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Abstract: Solid-state drives represent the preferred backbone storage solution thanks to their low
latency and high throughput capabilities compared to mechanical hard disk drives. The performance
of a drive is intertwined with the reliability of the memories; hence, modeling their reliability is an
important task to be performed as a support for storage system designers. In the literature, storage
developers devise dedicated parametric statistical approaches to model the evolution of the memory’s
error distribution through well-known statistical frameworks. Some of these well-founded reliability
models have a deep connection with the 3D NAND flash technology. In fact, the more precise and
accurate the model, the less the probability of incurring storage performance slowdowns. In this
work, to avoid some limitations of the parametric methods, a non-parametric approach to test the
model goodness-of-fit based on combined permutation tests is carried out. The results show that the
electrical characterization of different memory blocks and pages tested provides an FBC feature that
can be well-modeled using a multiple regression analysis.

Keywords: non-parametric inference; goodness-of-fit; 3D NAND flash; reliability

1. Introduction

The amount of data generated in 2022 by an average of 3.7 billion Internet users has
been estimated at 2.5 exabytes per day [1], with a growing trend anticipated in the next
few years. By 2025, data storage analysts forecast a global data sphere of 160 zettabytes
to be stored per year [2]. The same challenge exists in collecting and storing data by large
scientific facilities connected across the world [3]. The ever-increasing data generation
speed requires dense yet performant storage platforms to collect and filter the data, save
the data through high-speed networks, and prevent the loss of valuable data.

Nowadays, solid-state drives (SSD) represent the preferred backbone storage solution
for either on-premise data centers or in-cloud computing facilities thanks to their low la-
tency and high throughput capabilities compared to mechanical hard disk rrives (HDD) [4].
The positive performance is achieved through complex monitoring and dynamic manage-
ment provided by a synergy between the SSD controller (i.e., the computing brain of a
drive) and the integrated storage medium, namely the 3D NAND flash [5]. In particular,
the performance of a drive is intertwined with the reliability of the memories [6]; therefore,
modeling this feature remains an important task to be performed as a support for storage
system designers. All the firmware solutions implemented in an SSD controller have the
ultimate goal of mitigating the inherent bit error rate (BER) exposed by the 3D NAND flash
memories in different storage working conditions (e.g., endurance stress, data retention
at high temperatures, etc.) and improving the drive’s performance. Significant efforts in
SSD design are dedicated to tailoring the error correction code (ECC) [7] strengths and the
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secondary correction schemes, like soft decoding [8], moving read references [6], and even
RAID [9].

To this extent, storage designers have devised dedicated parametric statistical mod-
els [10–16] to capture the evolution of the memory’s error distribution through well-known
statistical frameworks (probability distributions), like Gaussian, binomial, Poisson, gamma,
and so on. Concerning the model abstraction level, we identify two families: (i) statistical
models of the flash channel (i.e., the cells’ threshold voltage distributions) used to extrapo-
late the memory reliability characteristics; and (ii) statistical models or machine-learning-
based approaches directly applied to the reliability features extracted from measurements.

In the first set of models, many parametric continuous probability distributions (e.g.,
Weibull, lognormal, gamma) are proposed to represent the threshold voltage (VT) distribu-
tions of flash cells and then extrapolate the memory reliability in different scenarios through
the calculation of the number of corrupted bits per distribution. Reports in the literature
suggest the use of the Gaussian function for its simplicity although it has been found that
other mathematical functions exhibit a better fit and even that the tail regions of the VT
distributions in the flash memory are mainly exponential due to the random telegraph
noise [17–19]. To further improve the fitting quality, previous works have proposed model-
ing VT distributions with a mixture of Gaussian with data-dependent variances [10–12,14],
by using a normal-Laplace mixture model [19], developing tailored Monte Carlo models
in the crossover regions between different distributions [20], or by relying on the physics-
based model associated with the NAND flash architecture [21]. In some cases [11,12], it
is stated that the reliability features extracted from the models tend to be underestimated.
Parameterized versions [19] for particular operating conditions, like endurance degrada-
tion, describe well the evolution of the model parameters as a function of the memory
lifetime, though they rely on complex fitting procedures. For the first time, the authors
in [18] discussed the possibility of considering non-parametric models for VT distribution
fitting, although few details were shared with the reader, limiting the model evaluation
possibilities.

The second set of models used in flash memory targets well-defined metrics for re-
liability evaluation either at the device or at the system level (i.e., in solid-state storage
platforms), namely the bit error rate (BER) or the fail bits count (FBC). Both metrics indicate
the number of corrupted bits in a precise location of the NAND flash memory due to
specific physical mechanisms, like endurance wear, retention loss, and so on. A seminal
work is that of [22], where the BER was modeled in different operating corners. A sim-
ilar approach, although oriented to 3D NAND flash architectures was proposed in [23],
where, for the first time, the authors introduced the use of the gamma-Poisson distribu-
tion for error modeling, and in [24], where a generalized Pareto distribution was used to
model real disturb errors. Other interesting solutions have relied on machine learning
algorithms for memory lifetime classification and prediction [13,15,16] and on deep neural
networks [25–27]. However, some of the developed models require a huge characterization
dataset and significant computing power to run the model training process or the creation
of a dedicated computational framework based on neural networks to optimize the device
characteristics, such as the case discussed in [28] though for a different technology.

Some of these well-founded reliability models have a deep link with the failure
mechanisms in the NAND Flash technology [29]. In general, the more precise and accurate
the model, the lower the probability of incurring storage performance slowdowns due to
improperly calibrated error correction techniques.

In this work, we target the second category of models using for the first time, to the
best of our knowledge, an approach based on non-parametric inference on the regression
coefficients to characterize the FBC in 3D NAND flash memories tested with endurance
stress. We focus here on the statistical testing of the model validity (goodness-of-fit test),
where the full model, which includes all the considered explanatory variables, is compared
to the null model, which lacks explanatory power. To this extent, a non-parametric approach
is carried out. The proposed test, unlike the parametric approaches, does not require the
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assumption that the distribution of the responses follows a specific family of probability
laws. Such a test is very powerful, especially (but not only) when the typical assumptions
of the parametric approaches (such as the normality of data in the classic regression
analysis) are not satisfied and the parametric tests are not reliable [30]. Furthermore, this
method is more flexible and robust with respect to the parametric tests [31]. In this work,
a permutation test on the goodness-of-fit of a multiple regression model is applied. In
particular, we consider such a problem as a multiple test on the significance of the single
regression coefficients (partial tests), and the proposed solution is based on the combination
of the p-values of the partial tests. In other words, we study the performance of the 3D
NAND flash memories in terms of the sum of the number of errors without assuming a
specific probability distribution. In fact, we adopt a regression approach to analyze the
relationship between the 3D NAND flash errors and some explanatory factors in order to
determine whether such factors affect the number of errors and which factors produce a
significant effect. This method is valid regardless of the assumed distribution of the errors.

Hence, the main objective of the paper consists in proposing a robust and flexible
method to test the validity of the model to predict the performance of the 3D NAND flash
memories. Such a method is based on the permutation approach and it is preferable to the
classic parametric approach because it is distribution-free and powerful regardless of the
underlying data distribution.

2. The 3D NAND Flash Endurance Reliability Case Study
2.1. Experimental Setup and Measurement Protocol

The modeling activities in this work are based on the endurance reliability electrical
characterization results performed on commercial 3D NAND flash devices integrated with
the triple level cell (TLC) storage paradigm. The considered technology is a sub-100 layers
(≥72) generation considering the block device structure and the VT distribution coding
using all the TLC pages [32] (i.e., the lower page is the lower significant bit—LSB, the
middle page is the central significant bit—CSB, and the upper page is the most significant
bit—MSB), as described in Figure 1. The electrical measurements required to characterize
the memory devices were performed using custom-developed automated test equipment
(ATE), allowing the topological extraction of the FBC after a read operation for every single
location of a memory block (see Figure 2). The system is constituted by a laptop that
controls the test flow running on a field programmable gate array (FPGA) device using a
custom software interface that sets the proper voltages to drive the 3D NAND flash under
test (i.e., VCC,Q chip power supply and VCC,IO to supply the bus interface for memory data
I/O and commands), and the chip temperature with a heater/cooler element. Both VCC,Q
and VCC,IO are taken as the typical values provided by the memory vendor in the datasheet.
The connection between the tester unit, supplied with 12–48 V, and the laptop is achieved
via an Ethernet 1Gbps link.

The characterization of the 3D NAND flash lifetime concerning the achievable en-
durance must follow the JEDEC standards provided in [33,34]. In particular, the memory
device needs to be exercised with consecutive program/erase (P/E) operations in 500 h
at a 70 ◦C temperature until the rated endurance by the vendor, also called the end-of-life
(EoL), is reached. Samples were programmed with a random pattern. All the endurance
characterizations were performed on two different and independent memory blocks and
multiple dies of the same 3D NAND flash test chip ensuring inclusion of manufacturing
variability (although not considering the lot-to-lot one) in the results. The experiment
protocol is summarized in Figure 2.
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Figure 1. TLC 3D-NAND Flash architecture considered in this work (left) and definition of fail bits
according to their VT distribution coding (right). Reprinted from [32] under Creative Commons
License (CC BY 4.0).

Figure 2. A Schematic of the ATE used in this work for the electrical characterization of the 3D NAND
flash endurance (top). Cycling protocol used for extracting the FBC at defined readout steps until
reaching EoL (bottom).

Figure 3 shows the results of an endurance characterization performed on a 3D NAND
flash block up to EoL. In the plot, we report the FBC per TLC memory page as a function of
the achieved NP/E operations. As expected from previous studies [35–37], the number of
errors is page-dependent and grows as a function of the memory wear status. The average
trend in the errors is fitted with the following exponential law:

FBC(NP/E) = 10.74× exp(0.0001×NP/E) (1)

Our modeling attempts target a fresh device (NP/E = 0) and the EoL point as the
most critical situation for memory reliability, although the methodology described in the
following sections of the work can be applied without lack of generality to every NP/E.
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Figure 3. FBC extracted during an endurance stress-test in different 3D NAND flash memory TLC
pages as a function of the lifetime (NP/E). The average behavior between pages has been reported as
a guideline for general reliability considerations.

2.2. Data And Model

The dataset employed was reduced from the original endurance characterization
dataset retrieved from 3D NAND flash measurements. The new dataset used for modeling
purposes consisted of 144 rows and 16 columns (variables). The variable denominated sum-
Errors is the model output and represents the FBC retrieved for each measured TLC-page in
a memory block. A TLC-page consists of a 16 kB data readout plus the parity size used for
ECC purposes. Since our experimental setup allows measuring 4 kB chunks (i.e., Layer), we
measured the FBC per layer and summed them to calculate the FBC per page. The variable
Block is an identifier of the tested 3D NAND flash block. Further, the variable Page was split
into 12 clusters (one for each 32), and then 11 dummy variables were created based on the
clusters. These clusters represent homogeneous topological areas of a memory block and
were identified according to the device structure. The variable TLC-Page indicates whether
the read page in a block is associated with the LSB, CSB, or MSB. Finally, the variable
PE-cycles represents the endurance lifetime points where the FBC of the 3D NAND flash
block was characterized (i.e., fresh device or at EoL).

In this list, we report the variables of the model that consider both physical, topological,
and logical features of the 3D NAND flash devices tested in this work:

• sum-Errors, the dependent variable which represents the sum of the number of errors
in Layer 0, 1, 2, 3 and for each TLC-Page;

• d-block, dummy explanatory variable which is 1 for block A and 0 for block B;
• d-page-c2, dummy explanatory variable which is 1 for cluster 2 of Page and 0 for all the

other clusters in the measured block;
• d-page-c3, dummy explanatory variable which is 1 for cluster 3 of Page and 0 for all the

other clusters in the measured block;
• d-page-c4, dummy explanatory variable which is 1 for cluster 4 of Page and 0 for all the

other clusters in the measured block;
• d-page-c5, dummy explanatory variable which is 1 for cluster 5 of Page and 0 for all the

other clusters in the measured block;
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• d-page-c6, dummy explanatory variable which is 1 for cluster 6 of Page and 0 for all the
other clusters in the measured block;

• d-page-c7, dummy explanatory variable which is 1 for cluster 7 of Page and 0 for all the
other clusters in the measured block;

• d-page-c8, dummy explanatory variable which is 1 for cluster 8 of Page and 0 for all the
other clusters in the measured block;

• d-page-c9, dummy explanatory variable which is 1 for cluster 9 of Page and 0 for all the
other clusters in the measured block;

• d-page-c10, dummy explanatory variable which is 1 for cluster 10 of Page and 0 for all
the other clusters in the measured block;

• d-page-c11, dummy explanatory variable which is 1 for cluster 11 of Page and 0 for all
the other clusters in the measured block;

• d-page-c12, dummy explanatory variable which is 1 for cluster 12 of Page and 0 for all
the other clusters in the measured block;

• d-tlcpage-1, dummy explanatory variable which is 1 if the read Page is associated with
Middle Page (CSB) and 0 otherwise;

• d-tlcpage-2, dummy explanatory variable which is 1 if the read Page is associated with
Upper Page (MSB) and 0 otherwise;

• PE-cycles, dummy explanatory variable representing the memory lifetime which is 1
for PE-cycles = EoL and 0 for PE-cycles = 0 (fresh device).

From a descriptive point of view, the main effect plots of the explanatory variables
are represented in Figure 4. The typical block-to-block, page-to-page, and TLC page error
variability are expected as already confirmed in previous literature reports [35].

The univariate linear model, with k explanatory variables, can be represented as
follows:

Yi = β0 +
k

∑
j=1

βuxij + εi, (2)

where Yi is the random variable from which the i-th observed value of the response yi was
generated, β0, β1, . . . , βk are the regression coefficients, xij is the i-th observed value of the
u-th explanatory variable, and the random variable εi is the i-th error term, with i = 1, . . . , n.
In classical regression analysis, the error terms should be uncorrelated normal random
variables with zero mean and constant variance. The milder assumption of exchangeability
of the error terms under H0 is the only condition required for inferential intents, instead
of normality and uncorrelation of errors [38,39]. A permutation test on the significance of
all regression coefficients, that have been taken into account together, can be carried out
if the exchangeability assumption is met. Since, in the null hypothesis, all the regression
coefficients are equal to zero, and the model includes only the intercept β0, exchangeability
holds. As a consequence, the null permutation distribution of the test statistics can be
obtained by permuting the rows of the matrix of the explanatory variables and keeping
fixed the vector of the observed values of the response.

It should be emphasized that the presence of a large number of predictors, especially
dummy variables, implies a high risk of multicollinearity. Hence, a preliminary analysis
based on the variance inflation factor (VIF), to detect and eliminate explanatory variables
involved in collinearity problems (VIF > 5), is necessary [40].
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Figure 4. Main effect plots of the explanatory variables.

2.3. Hypotheses

As mentioned above, we want to test the significance of all regression coefficients,
jointly taken into account. Therefore, the null hypothesis that the dependent variable is not
affected by any explanatory variable is tested against the alternative hypothesis that at least
one explanatory variable has an effect on the response. In terms of regression coefficients,
the hypothesis to be tested is given below:{

H0 : β1 = β2 = . . . = βk

H1 : H0
. (3)

Therefore, the test problem can be considered to be a multiple test, where the partial
tests are the single tests on the significance of the estimates of the coefficients. H j

0 : β j = 0
is the null hypothesis of the partial test on the coefficient linked to the j-th independent
variable and H j

1 : β j 6= 0 is the alternative hypothesis of the partial test. Therefore, the null
and alternative hypotheses of the overall problem can be represented as follows:{

H0 : ∩k
j=1H j

0

H1 : ∪k
j=1H j

1

(4)
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where the intersection means that all the partial null hypotheses are true under H0, and the
union indicates that, under H1, at least one partial alternative hypothesis is true.

3. Nonparametric Inference on the Regression Model

A suitable methodological solution to this problem is represented by the combined
permutation test (CPT). To deal with the overall problem, we combine the p-values of the k
partial permutation tests, according to the CPT methodology. The absolute value of the
least squares estimator of the regression coefficient is an appropriate test statistic for the
partial test concerning the single regression coefficient. In other words, formally speaking,
the j-th partial permutation test statistic, suitable for testing H j

0 versus H j
1, is Tj = |β̂ j|. We

assume that the null (partial and overall) hypotheses are rejected for large values of the
test statistics, without losing generality. Furthermore, an appropriate combination of the
p-values can be obtained by applying the Fisher combining function as follows:

TF = −2
k

∑
j=1

ln(λj), (5)

where λj is the p-value of the j-th partial test.
The control of the family-wise error (FWE) is required when the null hypothesis is

rejected [41], especially with the goal of attributing the overall significance to specific partial
tests (i.e., to specific explanatory variables). To put it another way, we have to adjust the
partial p-values so that there is no inflation of the type I error in the global test. For this
purpose, the Bonferroni–Holm rule is a suitable method that controls the FWE, but is less
conservative than the classic Bonferroni approach or other methods. Original R scripts
created by the authors were used for the implementation of the methodology.

4. Results And Discussion

The VIFs of all the independent variables are shown in Table 1; all the values are less
than 5, indicating no multicollinearity problem.

Table 1. Variance inflation factors of the explanatory variables.

Variable VIF

d-block 1.00
d-page-c2 1.83
d-page-c3 1.83
d-page-c4 1.83
d-page-c5 1.83
d-page-c6 1.83
d-page-c7 1.83
d-page-c8 1.83
d-page-c9 1.83

d-page-c10 1.83
d-page-c11 1.83
d-page-c12 1.83
d-tlcpage-1 1.33
d-tlcpage-2 1.33
PE-cycles 1.00

The significance level α was set equal to 0.10 and we applied the CPT illustrated above
to the data in order to test the hypotheses defined in Equation (4). The global p-value of
the test is equal to 0.0002, which indicates significance at the level α = 0.10. The adjusted
partial p-values on the significance of the coefficient estimates with the Bonferroni–Holm
correction are shown in Table 2.
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Table 2. Estimation of the coefficients, partial p-values on the significance of the coefficients estimates,
non-adjusted and adjusted with the Bonferroni–Holm method (significance in bold).

Estimate Non Adjusted
p-Values

Adj.
p-Values

Intercept 381.74
d-block −52.08 0.04950 0.3465
d-page-c2 −39.17 0.5439 0.8541
d-page-c3 −74.83 0.2477 0.8099
d-page-c4 −101.92 0.1126 0.5629
d-page-c5 −161.83 0.0121 0.0968
d-page-c6 −239 0.0004 0.0048
d-page-c7 −82.67 0.2025 0.8099
d-page-c8 −113.42 0.0790 0.4740
d-page-c9 −190.08 0.0033 0.0363
d-page-c10 −188.83 0.0044 0.0396
d-page-c11 −189.33 0.0039 0.0390
d-page-c12 −247.58 0.0002 0.0026
d-tlcpage-1 −25.48 0.4271 0.8541
d-tlcpage-2 129.12 0.0001 0.0015
PE-cycles 189.67 0.0001 0.0015

Looking at the adjusted p-values, the significance of the overall test can be limited to a
few of the regression coefficients. In particular, it appears that the sum of the number of
errors in Layers 0, 1, 2, and 3 is strongly affected by the variables d-page-c6, d-page-c12, d-
tlcpage-2, and PE-cycles. A moderate effect on the dependent variable is seen with d-page-c9,
d-page-c10, and d-page-c11. Finally, we found a weak significance of d-page-c5 on the sum
of the number of errors. From an experimental standpoint, we were expecting to identify
the PE-cycles variable as one of the most significant in affecting the response variable of
the model, given the experimental results of the endurance characterization provided in
Figure 3. In addition, this finding is consistent with the expectation from the 3D NAND
flash endurance test standards [33,34]. Concerning the variable d-tlcpage-2, we were also
expecting that most of the endurance failures would come from TLC pages associated
with the CSB or MSB, as demonstrated in the experimental results section of this work.
Regarding the dependency of the response variable on the topological position, we would
like to refer to the work reported in [37], where it is shown that some 3D NAND flash
memory blocks have some specific locations (due to manufacturing variability) that are
more sensitive in the generation of corrupted bits (i.e., errors).

Furthermore, the condition of normality of the model errors, typical of the classical
parametric approach to regression analysis, is not satisfied. The normal probability plots
that confirm this statement are shown in Figure 5, graphs (a) and (b). In accordance with
the analysis of the residuals, marginal error distributions may be asymmetric (see graphs
(c) and (d)).

These results support the belief in the benefit of embracing a nonparametric approach,
which does not require the assumption that the underlying distribution follows a cer-
tain family of probability laws, such as Weibull or others typically used in parametric
approaches. Hence, this test, unlike its parametric competitors, is powerful regardless
of the underlying probability distribution. Furthermore, the use of CPT allows us to test
the validity of the model and to determine which explanatory variables affect the number
of errors.
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Figure 5. Diagnostic analysis of residuals. (a) Plot of the residuals. (b) Normal Q-Q plot of the
residuals. (c) Histogram of the residuals’ distribution. (d) Estimated probability density distribution
of the residuals.

5. Conclusions

In this work, we have presented a non-parametric modeling approach related to the
errors retrieved after endurance stress in 3D NAND flash memories for solid-state storage.
The electrical characterization of different memory blocks and pages tested according to
the JEDEC guidelines has provided an FBC feature that can be well-modeled using an
OLS regression on the model coefficient. This is proved by the significance of the CPT test
applied to the data described in Section 2. The proposed approach is suitable every time
there is not sufficient room for an a priori assumption of the statistical distribution to be
considered in the discussion of errors feature and, therefore, can be a valuable asset in
understanding the factors affecting the reliability of a particular technology, such as the
3D NAND flash. We have demonstrated that we can capture the effect of the topology
(memory location in a block), the logical coding of the TLC pages, and the wear (P/E cycles)
on the errors produced during the endurance stress.

This work creates the potential for usage of non-parametric modeling tools for 3D
NAND flash, even extending toward different working corners of the technology (e.g.,
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during read disturb and temperature issues), or radically addressing storage technologies
based on 3D NAND flash, such as solid-state drives or embedded multimedia cards. Future
work will also be dedicated to a comparison of state-of-the-art modeling approaches with
respect to the one proposed here.
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