.

Active research is underway exploring architectures, orchestration, optimization,
availability modeling, fault tolerance, and security specifically for emerging multi-tier
computing ecosystems.

Next-generation communication networks will need to handle resource-intensive
applications for numerous users. While cloud computing can assist with offloading these
tasks, its centralized nature results in significant communication delays, making it unsuit-
able for emerging delay-sensitive applications. The edge and/or cloud can be combined to
facilitate the task offloading problem. The authors of [1] presented a fundamental survey
on integrating edge and cloud computing to navigate the challenges of task offloading,
emphasizing diverse optimization strategies. The comprehensive review underscored
the intrinsic importance of this topic, concluding with open challenges and avenues for
future research.

The main research directions and publications related to multi-level cloud–fog–edge
computing architectures and assessing their reliability and availability include different topics:

• Architectures and methodologies for integrating cloud, fog, and edge layers into
unified platforms for seamless operation and resource orchestration, e.g., OpenFog
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Consortium reference architecture [2], multi-access edge computing standards of the
European Standards Organization [3], fog computing and networking theory, practice,
and applications [4].

• Management and virtualization techniques to dynamically allocate resources across
discrete layers, e.g., software-defined networking approaches [5].

• Programming models and application development approaches tailored for dis-
tributed multi-tier environments, e.g., workflow partitioning techniques in a fog
application placement mechanism under the requirement of QoS satisfaction de-
gree [6,7].

• Performance modeling and optimization, e.g., analytically modeling attributes like
latency, reliability, and power consumption to optimize tiers [8–10].

• Assessing availability and reliability of multi-tier applications using probabilistic
models to combine individual tier reliabilities [11–14].

• Machine learning techniques to predict reliability from system data and model correla-
tions between tiers [15–17].

• Hardware/software fault tolerance mechanisms tailored to heterogeneous distributed
architectures to enhance reliability [18–20].

• Security, privacy, and trust considerations in interconnected environments spanning
administrative domains with decentralized data [21–23].

There are many publications with real-world case studies and applications of multi-
tiered computing systems.

The authors of [24] proposed an architectural and implementational model for real-
time hardware monitoring and management to enhance security in heterogeneous networks.
The system used symmetrical design to allow data wrapping and transport across diverse
operating systems.

A multi-layered architecture was proposed in [25], using the Modbus TCP protocol
to integrate heterogeneous hardware and software components for deploying experi-
mental smart grids and microgrids with photovoltaic integration. An application of the
photovoltaic-based microgrid demonstrated and validated the architecture.

The authors of [26] analyzed a multi-tier cobalt supply chain case for electric vehicles to
demonstrate the challenges of achieving transparency for sustainability in complex, multi-
tier supply chains, finding that the existing literature had oversimplified operationalizing
transparency in multi-tier, sustainable supply chain management. The study compared
supply chain maps before and after an auditing and mapping project to outline how
focal companies could increase multi-tier supply chain transparency. The authors of [27]
surveyed and classified edge computing architectures for IoT according to factors like data
placement, orchestration, security, and big data capabilities, comparing architectures with
various features, limitations, and solutions while also mapping architectures to IoT models
and recommending edge computing usage scenarios for IoT applications.

The survey in [28] comprehensively analyzed time-sensitive applications in fog com-
puting, categorizing surveyed articles and discussing concepts of real-time and near real-
time systems to understand the applications being implemented and how their temporal
requirements are addressed.

The two-tier computation offloading strategy for multi-user, multi-MEC servers in 5G
heterogeneous networks was investigated in [29], with the authors proposing an efficient
particle swarm optimization algorithm to minimize mobile device computing overhead,
including completion time and energy consumption. The simulation results showed that
the algorithm reduced overhead and guaranteed convergence compared to baselines.

A distributed, multi-tier, emergency alert system using IoT sensors for real-time,
georeferenced critical event detection in smart cities was proposed in [30], which delivered
configurable emergency alarms based on detected events, area risk levels, and temporal data
to enable flexible and modular perceptions of emergencies. Implementation on open-source
platforms and real-time visualization demonstrated a useful application of the system as a
supporting service for adaptive, IoT-based, emergency-aware, smart city applications.
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The authors of [31] defined and formulated the problem of enabling smart neighbor-
hoods in the context of smart grids through an extensive literature review on fog computing,
smart grids, microgrids, and their challenges, identifying fog computing as a promising
solution to provide ultra-low latency and reliable, secure, cost-effective power to smart
grids serving smart neighborhoods. Potential solutions and the integration of challenges
were discussed without rigorous analysis.

In some specific case studies, e.g., unique geographical terrains and densely packed
urban settings, conventional three-tier systems occasionally fall short. These gaps in service
birthed the need for more granulated multi-tier systems, such as those employing aircraft
and drones [32] or satellites in the space segment [33,34]. These innovations aimed to ensure
consistent quality of service (QoS) and enhance the reliability of networks, irrespective of
the operational environment.

Prior works on availability modeling in multi-tier networks have limitations in several
areas, which this research aims to address, including:

• Most existing analytical models focus on reliability within isolated tiers rather than end-
to-end availability across systems. For example, the authors of [2–4,12–14] assessed
the reliability of individual cloud, edge, or fog tiers but did not study overall system
availability. This fails to account for cascading failures between interdependent layers.

• Simulation-based techniques like those in [8–10] provide high fidelity but lack the
generalizability of closed-form mathematical models. They also incur high computa-
tional overhead.

• Approaches such as those in [7–9] tend to study cloud, fog, and edge in separation
rather than as integrated systems spanning all layers.

• A few models, like the ones in [25,26,30], consider complex multi-level architectures be-
yond basic three-tier topologies but the end-to-end availability of the service provided
by all layers was not analyzed.

• There is limited guidance for setting availability requirements during the design
process based on user needs, as seen in previous works like [12–14].

Our proposed modeling methodology attempts to overcome these gaps by:

• Leveraging Markov chains to create an analytical model of availability spanning edge,
fog, and cloud tiers;

• Accounting for inter-tier dependencies and cascading failures in an integrated system-
level model;

• Providing a flexible approach adaptable to different multi-tier architectures, including
sublayers;

• Enabling quantitative availability target setting based on user specifications;
• Striking a balance between model simplicity, mathematical tractability, and practical

fidelity.

This work aims to develop an analytical technique for availability modeling in complex,
heterogeneous communication networks by considering end-to-end system availability
across interconnected tiers. The motivation behind this study is twofold. Firstly, there is
a necessity to formulate a structured methodology that gauges the availability of these
multi-level systems. Such a methodology would allow stakeholders to predict, assess, and
optimize their networks based on robust mathematical foundations. Secondly, in an era
in which data-driven decisions reign supreme, having a model that can guide the design,
implementation, and maintenance of future network architectures is invaluable.

While existing works have made valuable contributions to availability modeling in
multi-tier networks, the proposed Markov-based methodology offers several advantages:

• Compared to purely analytical models like those in [12–14], the proposed approach
better handles cascading failures between interdependent tiers. The Markov chain
captures state transitions across layers.
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• Unlike purely simulation-based techniques in [15,16], the proposed methodology
provides a generalizable mathematical model with lower computational overhead.
The Markov model enables broader insights.

• In contrast to methods focusing only on specific tiers, like edge [27] or fog [28], the
proposed unified Markov approach models the entire multi-tier topology. This enables
assessing end-to-end availability.

• The proposed model is adaptable to complex multi-level architectures beyond basic
three-tier systems, which most works were limited to studying, as in [32–34]. The
proposed Markov approach scales to any topology.

• The methodology enables quantitative availability target setting during design, which
most of the literature lacks. This ties modeling to user requirements.

• Compared to reliability-focused models like in [18–20], the proposed approach em-
phasizes measuring availability, which directly relates to service uptime guarantees.

While no single method will excel in all aspects, the proposed Markov modeling
approach balances generality, mathematical tractability, design insight, and focuses on
end-to-end availability across complex multi-tier systems. By leveraging Markov chains,
it provides a flexible and practical methodology for availability analysis in emerging
heterogeneous networks.

3. Materials and Methods
3.1. Traditional Three-Level Cloud–Fog–Edge Architecture

The traditional three-level architecture, comprising cloud, fog, and edge, represents
a tiered approach to data processing and management in geographically distributed net-
works. Each level is uniquely positioned in the data processing chain, offering specific
functionalities that cater to distinct needs (Table 1). This table offers a summarized overview
of each layer’s characteristics, which stem from a convergence of widely accepted and
recognized information within the field.

The typical three-level architecture is shown in Figure 1.
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Table 1. Assignment of levels in three-level cloud–fog–edge architecture.

Level Location Functionality Communication

Cloud
Level

Data centers that can be
continents away from the

data source.

Houses vast computational resources,
data storage, and advanced analytics

tools. Ideal for complex operations and
long-term data storage.

Primarily communicates with the fog
layer, receiving aggregated or processed

data, and sending back processed
insights or commands.

Fog Level

Typically within the local
network infrastructure,

e.g., in gateways, routers,
and local network nodes.

Offers intermediate processing
capabilities, often handling tasks like

data aggregation, preliminary analytics,
and local storage. It can offload some of
the immediate processing needs from the

edge while filtering and reducing the
amount of data sent to the cloud.

Acts as a two-way bridge,
communicating with the cloud for more

advanced processing or updates and
with the edge to receive raw data or to

send immediate commands.

Edge Level

Typically located close to
the data source, possibly
within the same premises
or even embedded within

devices.

Immediate processing of data: because of
the proximity to the data source, edge

devices can process data almost instantly,
making them crucial for time-sensitive

applications.
Decentralized decision-making: they can
make on-the-spot decisions based on the

data they collect, without necessarily
having to send it to a centralized system.

Primarily communicates with nearby
devices or systems.

Can send summarized or processed data
back to the fog or cloud layers for further

processing or storage.
Suitable for intermittent

connectivity—not always required to be
online.

IoT Level

Integrated into our daily
environment, from our

homes and workplaces to
public spaces. These are

the endpoints of data
collection.

Raw data collection: IoT devices
primarily function as data collectors,
sensing changes in their environment

and reporting them.
Limited processing: Some IoT devices
have the ability to minimally process
data, deciding what is worth sending

forward in the network hierarchy.

IoT devices usually communicate data to
the edge level, which might be a local

gateway or processing unit. This
communication might be continuous or
event-driven (i.e., only when a change

is detected).
Uses low-power communication

protocols like Zigbee, LoRaWAN, or BLE
(Bluetooth Low Energy) for short-range

transmissions.

At the top is the cloud tier, comprised of massive, centralized data centers providing
pooled compute, storage, and application services on demand.

Next is the fog layer, which distributes some networking, computing, and storage
capacity into local access networks to reduce latency and network load. Fog nodes include
routers, gateways, micro data centers, and more.

The edge tier aggregates and processes data flows from the IoT layer below it. It
consists of devices like desktop computers, cameras, base stations, and local servers. The
edge provides the first level of computing/storage resources outside end devices.

The IoT sublayer contains the plethora of endpoint sensors, wearables, appliances,
vehicles, control systems, and other devices embedded in the physical environment. The
IoT layer generates raw data from the field.

By separating the edge and IoT levels, it is possible to obtain a clearer understanding
of the distribution of computational tasks and data flow within a multi-tier system. The
IoT level’s primary job is data capture with minimal processing, while the edge level acts
as a local decision maker, processing and analyzing the data in near real time.

In operation, IoT devices transmit data to the edge for localized processing. The edge
passes summarized or filtered information into the fog layer for intermediate processing
and buffering closer to users. The cloud finalizes processing, analyzes aggregated data,
and provides global services.

This four-tier model provides a more complete picture of multi-level architectures
spanning the centralized cloud, distributed fog/edge computing, and dispersed IoT end-
points. The IoT layer highlights the role of smart edge devices and systems producing and
consuming data.
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There are many examples of case studies illustrating applications of four-tier architec-
ture with cloud, fog, edge, and IoT layers.

Smart Transportation. In an intelligent transportation system, vehicles act as edge
nodes with onboard sensors and computers. Roadside units like traffic signals and message
signs provide fog-level computing and connectivity. The cloud tier collects and analyzes re-
gional traffic data to coordinate signals, dispatch emergency services, and relay information
to vehicles.

Smart Grid. Smart meters at homes and buildings work as edge devices to send
electricity usage data. Local transformers, substations, and routers comprise the fog layer
to handle neighborhood-level processing and communications. Utility providers leverage
the cloud for system-wide monitoring, control, analytics, and automation.

Video Surveillance. Networked security cameras are edge nodes that can pre-process
visual data before sending video feeds to the fog layer for further analysis, compression,
and storage. Additional analytics and long-term archives reside in the cloud.

Augmented Reality. AR headsets or glasses function as edge devices that integrate
real-time views with overlaid computer-generated content. Local gateways and micro data
centers provide fog-level processing such as occlusion handling and multi-user synchro-
nization. Heavy computing, like scene reconstruction and object recognition, takes place in
the cloud.

Remote Healthcare. Medical devices for patient monitoring make up the network
edge to collect health data. Fog infrastructure aggregates and pre-processes these data,
issuing alerts if needed. Centralized electronic health records are maintained in the cloud
for analytics and personalized care plans.

In different case studies, the layers of network architecture are presented by different
components. For example:

• Smart Agriculture:

- IoT—Sensors monitor soil moisture, crop growth parameters, weather, and live-
stock vitals.

- Edge—Gateways in fields pre-process sensor data and activate irrigation.
- Fog—Local farm servers aggregate data and optimize water/fertilizer levels.
- Cloud—Cloud services analyze long-term trends and provide global monitoring.

• Smart Retail:

- IoT—RFID tags track inventory. Point-of-sale and shopping apps capture pur-
chase data.

- Edge—Store servers filter noise and detect localized trends.
- Fog—Regional servers identify buying behaviors and optimize pricing.
- Cloud—Central cloud analyzes worldwide sales and shopping habits.

• Industrial Automation:

- IoT—PLCs, sensors, and actuators control production processes and machinery.
- Edge—Local control systems modulate manufacturing lines in real time.
- Fog—Plantwide monitoring and control systems enhance coordination.
- Cloud—Global cloud optimizes manufacturing operations and schedules.

• Smart Energy Utilities:

- IoT—Smart meters monitor household electricity usage. Grid sensors track power
levels.

- Edge—Neighborhood-level servers balance local loads.
- Fog—Regional systems regulate distribution across substations.
- Cloud—Cloud analyzes usage patterns and controls cross-region transmission.

3.2. Multi-Tier Systems

In the realm of geographically distributed networks, as the demand for real-time
processing and localized decision making has surged, the classical three-level architecture
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(cloud–fog–edge) has sometimes proven inadequate. This has led to the evolution of more
nuanced, adaptable architectures known as multi-tier systems. Multi-tier systems introduce
additional processing layers between traditional levels, thus enhancing the granularity of
data management and processing.

Here are some case study examples of multi-level cloud-fog-edge architectures:

• Smart City. A metropolitan area can have multiple tiers of fog infrastructure. A
neighborhood fog layer of gateways and micro data centers connects into a wider
city-level fog system for broader connectivity and storage, managed by a municipal IT
department. Both feed into a regional cloud data center.

• Private 5G Network. For a large corporate campus or industrial site, Wi-Fi can provide
a lower fog tier for indoor/short-range wireless access. 5G small cells overlay this
to cover the extended campus. A central on-premises private 5G core integrates the
radio access network with internal IT systems and an optional public cloud service.

• Retail Chain. Point-of-sale devices and inventory sensors in stores form the edge
layer. In-store servers and networking comprise the fog layer. Regional distribution
centers provide a second tier of fog resources. The central enterprise cloud contains
core business systems and analytics.

• Environmental Monitoring. A first tier of simple sensors monitors local conditions like
temperature. More advanced gateways aggregate data from clusters of these devices
over a wider area. Periodic drone flights act as temporary fog hotspots to backhaul
data. The cloud provides centralized data historian capabilities.

In the modern age, as digital communication infiltrates nearly every aspect of our
lives, the need for a unified, seamlessly integrated network becomes more pressing. While
traditional network structures focused on specific domains, be it terrestrial, aerial, or
marine, the future is seen in the convergence of these domains, culminating in a robust,
all-encompassing communication paradigm known as the Space–Air–Ground Integrated
Network (SAGIN) [35–37].

At its core, SAGIN represents the zenith of multi-level networking, bringing together
the expansive reaches of space with the immediacy of terrestrial networks, the mobility of
aerial systems, and the depth of oceanic communication. It is a vision that extends beyond
the classic three-tier architecture of cloud, fog, and edge, encapsulating the vastness and
dynamism of our planet’s communication needs. This AI-enabled architecture represents
not just an upgrade but a transformative shift in how we envision and implement network
infrastructure.

The multi-level architecture of SAGIN (Figure 2) is not merely a stratification of
platforms but a meticulously crafted interplay of functionalities, in which each level brings
its unique strengths.

The space domain in SAGIN refers to satellites and other space-based assets. These
satellites bridge gaps between remote areas, providing global coverage. They act as high-
speed data relays, ensuring that no corner of the Earth remains disconnected. In this
expansive void, they are the guardians, ensuring that the internet’s reach is truly worldwide,
unimpeded by terrestrial challenges such as mountains or dense urban construction. In the
context of studying a multi-tier or multi-layer satellite communication system, satellites
in low Earth orbit (LEO), medium Earth orbit (MEO), and geostationary orbit (GEO) can
be considered as three distinct layers. Each of these layers serves specific functions and
possesses unique characteristics that influence their operational purposes and the types of
services they provide (Table 2). As with previous discussions, the information provided is
a synthesis of commonly recognized knowledge in the realm of satellite communications.
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Table 2. Layers of the satellite communication system.

Layer of Space
Domain Proximity Characteristics and Functions Applications

LEO Layer
Closest to the Earth, typically
at altitudes between 160 and

2000 km.

Quick data transmission due to low
latency, high-resolution Earth

imaging. Often involves
constellations for continuous global

coverage.

Internet service in remote areas, Earth
observation, space research, and

scientific studies.

MEO Layer
Occupying a mid-range

altitude, typically between
2000 and 35,786 km.

Acts as a bridge between the
closeness of LEO and the wide

coverage of GEO, balancing latency
and coverage.

Primarily home to global navigation
satellite systems (GNSS) like GPS,

GLONASS, and Galileo. Also utilized
for certain communication purposes,

especially in areas lacking
infrastructure.

GEO Layer
Positioned at an altitude of
exactly 35,786 km above the

equator.

Provides a fixed view of a particular
region of the Earth, facilitating

continuous coverage of that region.

Ideal for stable communication links,
TV broadcasting, weather monitoring,

surveillance, and defense systems.

The air domain consists of drones, aircraft, and other aerial vehicles. These airborne
assets provide a dynamic layer of connectivity capable of rapidly adjusting to changing net-
work demands. For areas where terrestrial networks might be momentarily compromised,
perhaps due to natural calamities, these aerial entities can swoop in, providing immediate,
albeit temporary, connectivity. They act as bridges, ensuring that communication remains
uninterrupted during transitions or disturbances.

Terrestrial or the ground domain in SAGIN remains the primary backbone for most
communication needs. From massive data centers to intricate networks of fiber-optic
cables, the ground-based infrastructure supports the bulk of data processing, storage,
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and transmission. With the rise of smart cities and intelligent transportation systems, the
ground becomes a bustling hub of IoT devices, all communicating, processing, and making
decisions in real time.

The ocean domain dives deep, quite literally. With underwater sensors, submarines,
and aquatic drones, this layer seeks to harness the vastness of the oceans. Whether for
marine research, tracking underwater pipelines, or ensuring the safety of shipping routes,
the ocean level provides a crucial link, allowing for real-time data collection and communi-
cation even in the most remote marine environments.

The multi-level design of SAGIN is not merely about its spatial organization but also
about its functionality symbiosis. Each level, while distinct in its operations, complements
the others in one common network.

In the SAGIN architecture, the integration of physical systems with digital network
hierarchies like cloud–fog–edge–IoT presents a fascinating yet intricate challenge. Each
segment of SAGIN has specific functionalities and plays a vital role in ensuring seamless
communication.

1. Cloud Level. The cloud represents the most abstract and vast digital storage and
computational capacities. In the context of SAGIN, it includes:

• Space. Ground-based control centers for space objects can interface with cloud
platforms to handle vast amounts of data from satellites, ensuring global coverage
and communication with remote satellites.

• Air. Major control centers for managing large-scale aerial operations, such as
fleets of drones or aircraft, rely on cloud infrastructure for coordination and data
analysis.

• Ground and Ocean. Large data centers, tasked with handling terrestrial and
marine data, connect directly to the cloud.

2. Fog Level. Fog computing acts as an intermediate processing layer, residing closer to
data sources:

• Space. Nearby satellite clusters can communicate and process data in a local fog
network before sending data down to Earth or to another satellite cluster.

• Air. Aircraft and high-altitude drones can have onboard fog computing systems
to process data in real time before sending essential data to the ground or the
cloud.

• Ground. Infrastructure like cellular towers or regional data hubs. For the marine
context, surface vessels or buoy systems can have fog systems to handle localized
oceanic data.

3. Edge Level. This level is closer to the data source and often responsible for more
immediate, time-sensitive computations:

• Space. Satellites, especially those in low Earth orbits, are edge devices gathering
and sometimes processing data before sending data to the ground or across the
satellite network.

• Air. Individual drones or low-altitude aircraft can act as edge devices, making real-
time decisions based on immediate data, like adjusting flight paths for obstacles.

• Ground. Roadside units (RSUs) in intelligent transportation systems, regional
communication hubs, and even individual buildings in smart cities operate at the
edge level.

• Ocean. Submarines or deep-sea drones equipped with sensors and communica-
tion tools act as edge devices, processing underwater data in real time.

4. IoT Level. This is the level at which data are primarily gathered.

• Space. There is not a direct IoT equivalent in space in the traditional sense.
However, individual sensors on satellites that pick up specific types of data can
be seen as IoT devices.
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• Air. Sensors on drones or aircraft, which gather data like atmospheric conditions,
camera feeds, etc., are the IoT devices of the air segment.

• Ground. In a smart city, for example, traffic cameras, environmental sensors,
or even devices in our homes are all IoT devices. In intelligent transportation
systems, vehicular onboard units (OBU) operate at this level.

• Ocean. Primary sensors placed on the ocean floor, those attached to marine
animals for tracking, or sensors on floating buoys fall under the IoT level.

The SAGIN system’s intricacies and complexities make it a fascinating model for
multi-level digital networking. The alignment of its physical systems with the cloud–fog–
edge–IoT hierarchy ensures optimal data processing, transmission, and storage, regardless
of where the data originate, be it space, air, ground, or ocean.

While SAGIN provides a comprehensive framework integrating multiple domains,
its true strength lies in its adaptability. Depending on the application, this network can
be molded, emphasizing certain layers and domains over others, ensuring optimal perfor-
mance, responsiveness, and efficiency.

Depending on the specific application, different SAGIN domains (space, aviation,
terrestrial, oceanic) can form different configurations of the network architecture, which in
general can be represented by a hierarchical structure with a different number of sublevels
in the classical three-level cloud–fog–edge system.

Without differentiating between main levels and sublevels, and simply viewing the
architecture as a hierarchy of n distinct levels, the network configuration from an application
operation point of view can be presented by the model shown in Figure 3.
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Figure 3. The multi-level cloud–fog–edge architecture.

In such a model, you only need to keep track of each level and its associated nodes.
Let us represent a node in the hierarchy using two indices:
i—level in the hierarchy
j—index within that level
So, node Nij would be represented as j node in the i level.
Without differentiating between main levels and sublevels, and simply viewing the

architecture as a hierarchy of n distinct levels, the network configuration from an application
operation point of view can be presented by the model shown in Figure 3. In such a model,
you only need to keep track of each level and its associated nodes.
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The hierarchy of the architecture can be represented by a set of levels L = {Li|i = 1, n
}

and set of nodes N =
{

Nij

∣∣∣i = 1, n; j = 1, k
}

, where i represents the level in the hierarchy
and j represents an index within that level.

A link represents communication between two nodes. It can be represented as
E
(

Nij, Nνη

)
, where Nij, Nνη are nodes. Because of our hierarchical model, i should al-

ways be one unit less than ν (i.e., ν = i + 1), denoting the vertical connectivity between
adjacent levels.

This representation simplifies the hierarchical nature by only capturing the vertical
connections between nodes in adjacent levels. The lack of distinction between primary
levels and sublevels streamlines the model while retaining the essence of the hierarchical
structure and main characteristics of multi-tier systems:

• These systems can dynamically adapt to different scenarios, allowing for customized
deployments based on specific geographic or operational requirements.

• Additional tiers can lead to reduced data travel distances and, consequently, lower
latency, which is crucial for applications demanding near instantaneous responses.

• By adding or removing tiers based on demand, multi-tier systems can be seamlessly
scaled up or down, accommodating fluctuating data volumes and processing needs.

4. Results

The success and efficiency of multi-level systems, whether traditional or incorporating
segments such as space, are deeply entrenched in the Quality of Service (QoS) they offer
and their inherent reliability. Ensuring high QoS and reliability becomes especially pivotal
in a complex, geographically distributed network.

QoS denotes the performance level of a service or system, encapsulating various
parameters such as latency, throughput, availability, and error rate. In multi-level systems:

• Latency refers to the time it takes for a packet of data to move from the source to the
destination. In geographically distributed networks, this is influenced by the number
of tiers the data have to traverse and the nature of those tiers (terrestrial, aerial, or
orbital).

• Throughput is the amount of data that can be transferred within a given time frame. It
is influenced by the bandwidth and capacity of each tier.

• Availability is the likelihood that the system or service is operational and accessible
when needed. It is directly correlated with the system’s reliability.

• Error rate is the frequency at which errors occur during data transmission or processing.
In multi-level systems, errors can arise from factors like signal interference, hardware
malfunctions, or software glitches.

In the context of multi-level systems, reliability focusing on availability stands out as
a paramount concern. Availability, in essence, indicates the system’s operational uptime,
ensuring that users can access services without disruptions.

There are some main challenges in maintaining QoS and reliability:

• As the number of connected devices grows, ensuring consistent QoS and reliability
can become challenging.

• Effective communication and coordination between tiers are essential, especially in
dynamic scenarios.

• External factors like space weather for satellite tiers, physical obstructions for aerial
tiers, or terrestrial network congestion can pose challenges.

While the multi-tier architecture of geographically distributed networks offers numer-
ous advantages in terms of scalability, flexibility, and coverage, maintaining a consistent
quality of service and ensuring high reliability are fundamental to the system’s success.
As technology advances, strategies to bolster QoS and reliability will be crucial for these
multi-level systems to fulfill their promise and potential.

Reliability, in the context of geographically distributed networks, signifies the capa-
bility of the system to provide uninterrupted service despite inherent uncertainties and
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potential failures. Historically, several mathematical models have been utilized to analyze
and predict reliability. Among them, Markov reliability models have emerged as a potent
tool due to their adaptability and comprehensive nature [38].

Markov reliability models, with their probabilistic approach and inherent flexibility,
serve as invaluable tools in the analysis of complex systems. Their adaptability makes them
an apt choice for the proposed model, aiming to understand and predict the availability of
service in geographically distributed networks [39].

Adapting Markov reliability models for multi-level systems requires an understanding
of the interplay between various layers, their unique characteristics, and the overarching
network dynamics. When appropriately tailored, these models can provide insight into
the reliability and availability of service across the entire network, guiding both design
decisions and operational strategies.

In any complex system, particularly multi-level networks, the concept of availability
stands out as a paramount metric. Availability denotes the proportion of time a system, or
any of its components, is operational and ready to deliver the expected service. Within the
framework of Markov reliability models adapted for multi-level systems, understanding
and measuring availability demands a specialized approach.

Availability, in terms of QoS, is often expressed as the fraction of time a service or
system is operational and can be accessed, as expected by users or other systems. This is one
of the key metrics in service-level agreements (SLAs) across various industries. Availability
A for a given component is the probability that it is operational when required. It can be
represented as:

A =
Uptime

Uptime + Downtime
(1)

where:

• Uptime refers to the amount of time a system, service, or component is operational
and available to perform its intended function. Uptime is essentially the period when
a system is functioning without any interruptions.

• Downtime represents the duration when a system, service, or component is not opera-
tional due to planned maintenance, unplanned outages, or failures. It is the period
when the system is not available for its intended purpose.

For a multi-level system, if we assume that the service for the endpoint depends
on each component working sequentially (like a series system in reliability theory), the
availability of end-to-end service As is the product of the availabilities of each of the
components:

As =
n

∏
i=1

Ai (2)

where n is the number of levels.
At the apex of multi-tier hierarchy (level i = n) is the cloud tier. Quantifying cloud ser-

vice availability depends on numerous architectural factors, including redundancy, failover
mechanisms, and distributed deployment across geographically diverse data centers. De-
tailed analytical modeling of cloud reliability is an active research area, such as in [40].
However, in practice, cloud providers specify availability via service-level agreements
(SLAs) with quantified uptime guarantees. Industry standards range from 99% uptime for
routine, non-critical services up to “five 9s” (99.999%) or higher availability for mission-
critical applications where even rare downtime has unacceptable consequences [41]. Thus,
within our multi-tier availability model, the cloud tier availability Am can be represented by
a constant value dictated by the SLA tier purchased from the provider rather than requiring
an elaborated availability model. This parameterized SLA approach allows flexibility in
capturing a range of cloud reliability characteristics in the overall end-to-end quantification.

We can represent the availability of the endpoint as a product of the availabilities
along a single path from the top (cloud) to the endpoint. In essence, the availability of the



Future Internet 2023, 15, 329 14 of 23

endpoint becomes the product of the availabilities of all the individual connections leading
to it, from the top to the bottom of the hierarchy (Figure 4).
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Endpoint availability is a crucial metric in multi-tier systems, providing insight into
the overall system’s ability to offer service without disruptions. For the multi-tier systems
under study, determining endpoint availability can be determined using the following
methodology. In the methodology described, availability is assessed step-by-step, factoring
in the unique attributes of each hierarchy level and their interactions. The technique
involves the next steps:

1. Assessing the local availability between an endpoint device and its connected node at
the lowest tier using a dedicated two-state Markov chain model representing up and
down states. This local availability reflects reliability just for the specific endpoint’s
channel, disregarding other endpoints.

2. Iteratively applying the same Markov model at each higher tier to quantify the avail-
ability of nodes providing dedicated service to the tier below. Failures of other nodes
at a given tier are assumed to not affect service to the endpoint.

3. Taking the product of the local availability values at each tier to derive the overall
end-to-end availability for the selected endpoint and service. This combines reliability
along the hierarchical service provisioning path.

The model can be adapted to various multi-tier topologies by adjusting the number
of tiers and Markov parameters. It provides a probabilistic methodology to assess service
availability spanning interconnected heterogeneous network resources.

The Markov model is the key element in the described methodology. Let us develop
the specified Markov model for one level of the architecture under consideration and
determine the availability of the dedicative service for the endpoint element in this model.

The main interest in this study is the definition of availability of service Ai provided
to the endpoint node as a dynamic object at the i (i = 1, . . . n− 1) level.

In practice, when organizing access to user applications, it is of interest to determine
the availability of service for a separate dedicated node (marked service in Figure 4). In this
case, the user is not interested in the availability of service at all other nodes or IoT devices
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and applications provided for other users. Let us study the availability Aj of a dedicated
endpoint service (DES) at the j (i = j, . . . n− 1) level for one selected IoT device.

For a practical important system with l = 1 repair bodies and k nodes at the level of
hierarchy architecture under study, the behavior of the examined system is described by
the Markov Chain state transition diagram (Figure 5), where Hi represents the state with i
failed nodes, but the dedicated user service is fault-free, and Hi f represents the state with i
failed nodes unused by the dedicated user and one failed DES.
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Figure 5 illustrates the Markov model for analyzing the availability of a dedicated
endpoint service (DES) within a tier of the multi-tier architecture at each level of hierarchy
architecture.

The model consists of state Hj representing j nodes failed but the DES still working,
and state Hj f denotes j nodes failed along with failure of the DES. The system can be in
state Hx with probability px(t)|∀x .

The transitions between states are governed by the failure rate λ and repair rate µ.
Both failure and repair transitions are shown between the working and failed DES states.

From working state Hj, failure of non-DES nodes lead to a state with a higher index, j.
Repairs from state Hj f bring the DES back to working state Hj.

Solving this continuous-time Markov chain provides the steady-state probabilities of
being in each state. The availability of the DES is computed by summing the probabilities
of being in operational state Hj.

This elegantly captures the reliability characteristics of the DES within its tier environ-
ment. Extending this to multiple tiers gives an end-to-end multi-tier availability model.

The flexibility to specify failure and repair rates enables modeling a range of envi-
ronments from reliable to unstable. This is a core strength of the Markov approach to
availability analysis.

On the basis of the diagram (Figure 5), the Chapman–Kolmogorov system of differen-
tial equations can be writing in accordance with the general rules [39]:

p′0(t) = −kλp0(t) + µp1(t) + µp0 f (t)
p′1(t) = (k− 1)λp0(t)− [(k− 1)λ + µ]p1(t) + µp2(t) + 1

2 µp1 f (t)
. . .

p′k−1(t) = λpk−2(t)− (λ + µ)pk−1(t) + 1
k µpk−1, f (t)

p′0 f (t) = λp0(t)− [(k− 1)λ + µ]p0 f (t) + 1
2 µp1 f (t)

(3)

p′1 f (t) = λp1(t) + (k− 1)λp0 f (t)− [(k− 2)λ + µ]p1 f (t) + 2
3 µp2 f (t)

. . .
p′k−1(t) = λpk−1(t) + λpk−2, f (t)− µpk−1, f (t)
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The normalizing condition is:

∑
i∈z

pi(t) = 1, z = 1, k− 1, 0 f , (k− 1) f (4)

For stationary conditions of operation, the system of differential Equations (3) and (4)
is transformed into a linear system of equations, in which p′i(t) = 0, ∀i and pi(t) = Pi, ∀i.
Steady-state probabilities can be determined in this case in accordance with the general
rules [39]:

Pi =
(k− 1)!

(k− i− 1)!
γiP0, 1 ≤ i ≤ k− 1

Pi, f =
(k− 1)!(i + 1)
(k− i− 1)!

γi+1P0, 0 ≤ i ≤ k− 1

The value of P0 can be obtained by replacing Pi, 1, k− 1 and Pi, f , 0, k− 1 in the
normalizing Equation (4):

P0 =

[
1 +

k−1

∑
i=1

(k− 1)!γi

(k− i− 1)!
+

k−1

∑
i=0

(k− 1)!(i + 1)γi+1

(k− i− 1)!

]−1

Considering the obtained expressions for steady-state probabilities, the availability of
the DES at the one hierarchy level is obtained as

A1 = 1− ∑
∀i, f

Pi f =
a1

a1 + a2
, (5)

where:

a1 = (k− 1)!
k−1

∑
i=0

γi

(k− i− 1)!
,

a2 = (k− 1)!
k−1

∑
i=0

(i + 1)γi+1

(k− i− 1)!
,

γ = λ/µ

The resulting Equation (5) is generalized for determining the availability of a dedi-
cated endpoint service for other hierarchical levels in the architecture under consideration
Ai
(
i = 1, n− 1

)
. By consistently determining the availability of service at all levels in

accordance with the reliability indicators of their nodes, we can obtain the required service
availability in the system by substituting the obtained availability values into Equation (1).

Let us investigate the availability of dedicated user service at the i level in the network
in accordance with Equation (5).

Figure 6 shows the availability of a dedicated endpoint service at a single tier in the
multi-tier architecture as a function of the number of nodes at that tier.

Two cases with different node reliabilities are presented: 1 represents γ = 0.01 and
2 represents γ = 0.001, where γ is the ratio of failure to repair rate.

As observed, the availability of the endpoint service decreases as the number of nodes
increases, for both reliability cases.

The decreasing trend is logical since more nodes means more potential failure points,
reducing overall service availability.

The case with the higher γ value exhibits lower availability overall because of the
poorer inherent reliability (higher failure rate).

This demonstrates how the Markov model can quantify the availability of a single tier
based on node count and reliability. This tier availability then contributes to the overall
multi-tier availability based on the end-to-end path.
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The model enables exploring tradeoffs between tier size and reliability targets to
meet desired availability thresholds. This is valuable in designing multi-tier systems and
validating service-level agreements.

Figure 7 shows the unavailability parameter of unavailability U = 1− A as a function
of the number of nodes at a given tier for two different node reliability cases: (a) γ = 0.01
and (b) γ = 0.001. Higher unavailability corresponds to lower availability.
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As observed in both Figure 7a,b, the unavailability increases as the number of nodes
increases, demonstrating the reduced availability.

The trends illustrate how adding more potential failure points (nodes) reduces overall
service availability, seen through increasing unavailability.

Comparing Figure 7a,b also shows that better node reliability (lower γ) yields lower
unavailability, as expected.

This analysis demonstrates using the Markov model to quantify node relationships
between tier size, node reliability, and unavailability/availability metrics.

The model provides a tool to explore tradeoffs between dimension tiers and set
reliability requirements to achieve target availability thresholds.

Figure 8 shows the impact of the number of tiers in the multi-tier system architecture
on the unavailability of a dedicated endpoint service. Four cases with different numbers of
tiers (3, 5, 7, 9) are compared.



Future Internet 2023, 15, 329 18 of 23

Future Internet 2023, 15, x FOR PEER REVIEW 19 of 24 
 

 

This analysis demonstrates using the Markov model to quantify node relationships 
between tier size, node reliability, and unavailability/availability metrics. 

The model provides a tool to explore tradeoffs between dimension tiers and set 
reliability requirements to achieve target availability thresholds. 

Figure 8 shows the impact of the number of tiers in the multi-tier system architecture 
on the unavailability of a dedicated endpoint service. Four cases with different numbers 
of tiers (3, 5, 7, 9) are compared. 

 
Figure 8. Impact of the number of tiers on the unavailability of a dedicated endpoint service in the 
multi-tier system architecture. 

Within each architecture, the unavailability is plotted as a function of the reliability 
of nodes across tiers. 

As observed, adding more tiers consistently increases the unavailability of the 
endpoint service. 

The trend illustrates how additional tiers provide more points of potential failure that 
reduce overall service availability when aggregated end-to-end. The more layers data 
must traverse from the endpoint to the cloud, the lower the combined reliability. 

This demonstrates how the Markov model can provide insight into availability 
dependencies in complex multi-tier architectures in order to guide design tradeoffs 
between tier count and functionality factors. 

To quantitatively demonstrate the proposed modeling approach, we simulated a 
four-tier network with the following reliability parameters: 
- Tier 1 (IoT): 10 nodes, 𝛾 = 0.01 
- Tier 2 (Edge): 15 nodes, 𝛾 = 0.02 
- Tier 3 (Fog): 5 nodes, 𝛾 = 0.005 
- Tier 4 (Cloud): Availability = 99.95% 

Applying the Markov model methodology, the calculated availability of an endpoint 
device was 98.51%. Changing the reliability of sensors at the first IoT level of topology to 𝛾 = 0.001 improved the availability to 99.88%. Analysis of the obtained values showed 
that by changing the reliability of the sensors at the first level, it was possible to reduce 
the unavailability of the end-to-end service by 3.725 times. 

These quantitative results showcased the use of the proposed technique to evaluate 
availability in multi-tier networks under different configurations. The model enables 
architects to set numerical availability targets and determine required reliability levels 
and nodes per tier to achieve set goals. Developers can quantify the impact of topology 
changes and identify upgrade priorities. 
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multi-tier system architecture.

Within each architecture, the unavailability is plotted as a function of the reliability of
nodes across tiers.

As observed, adding more tiers consistently increases the unavailability of the end-
point service.

The trend illustrates how additional tiers provide more points of potential failure that
reduce overall service availability when aggregated end-to-end. The more layers data must
traverse from the endpoint to the cloud, the lower the combined reliability.

This demonstrates how the Markov model can provide insight into availability depen-
dencies in complex multi-tier architectures in order to guide design tradeoffs between tier
count and functionality factors.

To quantitatively demonstrate the proposed modeling approach, we simulated a
four-tier network with the following reliability parameters:

- Tier 1 (IoT): 10 nodes, γ = 0.01
- Tier 2 (Edge): 15 nodes, γ = 0.02
- Tier 3 (Fog): 5 nodes, γ = 0.005
- Tier 4 (Cloud): Availability = 99.95%

Applying the Markov model methodology, the calculated availability of an endpoint
device was 98.51%. Changing the reliability of sensors at the first IoT level of topology
to γ = 0.001 improved the availability to 99.88%. Analysis of the obtained values showed
that by changing the reliability of the sensors at the first level, it was possible to reduce the
unavailability of the end-to-end service by 3.725 times.

These quantitative results showcased the use of the proposed technique to evaluate
availability in multi-tier networks under different configurations. The model enables
architects to set numerical availability targets and determine required reliability levels and
nodes per tier to achieve set goals. Developers can quantify the impact of topology changes
and identify upgrade priorities.

The proposed Markov chain modeling approach provides a methodology backed by
quantitative analysis capabilities to assess the availability in geographically distributed
multi-tier networks. As connectivity expands across heterogeneous systems, this technique
offers an effective tool for ensuring robust and reliable service.

5. Discussion

Understanding the availability of dedicated connections in multi-tier systems, particu-
larly using a Markov chain model, offers a distinctive blend of advantages. The approach
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not only provides robustness in reliability analysis but also ensures that system designers
and maintainers have a more granular view of their network.

Each dedicated connection is analyzed in isolation, ensuring that its metrics are pure
and unaffected by other system components.

By understanding each connection’s behavior, tailored solutions can be created. In-
stead of a one-size-fits-all solution that may not address specific weak points, this granular
understanding enables targeted interventions.

To demonstrate the advantages of the proposed methodology for multi-tier availability
modeling, we can compare it, in general, against prior work using simulation-based
approaches and analytical models.

While simulations can provide high-fidelity availability estimates, such techniques are
typically computationally intensive and lack analytical tractability. The Markov modeling
approach is more efficient and enables mathematical analysis.

Purely analytical methods in the literature often model reliability within isolated tiers
but do not capture inter-tier dependencies and cascading failures. The proposed Markov
methodology is better equipped to account for cross-tier effects on end-to-end availability.

Some data-driven techniques are restricted to only predicting availability for specific
tiers, like edge devices. They have limited generalization capability across complex multi-
tier topologies. In contrast, the flexibility of the Markov modeling approach allows it to
analyze arbitrary heterogeneous architectures.

The proposed methodology balances model complexity, computational efficiency,
mathematical insight, and the ability to assess end-to-end availability across interconnected
systems. This makes it well suited for availability analysis in emerging multi-tier networks,
in comparison to the limitations of existing techniques.

The methodology can be iteratively applied to various connections across the system.
This modular approach means that as the system grows or evolves, the methodology
remains relevant and applicable.

By using the same Markov model across various dedicated connections, there is
uniformity in how availability is determined. This makes comparisons and aggregations
more coherent. The Markov chain model offers predictive insights by analyzing the
probability of transitions between states. This provides foresight, allowing stakeholders to
prepare for potential downtimes or disruptions.

Understanding the individual availability of dedicated connections can aid in quicker
root cause analysis during system outages or disruptions. Instead of sifting through the
entire system, the affected connection can be quickly identified and rectified. With a clear
understanding of which connections are most and least reliable, resources (both human
and technological) can be allocated more efficiently. This prevents wastage and ensures
that attention is directed where it is most needed.

The predictive insights from the Markov model can guide preventive maintenance
schedules. This can lead to cost savings, as potential disruptions are addressed before they
escalate into bigger issues.

While our discussion centers around IoT in multi-tier systems, the methodology is
versatile. It can be adapted for various domains and scenarios in which understanding the
availability or reliability of individual connections or components is pivotal.

The approach provides foundational data that can be used in more complex system
reliability models. For instance, once individual availabilities are understood, they can be
incorporated into systemic models that consider interdependencies and cascading effects.

In essence, the proposed approach, centered around the Markov chain model for
individual connection availability assessment, blends precision, scalability, and insightful
decision-making capabilities. It addresses both the immediate need to understand indi-
vidual connection behaviors and the broader objective of ensuring overall system health
and efficiency.

While the proposed approach offers a multitude of advantages, it is essential to
acknowledge its potential limitations to ensure a balanced understanding:
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• The Markov chain inherently assumes that the future state depends only on the
current state and not on the sequence of states that preceded it. This “memoryless”
property might not always be representative of real-world systems, especially if there
are underlying patterns or dependencies that span across multiple states.

• As the number of states and transitions increases in the system, the complexity of the
Markov chain model can grow exponentially. This state explosion can make the model
computationally intensive and challenging to manage and interpret.

• In rapidly evolving systems, transition probabilities might not remain constant over
time. If these probabilities change and the model is not correspondingly updated, the
predictions and availability calculations could be off the mark.

• While the approach focuses on the availability of individual connections in isolation,
real-world systems often have intricate interdependencies. Ignoring these can lead to
an over- or underestimations of system availability.

• The accuracy of the Markov chain model is heavily reliant on the accuracy and com-
pleteness of the input data. Inaccurate or incomplete data can lead to misleading
results.

• Markov chains work with discrete state spaces. If the system has continuous or hybrid
states, using a straightforward Markov chain model could be restrictive.

• For vast multi-tier systems with numerous nodes and connections, the model might
become unwieldy, especially if each connection is to be analyzed in detail.

• The proposed model might oversimplify some aspects of the system, especially if there
are nuances or subtleties that do not fit neatly into the Markov chain framework.

While the Markov chain model for assessing individual connection availability in
multi-tier systems is a potent tool, it is essential to be aware of its limitations. Careful
consideration and supplementary methods might be potentially needed to address these
limitations in specific scenarios.

In the burgeoning landscape of interconnected systems, the method of using Markov
chains to determine the availability in multi-tier systems not only provides innovative
solutions but also sparks a realm of untapped research opportunities.

One of the most imminent avenues is the expansion of our modeling technique.
With more deep analysis, the interconnectedness of the nodes and tiers within systems
will undoubtedly become more prominent. A deeper dive into understanding the subtle
nuances of these connections can lead to a more holistic assessment of availability. Moreover,
the shape and structure of the networks themselves, our very topologies, could be pivotal
in influencing system availability.

While our approach is generalized, there is immense value in customization. Different
sectors, be it healthcare, transportation, or energy, might present unique challenges and
requirements. Crafting domain-specific Markov models could enhance accuracy and
relevance. Concurrently, there is a treasure trove of insights waiting to be unearthed in
researching optimal system configurations tailored for specific applications.

The power of AI could be harnessed to predict future availability, making our systems
proactive rather than reactive. Furthermore, leveraging AI for anomaly detection could be
a game changer, preemptively identifying and mitigating potential points of failure.

Security, often viewed in isolation, has profound implications for availability. Under-
standing this interplay is crucial. Moreover, while our model was system-centric, we must
not lose sight of the end users. Incorporating metrics like Quality of Experience could make
our model more holistic, catering not just to system health but also user satisfaction.

6. Conclusions

In the paper, a methodology is presented for modeling the availability of services in
multi-tiered cloud–fog–edge networks, which are becoming pervasive in the evolution
towards the future internet. As interconnected systems spanning satellites, aerial platforms,
terrestrial infrastructure, and oceanic components continue proliferating, quantifying end-
to-end service availability becomes critical.
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The proposed Markov modeling approach provides an adaptable tool to assess and
optimize reliability across the heterogeneous networks and devices that will comprise
the future internet. By evaluating individual tiers and their composition into overall
availability, system architects can set quantitative availability targets during design based
on application requirements. Operators can benchmark availability to guide enhancements
in real-world deployments.

As the scale and complexity of networks grow exponentially, availability modeling us-
ing techniques like that developed here may be useful in delivering the ubiquitous, reliable
connectivity that users expect. By identifying high-risk points across multi-tier systems,
availability modeling helps reinforce the future internet’s fault tolerance and resilience.

As the future internet emerges, reliability modeling will rapidly increase in importance
across both research and practical engineering for networks like space–air–ground–ocean
architectures. The methodology presented in the paper offers a foundation to support the
availability demands of the complex, mission-critical applications to come.

While the proposed Markov chain modeling approach provides a useful methodology
for assessing availability in multi-tier networks, there remain opportunities to further
enhance the technique and address its limitations. Here are some potential future research
directions in this area:

- The standard Markov chain assumes time-homogeneous transition probabilities. Ex-
tension to semi-Markov or time-dependent Markov models could capture temporal
variations in failure and repair processes. This could improve the accuracy in non-
stationary environments.

- Individual tier Markov models could be integrated into larger system-level availability
models to account for cascading failures between interdependent tiers. Hybrid mod-
eling approaches could also couple Markov chains with complementary simulation,
machine learning, or network science techniques.

- As multi-tier systems evolve, the Markov model should be dynamically updated to
reflect changes in transition probabilities and topology. Adaptive Markov chains and
reinforcement learning methods could enable self-reconfiguring availability models.

- While the methodology is generalizable, adapting the Markov model with reliability
data and attributes tailored to specific applications and sectors (e.g., telecom, power
grid, healthcare) could improve its fidelity.

- Availability and security are interlinked. Extending the model to account for the
impact of threats like cyber attacks on availability could be highly relevant.

Funding: This research received no external funding.

Data Availability Statement: Data sharing not applicable.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Saeik, F.; Avgeris, M.; Spatharakis, D.; Santi, N.; Dechouniotis, D.; Violos, J.; Leivadeas, A.; Athanasopoulos, N.; Mitton, N.;

Papavassiliou, S. Task offloading in Edge and Cloud Computing: A survey on mathematical, artificial intelligence and control
theory solutions. Comput. Netw. 2021, 195, 108177. [CrossRef]

2. OpenFog Consortium Architecture Working Group. OpenFog Reference Architecture for Fog Computing; OpenFog Consortium:
Piscataway, NJ, USA, 2017; Available online: https://site.ieee.org/denver-com/files/2017/06/OpenFog_Reference_Architecture_
2_09_17-FINAL-1.pdf (accessed on 30 August 2023).

3. Sabella, D.; Hechwartner, R.; Scarrone, E.; Shailendra, S.; Song, J.; Flynn, B.; Ishaq, A.; Velez, L.; Gazda, R.; Jieun, L. Enabling
Multi-Access Edge Computing in Internet-of-Things: How to Deploy ETSI MEC and oneM2M; White Paper No. 59; ETSI: Sophia
Antipolis, France, 2023; Available online: https://www.etsi.org/images/files/ETSIWhitePapers/ETSI-WP59-Enabling-Multi-
access-Edge-Computing-in-iot.pdf (accessed on 30 August 2023).

4. Zomaya, A.; Abbas, A.; Khan, S. (Eds.) Fog Computing: Theory and Practice; John Wiley & Sons: Hoboken, NJ, USA, 2020.
5. Al-Qamash, A.; Soliman, I.; Abulibdeh, R.; Saleh, M. Cloud, Fog, and Edge Computing: A Software Engineering Perspective. In

Proceedings of the 2018 International Conference on Computer and Applications (ICCA), Beirut, Lebanon, 25–27 April 2018;
pp. 276–284. [CrossRef]

https://doi.org/10.1016/j.comnet.2021.108177
https://site.ieee.org/denver-com/files/2017/06/OpenFog_Reference_Architecture_2_09_17-FINAL-1.pdf
https://site.ieee.org/denver-com/files/2017/06/OpenFog_Reference_Architecture_2_09_17-FINAL-1.pdf
https://www.etsi.org/images/files/ETSIWhitePapers/ETSI-WP59-Enabling-Multi-access-Edge-Computing-in-iot.pdf
https://www.etsi.org/images/files/ETSIWhitePapers/ETSI-WP59-Enabling-Multi-access-Edge-Computing-in-iot.pdf
https://doi.org/10.1109/COMAPP.2018.8460443


Future Internet 2023, 15, 329 22 of 23

6. Skarlat, O.; Nardelli, M.; Schulte, S.; Dustdar, S. Towards QoS-Aware Fog Service Placement. In Proceedings of the 2017 IEEE 1st
International Conference on Fog and Edge Computing (ICFEC), Madrid, Spain, 14–15 May 2017; pp. 89–96. [CrossRef]

7. Mahmud, R.; Srirama, S.N.; Ramamohanarao, K.; Buyya, R. Quality of Experience (QoE)-Aware Placement of Applications in Fog
Computing Environments. J. Parallel Distrib. Comput. 2019, 132, 190–203. [CrossRef]

8. Mas, L.; Vilaplana, J.; Mateo, J.; Solsona, F.; Rius, A.; Melià-Seguí, J. A Queuing Theory Model for Fog Computing. J. Supercomput.
2022, 78, 11138–11155. [CrossRef]

9. Vilaplana, J.; Solsona, F.; Teixidó, I.; Abella, J.; Rius, A. A Queuing Theory Model for Cloud Computing. J. Supercomput. 2014, 69,
492–507. [CrossRef]

10. Panigrahi, S.K.; Goswami, V.; Apat, H.K.; Mund, G.B.; Das, H.; Barik, R.K. PQ-Mist: Priority Queueing-Assisted Mist–Cloud–Fog
System for Geospatial Web Services. Mathematics 2023, 11, 3562. [CrossRef]

11. Bai, Y.; Zhang, H.; Fu, Y. Reliability Modeling and Analysis of Cloud Service Based on, Complex Network. In Proceedings of the
2016 Prognostics and System Health Management Conference (PHM-Chengdu), Chengdu, China, 19–21 October 2016; pp. 1–5.
[CrossRef]

12. Shahid, M.A.; Alam, M.M.; Su’ud, M.M. Achieving Reliability in Cloud Computing by a Novel Hybrid Approach. Sensors 2023,
23, 1965. [CrossRef] [PubMed]

13. Alshammari, S.T.; Albeshri, A.; Alsubhi, K. Integrating a High-Reliability Multicriteria Trust Evaluation Model with Task
Role-Based Access Control for Cloud Services. Symmetry 2021, 13, 492. [CrossRef]

14. Chiang, M.-L.; Huang, Y.-F.; Hsieh, H.-C.; Tsai, W.-C. Highly Reliable and Efficient Three-Layer Cloud Dispatching Architecture
in the Heterogeneous Cloud Computing Environment. Appl. Sci. 2018, 8, 1385. [CrossRef]

15. Panicucci, S.; Nikolakis, N.; Cerquitelli, T.; Ventura, F.; Proto, S.; Macii, E.; Makris, S.; Bowden, D.; Becker, P.; O’Mahony, N.; et al.
A Cloud-to-Edge Approach to Support Predictive Analytics in Robotics Industry. Electronics 2020, 9, 492. [CrossRef]

16. Peniak, P.; Bubeníková, E.; Kanáliková, A. Validation of High-Availability Model for Edge Devices and IIoT. Sensors 2023, 23, 4871.
[CrossRef] [PubMed]

17. Behera, S.R.; Panigrahi, N.; Bhoi, S.K.; Sahoo, K.S.; Jhanjhi, N.Z.; Ghoniem, R.M. Time Series-Based Edge Resource Prediction and
Parallel Optimal Task Allocation in Mobile Edge Computing Environment. Processes 2023, 11, 1017. [CrossRef]

18. Abba Ari, A.A.; Djedouboum, A.C.; Gueroui, A.M.; Thiare, O.; Mohamadou, A.; Aliouat, Z. A Three-Tier Architecture of
Large-Scale Wireless Sensor Networks for Big Data Collection. Appl. Sci. 2020, 10, 5382. [CrossRef]

19. Stan, O.P.; Enyedi, S.; Corches, C.; Flonta, S.; Stefan, I.; Gota, D.; Miclea, L. Method to Increase Dependability in a Cloud-Fog-Edge
Environment. Sensors 2021, 21, 4714. [CrossRef]

20. Alsowail, R.A.; Al-Shehari, T. A Multi-Tiered Framework for Insider Threat Prevention. Electronics 2021, 10, 1005. [CrossRef]
21. Mora-Gimeno, F.J.; Mora-Mora, H.; Marcos-Jorquera, D.; Volckaert, B. A Secure Multi-Tier Mobile Edge Computing Model for

Data Processing Offloading Based on Degree of Trust. Sensors 2018, 18, 3211. [CrossRef] [PubMed]
22. Abdulsalam, Y.S.; Hedabou, M. Security and Privacy in Cloud Computing: Technical Review. Future Internet 2022, 14, 11.

[CrossRef]
23. Ayedh, M.A.T.; Wahab, A.W.A.; Idris, M.Y.I. Systematic Literature Review on Security Access Control Policies and Techniques

Based on Privacy Requirements in a BYOD Environment: State of the Art and Future Directions. Appl. Sci. 2023, 13, 8048.
[CrossRef]

24. Aldea, C.L.; Bocu, R.; Solca, R.N. Real-Time Monitoring and Management of Hardware and Software Resources in Heterogeneous
Computer Networks through an Integrated System Architecture. Symmetry 2023, 15, 1134. [CrossRef]

25. González, I.; Calderón, A.J.; Portalo, J.M. Innovative Multi-Layered Architecture for Heterogeneous Automation and Monitoring
Systems: Application Case of a Photovoltaic Smart Microgrid. Sustainability 2021, 13, 2234. [CrossRef]

26. Fraser, I.J.; Müller, M.; Schwarzkopf, J. Transparency for Multi-Tier Sustainable Supply Chain Management: A Case Study of a
Multi-tier Transparency Approach for SSCM in the Automotive Industry. Sustainability 2020, 12, 1814. [CrossRef]

27. Hamdan, S.; Ayyash, M.; Almajali, S. Edge-Computing Architectures for Internet of Things Applications: A Survey. Sensors 2020,
20, 6441. [CrossRef]

28. Gomes, E.; Costa, F.; De Rolt, C.; Plentz, P.; Dantas, M. A Survey from Real-Time to Near Real-Time Applications in Fog
Computing Environments. Telecom 2021, 2, 489–517. [CrossRef]

29. Huynh, L.N.T.; Pham, Q.-V.; Pham, X.-Q.; Nguyen, T.D.T.; Hossain, M.D.; Huh, E.-N. Efficient Computation Offloading in
Multi-Tier Multi-Access Edge Computing Systems: A Particle Swarm Optimization Approach. Appl. Sci. 2020, 10, 203. [CrossRef]

30. Costa, D.G.; Vasques, F.; Portugal, P.; Aguiar, A. A Distributed Multi-Tier Emergency Alerting System Exploiting Sensors-Based
Event Detection to Support Smart City Applications. Sensors 2020, 20, 170. [CrossRef] [PubMed]

31. Jaiswal, R.; Davidrajuh, R.; Rong, C. Fog Computing for Realizing Smart Neighborhoods in Smart Grids. Computers 2020, 9, 76.
[CrossRef]

32. Alam, M.S.; Kurt, G.K.; Yanikomeroglu, H.; Zhu, P.; Ðào, N.D. High Altitude Platform Station Based Super Macro Base Station
Constellations. IEEE Commun. Mag. 2021, 59, 103–109. [CrossRef]

33. Lu, Y.; Wen, W.; Igorevich, K.K.; Ren, P.; Zhang, H.; Duan, Y.; Zhu, H.; Zhang, P. UAV Ad Hoc Network Routing Algorithms in
Space–Air–Ground Integrated Networks: Challenges and Directions. Drones 2023, 7, 448. [CrossRef]

34. Liao, Z.; Chen, C.; Ju, Y.; He, C.; Jiang, J.; Pei, Q. Multi-Controller Deployment in SDN-Enabled 6G Space–Air–Ground Integrated
Network. Remote Sens. 2022, 14, 1076. [CrossRef]

https://doi.org/10.1109/ICFEC.2017.12
https://doi.org/10.1016/j.jpdc.2018.03.004
https://doi.org/10.1007/s11227-022-04328-3
https://doi.org/10.1007/s11227-014-1177-y
https://doi.org/10.3390/math11163562
https://doi.org/10.1109/PHM.2016.7819907
https://doi.org/10.3390/s23041965
https://www.ncbi.nlm.nih.gov/pubmed/36850563
https://doi.org/10.3390/sym13030492
https://doi.org/10.3390/app8081385
https://doi.org/10.3390/electronics9030492
https://doi.org/10.3390/s23104871
https://www.ncbi.nlm.nih.gov/pubmed/37430789
https://doi.org/10.3390/pr11041017
https://doi.org/10.3390/app10155382
https://doi.org/10.3390/s21144714
https://doi.org/10.3390/electronics10091005
https://doi.org/10.3390/s18103211
https://www.ncbi.nlm.nih.gov/pubmed/30249043
https://doi.org/10.3390/fi14010011
https://doi.org/10.3390/app13148048
https://doi.org/10.3390/sym15061134
https://doi.org/10.3390/su13042234
https://doi.org/10.3390/su12051814
https://doi.org/10.3390/s20226441
https://doi.org/10.3390/telecom2040028
https://doi.org/10.3390/app10010203
https://doi.org/10.3390/s20010170
https://www.ncbi.nlm.nih.gov/pubmed/31892183
https://doi.org/10.3390/computers9030076
https://doi.org/10.1109/MCOM.001.2000542
https://doi.org/10.3390/drones7070448
https://doi.org/10.3390/rs14051076


Future Internet 2023, 15, 329 23 of 23

35. Qiu, Y.; Niu, J.; Zhu, X.; Zhu, K.; Yao, Y.; Ren, B.; Ren, T. Mobile Edge Computing in Space-Air-Ground Integrated Networks:
Architectures, Key Technologies and Challenges. J. Sens. Actuator Netw. 2022, 11, 57. [CrossRef]

36. Cui, H.; He, H.; Zhou, J.; Li, Q.; Wang, Q.; Niu, J.; Zhang, Y. Space-Air-Ground Integrated Network (SAGIN) for 6G: Requirements,
Architecture and Challenges. China Commun. 2022, 19, 90–108. [CrossRef]

37. Xu, Q.; Su, Z.; Li, R. Security and Privacy in Artificial Intelligence-Enabled 6G. IEEE Netw. 2022, 36, 188–196. [CrossRef]
38. Trivedi, K.; Bobbio, A. Reliability and Availability Engineering: Modeling, Analysis, and Applications; Cambridge University Press:

Cambridge, UK, 2017.
39. Rubino, G.; Sericola, B. Markov Chains and Dependability Theory; Cambridge University Press: Cambridge, UK, 2014.
40. Bauer, E.; Adams, R. Reliability and Availability of Cloud Computing; Wiley-IEEE Press: Hoboken, NJ, USA, 2012.
41. Federal Aviation Administration. Reliability, Maintainability, and Availability (RMA) Handbook; FAA-HDBK-006A; Federal Aviation

Administration: Washington, DC, USA, 2008.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/jsan11040057
https://doi.org/10.23919/JCC.2022.02.008
https://doi.org/10.1109/MNET.117.2100730

	Introduction 
	Evolution and Significance of Multi-Level Communication Networks 
	The Imperative of High Availability 
	Objective and Contributions of the Paper 

	Related Works 
	Materials and Methods 
	Traditional Three-Level Cloud–Fog–Edge Architecture 
	Multi-Tier Systems 

	Results 
	Discussion 
	Conclusions 
	References

