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Abstract: In this paper, we propose a novel Deep Reinforcement Learning Evolution Algorithm
(DRLEA) method to control the antenna parameters of the High-Altitude Platform Station (HAPS)
mobile to reduce the number of low-throughput users. Considering the random movement of the
HAPS caused by the winds, the throughput of the users might decrease. Therefore, we propose
a method that can dynamically adjust the antenna parameters based on the throughput of the
users in the coverage area to reduce the number of low-throughput users by improving the users’
throughput. Different from other model-based reinforcement learning methods, such as the Deep Q
Network (DQN), the proposed method combines the Evolution Algorithm (EA) with Reinforcement
Learning (RL) to avoid the sub-optimal solutions in each state. Moreover, we consider non-uniform
user distribution scenarios, which are common in the real world, rather than ideal uniform user
distribution scenarios. To evaluate the proposed method, we do the simulations under four different
real user distribution scenarios and compare the proposed method with the conventional EA and RL
methods. The simulation results show that the proposed method effectively reduces the number of
low throughput users after the HAPS moves.

Keywords: HAPS; antenna control; reinforcement learning; evolution algorithm

1. Introduction

High platform station (HAPS) provides extremely broad coverage regions and a
powerful line-of-sight (LoS) connectivity to terrestrial user equipment (UE) at the ground.
As early as the 1990s, HAPS began to be paid attention to and studied through numerous
research perspectives [1].

Compared with Geostationary Earth Orbit (GEO) satellites that are orbiting at a height
of about 36,000 km and Low Earth Orbit (LEO) satellites that are orbiting at a height
of about 1200 km, HAPS operates at the stratosphere at heights between 20 and 50 km.
Therefore, the Round Trip Time (RTT) of HAPS is much faster than that of GEO and LEO
satellites. Furthermore, since HAPS is relatively close to the ground, the power density is
approximately one million times that of a GEO satellite and approximately ten thousand
times that of a LEO satellite, allowing HAPS to provide high-quality communication
services to existing mobile devices [2]. In addition, compared to other systems such as
Starlink, which operates at an altitude of 340 km to 550 km [3], HAPS is much less expensive
in terms of both the launch and the communication costs. Nonetheless, it does not “pollute”
the upper layers of the atmosphere with the space waste it creates.
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It is recognized as one of the hot topics for Beyond 5G (B5G) and 6G mobile communi-
cations [4–8]. With the necessary advanced materials and technological leaps, HAPS has
been discussed as a viable technique.

With their potential and with the decrease in the cost of the technology behind it,
they are expected to be massively deployed for consumer usage in the coming years as
candidates for cellular coverage to provide service or to augment the capacity of other
broadband service providers [9].

S. Karapantazis et al. [5] and A. K. Widiawan et al. [10] summarized the essential
technical aspects of HAPS systems and the current and potential applications of HAPS.
In [11], the authors studied the potential HAPS system architectures and deployment
strategies in order to achieve global connectivity.

In [12], White et al. studied the possibility of using HAPS to provide high data rate
communications simultaneously to a number of trains in motion. According to the esti-
mated and tracked Direction-of-Arrival (DoA) at the HAPS, they can control the parameters
of the antenna array at the HAPS to transmit the beam to the UEs.

2. Related Work

However, due to wind pressure, it is difficult for HAPS to remain stationary. Thus,
the degradation of the users’ throughput and handovers to UEs’ end happened [13,14]
after the HAPS coverage shifting. This kind of quasi-stationary state seriously impacts
the performance of the communication system [15]. Dessouky et al. [16,17] researched
the problem of maximization of coverage through optimization of the parameters of the
HAPS antenna arrays, and proposed an optimized way to minimize both the coverage
gaps between cells and the excessive cell overlap. Yasser et al. [18] studied the influence
of handover performance when the HAPS is moved or rotated by winds. He et al. [19]
examined the swing state modeling of the cellular coverage geometry model and the
influence of swing on handover. Many studies [11,20–28] on antenna control of HAPS
proposed employing antenna control methods to prevent interference between surrounding
cells and HAPSs to alleviate the decrease in received signal power caused by HAPS shifting
or rotation. Kenji et al. [20] proposed a beamforming method to reduce the impact of the
degradation of system capacity caused by handover between two cells. Florin et al. [21]
analyzed the concentric circular antenna array (CCAA) and proposed a Genetic Algorithm
(GA) to minimize the maximum side-lobe level (SLL). In [22], Sun et al. further developed
the discrete cuckoo search algorithm (IDCSA) used to reduce the maximum SLL under
the constraint of a particular half-power bandwidth. To increase the system capacity, Dib
et al. [23] also researched SLL reduction. In contrast to existing approaches, they proposed
a Symbiotic Organism Search (SOS) algorithm. The SOS algorithm requires no tuning of
parameters, which makes it an attractive optimization method. In [24], the particle swarm
optimization (PSO) GA is used for reducing the SLL to improve the carrier-to-interference
ratio (CIR). However, in high-dimensional space, PSO is easy to enter a local optimum, such
as other GAs, and the iterative process’ convergence rate is low. These limitations motivate
us to develop a new method with high convergence and better throughput performance.

With the rapid development of deep learning techniques, reinforcement learning
(RL) is widely used in various fields including in 5G and B5G [29–31]. F. B. Mismar et al.
in [32] used Deep Q-Network (DQN) for online learning on how to maximize the users’
signal-to-interference plus noise ratio (SINR) and sum-rate capacity. The authors design
a binary encoding for performing multiple relevant actions at once in the DQN structure.
A. Rkhami et al. in [33] used the RL method to solve the virtual network embedding
problem (VNEP) in 5G and B5G. The authors considered that the conventional Deep
Reinforcement Learning (DRL) usually obtains the sub-optimal solutions of VNEP, which
leads to inefficient utilization of the resources and increases the cost of the allocation process.
Thus, they proposed a relational graph convolutional neural network (GCNN) combined
with DRL to automatically learn how to improve the quality of VNEP heuristics. In [34],
the authors proposed a deep learning integrated RL, which combined deep learning (DL)
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and RL. The DL is used for preparing the optimized beamforming codebook and the RL is
used for selecting the best beam out of the optimized beamforming codebook based on the
user movements.

According to those early works, we can find that the DRL technique can train the neural
network with feedback from the environment. Thus, such as solving the beamforming
problem in [32] that using the DRL solution does not require the CSI to find the SINR-
optimal beamforming vector. Moreover, different from model-free RL methods that need
a huge optimal solution searching overhead for solving a complex problem, the DRL
approach uses the DNN to predict the optimal solution without searching overhead. The
DRL solution can be trained by the SINR feedback from users. Based on this motivation,
we study the DRL and propose a novel DRL approach.

Contributions

The movement and rotation of the HAPS due to wind pressure can cause the cell
range to shift, which in turn causes the degradation of users’ throughput and handovers
between cells [13,14]. With the development of Global Positioning System (GPS) technology,
HAPS can control itself to recover its original position state according to GPS positioning
technology and thus restore the user signal quality. That being said, the position and
rotation state of HAPS will always fluctuate within a certain range due to the unpredictable
wind direction and wind force. However, we can improve throughput with beam steering.
Thus, to solve the degradation of received power at UEs, we propose a Deep Reinforcement
Learning Evolution (DRLEA) method. In our previous work [35], we proposed a Fuzzy
Q-learning method. This method used Fuzzy logic in the model-free RL method named
Q-learning to control multiple searches in a single training step. Compared with the Q-
learning, the proposed Fuzzy Q-learning method has a lower cost of action searching.
However, we found that the throughput performance of the proposed Fuzzy Q-learning
method under non-uniform user distribution scenarios needs to be improved. Therefore,
we proposed a DRLEA method for dynamic antenna control in the HAPS system to reduce
the number of low-throughput users.

The proposed DRLEA considers that each iteration in the conventional DRL is a new
generation. Starting from the first generation (the first iteration), DRLEA searches for the
optimal solution in the current generation and trains the DNN to learn this evolutionary
process. The DRLEA records the best result of the current generation as the historical
optimal solution for guiding the next generation. If the current generation cannot find
better solutions to reduce low throughput users, i.e. users whose throughput is lower than
the median throughput prior to antenna parameters adjustment, the mutation happens
(randomly selecting an action). The process is repeated until the specified execution time
is reached. Compared with conventional RL methods, such as Q-learning-based and
DQN-based methods, the proposed method can avoid the sub-optimal solution as much as
possible. This is because, in every iteration a random initial set of parameters is used, and
is then optimized, leading to less chances of falling into the local optimal.

In addition, the performance of user throughput is closely related to the user’s SINR
and bandwidth. We can improve the user’s SINR by gradually adjusting the antenna
parameters based on the user’s feedback. As for the user’s dedicated bandwidth, it is
only a function of the coverage of the antenna array in which the user is located as well as
the number of users within that coverage area. Therefore, we do not necessarily need to
know the channel state information (CSI) to design the beamforming matrix. Compared
with obtaining an accurate CSI, obtaining the user location information, such as using the
GPS technique, is less costly in terms of resources and time. It is nonetheless easier and
computationally less expensive to adjust the antenna array parameters to account for the
changes to the footprint of the users’ locations than that of their CSI.

Moreover, we implement three conventional methods, PSO, Q-learning, and DQN as
benchmarks to evaluate the proposed DRLEA method and show that the proposed DRLEA
is still reliable and efficient. This paper’s contributions can be outlined as follows:
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• We propose a novel DRLEA method that addresses the problem of dynamic control of
the HAPS antenna parameters to decrease the number of users with low throughput.
The proposed method combined the EA and DRL to avoid sub-optimal solutions.

• We design a new loss function that includes not onlyQ-value of the predicted optimal
action, but also the historical optimal solutions obtained from previous training.

• Considering the random movement of HAPS caused by wind, we use the user’s
throughput as a reward, which includes the users’ location information. Thus, with
the same user distribution scenario and after training, the proposed method can
quickly improve the users’ throughput under different types of HAPS movements.
Even if the HAPS randomly moves again, the proposed approach can still reduce the
number of low-throughput users.

The key notations used in this article are listed in Table 1.

Table 1. Key Notations.

M The number of HAPSs

N The number of antenna arrays in each HAPS

K The number of users

θ3dB The vertical beam half power beam width (HPBW)

φ3dB The horizontal beam HPBW

φtilt The horizontal tilt

θtilt The vertical tilt

p The transition probability

γ signal-to-interference plus noise ratio

α Reward discount factor

β Learning rate

S The state space

A The action space

A The action of the HAPS

ai,l The l-th action of the i-th antenna array

st The state at the time t

Aj The j-th action

R(st, Aj) The reward with the (st, Aj)

Q(st, Aj) The Q-value with the (st, Aj)

F The neural network

D The experience reply memory

X The randomly generated antenna parameters

E The number of epochs

T The number of steps in each epoch

P The number of particles

gbest The optimal solution

pbest The sub-optimal solution

3. System Model
3.1. Model of HAPS

In Figure 1, we show a typical HAPS communication system model. We think about
the scenario of M HAPSs serving multiple users in the mMIMO mmWave networks. In
more detail, each HAPS is equipped with N antenna arrays to generate N beams. M HAPSs
assist the BS to serve multiple users. HAPSs relay the signal transmitted from the BS to
users to improve the throughput of users.
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Figure 1. A HAPS system model.

Moreover, we also consider the wind-caused HAPS movement, as shown in Figure 2.
Figure 2a shows the HAPS with shifting and Figure 2b shows the HAPS with rotation.
Whatever shifting or rotation, it will cause the degradation of users’ throughput.

Figure 2. Movement scenarios.

3.2. Antenna Pattern

Planar patch antennas [36] used in each antenna array are considered in this paper.
To obtain the vertical and horizontal antenna gains, for each antenna array, four antenna
parameters are considered: Figure 3a shows the vertical beam half power beam width
(HPBW) θ3dB and the horizontal beam HPBW φ3dB, Figure 3b shows the vertical tilt θtilt
and the horizontal tilt φtilt. In Figure 3b, ∆φtilt and ∆θtilt denote the changing of φtilt and
θtilt, respectively. From there, we could derive the expression of the horizontal or vertical
antenna gains for an angle Ψ from the main beam direction as [37]:

Gh(Ψ) = Gv(Ψ)


−3(Ψ/Ψb)

2, (0◦ ≤ Ψ ≤ Ψ1)
LN , (Ψ1 < Ψ ≤ Ψ2)
X− 60 log10(Ψ), (Ψ2 < Ψ ≤ Ψ3)
LF, (Ψ3 < Ψ ≤ 90◦)

(1)

where Ψb is one-half the 3 dB beamwidth in the plane of interest, Ψ1 = Ψb
√
−LN/3,

Ψ2 = 3.745Ψb, X = LN + 60 log10(Ψ2), and Ψ3 = 10(X−LF)/60 [37], LN denotes the near-in-
side-lobe level, and LF denotes the far-side-lobe level.
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Figure 3. Antenna parameters.

Therefore, we could express the combined gain G as:

G = max(Gv + Gh, LF) + Gp, (2)

where Gv and Gh are the vertical and horizontal antenna gains, respectively, and Gp denotes
the maximum antenna gain as shown in Equation (3).

Gp = 10 log10(
Bw

2

θ3dBφ3dB
) + G, (3)

where Bw denotes the beamwidth. Figure 4 shows an example of an antenna pattern for
vertical or horizontal polarization.

Angle [deg]

Ga
in

 [d
Bi

]

𝜃!"#= 20 deg
∅!"#= 20 deg

Figure 4. Example of an antenna pattern for vertical or horizontal polarization.

3.3. Problem Formulation

To reduce the number of users whose with low throughput, we formulate the dynamic
antenna control problem into maximizing the throughput of users. The throughput T of a
user can be obtained by the following equation:

T = b× log2(1 + γ), (4)

where γ denotes the SINR at the user, b = B/K denotes the bandwidth assigned to the user,
B denotes the bandwidth of each antenna array and K denotes the number of users in an
antenna array coverage.
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As obvious from Equation (4) and the x-z plane in Figure 5, we can know that the
rising of the throughput with the increase in the SINR is very slow when the bandwidth is
very small. Thus, considering making users’ bandwidth as large as possible is necessary,
particularly in the non-uniform user distribution scenario. Compared with the conventional
methods, which reduce the SLL [24] or improve the SINR at users [35], this formulation not
only improves the SINR at the user’s end, but also improves the bandwidth at the user.

Figure 5. Throughput.

4. The Proposed DRLEA Approach

In this section, we present three algorithms that have been used as benchmarks and the
proposed DRLEA algorithms for reducing the number of low-throughput users by dynamic
antenna control. In the current paper, we address the case of a single HAPS movement.
Our objective is to control only the HAPS in question (which has supposedly moved) to
reduce the number of low-throughput users in the area it was serving before it moved. This
means that no overlap or exchange of areas with surrounding HAPS will occur.

Therefore, we can simplify the system model as follows. We consider M− 1 fixed-
position HAPS around the HAPS in question that is moved due to wind pressure. Our
target is to optimize the antenna parameters of this HAPS to reduce the number of users
with low throughput. No handovers between the different HAPS is accounted for, and no
new users are introduced to the coverage area of the HAPS in question.

4.1. Markov Decision Process

We define the state at time t as st, and the selected action under the state st is Aj.
Moreover, we consider using the four antenna parameters [φtilt, θtilt, φ3dB, θ3dB] at time t as
the state st. The action Aj ∈ A is defined as the change of one set of antenna parameters,
where A denotes the action set of the HAPS. To reduce the computational complexity, we
use discrete antenna parameters to reduce the number of actions. Moreover, to perform
the all actions at once, we design the action mapping list as shown in Table 2. We assume
that the number of antenna parameters of each antenna array is P = 4, and the number of
values of each antenna parameter is V = 3. Thus, the number of actions of each antenna
array is L = VP, and the number of actions of a HAPS is J = LN . A1(a(1,1), . . . , a(N,1)) in
Table 2 indicates that antenna array 1 to antenna array N performs action index 0.



Future Internet 2023, 15, 34 8 of 19

Table 2. Actions mapping list.

Actions of the HAPS Actions of
the Antenna
Array i

Action
Index

φ3dB θ3dB φtilt θtilt

A1(a(1,1), . . . , a(N,1)) a(i,1)(0, 0, 0, 0)

0 +∆φ3dB +∆θ3dB +∆φtilt +∆θtilt
A2(a(1,1), . . . , a(N−1,2)) a(i,2)(0, 0, 0, 1)

...
... 1 −∆φ3dB −∆θ3dB −∆φtilt −∆θtilt

2 0 ◦ 0 ◦ 0 ◦ 0 ◦AJ−1(a(1,L), . . . , a(N,L−1)) a(i,L−1)(2, 2, 2, 1)

AJ(a(1,L), . . . , a(N,L)) a(i,L)(2, 2, 2, 2)

The rewardR(st, A) with the state st and the action A is represented by the Equation (5).

R(st, A) =
∑

K
2
i,j T

′
i − Tj
K
2

, (5)

where K denotes the number of users, ∑
K
2
i T

′
i denotes the sum of the throughput of the 50

percent users with the least throughput after performing the selected action A, and ∑
K
2
j Tj

denotes the sum of the throughput of the 50 percent users with the least throughput under
the initial state. Thus, the antenna parameters control problem can be represented by a
Markov Decision Process (MDP):M , (S ,A,R, p, α), where S denotes an infinite state
space, p denotes the transition probability that characterizes the stochastic evolution of
states in time, with the collection of probability distributions over the state space S , and
α ∈ [0, 1) is the reward discount factor.

The goal is to find a deterministic optimal policy π∗ : S → A, such that:

π∗ := arg max
π∈Φ

E
[

∞

∑
t=0

αtr(st, π(st))

]
, (6)

where Φ is the set of all admissible deterministic policies. At time step t, HAPS selects an
action simultaneously based on the policies π. The Q function is shown as follows:

Qπ(s, A) := E
[

∞

∑
t=0

αtR(st, π(st)) | s0 = s, A0 = A

]
. (7)

Thus, the optimal policy π∗ can be obtained by:

π∗(s) = arg max
A

Q∗(s, A)

= Es′∼p(·|s,A)

[
R(s, A) + max

A′
αQ∗

(
s′, A′

)] (8)

where s′ denotes the next state, max
A′
Q∗(s′, A′) denotes performing the action A′ that can

obtain the maximum Q value under the state s′.
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4.2. Conventional Methods

In this subsection, we will describe three methods that serve as benchmarks to solve
the MDP.

4.2.1. Q-Learning

Q-learning is a kind of classical RL algorithm [38]. To search the optimal Q function,
Q-learning builds a Q table to record the sum of existing Q value Q(s, A) of the action A
for the current state s. The Q value is obtained by Equation (9).

Q(s, A)← Q(s, A) + β

[
R(s, A) + α max

j
Q
(
s′, Aj

)
−Q(s, A)

]
. (9)

Here, β denotes the learning rate and max
j
Q(s′, Aj) denotes performing the action

Aj that can obtain the maximum Q value under the state s′. The details of the Q-learning
algorithm is shown in Algorithm 1.

Algorithm 1 Q− learning method for HAPS antenna control.

Require: st, α, ε, A.
Ensure: Q(st, A1),Q(st, A2), . . . ,Q(st, AJ).

1: Build a Q table QT.
2: for epoch = 0 to E do
3: Initialize the antenna parameters.
4: for step t = 0 to T do
5: Obtain the antenna parameters as state st.
6: Randomly generates r in the range of (0,1).
7: if r > ε then
8: Randomly select an action A ∈ A
9: else

10: A = arg max
j
QT (st, Aj)

11: end if
12: Perform the action A.
13: Get rewardR(st, A) by Equation (5).
14: Update st to st+1.
15: Update the Q table QT:
16: QT(st, A) = QT(st, A) +Q(st, A)
17: end for
18: end for

4.2.2. DQN

DQN is another classical RL [39]. It calculates the Q value of each action based on
the reward returned from the environment states and uses the DNN instead of Q table in
Q-learning method to predict the optimal Q value. Therefore, we can obtain the Q value
with the state s and the action A based on Equation (10).

Q(s, A)← R(s, A) + α max
j
Q(s′, Aj). (10)

Different from Q-learning searching Q table to obtain the optimal solution, the DQN
method builds a deep neural network to learn the Q value of each possible action corre-
sponding to the input environment state. The details of the proposed DQN-based antenna
control method are shown in Algorithm 2.
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Algorithm 2 DQN-based method for HAPS antenna control.

Require: st, α, ε, A.
Ensure: Q(st, A1),Q(st, A2), . . . ,Q(st, AJ).

1: Initialize main network F (Θ) and target network F (Θ′).
2: Initialize experience reply memory D.
3: for epoch = 0 to E do
4: Initialize the antenna parameters.
5: for step t = 0 to T do
6: Obtain the antenna parameters as state st.
7: Randomly generates r in the range of (0,1).
8: if r > ε then
9: Randomly select an action A ∈ A

10: else
11: A = arg max

j
Q(st, Aj; Θ)

12: end if
13: Perform the action A.
14: Get rewardR(st, A) by Equation (5).
15: Update st to st+1.
16: Store (st, A,R(st, A), st+1) in the D.
17: Get the output of the main network F (Θ): Q(st, A) = F (st, A; Θ).
18: Generate target Q value:
19:
20: Q′(st+1, A′) = maxF (st+1; Θ

′
).

21: Update the main network F (Θ) to minimize the loss function:

L(Θ) =MSE(Q(st, A),R(st, A)+

αQ′(st+1, A′))
(11)

22: end for
23: Update the target network: F (Θ′)← F (Θ).
24: end for

In Algorithm 2, E denotes the maximum number of epochs, T denotes the maximum
number of steps, and Θ denotes the weights of the deep neural network. We build two
DQNs, one is the main network used for evaluating the Q value of the action obtained
by the ε-greedy policy. This main network is trained during each step to estimate the
approximate optimal action in the current state. The target network is updated with a copy
of the latest learned parameters of the main network after each epoch. In other words,
using a separate target network helps keep runaway bias from dominating the system
numerically causing the estimated Q values to diverge. Thus, using two DQNs instead of
only one DQN can avoid the DQN algorithm to overestimate the true rewards [40]. We
calculate the reward R(st, A) with the state st and the action A by Equation (5). In each
step, we select an action based on the ε-greedy method, and store the current state st, the
selected action A, the reward R(st, A), and the next state st+1 into the experience replay
memory D for training the main network F (Θ). Next, we train the main network F (Θ)
to minimize the loss function L(Θ), as shown in Equation (11). After enough training, we
input the current state st into the main network, then we can observed the predicted Q
value of all actions under the state st. Thus, the optimal action A = arg max

j
Q(st, Aj; Θ)

can be obtained.

4.2.3. PSO

In this paper, we modify the PSO antenna control method in [24] to reduce the number
of low throughput users, as shown in Algorithm 3.
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Algorithm 3 PSO based algorithm for HAPS antenna control.

1: Initialize the particles X and V.
2: for i = 0 to E do
3: for k = 0 to P do
4: Update V:

Vk
i =Vk−1

i + ω1 ∗ rand1k
i ∗ (pbestk

i − Xk−1
i )+

+ ω2 ∗ rand2k
i ∗ (gbestk

i − Xk−1
i ),

(12)

5: Update X:
Xk

i+1 = Xk
i + Vk

i (13)

6: CalculateR by Equation (5) according to Xk
i+1

7: ifRk
i+1 ≥ Rk

i then then
8: pbestk

i ← Xk
i+1

9: end if
10: ifRk

i+1 ≥ Ri+1 of other particles then
11: gbest← Xk

i+1
12: end if
13: end for
14: end for
15: Output the best antenna parameters gbest

Where Xk
i denotes the antenna parameters of the k-th particle in the i-th iteration, Vk

i
denotes the k-th particle’s velocity (the change of antenna parameters) in the i-th iteration,
pbestk

i denotes the best X of k-th particle until the i-th iteration, gbest denotes the best X of
all particles in all the iterations, ω1 and ω2 denote two independent learning rates, rand1
and rand2 are two independent random numbers for increasing randomness. The PSO
algorithm randomly generates P particles to search the optimal antenna parameters X
in each iteration and record it into pbest. After each iteration, if the pbest of the current
iteration is larger than the previous pbest, record it into gbest as the optimal solution.

4.3. Deep Reinforcement Learning Evolution Algorithm

In the DQN method, the Q value of each action is calculated based on the reward
returned from the environment states. During the repeating of the experimental process,
DQN can learn how to adjust antenna parameters to reduce the number of low-throughput
users. Same with DQN approach, we obtain the Q value by using the Equation (10).
However, using the DQN method for the HAPS system is difficult to search for the optimal
solution. We use Figure 6 to explain the reason.

Figure 6. An example of how to find the optimal solution.
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In Figure 6, the ‘pbest’ is one of the sub-optimal solutions, the ‘gbest’ is the optimal
solution. The DQN agent will adjust the antenna parameters step-by-step to find the
optimal solution by using gradient descent. Nonetheless, if the initial state is located in
the green point shown in Figure 6, the DQN agent cannot obtain the optimal solution even
using the Epsilon-greedy method for action selection. To address this problem, we design a
novel DRLEA algorithm as shown in Algorithm 4. The workflow of the proposed method
is shown in Figure 7.

Figure 7. The pipeline of the proposed DRLEA method.

Different from the DQN method with the same initial state at the beginning of each
training epoch, the DRLEA will randomly generate a different initial state for each training
epoch, such as the yellow points shown in Figure 6. For each epoch, the DRLEA performs
many steps to search for the ’optimal’ solution (actually is a sub-optimal solution). After
a training epoch, the DRLEA compares the ’optimal’ solution with the historical optimal
solution and then keeps the better one. The details of the proposed DRLEA are shown in
Algorithm 4.

Same with Algorithm 2, in Algorithm 4, we build two DNNs, the main network and
the target network. We calculate the rewardR(st, A) with the state st and the action A by
Equation (5). In step t, we first select an action A to maximize the Q-value. If the reward
R(st, A) is lower than 0 or the reward of the previous step, the DRLEA will re-select and
perform a random action from A. Next, we train the main network F (Θ) to minimize the
loss function L(Θ), as shown in Equation (14). In Equation (14), with the increase in the
epochs, the influence of the current optimal solution is increased. After enough training,
we input the current state st into the main network; then, we can obtain the predicted Q
value of all actions under the state st. Thus, the optimal action A = arg max

j
Q(st, Aj; Θ)

can be obtained. After E iterations, the optimal antenna parameters are recorded in gbest.
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Algorithm 4 Deep Reinforcement Learning Evolution Algorithm

Require: st, γ, ε, actions [a1, . . . , al ].
Ensure: Q(st, a1),Q(st, a2), . . . ,Q(st, aJ).

1: Initialize main network F (Θ) and target network F (Θ′).
2: Initialize experience reply memory D.
3: Initialize X with random matrices.
4: X = (x0, . . . , xi, . . . , xE) denotes the E different randomly generated antenna parame-

ters.
5: xi = [φ3dB, φtilt, θ3dB, θtilt].
6: Initialize pbest and gbest with zero matrices.
7: for i = 0 to E do
8: Initialize the antenna parameters.
9: Initialize st = xe, pbest.

10: for step t = 0 to T do
11: A = arg max

j
Q(st, Aj; Θ)

12: Perform the action A.
13: Get rewardR(st, A) by Equation (5).
14: ifR(st, A) ≤ max(0,R(st−1, At−1)) then
15: Randomly select an action A ∈ A
16: Perform the action A.
17: end if
18: ifR(st, A) ≥ R(st−1, At−1) then
19: Update pbest: pbest = pbest + A
20: end if
21: Update st+1: st+1 = st + A.
22: Store (st, A,R(st, A), st+1) in the D.
23: Get the output of the main network F (Θ):
24: Q(st, A) = F (st, A; Θ).
25: Generate target Q value:
26: Q′(st+1, At+1) = maxF (st+1; Θ

′
).

27: Update the main network F (Θ) to minimize the loss function:

L(Θ) = MSE
(
Q(st, A),

R(st, A) +
α

i + 1
Q′
(

st+1, At+1
)
+
(

α− α

i + 1

)
∗
(

1− |st − gbest|
|gbest|

)) (14)

28: end for
29: ifR(st, A) ≥ Rbest then
30: Rbest = R(st, A)
31: gbest← pbest
32: end if
33: Update the target network: F (Θ′)← F (Θ).
34: end for

5. Simulation Results
5.1. Simulation Setting

To evaluate our proposed methods, we generate the four different non-uniform UEs
distribution datasets obtained by [41]. The four different user distributions are Tokyo,
Osaka, Sendai, and Nagoya, as shown in Figure 8.

We assume that the HAPS works at a height of 20 km. Each HAPS can cover an area
within a 20 km radius. The transmit power and bandwidth of each antenna array are 43
dBm and 20 Mhz, respectively. We consider that the transmission frequency is 2 GHz.
Considering the interference between HAPSs, we set 18 HAPSs to surround 1 HAPS.
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We set the updated value of horizontal tilt, horizontal HPBW, vertical tilt, and vertical
HPBW to 20 deg, 4 deg, 10 deg, and 4 deg, respectively. We use python to implement all
simulation programs.

(a) Tokyo (b) Osaka

(c) Sendai (d) Nagoya

Figure 8. The four user distribution scenarios: (a) Tokyo, (b) Osaka, (c) Sendai, and (d) Nagoya.

We set 100 epochs and 100 steps in each epoch, in the three RL-based approaches
(Q-learning, DQN, and DRLEA). In the DQN and DRLEA, we set the learning rate of the
neural network as 0.0001. The discount factor α is 0.65 and the learning rate β for Q value
calculation is 0.75 in the three RL-based approaches. In the PSO approach, the number of
iterations is 100, the number of particles is 100, and the ω1 = 0.5 and ω2 = 0.5.

5.2. CDF of UE Throughput Performance

We train all the methods under the scenario where HAPS is rotated by 30 degrees,
respectively, under four different user distributions. Figure 9 shows the cumulative distri-
bution function (CDF) of the users’ throughput under the rotation scenario.

In all the scenarios, the proposed DRLEA reduces the number of low-throughput users
in the throughput range of [0.0, 16.0] kbps. In the case of Tokyo, the proposed algorithm
achieves the best CDF performance in the throughput range of [2.5, 16.0] kbps. In the case
of Osaka, the proposed method achieves the best performance in the throughput range of
[5.3, 16.0] kbps. In the case of Sendai, the proposed method achieves the best performance
in the throughput range of [2.0, 11.8] kbps. In the case of Nagoya, the proposed method
achieves the best performance in the throughput range of [1.3, 5.0] kbps and [6.0, 16.0] kbps.

In theQ-learning, the FuzzyQ-learning, and the DQN, which use the simple ε-greedy
method for searching the optimal solution, are difficult to escape the local optimal. Even if
we use the ε-greedy method to randomly select an action, the result is still close to the local
optimal solution. However, in the proposed method, we consider using the strategy of EA.
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This strategy can make the result escape the local optimal by randomly setting the different
initial states at the beginning of each epoch.

Figure 9. CDF of UE throughput performance under the HAPS with rotation.

Similarly, the PSO method also uses the same strategy. In Figure 9, we can find that in
the [0.0, 2.0] kbps throughput range, the PSO method has comparable or even better CDF of
throughput performance than the other methods. In particular, in Figure 9b, PSO achieves
the best CDF performance in the [0.0, 4.0] kbps throughput range. However, due to the
high-dimensional space, the number of particles we set in our experiments is not enough
for PSO to search for the optimal solution. It is still easy to fall into the local optimum.

Unlike PSO, which only targets the current global optimal solution and local optimal
solution, the proposed method trains the neural network to adapt itself to avoid falling into
the local optimal in a high-dimensional space.

Moreover, we evaluate the proposed method under the shifting scenario. Here, we use
the DRLEA and DQN methods, which are trained under the rotation case, and the other
three methods are trained under the shifting scenario. As shown in Figure 10, we can find
that the DQN and the proposed DRLEA without retraining achieve comparable throughput
performance to that of Q-learning and Fuzzy Q-learning with training in the HAPS left
shift of the 5 km case. Since throughput is closely related to the user distribution, DNNs
trained under the same user distribution know how to adjust the antenna parameters to
reduce the number of low throughput users, even if HAPS moves again.
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Figure 10. CDF of UE throughput performance under the HAPS with shifting.

6. Conclusions

In this paper, we addressed the problem of the reduction of the number of users
with low throughput caused by the movement of HAPS. To do so, a novel method named
DRLEA was proposed. Different from the PSO and conventional RL methods, the proposed
DRLEA method can adjust the antenna parameters without any searching overhead. We
used the throughput of users for the reward calculation instead of using the received SINR.
Using throughput for reward calculation will increase the computational overhead but it
can make the DRLEA learn not only the SINR of users but also the location information
of that. In other words, the proposed DRLEA method can improve the user’s SINR and
bandwidth at the same time. Moreover, the proposed DRLEA combined EA with DRL to
avoid sub-optimal solutions. A novel loss function was designed to train the DNN with
the historical optimal solution to avoid the sub-optimal solutions.

Through simulations, we demonstrated that the proposed approach clearly improves
the throughput of the users at the lower end of the spectrum. Compared with approaches
such as the PSO and the Q-learning ones, the proposed DRLEA method achieves the best
throughput performance under all the user distribution cases. Moreover, to prove the
good robustness of the proposed DRLEA method, we use the proposed DRLEA, which is
trained in the HAPS with a rotation scenario to control the antenna parameters under the
shifting scenario. Through simulations, we demonstrated that, compared with the other
three methods, which are trained under the HAPS with shifting, the proposed DRLEA
method can achieve comparable throughput performances even without re-training.
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