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Abstract: Facial Expression Recognition (FER) can achieve an understanding of the emotional changes
of a specific target group. The relatively small dataset related to facial expression recognition and
the lack of a high accuracy of expression recognition are both a challenge for researchers. In recent
years, with the rapid development of computer technology, especially the great progress of deep
learning, more and more convolutional neural networks have been developed for FER research. Most
of the convolutional neural performances are not good enough when dealing with the problems of
overfitting from too-small datasets and noise, due to expression-independent intra-class differences.
In this paper, we propose a Dual Path Stacked Attention Network (DPSAN) to better cope with
the above challenges. Firstly, the features of key regions in faces are extracted using segmentation,
and irrelevant regions are ignored, which effectively suppresses intra-class differences. Secondly, by
providing the global image and segmented local image regions as training data for the integrated
dual path model, the overfitting problem of the deep network due to a lack of data can be effectively
mitigated. Finally, this paper also designs a stacked attention module to weight the fused feature
maps according to the importance of each part for expression recognition. For the cropping scheme,
this paper chooses to adopt a cropping method based on the fixed four regions of the face image,
to segment out the key image regions and to ignore the irrelevant regions, so as to improve the
efficiency of the algorithm computation. The experimental results on the public datasets, CK+ and
FERPLUS, demonstrate the effectiveness of DPSAN, and its accuracy reaches the level of current
state-of-the-art methods on both CK+ and FERPLUS, with 93.2% and 87.63% accuracy on the CK+
dataset and FERPLUS dataset, respectively.

Keywords: deep learning; attention; facial expression recognition

1. Introduction

Facial expressions are one of the most important ways in which humans can effectively
communicate their emotional states and intentions [1,2]. The research on facial expression
recognition has been enhanced, as more and more researchers focus their attention on the
problem in the field of facial expression recognition. Automatic analysis techniques for
facial expressions are being used in more and more fields, such as medical care, driver
fatigue, robot interaction, and student classroom state analysis [3–7]. The changing needs
have also given rise to many problems in different scenarios, and in the past period, the
algorithms have been iterated continuously in FER-related problems [8–18], and eventually,
these algorithms have achieved good results. Meanwhile, in order to meet the require-
ments of different experiments, some datasets have been generated, such as CK+ [19],
FER2013 [20], FERPLUS [21], etc.

The construction of previous facial expression recognition systems is mainly divided
into three steps: face detection, feature extraction, and expression recognition [22]. In
dealing with facial expression recognition, the Dlib detector [23] is commonly used for
face detection under various noise conditions. It can correct the images containing faces

Future Internet 2022, 14, 258. https://doi.org/10.3390/fi14090258 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi14090258
https://doi.org/10.3390/fi14090258
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0003-3026-4237
https://doi.org/10.3390/fi14090258
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi14090258?type=check_update&version=1


Future Internet 2022, 14, 258 2 of 17

so that the images perform accurate face alignment. For face feature extraction, due to
increasing computational power in recent years, researchers have designed many deep
neural network algorithms to extract these geometric and appearance features [24,25].
ResNet [26] is frequently seen in recent methods used for feature extraction. The feature
maps obtained from the feature extractor are fed into the classifier used to match expression
classes in facial expression recognition. Meanwhile, the great increase in arithmetic power
has largely accelerated the development of deep learning [27,28] and the research process
of problems in the field of face recognition.

Traditional facial expression recognition methods [29,30] use manually extracted
features such as the Histogram of oriented Gradients (HOG) [31], Local Binary Patterns
(LBP) [32] and scale-invariant feature transformations (SIFT) [33] to deal with FER [34–36].
However, these methods usually have disadvantages, such as a long time spent, high cost,
and poor portability. Compared with the traditional methods, deep learning methods
can learn more deep features, such as rotation angle changes and changes caused by
illumination. Additionally, due to the rapid development of the Internet in recent years,
large-scale datasets can be obtained from challenging real-world scenarios in a relatively
easier way [37,38]. Deep learning methods benefit from these advantages and are more
popular among researchers. Information on some datasets commonly used for facial
expression recognition is shown in Table 1.

Table 1. The image resolution of common datasets for facial expression recognition.

Datasets Time Images Resolution

CK+ 2010 1308 640 × 490
FER2013 2013 35,887 48 × 48

FERPLUS 2016 35,887 48 × 48

Despite the great success of facial expression recognition, there are still some chal-
lenges, such as the noise generated by intra-class differences unrelated to expressions and
the problem of overfitting due to insufficient training data caused by too small a dataset.
Further, first, there are large intersubject differences in faces in the dataset due to age,
gender, and race [22]. Intra-class differences become larger because of these uncertainties.
The intra-class variance unrelated to expression recognition is shown in Figure 1. Second,
experiments on deep neural networks require a large amount of training data. Insufficient
training data can easily lead to overfitting of the model. Finally, directly using the global
face as the input of the neural network will lose local detailed feature information [39].
Ekman [40] studied facial parts to find out the most important regions for human per-
ception by masking the key parts, and the regions around the eyes and mouth are highly
correlated with FER. From Kotsia et al. [41], based on Gabor features and human observer
synthesis analysis of obscured FER, the masked mouth affects the accuracy of FER more
than the masked eyes. Inspired by this, we propose a Dual Path Feature Fusion and Stacked
Attention Network (DPSAN) to address the challenges of noise generated by intra-class
differences unrelated to expression recognition in FER and the challenges of overfitting
due to insufficient training data. DPSAN consists of a dual path feature fusion module
and a stacked attention module. Based on studies related to the symmetry of facial expres-
sions [11,16], we segment four regions from the aligned face image, left eye, right eye, left
half of the mouth, and right half of the mouth. The four key regions are used to reduce the
effects of irrelevant intra-class differences, such as facial contour and hairstyle. Additionally,
the effect of noise from occlusions, such as the partial occlusion of the left or right eye, is
reduced based on the symmetry of facial expression features in local regions. Meanwhile,
existing ensemble learning studies show [42] that the combination of multiple networks
outperforms a single network. Therefore, we designed a Dual path feature fusion module.
The dual path feature fusion module of DPSAN divides the face image feature extraction
into global and local face features for extraction. The dual path feature fusion module
fuses the global and local features extracted using the two updated ResNet18 [43]. By
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combining the global and local features, this module is used to overcome the noise caused
by intra-class differences unrelated to expression recognition, and to increase the data to
alleviate the problem of insufficient data. Additionally, multi-scale expression details are
introduced in this module to improve the generalization ability of the model by adjusting
the size of the local region to match the size of the global face image. Second, we design
a stacked attention module for compressing the feature maps, reducing redundant data
and supervising DPSAN, and also refine the global features via the local features of faces,
enabling the model to learn more meaningful weights from both local- and global-based
feature maps. In summary, our contributions are summarized as follows:

• We propose a DPSAN model to address the challenge of noise generated by intra-class
differences in FER that are not related to expression recognition, and the challenge of
overfitting due to insufficient training data.

• The dual path feature fusion module is able to segment the critical regions in the face
and combine the local feature information with the global feature information. This
can reduce the noise impact from intra-class differences in FER that are not related
to facial expressions. Additionally, it can alleviate the overfitting problem caused by
insufficient data. The stacked attention module is used to compress the feature maps
and learn more meaningful weights from the local- and global-based feature maps.

• We perform extensive validation of our model on the dataset. The experimental results
show that DPSAN outperforms previous state-of-the-art methods on the commonly
used CK+ and FERPLUS datasets (93.26% on CK+, 87.63% on FERPLUS).
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Figure 1. Intra-class differences are unrelated to expressions (the facial landmarks are detected
by [44]). Images can have huge differences within the same expression class. For example, age and
gender are different in different samples. As shown in the figure, the left and right images both
represent the expressions of surprise and happiness, respectively, but they are visually very different.
The above images are from AffectNet [7].

The rest of this paper is organized as follows. In Section 2, we review the literature
related to the development of techniques related to facial expression recognition. In
Section 3, we describe the research methodology in detail. In Section 4, we describe
the experimental setup and provide a discussion of the experimental results. Finally, in
Section 5, we conclude the paper and give an outlook on future work.

2. Related Work

Deep learning and Attention in FER: With the rapid development of computer vision
in recent years, deep learning solutions are increasingly used to handle challenging tasks
in FER compared to traditional manual feature extraction solutions. Meanwhile, traditional
CNNs pay insufficient attention to important channel features and important regions of
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images, which restrict the accuracy of facial expression recognition. However, with the
proposed attention, the model will give more attention and weight to important channels
and regions, which is a good improvement to the deficiency of the original traditional
model. Many existing models of deep learning and attention have achieved good perfor-
mance. Li et al. [11] proposed a convolutional neural network with attention (ACNN) to
automatically perceive blocked face regions and focus primary attention on unblocked
expression regions for judgment. Wang et al. [16] proposed a regional attention network
(RAN) to recognize the occlusion of facial regions. Wang et al. [15] proposed a self-cure
network (SCN) to suppress bad data such as obscured face images in many large datasets,
which prevents the network from overfitting incorrectly labeled samples.

Facial Landmark in FER: The purpose of facial landmark detection is to identify the
location of distinguishable key points on a human face. Currently, with the combination of
facial landmark detection and deep learning techniques, such as face recognition [15,20],
facial expression recognition [13,31], and face tracking [17], great progress has been made in
the application of facial landmark detection, which has also facilitated the research of many
accurate facial landmark detectors. Many accurate and widely used facial landmark detec-
tors have been proposed, such as [4,11,14,45]. Using these excellent detectors, researchers
are able to better utilize facial landmarks as informative features in solving FER tasks.

Ensemble learning in FER: Previous studies on ensemble learning have amply demon-
strated that the combination of multiple networks outperforms individual networks [42].
When implementing network combinations, two key factors should be considered: (1) to en-
sure complementarity among multiple networks, we can increase the diversity of networks;
and (2) choosing the right combination strategy can provide more effective assistance in
aggregating committee networks [22]. For the second point, each member of the committee
network can be combined at the feature level and at the decision level, respectively. For
the aggregation of features, concatenating features obtained in different network paths is
the most commonly used strategy [12,46]. For the decision level, there are several most
frequently used rules, such as simple averaging, majority voting, and weighted averaging.
Yovel et al. [39] showed that people could effectively access the information displayed by
facial expressions through two paths: local regions of the face and the whole face.

Compared with previous methods, our proposed method is very effective in reducing
the interference of irrelevant intra-class differences using a unique four key region seg-
mentation method. Additionally, the method has good robustness due to the fixed region
cropping approach. Comparing previous methods on the same dataset, the proposed
method in this paper effectively expands the data volume via cropping segmentation to
obtain detailed information in local paths while better meeting the experimental require-
ments of the dataset. The dual path feature fusion module and stacked attention module
designed in this paper can make better use of contextual information and also focus more
attention on more important regions.

3. Methods
3.1. Overview

As shown in Figure 2, first, the face image is segmented using the segmentation
method to segment four local image regions. The face key region segmentation method
can extract more local details, and the size of each region image is resized to be equal to
the size of the global input image via scaling. Then, the global image and the four local
image regions are input to the updated ResNet18 for feature extraction in the global path
and local path, respectively. The general structure of the updated ResNet18 is shown in the
dashed rectangle at the lower left corner, and a more detailed structure is shown in Figure 3.
After completing the feature extraction, the global image feature map is fused with the local
image feature map. After that, the fused feature maps are fed into the stacked attention
module (SA). The SA module can learn features from different regions and complete the
weighting of different channels by re-estimating the importance of each feature. The image
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segmentation method is shown in Figure 4. The details of the structure of the stacked
attention module are shown in Figure 5.
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Figure 3. The updated ResNet18. We removed the avg-pool layer and the fully connected (FC) layer 
to facilitate the next step of feature fusion. 

Figure 2. The framework of DPSAN consists of a dual path feature fusion module and a stacked
attention module.
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Figure 3. The updated ResNet18. We removed the avg-pool layer and the fully connected (FC) layer
to facilitate the next step of feature fusion.

The model consists of two main parts. One is the dual path feature fusion module,
which performs segmentation, feature extraction, and feature fusion on the input face image.
The other is the SA module, which weights each channel of the feature map according
to its contribution to the classification result. The detailed process of the first module is
as follows. First, the model segments the local area of the base image, and compresses
and scales the size of the local area image and the size of the base image; and then the
scaled image is used as the input to the network. The dual path feature fusion network
concatenates the features extracted from the four local regions with the features of the
complete face image and outputs the fused feature map. The main role of the SA module is
to calculate the importance of the feature maps of each layer and compress the irrelevant
information. Finally, the classification of expressions is output from the linear connectivity
layer. Figure 2 illustrates the DPSAN framework.
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Figure 5. SA consists of two channel attention networks and a 1 × 1 convolutional neural network
conv 1 × 1. DPSAN accomplishes the weighting of five different regions through the channel
attention mechanism.

DPSAN is used with one global image and four local image regions as inputs. These
five parts are input to two ResNet18, and the features are extracted and represented as
five sets of feature maps. Then, DPSAN merges the global feature maps and the four sets
of local feature maps into one set of feature maps. The advantage of this processing is
that the fused feature maps have both the global information of the facial image and local
information that can be easily ignored. The SA module calculates the weights for each
channel of the feature map. The weighted features contain all the key information that we
are interested in that is beneficial to FER. The classification layer after the stacked attention
module aims to classify the face images into their corresponding facial expression classes.
The softmax loss is used to optimize the DPSAN model.
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3.2. Face Image Segmentation and Dual Path Feature Fusion Module

The face image segmentation and dual path feature extraction module firstly segment
the input base image, crop it to obtain four local regions, and then extract the global features
and local features from the adjusted global image and the four local region images through
the dual path, respectively. The advantage of dual path feature extraction is that the global
information is obtained along with the local detail information, thus complementing the
information ignored by the global information. Then, the global features and the local
part of the features are fused, which can make the feature representation more adequate
and complete.

We extract feature information from the base face image and the local image regions,
using the updated ResNet18 network. The detailed information on the updated ResNet18
is given in Figure 3. In the updated ResNet18, the avg-pool layer and the FC layer in the
structure are removed in this paper to facilitate the computation and fusion of features
later. For the segmentation methods, specifically, we propose three methods for face region
segmentation for comparison, and then we select a better method from them to segment
the global image and obtain the local block.

Comparison and selection of face key region segmentation schemes. With the study
conducted by Ekman [40] on facial parts, this paper extracts the features of specific regions
related to facial expressions, which contribute to FER. First, we use Dlib, which is popular
among researchers, to detect facial regions. Then, the eyes, nose, and left half of the mouth,
along with the right half of the mouth, are selected from the facial regions as patches that
are highly relevant to FER. Figure 4 shows the different methods for the selection of facial
regions. The three methods are as follows:

(1) Forty-two-point cropping method based on face: (a) After we read and studied
many papers, we used the method from [47] to detect 68 landmark points in the facial
image after selection. Then, we selected 42 points that could completely cover the
eyes, nose, left half of the mouth, and right half of the mouth. (b) Eleven point pairs
are selected around the eyes, and the maximum and minimum coordinates of each
eye are calculated as rectangular boundaries. We select a total of 20 points around
the mouth, with 12 points each for the left and right half of the mouth, of which four
points are duplicated. The two local regions are divided by the four points located
in the middle for the left and right half of the mouth, and then the maximum and
minimum coordinates of the left and right parts of the mouth are calculated as the
rectangular boundaries, respectively. The image of the segmented region is shown in
Figure 4.

(2) Crop method based on four regions of the face: The local area of the face image is
relatively regular. Four face images can be dropped at a key fixed location and the coor-
dinates of the rectangular frame can be directly calculated to obtain four local blocks.

(3) Four-equivalent cropping method based on face image: The fixed size of the input
face image is 96 × 96. The midpoint coordinates of the length and width of the face
image are calculated and divided directly into four local blocks, with a size of 48 × 48.

After region segmentation, the next step is to extract features from the global image
and local image regions. Since the features of the global image tend to ignore the attention
to local detail features, considering the different attentions to the highly correlated local
region image and the global structure image, the DPSAN in this paper introduces two paths:
the local path network (LPN) and the global path network (GPN). First, the local region
face images and global face images are resized to 96 × 96. As shown in Figure 2, the LPN
consists of local blocks with the resized four sets of local face images as the input. The
GPN consists of only the resized global face images as the global input patches. Then, the
five sets of feature maps are combined into one set. The LPN is designed to focus on highly
relevant detailed information that is ignored by the global patches. The Dlib face detector is
commonly used to locate faces in images. For images containing only faces detected using
the Dlib detector, a face region segmentation module is required to obtain four regions. In
this paper, details are given in Figure 2.



Future Internet 2022, 14, 258 8 of 17

As shown in Figure 2, four local regions of the eyes, nose, left half of the mouth, and
right half of the mouth are selected from the original image and resized to 96 × 96. Using
only global images or local images will ignore some associated information in the face image.
Feature fusion of the global image and local image regions leads to a better performance.
DPSAN considers both the global face and local face blocks. First, considering the difference
in information between the global and local images, this paper encodes the feature maps of
global face and local face blocks in two ResNet18 separately so that DPSAN obtains facial
expression information from the local features and global features, respectively, and refines
the contextual information that may be overlooked. Second, ensemble learning studies
show that multiple network combinations outperform individual network structures, and
acquiring features from different scales globally and locally can also help the network
to learn more diverse information related to expressions. The images of the global face
regions and local face blocks are input into two ResNet18, and the final feature map of
5 × 512 × 21 × 21 is obtained after transformation.

3.3. Stacked Attention Module

The stacked attention (SA) module computationally assigns different weights to each
channel feature map with the purpose of learning weights that are more meaningful
for expression recognition from the fused local and global feature maps. This module
compresses the fused feature maps and filters out redundant information. In this paper, we
embed SA after the dual path feature fusion module based on two ResNet18 networks to
automatically reweight the whole feature map. Our proposed SA consists of two channel
attentions and a 1 × 1 Conv. The detailed structure of the SA is shown in Figure 5.

The role of channel attention is to assign weights to different channels of the feature
map. In the SA module, a fused feature map Ff is first computed with Fg and Fli as the
inputs. Then, a F′f is sequentially obtained after a channel attention map Mc1 [48], with
Ff being computed with the feature map Ff as input. After a 1× 1 convolutional neural
network calculation, another channel attention map, Mc2 , is used to calculate F′′f , as shown
in Figure 5. The functions of the SA module are described as follows.

Ff = concat(Fg, Fl1 , Fl2 , Fl3 , Fl4) (1)

Ff
′ = Mc1(Ff )⊗ Ff (2)

Ff
′′ = Mc2(conv1×1(Ff

′))⊗ Ff
′ (3)

where Fg is the feature map extracted from the global path in the dual path fusion module
based on the ResNet18 network, Fli is the feature map extracted from the local path, Mci is
the channel attention network, and ⊗ indicates multiplication. F′f is the output after the
first channel attention calculation, and F′′f is defined as the final output.

For the facial expression feature maps, the weights learned for each channel dimension
are different. In the process of facial expression recognition, features are extracted from
each local region and global image. By weighting each channel feature, we can assign
different weights to the feature maps from the four different regional images and the global
image, thus weighting the fused overall feature map. The detailed structure of SA is shown
in Figure 5.

There are two steps in SA. The first step is to use the attention network to learn
weights to represent the importance of the feature maps, and then merge the five groups
of feature maps into one group. After our validation, the feature maps obtained with
only one channel attention are too large for direct classification and do not facilitate back-
propagation. The features extracted from the global and local regions are too large, and
these data need to be compressed and further learned. Therefore, in the next step, a 1 × 1
convolution and another attention network are used to reduce the feature map dimensions
and reweight their importance to facilitate the next step of encoding them into feature
vectors corresponding to facial expressions.
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3.4. Loss Function

In the experiments of this paper, to compare the difference between the predicted labels
and the real labels, and to minimize the differences between them, we use the cross-entropy
loss function. This function is as follows:

L = −
N

∑
i

8

∑
c=1

yi
c log(pi

c) (4)

where yi
c denotes the indicator variable, and the value of yi

c is 1 if the true label of sample i
is equal to c; otherwise, yi

c is 0. pi
c is the predicted probability that the observed sample i

belongs to category c.

3.5. Summary

In order to improve the accuracy of facial expression recognition, this paper proposes
improvements to the problems of insufficient attention to local detail features and irrelevant
noise interference that exist in the previous FER models. First, we propose a dual path
approach to segment the global face image and to extract local detail features to complement
the global features via local paths, which improves the problem of insufficient attention
to local features in the previous FER models and ignores the interference of irrelevant
information for expression recognition. Second, we also propose the SA module to calculate
the importance of each channel feature map in the fused feature map and also compress
redundant data to improve the computational efficiency of DPSAN.

4. Experiment

In our experiments, we will use two public datasets, the CK+ dataset and the FERPLUS
dataset. Then, the effectiveness and robustness of DPSAN will be demonstrated through
experiments on these two datasets. Then, DPSAN is compared with some of the latest
methods available on the CK+ and FERPLUS public datasets, respectively, to demonstrate
the advancedness of DPSAN. We also designed ablation experiments to demonstrate the
effectiveness of each module in DPSAN by splitting the dual path feature module and the
stacked attention module in separate comparison experiments.

4.1. Datasets

Two public datasets, CK+ [19] and FERPLUS [21], will be used in the experiments,
and the experimental data on these two datasets will be used to analyze and evaluate our
proposed method. These two datasets contain many different numbers of face images. In
Figure 6, we show some examples of differently labeled images from these two datasets.
The public datasets of facial expressions used in the paper are used in accordance with the
official requirements of the datasets. In accordance with these official statements, we have
cited the corresponding literature in the paper.
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fear, happiness, sadness, surprise, and neutrality), with the new emotion label of contempt added
to FERPLUS.
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The extended Cohn-Kanade (CK+) [19] dataset is the most widely used dataset in
studies of facial expression recognition. One hundred and twenty-three subjects were
included in the CK+ dataset, in which 593 video sequences were recorded. Based on the
Facial Action Coding System (FACS), the peak expressions in the 327 video sequences of
118 subjects were labeled with seven basic expression labels, which were happy, angry,
sad, disgusted, fearful, surprised, and contempt. Additionally, the first frame image in
the video sequence was usually used as the neutral expression, which is the eighth basic
expression label.

The FER2013 [20] dataset was first introduced in the 2013 ICML challenge. This
dataset is a dataset automatically collected from the web using the Google search engine
without any constraints. The dataset contains a large number of facial expression images,
which are adjusted and cropped to a resized image size of 48 ∗ 48. The FER2013 dataset
consists of 28,709 training images, 3589 test images, and 3589 validation images. The dataset
FERPLUS [21] used in our experiments relabeled the original images in the FER2013 dataset
and added the emotion label of light contempt. Additionally, each image had 10 taggers,
and the labeled data allowed us to better estimate the emotional probability distribution
of each face image. The eight emotion labels in the FERPLUS dataset were happiness,
disgust, fear, sadness, anger, surprise, neutrality, and contempt, where the contempt tag is
newly added.

4.2. Implementation Details

Pytorch [49] and TensorFlow [50] are both excellent open source frameworks in deep
learning. Our experiments use the Pytorch framework to implement DPSAN. Previous
experiments have demonstrated that ResNet18 [43] can show excellent performance in deep
learning, so two ResNet18 networks are used for feature extraction in the dual path feature
fusion block of DPSAN. The batch size is set to 8, the maximum number of iterations is 1200,
the learning rate is 0.0001, the Stochastic Gradient Descent (SGD) is used to optimize the
network parameters, and finally, all other parameters are set to default values. Regarding
the hardware parameters in the experiments, the DPSAN experiments were performed on
an RTX 2080Ti GPU with 11 GB of RAM.

In order to improve the computational efficiency in the experiment, we designed
some operations that can increase the computational speed. For the CK+ dataset, since
the original image size in this dataset is 640 × 490, the information in the image has
some information that is irrelevant for FER. For the global face image, we use the Dlib
face detector to crop out the face image and resize the cropped image to 96 × 96, which
can exclude the intra-class differences irrelevant to facial expressions and reduce the
computational effort at the same time. For the local region blocks, we also cropped the left
eye, right eye, left half of the mouth, and right half of the mouth from the original image
and resized these regions of interest to 96 × 96. After the above operations, we evaluated
the accuracy and speed of the three cropping methods via 10-fold cross-validation on the
CK+ dataset. These are the crop method based on 42 points of the face, the crop method
based on four fixed regions of the face, and the crop method based on four equal parts
of the face image. The local area images cropped using the three methods are adjusted
to the same size in the experiments. The parameter settings in the experiments are kept
the same as the default settings. We show the results of the three cropping methods in
Figure 7, and the data show that the cropping method based on the fixed four regions of
the face can obtain the regional information related to facial expression recognition faster
and more effectively. First, compared with the four-equivalent cropping method based
on face image, the cropping method based on four fixed regions of the face can obtain the
FER-related region information more effectively; meanwhile, compared with the cropping
method based on 42 points of the face, the cropping method based on four fixed regions
of the face can obtain the FER-related region information faster because the cropping is
performed almost instantaneously. More importantly, the face fixed four region-based
cropping method 10-fold cross-validation is also higher than the previous two, in terms
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of accuracy. Therefore, the experimental cropping method used in the dual path feature
fusion module is based on the face fixed four regions cropping method.
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Previous ensemble learning studies have shown that the combination of multiple net-
works can learn more effective information from images due to a single network. Good results
have been obtained for integration learning in many areas of research, such as [51–53]. One
of the feature combinations for emotion recognition in [46] is fc5 VGG13 + fc7 VGG16 + pool
ResNet, which has the disadvantage of the network and parameter size being too large and
not easy to train. Our experiments select two ResNet18 for feature extraction, where four
local regions share the same ResNet18, thus achieving improved computational efficiency
while enabling local region images to provide more effective feature information for facial
expression recognition. Meanwhile, due to the excessive number of features obtained
from the dual path feature fusion module, the feature vector created by these features is
relatively inefficient and difficult to train after only one channel attention network. So,
we add a 1× 1 convolution here, which reduces the number of parameters. The stacked
attention module allows for reweighting the importance of each channel in the feature map
while compressing the feature map and reducing the number of parameters through a 1× 1
convolution and another channel attention network.

4.3. Comparison of DPSAN on the CK+ dataset

Combining the characteristics of the CK+ dataset, we first extracted the first frame
from each sequence on the CK+ dataset as a natural neutral expression while labeling
the last three frames of the sequence with the peak expression as one of the seven basic
emotions. Then, the global face image is cropped using the dlib face cropper, and four local
image regions of the eyes, nose, left half of the mouth, and right half of the mouth are
segmented using the face key region segmentation method. The cropped images are then
resized to reset the image size to 96 × 96 pixels. Since the CK+ dataset does not provide
a specified training and validation set, we choose the 10-fold cross-validation scheme
for training and validation. Finally, the average cross-validation recognition accuracy of
10 times is taken as the result. In this paper, we show the accuracy of the validation set of
the CK+ dataset in Figure 7, and the selected method is labeled with the data in Figure 7.
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In Table 2, this paper compares DPSAN with a variety of state-of-the-art methods on
CK+. Among them, the accuracy of AUDN and VGG (Fine-Tune) is 92.05% and 89.90%,
respectively, our proposed DPSAN reaches 93.26%, and the data in the table show that
DPSAN outperforms these state-of-the-art methods. The results of DPSAN compared to
other methods on the CK+ dataset are shown in (a) of Figure 8.

Table 2. Comparison of DPSAN with other models on the CK+ dataset.

Method Average Acc (%)

ESR-4 Lv1.3 [14] 89.4
AUDN [54] 92.05
DSAE [55] 89.84

VGG-16 (Fine-Tune) [56] 89.90
CSPL [30] 89.89

VGG-16 (From scratch) [56] 88.70
Zeng et al. [55] 86.82
Liu et al. [54] 87.67

DPSAN (Ours) 93.26
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on the FERPLUS dataset.

4.4. Comparison of DPSAN on the FERPLUS Dataset

FERPLUS is an extension of the original FER dataset. In order to better test the
recognition effect of DPSAN in the real environment in the field, this paper conducts
training validation on the FERPLUS dataset. Since the image size in the FERPLUS dataset
is 48 × 48, the image size is resized to 96 × 96 pixels in this paper. The DPSAN model is
faster than CK+ on the FERPLUS dataset, so the initial learning rate is set to 0.1, and it is
updated by multiplying it by 0.75 after every 10 cycles. Other settings remain the same
as CK+.

We show the results of the DPSAN comparison experiments on the FERPLUS dataset
in Table 3. In this paper, we compare DPSAN with various state-of-the-art methods
successively. Additionally, we show the confusion matrix of DPSAN sentiment prediction
on the FERPLUS dataset in Figure 9. By comparing DPSAN with multiple advanced
methods on FERPLUS, where the accuracy of ESR-9 and SHCNN is 87.15% [14] and
86.5% [57], respectively, the accuracy of the DPSAN proposed in this paper is 87.63%, which
shows that the effectiveness of our DPSAN on FERPLUS is up to the current advanced
level. The results of DPSAN with other methods on the FERPLUS dataset are shown in (b)
of Figure 8.
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Table 3. Comparison of DPSAN with other models on the FERPLUS dataset.

Method Average Acc (%)

TFE-JL [58] 84.3
SHCNN [57] 86.5

Res-Net + FC [59] 83.4
VGG16 + PLD [21] 84.99

ESR-9 [14] 87.15
DPSAN (Ours) 87.63
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4.5. Ablation Experiments

In order to fully investigate the effectiveness of each module of DPSAN, an ablation
experiment is designed in this paper to verify the effects of two modules, the dual path
feature fusion module and the SA module, on FER.

The baseline model global path network (GN) is designed in the experiment. This
model only takes the global image as input and generates a feature map through a ResNet18
shown in Figure 3, and then classifies the expressions via a classifier. In order to demonstrate
the advantages of the dual path feature fusion module and the SA module, two groups of
comparative experiments are designed; the comparison between the dual path network
(DPN) and GN, and the comparison between DPN and DPSAN.

First, to demonstrate that dual path networks can reduce model overfitting and have
better accuracy stability over different data, a DPN model is experimentally designed. The
DPN model has one more local path than the GN model, which takes the global image
and local image blocks as input and is compared with GN for both accuracy and standard
deviation. Second, to demonstrate the advantages of the SA module, DPN is compared
with DPSAN, in which DPN lacks the stacked attention module. By comparing the two,
the superiority of DPSAN in both accuracy and standard deviation can be demonstrated.

The histogram of the comparison between the two groups of experiments is shown
in Figure 10. We annotated the experimental data of DPSAN. From Figure 10, it can be
roughly seen that the accuracy of GN fluctuates a lot in 10-fold cross-validation, while
DPN fluctuates less, indicating that it is less stable than DPN; and at the same time, the
advantage of accuracy is too small. The performance of DPSAN clearly exceeds that of the
baseline, i.e., GN. The experimental results are shown in Table 4.
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Table 4. Evaluation of all components of DPSAN on the CK+ dataset.

Global Path Local Path SA Average Acc (CK+)
√

× × 89.74 (±4.7)%√ √
× 89.23 (±3.6)%√ √ √

93.26 (±3.5)%

(1) DPN VS. GN: DPN and GN were compared in the experiments to demonstrate
the benefits of adding a local path. The combined results in Figure 10 and Table 4 can
now show that GN performs slightly better than DPN in terms of accuracy in certain
folds. However, the standard deviation calculated by DPN is much smaller than the results
of GN, which is more stable than GN, and which also indicates that DPN can introduce
multi-scale expression details by adding local paths in facial expression recognition through
region segmentation, and that it can complement the detailed attributes ignored by the
global image features and effectively avoid overfitting. The reduction in the standard
deviation shows that combining local details and global feature mapping can well suppress
intra-class differences.

Additionally, considering the different contributions of local regions and global images
to the FER problem, these features need to be re-weighted. Here, we design the stacked
attention module.

(2) DPSAN VS. DPN: Experiments were conducted to compare DPSAN and DPN
to validate the benefits of overlaying the attention module. As shown in Table 4, the
accuracy of DPSAN improved by 4.03% on the CK+ dataset. As shown in Figure 10,
DPSAN outperforms DPN and GN in almost all folds. The comparative experimental data
in Table 4 show that the SA module in DPSAN can effectively reassign the weights of each
feature map based on its contribution to FER.

Through two sets of ablation experiments, the following conclusions can be drawn.
First, it can be demonstrated that the dual path feature fusion module in the DPSAN model
is effective and can effectively suppress the intra-class variance, but it leads to a slight
decrease in recognition accuracy. Second, DPSAN achieves good results after the addition
of the stacked attention module. The model achieves a large improvement on the CK+
dataset, and the accuracy improves from 89.76% to 93.26%, which indicates that the stacked
attention module is an important contributing module of DPSAN, and also proves the
effectiveness and advancement of the proposed stacked attention module.

5. Conclusions

In this paper, we propose a network model DPSAN for facial expression recognition.
A dual path feature fusion module and a stacked attention module are designed in this
paper. The model utilizes more detailed information that is ignored by the global image,
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reduces the effect of intra-class differences that are not related to expression recognition,
and also expands the size of the experimental dataset.

The dual path feature fusion module designed in this paper by combining the global
and local features can be used to reduce the impact of noise caused by intra-class differences
unrelated to expression recognition, and to increase the data to alleviate the problem of
insufficient data. In order for DPSAN to learn key features more effectively, compress
features, and reduce the number of parameters, a stacked attention module is designed in
the model and it achieves better results in terms of the accuracy of FER. Finally, the analysis
of ablation experiments shows that both the dual path network and the stacked attention
module are important modules of DPSAN. Experiments under two dataset evaluation
protocols show that DPSAN achieves the performance of other state-of-the-art methods.
At the same time, due to the presence of some images in the CK+ and FERPLUS datasets
that do not have obvious expression features or images with relatively obvious intra-class
differences, these factors can make it difficult for the image algorithm to obtain a very good
performance gain at once. Therefore, the accuracy improvement obtained by DPSAN is
meaningful when compared with the accuracy improvement obtained using other methods.

There are also shortcomings in this paper. In the experiments, our model only con-
siders expression recognition on a pure dataset of face expressions without occlusions.
However, in real scenarios, face images may be obscured by glasses, masks, and many other
occlusions. Especially in the current global epidemic, wearing masks has become the norm
in people’s lives, and these occlusions can affect the accuracy of expression recognition.
So, how to improve the accuracy of facial expression recognition under the condition of
partial occlusions, such as mask occlusion and glasses occlusion, will be one of the major
challenges to overcome in our research in the future.

In our future work, we will further investigate the following perspectives in order
to reduce the impact of occlusion on expression recognition. First, we will consider the
use of spatial attention for obtaining the feature information of unobscured regions and
more important regions in face images from a global perspective. Second, considering the
advantage of local paths to capture more details in this paper, we will consider segmenting
the occluded face image into several local regions for feature extraction. Finally, we will
consider using both channel attention and spatial attention to give higher weights to the
features of important regions spatially and to the features of important channels spatially,
so as to reduce the effect of occlusion on expression recognition.
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