a .
E@ future internet

Article

Cost-Profiling Microservice Applications Using an APM Stack

Sjouke de Vries 2, Frank Blaauw

check for
updates

Citation: de Vries, S.; Blaauw, F.;
Andrikopoulos, V. Cost-Profiling
Microservice Applications Using an
APM Stack. Future Internet 2023, 15,
37. https://doi.org/10.3390/
fi15010037

Academic Editors: Nane Kratzke and
Michael Sheng

Received: 2 December 2022
Revised: 4 January 2023
Accepted: 5 January 2023
Published: 13 January 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

11 and Vasilios Andrikopoulos >*

1 Researchable BV, 9747 AN Groningen, The Netherlands

Computer Science Department, Faculty of Science and Engineering, University of Groningen,
9747 AG Groningen, The Netherlands

*  Correspondence: v.andrikopoulos@rug.nl

Abstract: Understanding how the different parts of a cloud-native application contribute to its
operating expenses is an important step towards optimizing this cost. However, with the adoption
and rollout of microservice architectures, the gathering of the necessary data becomes much more
involved and nuanced due to the distributed and heterogeneous nature of these architectures. Existing
solutions for this purpose are either closed-source and proprietary or focus only on the infrastructural
footprint of the applications. In response to that, in this work, we present a cost-profiling solution
aimed at Kubernetes-based microservice applications, building on a popular open-source application
performance monitoring (APM) stack. By means of a case study with a data engineering company,
we demonstrate how our proposed solution can provide deeper insights into the cost profile of the
various application components and drive informed decision-making in managing the deployment
of the application.

Keywords: cloud native applications; microservices; APM; observability; monitoring; cost profiling

1. Introduction

Microservice architectures, i.e., applications structured as a collection of small and
autonomous but collaborating services [1], are a popular style for building cloud-native
applications. Companies such as Amazon, Netflix, Deutsche Telekom, LinkedIn, Sound-
Cloud, Uber, and Verizon have been quick in adopting this architectural style [2]. As
a result, it has become, in many ways, the de facto architectural style for the design
and deployment of modern large-scale web applications. Containerization and orches-
tration solutions such as Docker (https://www.docker.com/ (accessed on 1 December
2022)), Kubernetes (https:/ /kubernetes.io/ (accessed on 1 December 2022)), and Nomad
(https:/ /www.nomadproject.io/ (accessed on 1 December 2022)) are the foundational tech-
nologies for automatically deploying, scaling, and managing microservice applications on
the cloud. Empowered by adopting these solutions, the application infrastructure usually
ends up spanning multiple hardware devices across physical locations and potentially
across multiple cloud service providers and is managed independently from the application
itself.

In this environment, there is an imperative need to possess the ability to observe
both how microservices as complex distributed systems behave and how they interact
with their underlying infrastructure [3]. Observability, a measure of how well a system’s
internal state can be inferred by its external outputs, is a concept coming from dynamical
systems that has been widely adopted in microservice architectures for this purpose [4].
Achieving observability is challenging on multiple levels [5]. It requires being able to
monitor applications across heterogeneous infrastructures, using different, use-case-specific
metrics, and producing vast amounts of data while requiring an all-in-one solution for the
stakeholders to use.

Towards this goal, a number of distributed tracing solutions such as OpenTeleme-
try (https://opentelemetry.io/ (accessed on 1 December 2022)), Jaeger (https://www.

Future Internet 2023, 15, 37. https:/ /doi.org/10.3390/£i15010037

https:/ /www.mdpi.com/journal/futureinternet


https://doi.org/10.3390/fi15010037
https://doi.org/10.3390/fi15010037
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0002-6588-5079
https://orcid.org/0000-0001-7937-0247
https://www.docker.com/
https://kubernetes.io/
https://www.nomadproject.io/
https://opentelemetry.io/
https://www.jaegertracing.io/
https://www.jaegertracing.io/
https://doi.org/10.3390/fi15010037
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi15010037?type=check_update&version=1

Future Internet 2023, 15, 37

20f21

jaegertracing.io/ (accessed on 1 December 2022)), Zipkin (https:/ /zipkin.io/ (accessed
on 1 December 2022)), and, indirectly, Istio (https://istio.io/ (accessed on 1 December
2022)) are employed. However, networking-based solutions lack the necessary granu-
larity and insights into the application-level interactions, as they treat the applications’
internal workings as a black box. Automatic platform monitoring (APM) solutions are de-
ployed instead of or on top of distributed tracing solutions as non-invasive platforms for
collecting metrics without interrupting the application flow. APM solutions, including
those offered by companies such as Datadog (https:/ /www.datadoghqg.com/ (accessed on
1 December 2022)), DynaTrace (https:/ /www.dynatrace.com/ (accessed on 1 December
2022)), New Relic (https:/ /newrelic.com/ (accessed on 1 December 2022)), and Splunk
(https:/ /www.splunk.com/ (accessed on 1 December 2022)), have become very popular
with microservice architectures as a result.

A relatively unexplored possibility offered by these solutions is the ability to provide
application stakeholders with very fine-grained cost data at the level of microservices and
their corresponding deployments. Having access to both low-level system data and being
able to correlate them with application-level macro-metrics such as transactions per minute
is ideal for breaking down the operational expenses of each individual microservice. Doing
so provides the means to achieve two goals. First, it is necessary for identifying and resolv-
ing issues with inefficiencies in the selection of infrastructure through over-provisioning or
overtly costly services with respect to their criticality in the overall architecture. Second, it is
also essential towards establishing an efficient price model for the microservices themselves
when and where these are exposed to third parties. It is our position in this work that
building on existing APM solutions offers the necessary information that prior works such
as CostHat [6] assumed to be available for cost-profiling microservice applications.

Unfortunately, however, many of the existing solutions for this purpose are either
closed-source (such as the ones mentioned above) or cloud service provider-specific. Closed-
source solutions are also frequently offered as a service with a free tier for, e.g., the first 100
GB of data. In practice, these free tiers are not suitable for production-strength systems
and make sense only for evaluation purposes. While powerful in their own rights, such
solutions very quickly become costly for their adopters. Cloud provider-specific solutions,
on the other hand, such as the combination of AWS X-Ray (https://aws.amazon.com/xray/
(accessed on 1 December 2022)) with CloudWatch (https://aws.amazon.com/cloudwatch/
(accessed on 1 December 2022)), the Application Insights overview extension of Azure Mon-
itor (https:/ /azure.microsoft.com/en-us/products/monitor/ (accessed on 1 December
2022)), or Google Cloud Platform’s Operations Suite (https://cloud.google.com/products/
operations (accessed on 1 December 2022)) (formerly known as Stackdriver), provide
end-to-end views of requests as they are resolved through applications and can be easily
leveraged for analyzing microservice applications. They are, however, specific to each
cloud service provider, and they tend to organize information around the cloud services
used rather than the application itself. Furthermore, they charge users similarly to any
other cloud service.

Thankfully, a number of open-source alternatives do provide APM capabilities. A
well-known package is OpenTelemetry, already mentioned above, a Cloud Native Com-
puting Foundation (CNCF) project specific to tracing that works together with external
storage backends such as Prometheus (https://prometheus.io/ (accessed on 1 December
2022)) or Jaeger and which can receive input from multiple APM solutions. Another very
popular solution is the Elasticsearch, Logstash and Kibana (ELK) stack, jointly offered in an
observability package known as the Elastic Stack (https:/ /www.elastic.co/elastic-stack/
(accessed on 1 December 2022)). The stack is widely known for its proven capability to
handle large amounts of data and is used by many companies for both its search engine
functionality and its APM capabilities. Elastic has some premium functionality that is
offered as a service in the cloud, but the core remains open-source.

None of these open-source solutions, however, offer the ability to monitor the cost of
cloud-native applications out-of-the-box. Being open source, though, presents an opportu-


https://www.jaegertracing.io/
https://www.jaegertracing.io/
https://zipkin.io/
https://istio.io/
https://www.datadoghq.com/
https://www.dynatrace.com/
https://newrelic.com/
https://www.splunk.com/
https://aws.amazon.com/xray/
https://aws.amazon.com/cloudwatch/
https://azure.microsoft.com/en-us/products/monitor/
https://cloud.google.com/products/operations
https://cloud.google.com/products/operations
https://prometheus.io/
https://www.elastic.co/elastic-stack/

Future Internet 2023, 15, 37

30f21

nity to be exploited towards extending them in this direction. The main goal of this work,
therefore, is to investigate to what extent it is possible to perform cost profiling for cloud-native
applications realized as microservice architectures using existing APM solutions. For this purpose,
we conduct an exploratory case study together with an industrial partner using a data
analytics platform designed and implemented as microservices as the system of study. We
design and implement, in turn, a cost-profiling tool for microservice applications running
on Kubernetes clusters based on the requirements of the case but with generalizability to
any other microservices and cloud-native applications in mind and deploy it at a target
system for evaluation purposes. From there, we present the findings of this process, and we
discuss how we can proceed next. The contribution of this work is therefore twofold: first,
we propose a complete cost-profiling solution suitable for Kubernetes-based microservice
applications that is able to provide insights to incurred expenses at different levels of
granularity; second, we show how the proposed tool can be used in practice to optimize
the operational expenses of a running system in production.

The rest of this paper is structured as follows: Section 2 presents the design of the
case study and the elicited requirements for a solution. Section 3 presents the design of
the cost-profiling tool based on these requirements, and Section 4 presents its assessment
based on empirical data from the case. Section 5 discusses our findings and outlines items
for future work. Finally, Section 6 summarizes related works, and Section 7 concludes this
work.

2. Case Study

In this work, we are interested in testing the hypothesis that APM can be used for
cost profiling while extracting insights into how this information can be used in practice
to optimize the operating expenses of microservice applications. As such, we opt to
conduct an exploratory case study following the guidelines of Runeson and Host [7]. More
specifically, we focus on the case of a specific platform developed by the company that
two of the authors work in currently being used for one of their projects. In order to test
the hypothesis, we use design science in its framing for empirical software engineering [8]
to guide us through the development of a cost-profiling tool to be used for the case. The
tool, in turn, will be used to check whether we can provide cost optimizations by using
its provided insights. In the following, we discuss the design of the study, provide more
information on the case, and elicit requirements for the cost-profiling tool that we will
discuss further in the following section.

2.1. Study Design

We aim to investigate to what extent it is possible to perform cost profiling for mi-
croservice applications using APM data and tooling. To this effect, we decompose this
objective into the following research questions:

1.  What APM metrics can be used for cost-profiling purposes?

2. How can the cost of microservice deployments be calculated at different levels of
granularity based on these metrics?

3. Towhat extent can this information be used to reduce the cost footprint of microservice
applications?

To answer these questions, we choose to design and develop a cost-profiling tool
(CPT) based on one of the existing open-source APM solutions. The decision to build on
top of an existing solution allows us to focus on answering the defined questions instead
of engineering yet another APM tool. In order to be able to realistically evaluate our
solution, we embed the development of the CPT in an exploratory case study together with
the industrial partner represented by two of the authors of this work (Researchable B.V.
(Website: https://researchable.nl (accessed on 1 December 2022))) Using a case study
allows us to assess our proposed solution across the following dimensions using data from
an actual production-level system:

Ease of Use: how easy it is for potential adopters to set up and use the CPT;


https://researchable.nl

Future Internet 2023, 15, 37

4 0f 21

Accuracy: how close the cost reported by the CPT is to the actual cost of the target application;

Impact: to what extent the CPT can be used to reduce the cost of the target application.

2.2. Case Description

Researchable is a company based in Groningen, the Netherlands, that aims to help
others to innovate through data with software development, data engineering, and data
science. Researchable is involved in various projects in which data are integrated from
various sources and shared with clients. Such sources could include phones, smartwatches,
sensors, or other smart devices. The company has developed a large scalable data platform
for this purpose in which all stakeholders can safely manage, analyze and access data
through a central infrastructure. New insights are gained by combining different sources of
data; therefore, various integrations with existing sensors, fitness apps, smartwatches, and
external systems have been made.

The platform was designed and implemented as a microservice architecture, as shown
in Figure 1, consisting of multiple services organized and named based on their purpose:

Base services such as base-platform, base-platform-worker, base-platform-fast-worker, and
base-frontend that make up the core of the platform functionality;

SVC services that are invoked by user actions (svc-questionnaires, svc-questionnaires-worker,
etc.); and

Auxiliary services necessary for supporting base and SVC services in, e.g., managing
network traffic.

For the purposes of this case study, we will focus on the base services since they are
the muost critical services of the platform.

Micro services / Modules -
Monitoring / Control

Storage
SVC- i
(Postgresgl, MongoDB, (& o= f,;i:;i:;f‘,’fuby Featureflags Deployment + testing Vulnerabiliy Assessment
Redis) (Unleash) (Gitlab CI, Terraform) (Nikto, OpenVAS, SAST)
Storage SVC-data-integrations - In-depth monitoring
(Pastgresgl,Redis) [(Docker / NestJS / NodeJs)| Logging Monitoring (Grafana, prometheus,
(Papertrail, DMS) (Squadeast) appaignal)

Unstructured File Storage

SVC-data-mining
(R/ CpencPU) J D T e eeem e anees
Storage SVC-payments
(Postgresql) (R OpenCPU) 1 (52 ke system)

Dashhoards Base services

(MongeDB) (Postgresql) (Redis)

Interal dashboards - B
(JavaSciipt / Chartjs) i » i
Extemal dashboards i REST Back-end Workers . External APls ]
(Docker) ] (Ruby on Rais) (Ruby on Rails) B (Fitbit, Strava) i

Analysis backends ]
(Jupyer / Docker) ]
External dashboards | |

(swagger) ]

‘ Document Storage ‘ ‘ General DB ‘ ‘ Caching ‘ :

| Services

2
2
g
C)
REST
/—bo)—j—'
[Specific API

Front-end
(React]s)

S

End-user

Figure 1. Diagram of the architecture of the platform used for the case study.

The platform was deployed on a managed Kubernetes service offered by Digital-Ocean
(https:/ /www.digitalocean.com (accessed on 1 December 2022)) in two separate clusters:
one for the “live” production version and an “acceptance” environment to verify and test
changes in before they were released to the live version. Shared (i.e., not dedicated) VMs
were used for service deployments in both clusters. The horizontal pod autoscaler (HPA)
offered by the managed Kubernetes service was not used, meaning that the number of
assigned pods per service deployment was fixed for the platform. Table 1 summarizes
the assigned resources for the deployment of the base-platform* services in terms of the


https://www.digitalocean.com

Future Internet 2023, 15, 37

50f21

guaranteed resources (requests) and the maximum amount of resources (limits). Since the
platform is memory-intensive, these resources are defined only in terms of memory in the
table.

Table 1. Resource allocation per microservice deployment in the managed Kubernetes cluster.

Development Production
Deployment
Requests Limits Requests Limits
base-platform 512 MB 2GB 1.5 GB 25GB
base-platform-worker 256 MB 1GB 300 MB 1GB
base-platform-fast-worker 256 MB 1GB 300 MB 1GB

The existing observability stack for the platform consisted of various tools from differ-
ent vendors that were priced using different models and that needed to be integrated in
different ways with the application logic of the platform. For managing logs, Researchable
uses Papertrail (https://www.papertrail.com/ (accessed on 1 December 2022)). To capture
errors in running applications, Researchable uses AppSignal (https://www.appsignal.com/
(accessed on 1 December 2022)), an APM solution that supports Ruby, Elixer and Node JS
agents. This tool is primarily used to troubleshoot distributed requests as they propagate
through different microservices. UptimeRobot (https://uptimerobot.com/ (accessed on
1 December 2022)) is used to keep track of the information necessary for fulfilling the
service-level agreements of the platform, and Squadcast (https://www.squadcast.com/
(accessed on 1 December 2022)) is used for streamlining event processing. The presence
of four different solutions coming from four different vendors poses by itself a challenge.
Integration between them is not tight, and the cumulative cost of using them increases
quickly with their usage. Furthermore, it is non-trivial and time-consuming to isolate the
information necessary for optimizing the cost footprint of the platform. As such, in the
following, we discuss the requirements for an end-to-end solution that can offer both the
APM capabilities to replace these services and the envisioned CPT functionality.

2.3. Requirements

Eliciting requirements for the CPT solution involved the interviewing of the key
personnel at Researchable responsible for the development and operation of the data
platform. The resulting requirements can be classified in three distinct categories: functional,
non-functional, and technical. Table 2 summarizes the desirable requirements per category.
These requirements are used in the following to decide on an open-source APM stack to
adopt and for the design of our CPT solution.


https://www.papertrail.com/
https://www.appsignal.com/
https://uptimerobot.com/
https://www.squadcast.com/

Future Internet 2023, 15, 37 6 of 21

Table 2. Elicited requirements for the CPT solution from the case study.

Category Requirement

FR;  Storage of logs, metrics and traces is supported
*  Data retention rate should be configurable

. Newer data to be accessed faster than older ones
¢  Different storage solutions must be supported

FR,  The solution is ISO-270001-compliant

e Automated backups are enabled
. Restoring data from external snapshots is possible
. Alerts are to be sent for critical events

Functional

FR3  The metrics are visualized in a dashboard

*  Role-based access control to the dashboard is supported

o The creation of new and the customization of existing data visual-
izations is supported

. Visualization can be embeddable in other applications or shareable
externally

The system should be:

NFR;  Able to ingest data at the rate they are produced by the monitoring
agents

NFR, Cloud-provider agnostic, i.e., the solution should work across differ-
ent cloud providers

Non-functional NFR;  Integrated in a complete observability environment instead of being

offered as a stand-alone cost-profiling tool

NFR;  Able to scale with demand as the number and complexity of the
monitored applications grows

NFRs5 Designed with fault tolerance and high availability in mind

NFRg  Offered as an open-source solution

TR;  Integrated context view should be offered, allowing for switching be-
tween different data views seamlessly

TR, The solution should act as a single source of truth for all monitoring
data of the target application

TR3;  Data presentation should focus on usability, preferring a single page
view for fast exploration

Technical

3. Design and Implementation

Following the elicitation of requirements from the case under study, in this section, we
discuss the design and implementation of our cost-profiling tool as an open-source project.
We start by justifying our technology selection before moving on to the introduction of our
proposed architecture, the details of the cost monitoring mechanisms, and the presentation
of the end result.

3.1. APM Stack Selection

Looking into the requirements discussed in the previous section and the existing
solutions discussed in the introductory section, we were able to select a suitable APM
stack to use for the basis of our proposal by the process of elimination. More specifically,
cloud=service-provider-specific tools such as AWS X-ray were very quickly deemed not
applicable because they both do not offer a complete observability proposition (Require-
ment NFR;3), are not platform-agnostic (Requirement NFR;), and they are not open-source
(Requirement NFRg). Closed-source solutions such as NewRelic, Datadog, Splunk, and
Dynatrace were similarly eliminated for the latter reason. Open-source APM solutions such
as OpenZipkin and OpenTelemetry, on the other hand, do not have (sufficient) integration
options for metrics and/or logs (Requirement FR;). The most attractive APM stack for our
purposes, therefore, was the Elastic Stack.



Future Internet 2023, 15, 37

7 of 21

Figure 2 provides an overview of the Elastic Stack architecture. As can be seen in
the figure, Elastic Stack combines multiple open-source software tools to offer a complete
monitoring solution. The search and analytics engine Elasticsearch is at the heart of the
stack. It allows for data ingestion and the indexing of diverse types of both structured and
unstructured data and offers simple APIs for integration with other systems. Logstash
provides the functionality to keep track of application and APM logs. Kibana wraps around
the Elasticsearch API to offer a user-friendly Ul for managing the Elastic Stack and visualiz-
ing Elasticsearch data. The Observability overview page within Kibana contains a wide
variety of analytics charts, including the ability to visualize APM data, logs, infrastructure
metrics, and uptime data.

kubernetes + %9 elastic

Elasticsearch Kibana Observability

/ \

Beats

oy % & B

Real User
Monitoring

Elastic Agent Metricbeat Filebeat Heartbeat

Figure 2. Overview of the Elastic Stack architecture.

Two sources of data are used for APM purposes. The first is Elastic Beats, which are
lightweight shippers of monitoring data to Elasticsearch, that is, agents to be deployed on
hosts one wishes to monitor. There are several Beats available that handle different types of
data: Filebeat (logs), Metricbeat (metrics), Packetbeat (network packets), Winlogbeat (Win-
dows event logs), Auditbeat (audit data), Heartbeat (uptime monitoring), and Functionbeat
(a serverless shipper). All these beats are auto-instrumented and come with a self-discovery
feature that automatically detects new containers deployed in the same cluster.

The second is the Elastic APM Server, which allows the monitoring of software services
and applications by integrating performance data on incoming requests, database queries,
cache calls, and more. Deploying an Elastic agent inside target application containers
allows for capturing distributed traces across application deployments. Similarly to Beats,
these agents are also auto-instrumented and support self-discovery. OpenTelemetry agents
can be used instead if necessary, e.g., in case the microservice is developed in a language not
supported by Elastic APM. The Elastic APM server receives data coming from the agents
and inserts them into one or more Elasticsearch indices, also allowing for aggregation
operation directly on these data.

3.2. System Architecture

Following the selection of the underlying APM stack, we can now discuss the ar-
chitecture of our proposed solution, as summarized by Figure 3. The architecture itself
is separated into two parts: one part is responsible for gathering data from the target
application, i.e., the microservices and the infrastructure they live on, and one part is



Future Internet 2023, 15, 37

8 of 21

responsible for collecting, aggregating, storing, and visualizing the data through appro-
priate user interfaces. Both parts were designed to be deployed in Kubernetes clusters
that are, in principle, distinct from each other, referred to as the target and monitoring
cluster in Figure 3, respectively. For the purposes of this case study, we used the managed
Kubernetes cluster service offered by DigitalOcean to deploy our implementation of the
monitoring cluster components, matching the availability zone for the target cluster in
order to avoid data transfer cost issues. There are, however, no assumptions about the
capabilities offered by the specific Kubernetes solution offered by DigitalOcean, and as
per NFR;, any Kubernetes cluster hosted at any provider would do instead. To fulfill one of
the ISO-27001 requirements, we used, for example, DigitalOcean’s Object storage service to
hold (Monitoring) cluster snapshots for backup purposes (Requirement FR»), but a similar
solution could be recreated at any major cloud service provider.

Monitoring clustal] [ Target cluster |

kubernetes kubernetes

I PR - {08 ‘“ ‘_-;—__J
‘*"" S Telemetry Java
| Beats
I _ )
- R
NOIEKY
: ¢

7777777777 - S,
e

| %¢ nede

%5 MRS

Figure 3. High-level architectural view of the proposed solution with the target cluster set up for

the case.

Following the Elastic Stack architecture summarized in Figure 2, the Monitoring
cluster in Figure 3 consists of the Kibana, Elasticsearch, and Elastic APM components. The
Elasticsearch cluster consists of at least three nodes, as is the best practice for ensuring fault
tolerance and high availability (NFR5). Kibana was deployed as two instances (a main
and a backup) due to its criticality during error discovery while other systems experience
downtime and for load=balancing purposes. The Elastic APM server was deployed as a
single-instance component. The system itself is able to handle large volumes of incoming
data, and even if it fails, un-ingested data can still be added to the Elasticsearch index; it
is therefore not critical to operate it in a redundant mode. For the purposes of balancing
the load of all incoming data to the Monitoring cluster, we followed the common practice
of using the Nginx Ingress controller (https://docs.nginx.com/nginx-ingress-controller /
(accessed on 1 December 2022)) with at least two replicas of the ingress Nginx controller.

On the Target (application) cluster side, on the other hand, the only requirement
is to install the necessary agents for data collection inside the microservice application
itself. This means that no extra privileges are required to use the stack apart from having
control over the deployed microservices. For the APM part, we used both Elastic and
OpenTelemetry agents. From the available Beats, the one that we mainly depended on was


https://docs.nginx.com/nginx-ingress-controller/

Future Internet 2023, 15, 37

9o0f21

the Metricbeat whose Kubernetes provider captures multiple fields (https://www.elastic.
co/guide/en/beats/metricbeat/current/exported-fields-kubernetes.html (accessed on 1
December 2022)).

3.3. Cost Calculation

The cost for provisioning the complete target cluster can be collected directly from
the cloud service provider, either by extracting it from the monthly billing information or
directly from an API on the provider side. However, we also know that this information is
too coarse-grained to be of actual use in optimizing the cost of the application. Ideally, we
want to be able to assign cost down to the level of pods, the smallest unit in Kubernetes
clusters, per service deployment and then calculate the cost per (micro)service by summing
these individual costs.

Establishing this level of granularity starts with a simple observation: there is a direct
relationship between the resources a service has been allocated and the cost we assign to it. Intuitively,
the more resources from a cluster node the pods for a service are allocated, and the more
expensive the node is, the more expensive the service is in turn. Conversely, since the
cost per node is linear with its provisioning time, then the cost of each service pod is the
proportion of the node cost defined by the utilization of the node attributed to the service’s
pods. We therefore need to connect utilization metrics at the system and pod level to cost
metrics. Doing so at the system level, through, e.g., directly monitoring CPU utilization on
the node, both generates too many data to retain and does not guarantee the correlation
between consumed resources and deployed services in all cases.

Instead, we used the Metricbeat data for this purpose; of particular interest are the
following fields:

-kubernetes.pod.name: the (unique) name auto-generated by Kubernetes for each pod;
-kubernetes.pod.cpu.usage.pct: the CPU usage as a percentage of the total node CPU;
-kubernetes.pod.memory.usage.pct: the memory usage as a percentage of the total
node memory;
-kubernetes.node.name: The node on which the pod is running;
-kubernetes.deployment .name: The deployment of which the pod is part of;
-kubernetes.node.labels.node_kubernetes_io/instance-type: A label that is
assigned to the Kubernetes node by DigitalOcean. It contains the machine type of the
underlying infrastructure and is necessary because, in contrast to the hyperscalers,
DigitalOcean does not define a machine. type as part of the metadata for their VMs.
-orchestrator.cluster.name: Metadata to distinguish data coming from environments
(e.g., development and production) or projects belonging to different clients.

The raw Metricbeat data were first temporarily stored in the default Metricbeat Elastic-
search index. Even with the default reporting period of 10 s, retaining Metricbeat data for a
long time quickly becomes very storage-intensive. Instead, we used what in Elastic terms
is called a transform action, which allowed us to convert existing indices into new, summa-
rized ones that (eventually) could be used instead of the original ones so that the latter can
be discarded. To this effect, we configured Elasticsearch to aggregate the data points that
were collected for the fields we defined above every 10 s to a single point per minute, the
average value, into a new index. This affects mostly the kubernetes.pod.cpu.usage.pct
and kubernetes.pod.memory.usage.pct, since these are the ones that are actually the
most volatile over time. While this data compression creates a drop in the accuracy of the
metrics, it also results into a reduction of the necessary storage capacity by a factor of 6,
which, as we will discuss in the following, is a significant factor.

The next step in the process uses another transform, in this case an enrichment, to
add to the document produced by the previous step containing the aggregated metrics per
pod with the cost information at the node level. To achieve this goal, the API of the cloud
service provider (in this case, DigitalOcean) is used to retrieve the appropriate data. The
result of this step is a document containing both utilization metrics per pod and the billing


https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields-kubernetes.html
https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields-kubernetes.html

Future Internet 2023, 15, 37

10 of 21

data per month and hour at the level of the node in which the pod is deployed. Listing 1
shows a fragment of such a document.

Listing 1. Example of the pricing information attached to a metrics document.

{
"_index": "cloud-billing",
"_id": "digitalocean-s-1vcpu-1gb",

_source": {

"@timestamp": "2022-04-24T00:00:10.351Z2",
"provider": "digitalocean",
"instance_type": "s-1lvcpu-1gb",
"price_monthly": s
"price_hourly": s
"metadata": {

"memory": B

"vcpus": B

"disk": ,

"transfer": N

"regions": [

"ams3",

¥
},

The next and final step of the process used an ingest pipeline to correlate the utilization
and cost data and calculate the cost per pod. It achieves this by first calculating the
relative utilization of the pod (per minute) with respect to the total available in the node
by averaging the CPU and memory utilization metric values, both ranging in the [0, 1]
domain. It then calculates the node cost per minute of provisioning the node by dividing
the price_hourly field in the listing above with the 60 minutes of an hour. The per-minute
pod cost is then the product of these two values. The resulting document then persists
into a separate index, cost-profile, which is used for visualization purposes. Listing 2
shows an example of the resulting document where both utilization and cost-related data
are available for the respective pod. A similar process is applied to further enrich this
document with an average number of transactions per minute and the average transaction
duration for the deployment that this pod belongs to.

3.4. Deployment

CPT is available as an open-source project in a public Git repository (https:/ /gitlab.
com/sjoukedv/cost-profiling-microservices-applications (accessed on 1 December 2022)).
To facilitate the deployment of our tool, we use a combination of Terraform (https://www.
terraform.io/ (accessed on 1 December 2022)) and Helm (https://helm.sh/ (accessed on
1 December 2022)), providing the necessary artifacts in the repository and documenting
the sequence of commands necessary. The Terraform configuration files are defined for
deploying the monitoring cluster at DigitalOcean; however, they can be easily modified to
work with other cloud providers by simply modifying a few variables in them. Helm charts
are then used to package and template the monitoring cluster accordingly. For the target
cluster, the only configuration action necessary is deploying and configuring the necessary
Beats and APM agents from the Elastic Stack. We rely on the standard documentation at
Elastic for this purpose with links from our documentation to the necessary information.


https://gitlab.com/sjoukedv/cost-profiling-microservices-applications
https://gitlab.com/sjoukedv/cost-profiling-microservices-applications
https://www.terraform.io/
https://www.terraform.io/
https://helm.sh/

Future Internet 2023, 15, 37

11 of 21

Listing 2. Example of the cost profile index for each pod.

{

"_index": "cost-profile.pod.metrics",
"_id": "AGJzc2JTEYrNN1z4wJks92YhL72LvwAA",
"_source": {

"@timestamp": "2022-04-29T12:16:00.000Z",
"orchestrator": {

"cluster": {

"name": "Data Platform Dev"

¥

},

"cost_data": {
"price_monthly": s
"instance_type": "s-4vcpu-8gb",

"price_hourly":

}

"kubernetes": {

"node": {

"name": "service-coq8p",
"labels": {
"node_kubernetes_io/instance-type": "s-4vcpu-8gb"
}

},

"pod": {

"memory": {

"usage": {

"node": {

"pet": {

"avg":

}

¥

¥

},

"name": "base-frontend-84899f8fb5-mcpl2",
"cpu": {

"usage": {

"node": {

"pet": {

"avg":

}

}

¥

}

3,

"deployment": {

"name": "base-frontend"
}

},

},

¥

¥

Figure 4 shows a small part of the result of a successful deployment of the tool for
the data platform under consideration after having collected data for a few days and
visualized them in its dashboard. The dashboard builds on the capabilities offered by
Kibana and extends the default APM-oriented view offered out-of-the-box by the Elastic
Stack. Different graphs are provided for different pieces of information. For example, in
the bottom part of the figure, the relative node utilization is plotted as a series of stacked
bar plots. The aggregated utilization per node for both memory and CPU is shown in
the middle of the figure. Cost-profiling-related information is visualized in the top half
of the dashboard, including the total cost of the target application both per hour and
cumulatively over time. The graphs plot the costs per (microservice) deployment both
independently for each deployment and as stacked bars to indicate the overall cost. Each
of these graphs is interactive, allowing for filtering and zooming in to each of the data
series plotted (e.g., microservice deployment). The visualized data can also be dynamically
subsetted to specific time intervals for more targeted analysis of the visualizations, and
any graph can be removed or moved around on demand. The tool repository has more
information on the capabilities of the dashboard as part of its documentation.



Future Internet 2023, 15, 37 12 of 21

Awstance type

elect v

i.

ADsployment % )
elect. ~ §¥.
10 s

HES

Maximum achievable utilization §

sel

Sel

Cost por deployment

Price per minute

‘Agg. Memory utization per node. ‘Agg. CPU utlization per node.

‘sum of avg Memry usage per pod

APM duration

0002008

‘Stacked utiization per deployment

T

@timestamp per 30 minutes

per10 minutes

Average transaction duration us.

sum of avg CPU usage per pod

APM number of requests.

Price per minute

Average number of transactions

@timestamp per 10 minutes @timestamp per 10 minutes @timestamp per 10 minutes

Node utilzation

Figure 4. Partial, zoomed-out view of the CPT dashboard with data from a specific deployment of
the data platform. Cost-specific charts are offered in addition to the expected utilization-driven ones.

4. Evaluation

We discuss the efficacy of our CPT for cost-profiling purposes in the context of the
data platform case in two ways. We first explain how it was used to find potential cost
optimizations in primarily the computing infrastructure of the data analysis platform, as
well as allowing for costing the invocations to the platform. Then, we present the findings
of our postmortem interview with the platform developers on their perception of CPT as
potential adopters, and discuss its limitations and position with respect to other available
solutions.

4.1. Case Findings

In order to assess the fitness to the purpose of our proposal, we deployed our CPT
and monitored the data platform while the latter was being operated and updated. More
specifically, we deployed it in both the production and development environment Kuber-
netes clusters on DigitalOcean and collected data for a period of around 15 days in June
2022. A number of possible cost optimization points were identified through this process.
Furthermore, we used the fact that CPT has access to the underlying APM stack in order to
provide the ability to calculate the cost per invocation to the platform over time. All figures
in the following are exported charts directly from the dashboard for this observed period;



Future Internet 2023, 15, 37

13 of 21

in most of them, we zoom in on the period of a few days in that period to keep the figure
easy to read outside of the dashboard itself.

4.1.1. Node Allocation

Figure 5 shows the distribution of VM instances organized by instance size (inner
ring) and then by environment (outer ring) (In this figure and in the rest of the screenshot
figures that follow, we have redacted the name of the specific client for which the data
platform has been deployed, following the wishes of the client.). As can be observed in
Figure 5, the development environment uses the same amount of m-4vcpu-32gb memory-
optimized and relatively expensive nodes as the production environment. Considering
that the development environment has only a third of the production nodes allocated
for the other VMs sizes, a potential point of cost optimization is reducing the number of
m-4vcpu-32gb nodes allocated to the development pool or moving to a smaller instance
type for these nodes.

Instance distribution

— Prod

Lo 35.71%

s-dvcpu-8gb
s PRI,

Prod
m-dvcpu-32gb
14.29%
35.71% R
2z
5%
-4
@
s-dvcpu-8gb 8 5-2vcpu-4gb
m-4vcpu-32gb

Figure 5. VM instance distribution per environment.

Further cost improvements with respect to the same VM instance type can be identified
by looking at Figure 6 and plotting the cost per instance type and deployment environment
over time. Spikes in the figure are due to the Kubernetes autoscaler adding and removing
nodes to cope with changes in the load or to facilitate the upgrading of instances. As
can be seen in the figure, the memory-optimized node pool accounts for 1/3 of the entire
development cluster node count, while being responsible for almost 2/3 of the total cost of
the cluster. Changing the instance type to a less expensive one, e.g., m-4vcpu-16gb, while
increasing the number of maximum nodes available in the pool for this type is therefore
an obvious action that can be taken. Migrating to this instance type and simultaneously
reducing the number of minimum available nodes of each type, for example, allowed for
around a 40% and 44% reduction in the monthly cost of the development and production
clusters, respectively.



Future Internet 2023, 15, 37 14 of 21

Hourly price breakdown

° 0.35712
Prod > s-
4vcpu-8gb
0.14880

1.40000
Prod > s-

1.20000
2vcpu-4gb
1.00000
0.80000
0.60000
0.40000
0.20000
0.00000
’IE[h ’Iﬂlh ‘Iﬁth

Cost per hour (in $)
°

° 0.23810
Prod > m-
4vcpu-32gb
0.11904
Dev > s-
4vcpu-8gb
0.23810
Dev > m-
4vcpu-32gb

@timestamp per hour
Figure 6. Hourly cost breakdown across both environments.

June 2022

4.1.2. Memory Allocation

The next optimization point comes from the memory allocated per microservice, as
defined initially in Table 1 for the most relevant ones. Figure 7 shows the average memory
and CPU utilization per microservice deployment as a percentage of the total available
node utilization. Combined with the count of VM instances per type for the same period,
as plotted in the chart of Figure 8, it becomes clear that the production cluster is actually
severely underutilized: only about 127% of the available 1000% utilization (10 nodes of
100% each) is actually being used.

svc-payments
Other

Stacked utilization per deployment
® svc-auth-worker
@ svc-questionnaires-wor...

® svc-data-integrations H
® svc-auth H
® svc-payments-worker H
® base-platform-fast-wor... §
® svc-questionnaires H
@ svc-data-mining-analysi... §
@ base-platform-worker

@ base-platform

Titn fon

°
®

°

6

°

.4

Overall Sum of Average utilization

°

.2

o

Jone 2022

@timestamp per hour

Figure 7. Hourly utilization per microservice deployment in the production environment.

Node instances
6
/\ /\ /- / ® s-4vcpu-8gb
s \ ( ® s-2vcpu-4gb
4 — ‘ ® m-4vcpu-3...
i ‘ ‘
1

0
06 12 18 24 06 12 18 24 06 12
14th 15th

Number of nodes
w

13th
June 2022

@timestamp per 30 minutes

Figure 8. Node instance count in the production environment.

Based on the actual utilization, as plotted by Figure 7 and the corresponding chart for
the development environment, we can reduce the allocated memory for the three main
microservices as summarized by Table 3:



Future Internet 2023, 15, 37

15 of 21

Table 3. Recommended resource allocation per microservice deployment.

Development Production

Deployment
Requests Limits Requests Limits
base-platform 384 MB (—25%) 1 GB (-50%) 750 MB (-50%) 2 GB (—20%)
base-platform-worker 192 MB (-25%) 384 MB (—25%) 300 MB (0%) 700 MB (-30%)
base-platform-fast-worker 192 MB (-25%) 384 MB (-25%) 200 MB (-33%) 512 MB (-50%)

A more fine-grained view of the cost per microservice allowing for the identification
of further refactorings is provided by the chart in Figure 9. The svc-data-mining-analysis-
fitbit microservice deployment, for example, has lower utilization when compared to
the base-platform one according to the chart in Figure 7. However, as shown in the chart
of Figure 9, it is more costly over time due to the fact that is hosted in a more expensive
node. Moving this microservice deployment to a smaller and cheaper node is therefore
recommended in this case.

Cost per deployment

base-platform
@ svc-questionnaires
® svc-data-mining-analysi... 8
0.01500$
® base-platform-worker
svc-questionnaires-wor...
base-platform-fast-wor...
0.01000$ svc-data-integrations
svc-auth-worker

Price per minute

@ svc-auth

® svc-payments-worker
0.00500%
Other

0.000008

24 06 12 18 24 06 12
14th 15th

06 12 18

13th

June 2022
@timestamp per 30 minutes

Figure 9. Deployment cost comparison in the production environment.

4.1.3. Cost Per Transaction

Building on top of an APM stack allows us to offer insights into the cost of each trans-
action on the microservice level. For this purpose we combine two pieces of information:
first, the transactions per second metric for the base-platform-fast-worker microser-
vice visualized in the dashboard; second, the total cost per minute for the deployment
of each microservice as charted by Figure 9. The average cost per request chart can also
be used to cross-reference them and visualize the incurred cost of processing requests for
the base-platform microservice over time. This information is indispensable for pricing
model definition and customer billing purposes on the side of Researchable and any other
service provider.

4.2. User-Based Evaluation

It is relatively straightforward to demonstrate that the presented solution partially or
fully fulfills all of the requirements defined for the solution in Section 2.3, as summarized by
Table 4. Assessing the end result, therefore, focuses on the desired qualities of the solution
as defined in Section 3, i.e., ease of use, accuracy, and impact. To this effect, we prepared
and shared a questionnaire with the team in Researchable that we previously interviewed
in order to elicit requirements (Section 2.3). Their answers are summarized as follows:

1.  Ease of Use: 5here is a steep learning curve in becoming familiar with the tool that
can be greatly reduced through prior familiarity with the Elastic Stack, if available.
This is, however, a common issue with observability stacks in general and is also
present in the previous solution used by Researchable. In this sense, the perceived
complexity is not an obstacle for the adoption of the proposed solution. Assigning a



Future Internet 2023, 15, 37

16 of 21

dedicated role in the development team to develop familiarity with the tool would be
the definite way forward.

Accuracy: Due to DigitalOcean billing for the whole hour until the beginning of July
2022, CPT was actually more accurate in its cost calculation than the billing provided
by the provider. This situation reverted after July, when DigitalOcean actually started
billing per second, with the minimum reporting interval in our solution remaining at
one minute. However, given the rate and volume of incoming requests to the target
application and the reaction time of the Kubernetes autoscaler, this loss of information
is not critical.

Impact: Given the fact that no coordinated cost optimization activities were taking
place before the execution of the case study, the specific points identified through
the deployment of the tool, as discussed in the previous section, are considered
valuable inputs. Furthermore, no further possible optimization points were identified
based on the collected data. Additional cost savings are generated by the ability
to use a (mostly) free open-source stack, instead of the different solutions coming
from different vendors that constituted the previous observability solution. At the
same time, the learning time for becoming familiar with the tool has to be taken into
account, as training personnel also has costs. Moreover, operating the monitoring
cluster accrues its own operating expenses over time, despite the effort on our side to
keep its required resources to a minimum. Overall, however, the cost-saving potential
over time seems to outweigh these shortcomings.

Table 4. Status of the elicited requirements for the case as summarized in Table 2.

Requirement Status
FRq Storage of logs, metrics, and traces Full; data retention rate is fixed but mutable.
. Full; alerts do need additional logic to be han-
FR 150-270001 compliant dled if the free version of Elastic is used.
FR3 Metrics visualization Full; through the use of Kibana.
NFR; Dynamic data ingestion Full; enabled by the adoption of the Elastic stack.
NFR; Cloud-provider agnostic Full; no assumptions made about the provider.
NFR; Complete observability environment F}ﬂl; integrated into the Elastic observability en-
vironment.
. . Partial: enabled in principle by building on the
NFRy  Scaling with demand Elastic Stack but not tested.
NFRs Fault-tolerant and highly available (as above)
NFRg Open-source solution Full
TR, Integrated context view
TR, Single source of truth Full; enabled by the adoption of the Elastic Stack.
TR3 Focus on usability

5. Discussion

Based on the findings of the previous sections, we can now answer the research

questions defined in Section 2:

1.

With respect to the question “What APM metrics can be used for cost-profiling purposes?”,
we look at how provisioning resources for the deployment of a service contributes
to the price of the underlying infrastructure. Allocated CPU and memory appear to
be the highest contributors to this cost and, by extension, to the application cost. In
this work, we calculated utilization as an equally weighted sum of both these metrics,
but in the future, we can use differential weighting to reflect, e.g., memory-intensive
services.



Future Internet 2023, 15, 37

17 of 21

2. Inorder to answer “How can the cost of microservice deployments be calculated at different
levels of granularity based on these metrics?”, we transformed the raw metrics as collected
through the APM agents into monetary cost per metric. Using this per-metric cost
instead of the one provided by the cloud service provider’s billing information both
provides more fine-grained information and allows us to customize the interval of
observation without losing too much definition.

3. Finally, we showed that for the question “To what extent can this information be used to
reduce the cost footprint of microservice applications?”, it is possible to make application
deployment configuration changes based on insights gained through our cost-profiling
tool. It is also possible to indirectly identify architectural changes to be performed.

At the same time, the shortcomings of our proposal are also clear. First, using our CPT
solution requires going over a significant learning curve. Assigning one or more developers
to this task and potentially adopting the Elastic Stack as an observability solution that
goes beyond cost profiling so as to foster familiarity with this environment would help in
this direction. Second, as with all APM solutions, the amount of data generated can very
quickly be overwhelming, resulting in the cost profiler incurring its own burden in terms
of operational expenses. Even with the compression of the metrics through aggregation,
for example, we very quickly ended up requiring dozens of gigabytes in storage for a few
days’ worth of data. Removing/archiving data older than a week was a pragmatic decision
taken towards keeping the situation under control, but if a larger application was under
observation, then we might have reduced this down further to the span of days. We also
had the advantage of being able to deploy the monitoring cluster for the data platform
in the same availability zone as the target one. If this is not possible or desirable, e.g.,
when deploying one monitoring cluster for multiple target clusters across regions, then
ingress/egress for data transfer between the clusters can incur significant additional costs.

In terms of the cost model being used, our choice for calculating utilization only based
on CPU and memory ignores the impact that network bandwidth and storage allocation can
have on operational expenses. The presented case study was not affected by this limitation
due to a number of attenuating circumstances. DigitalOcean’s Managed Kubernetes service
limits the bandwidth of the underlying nodes’ infrastructure. The free bandwidth limit
differs per type of node, e.g., large computing nodes have higher bandwidth. In this case
study, the platform was memory-expensive, so the traffic did not exceed the limit that
comes with the larger nodes. We were, therefore, never near the point where allocated
network bandwidth would become a factor in the cost of the platform. Storage is similarly
not an issue since the selected VMs come with enough storage for the needs of the platform;
had we needed to move to storage-intensive VMs, then utilization could not have ignored
allocated storage. In future work, we need to investigate how to incorporate these factors
too in the calculation of utilization to cover the general case.

Furthermore, as we have fine-grained metrics about resource utilization together
with metadata to which ReplicaSet (https://kubernetes.io/docs/concepts/workloads/
controllers/replicaset/ (accessed on 1 December 2022)), a container, belongs, it becomes
possible to determine which horizontally, and often statically, scaled service is wasting
resources. Waste here is effectively the amount of over-provisioned resources at each unit
of time, accumulating through the operation of an application in the absence of perfect
auto-scaling. The cause of the waste for the case study in this work is the excessive number
of replicas of the same service with respect to the load for that moment in time. A fixed
number of replicas does not match the dynamic traffic pattern (e.g., the difference between
during and outside of office hours), which leads to unnecessary waste. The key takeaway
here is to use (vertical) pod auto-scaling to match the number of instances with the current
load, which, in terms, also scales the cluster itself. Failing that, as in our case, the presented
solution can be used to indirectly identify the pods producing the most waste through their
utilization metrics and adjust their allocated resources accordingly. Incorporating into the
CPT appropriate views and mechanisms to offer relevant suggestions is the next step in its
development.


https://kubernetes.io/docs/concepts/workloads/controllers/replicaset/
https://kubernetes.io/docs/concepts/workloads/controllers/replicaset/

Future Internet 2023, 15, 37

18 of 21

Finally, an obvious limitation of CPT stems from the scoping of this work to Kubernetes-
based microservice applications, as discussed back in the introductory section. This
choice allowed us to bring the complexity of the task at hand at a manageable level
and was justified by the requirements imposed by the case we executed at Research-
able for the purposes of this study. Nevertheless, it is quite restrictive in the sense that
cloud-native applications are increasingly being developed as combinations of container-
ized components deployed in Kubernetes clusters with components running in server-
less services, together with the necessary orchestration of said components. While ex-
panding CPT to support this wider toolkit of application development is future work;
the effort required to achieve this goal is not significant since Elastic Stack already of-
fers beats (monitoring agents) for functions (https://www.elastic.co/beats/functionbeat
(accessed on 1 December 2022)) and integrations with cloud providers such as AWS
(https:/ /www.elastic.co/guide/en/observability / current/aws-metrics.html (accessed on
1 December 2022)). The majority of the effort will, therefore, be made toward developing
an appropriate cost model for these cases.

On a relevant note, an interesting extension of the current proposal to be pursued in
the future is the incorporation of environmental footprint profiling running in parallel to the
cost one. For that, we first need a model estimating the emissions equivalent of operating
the clusters’ nodes over the period of interest. For this purpose, the model used for example
by the Cloud Carbon Footprint (https://www.cloudcarbonfootprint.org/ (accessed on
1 December 2022)) open-source tool can be adopted and adapted accordingly. Then,
similarly to what we presented previously concerning operational expenses, the footprint
per microservice deployment can be calculated by distributing the overall footprint per
node to each microservice through its proportional utilization of the allocated resources.
By these means, it would be possible to gain fine-granular insights into which parts of an
application generate the most emissions and refactor the application accordingly.

6. Related Works

Beyond the earlier works on cloud monitoring surveyed at [9-12], there are not many
approaches in the academic literature that are explicitly aimed at monitoring microservices,
specifically their cost. There are a few exceptions worth mentioning, though. Leitner
et al. [6] presented CostHat, a graph-based model of the end-to-end operational costs of
microservice applications deployed either on VMs or as serverless functions. The model is
able to calculate the cost per application and microservice based on its incoming workload
and can be used to perform what-if analysis for changes in the application. In order to do
so, however, it requires, among other things, the costs per request and deployment for each
microservice. In this respect, our tool can be used both in conjunction with CostHat and as
an alternative to it. Kuhlenkamp and Klems present in [13] Costradamus, a cost-profiling
system for services (including microservices) implemented in the serverless model. It relies
on having access to logs, data from invocation responses, or the modeling of the responses
and incorporates the notion of waste, albeit in a manner that is, by now, fairly obsolete (as
the difference between metered and billed function call duration).

Cost monitoring is also often present as a critical component in solutions aiming to
address different problems. For example, these can be dealing with resource management
of microservice architectures at scale, such as the work by Maghalhaes et al. [14] or Carrusca
et al. [15]. The efficient automated scaling of microservices, for example [16], includes, by
necessity, cost monitoring. Other works aim to optimize the deployment of microservices
across service providers [17] or the cloud-edge continuum [18]. A related problem requiring
cost monitoring is that of the optimization of (micro)service orchestration, as discussed, for
example by the Ananke system [19,20] and the work by Alexander et al. [21]. None of the
above approaches, however, provide application developers with the tools to understand
how the cost of deploying and operating their application and infrastructure breaks down
to the individual microservices involved.


https://www.elastic.co/beats/functionbeat
https://www.elastic.co/guide/en/observability/current/aws-metrics.html
https://www.cloudcarbonfootprint.org/

Future Internet 2023, 15, 37

19 of 21

In addition to the commercial and closed-source solutions for microservice application
observability discussed in the introduction, there are also a series of industrial solutions
specifically aimed at cost profiling. These include, among others, Infracost (https://
www.infracost.io/ (accessed on 1 December 2022)) and C-Facts (https://www.c-facts.
com/ (accessed on 1 December 2022)). Infracost provides tools for the cost analysis of
infrastructure as code (IaC) artifacts such as Terraform. The drawback is that they can only
show costs related to infrastructure usage in, e.g., units, but they cannot show information
about the effectiveness of the underlying infrastructure or the allocation of the infrastructure
with respect to the microservice architecture. C-Facts offers a centralized solution for the
monitoring and analysis of operational expenses across cloud providers with an all-in-one
dashboard for their visualization. However, it relies on the ingestion of data by their own
system, creating effectively a vendor lock-in, in contrast to our solution.

In terms of open-source projects, the closest to our proposal is OpenCost (https:
/ /www.opencost.io/ (accessed on 1 December 2022)), itself an evolution of the Kubecost
project (https://www.kubecost.com/ (accessed on 1 December 2022)). OpenCost is a
vendor-neutral cost-monitoring tool for Kubernetes clusters built on top of Prometheus
with integrations to the billing systems of the three hyperscalers. Beyond being currently
limited, however, to these providers and on-premises Kubernetes deployments, it also
comes without a dashboard for the visualization of the data.

The above approaches determine the cost profile but do not, in principle, recommend
changes to the configuration, despite offering some optimization capabilities. A solution
that is also capable of automatically tuning resources is Goldilocks (https://goldilocks.
docs.fairwinds.com/ (accessed on 1 December 2022)). One of the motivations to move to
platforms such as Kubernetes and a cloud-native containerized approach is the horizontal
scalability of services. Waste happens in both the horizontal direction by using too many
containers of a service and in the vertical directon by allocating too many resources for
a single container which are not fully utilized. Goldilocks builds on top of the vertical
pod autoscaler (VPA) of the Kubernetes ecosystem. Furthermore, a platform such as
Spot (https:/ /spot.io/ (accessed on 1 December 2022)) offers a solution that includes cost
optimization based on the monitoring of accrued costs. The drawback of this approach,
however, is the associated cost, which is claimed to be covered by cost savings, and the
limitation of supported cloud providers.

7. Conclusions

Understanding the behavior of by-definition complex distributed systems such as
microservice applications through monitoring their operations is a challenging proposition.
Automatic platform monitoring solutions have been used for years now for achieving this
goal of observability, usually offered as complete but closed-source solutions by different
vendors. The availability of open-source observability solutions such as the Elastic Stack cre-
ates possibilities for exploring previously limited focal points for monitoring and eventual
optimization. One of these points, as discussed by this work, is that of cost profiling, aiming
to understand where and how operational expenses accrue in microservice applications.

For this purpose, we conducted an exploratory case study on a data platform already
in production by an industrial partner. Based on the requirements elicited from the case, we
designed and implemented a cost-profiling tool on top of the Elastic Stack. The tool allows
for proportionally attributing the operating expenses for running the Kubernetes cluster
that the platform is deployed on to different levels of granularity of the system architecture.
We investigated to which extent adopting this tool can lead to cost reductions, and we
collected evidence that this is possible primarily through the reallocation of resources in
the cluster. As with other APM solutions, our proposal has both a steep learning curve and
significant costs for managing the volume of produced data to deal with. However, this
needs to be compared against the value it adds to organizations seeking to reduce their
cloud expenses.


https://www.infracost.io/
https://www.infracost.io/
https://www.c-facts.com/
https://www.c-facts.com/
https://www.opencost.io/
https://www.opencost.io/
https://www.kubecost.com/
https://goldilocks.docs.fairwinds.com/
https://goldilocks.docs.fairwinds.com/
https://spot.io/

Future Internet 2023, 15, 37 20 of 21

Author Contributions: Conceptualization, S.d.V., EB. and V.A.; methodology, S.d.V. and V.A; soft-
ware, S.d.V,; validation, 5.d.V,, EB. and V.A.; investigation, 5.d.V.; resources, F.B.; data curation,
S.d.V.; writing—original draft preparation, S.d.V.; writing—review and editing, V.A., EB.; visualiza-
tion, 5.d.V.; supervision, V.A.; project administration, V.A. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: All source code is available in the project repository. Case study data
are not publicly available due to their sensitivity.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

APM  Application Performance Monitoring
CPT  Cost-Profiling Tool

CSP Cloud Service Provider

TaaS Infrastructure as a Service

VPA  Vertical Pod Autoscaler

References

1. Newman, S. Building Microservices: Designing Fine-Grained Systems, 1st ed.; O’Reilly Media: Sebastopol, CA, USA, 2015; p. 280.

2. Larrucea, X.; Santamaria, I.; Colomo-Palacios, R.; Ebert, C. Microservices. IEEE Softw. 2018, 35, 96-100. [CrossRef]

3. Picoreti, R.; do Carmo, A.P,; de Queiroz, EM.; Garcia, A.S.; Vassallo, R.F.; Simeonidou, D. Multilevel observability in cloud
orchestration. In Proceedings of the 2018 IEEE 16th Intl Conf on Dependable, Autonomic and Secure Computing, 16th Intl
Conf on Pervasive Intelligence and Computing, 4th Intl Conf on Big Data Intelligence and Computing and Cyber Science and
Technology Congress (DASC/PiCom/DataCom/CyberSciTech), Athens, Greece, 12-15 August 2018; pp. 776-784.

4. Kratzke, N. Cloud-Native Observability: The Many-Faceted Benefits of Structured and Unified Logging—A Multi-Case Study.
Future Internet 2022, 14, 274.

5. Usman, M.; Ferlin, S.; Brunstrom, A_; Taheri, J. A Survey on Observability of Distributed Edge & Container-based Microservices.
IEEE Access 2022, 10, 86904—-86919.

6.  Leitner, P; Cito, J.; Stockli, E. Modelling and managing deployment costs of microservice-based cloud applications. In Proceedings
of the 9th International Conference on Utility and Cloud Computing, Shanghai, China, 6-9 December 2016; pp. 165-174.

7. Runeson, P; Host, M. Guidelines for conducting and reporting case study research in software engineering. Empir. Softw. Eng.
2009, 14, 131-164. [CrossRef]

8.  Runeson, P; Engstrom, E.; Storey, M.A. The design science paradigm as a frame for empirical software engineering. In
Contemporary Empirical Methods in Software Engineering; Springer: Cham, Switzerland, 2020; pp. 127-147.

9. Aceto, G.; Botta, A.; De Donato, W.; Pescape, A. Cloud monitoring: A survey. Comput. Netw. 2013, 57, 2093-2115.

10. Fatema, K.; Emeakaroha, V.C.; Healy, P.D.; Morrison, ].P; Lynn, T. A survey of cloud monitoring tools: Taxonomy, capabilities
and objectives. J. Parallel Distrib. Comput. 2014, 74, 2918-2933. [CrossRef]

11. Ward, ].S.; Barker, A. Observing the clouds: A survey and taxonomy of cloud monitoring. J. Cloud Comput. 2014, 3, 1-30.
[CrossRef]

12.  Hauser, C.B.; Wesner, S. Reviewing cloud monitoring: Towards cloud resource profiling. In Proceedings of the 2018 IEEE 11th
International Conference on Cloud Computing (CLOUD), San Francisco, CA, USA, 2-7 July 2018; pp. 678-685.

13.  Kuhlenkamp, J.; Klems, M. Costradamus: A cost-tracing system for cloud-based software services. In International Conference on
Service-Oriented Computing; Springer: Cham, Switzerland, 2017.

14. Magalhaes, A.; Rech, L.; Moraes, R.; Vasques, F. REPO: A Microservices Elastic Management System for Cost Reduction in the
Cloud. In Proceedings of the 2018 IEEE Symposium on Computers and Communications (ISCC), Natal, Brazil, 25-28 June 2018;
pp. 00328-00333.

15. Carrusca, A.; Gomes, M.C.; Leitdo, J. Microservices management on cloud/edge environments. In Proceedings of the International
Conference on Service-Oriented Computing, Toulouse, France, 28-31 October 2019; pp. 95-108.

16. Yu, G.; Chen, P; Zheng, Z. Microscaler: Cost-effective scaling for microservice applications in the cloud with an online learning
approach. IEEE Trans. Cloud Comput. 2020, 10, 1100-1116. [CrossRef]

17. Fadda, E.; Plebani, P; Vitali, M. Monitoring-aware optimal deployment for applications based on microservices. IEEE Trans. Serv.
Comput. 2019, 14, 1849-1863. [CrossRef]

18. Fu, K.; Zhang, W.; Chen, Q.; Zeng, D.; Guo, M. Adaptive resource efficient microservice deployment in cloud-edge continuum.

IEEE Trans. Parallel Distrib. Syst. 2021, 33, 1825-1840. [CrossRef]


http://doi.org/10.1109/MS.2018.2141030
http://dx.doi.org/10.1007/s10664-008-9102-8
http://dx.doi.org/10.1016/j.jpdc.2014.06.007
http://dx.doi.org/10.1186/s13677-014-0024-2
http://dx.doi.org/10.1109/TCC.2020.2985352
http://dx.doi.org/10.1109/TSC.2019.2910069
http://dx.doi.org/10.1109/TPDS.2021.3128037

Future Internet 2023, 15, 37 21 of 21

19. DiStefano, A.; Di Stefano, A.; Morana, G. Ananke: A framework for cloud-native applications smart orchestration. In Proceedings
of the 2020 IEEE 29th International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE),
Bayonne, France, 10-13 September 2020; pp. 82-87.

20. Di Stefano, A.; Di Stefano, A.; Morana, G.; Zito, D. Prometheus and AIOps for the orchestration of Cloud-native applications in
Ananke. In Proceedings of the 2021 IEEE 30th International Conference on Enabling Technologies: Infrastructure for Collaborative
Enterprises (WETICE), Bayonne, France, 27-29 October 2021; pp. 27-32.

21. Alexander, K.; Hanif, M.; Lee, C.; Kim, E.; Helal, S. Cost-aware orchestration of applications over heterogeneous clouds. PLoS
ONE 2020, 15, €0228086. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


http://dx.doi.org/10.1371/journal.pone.0228086
http://www.ncbi.nlm.nih.gov/pubmed/32069298

	Introduction
	Case Study
	Study Design
	Case Description
	Requirements

	Design and Implementation
	APM Stack Selection
	System Architecture
	Cost Calculation
	Deployment

	Evaluation
	Case Findings
	Node Allocation
	Memory Allocation
	Cost Per Transaction

	User-Based Evaluation

	Discussion
	Related Works
	Conclusions
	References

