
����������
�������

Citation: Akter, M.S.; Shahriar, H.;

Chowdhury, R.; Mahdy, M.R.C.

Forecasting the Risk Factor of

Frontier Markets: A Novel Stacking

Ensemble of Neural Network

Approach. Future Internet 2022, 14,

252. https://doi.org/10.3390/

fi14090252

Academic Editors: Manuel Mazzara,

Adriano Bessa Albuquerque and Luiz

Jonata Pires de Araujo

Received: 11 July 2022

Accepted: 21 August 2022

Published: 25 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Article

Forecasting the Risk Factor of Frontier Markets: A Novel
Stacking Ensemble of Neural Network Approach
Mst. Shapna Akter 1, Hossain Shahriar 2,*, Reaz Chowdhury 3 and M. R. C. Mahdy 4,*

1 Department of Computer Science, Kennesaw State University, 370 Paulding Ave.,
Kennesaw, GA 30144, USA

2 Department of Information Technology, Kennesaw State University, 370 Paulding Ave.,
Kennesaw, GA 30144, USA

3 Department of Electrical and Engineering, University of Alberta,
Edmonton, AB T6G 2P5, Canada

4 Department of Electrical and Computer Engineering, North South University, Dhaka 1229, Bangladesh
* Correspondence: hshahria@kennesaw.edu (H.S.); mahdy.chowdhury@northsouth.edu (M.R.C.M.)

Abstract: Forecasting the risk factor of the financial frontier markets has always been a very challeng-
ing task. Unlike an emerging market, a frontier market has a missing parameter named “volatility”,
which indicates the market’s risk and as a result of the absence of this missing parameter and the lack
of proper prediction, it has almost become difficult for direct customers to invest money in frontier
markets. However, the noises, seasonality, random spikes and trends of the time-series datasets make
it even more complicated to predict stock prices with high accuracy. In this work, we have developed
a novel stacking ensemble of the neural network model that performs best on multiple data pat-
terns. We have compared our model’s performance with the performance results obtained by using
some traditional machine learning ensemble models such as Random Forest, AdaBoost, Gradient
Boosting Machine and Stacking Ensemble, along with some traditional deep learning models such as
Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM) and Bidirectional Long
Short-Term (BiLSTM). We have calculated the missing parameter named “volatility” using stock
price (Close price) for 20 different companies of the frontier market and then made predictions using
the aforementioned machine learning ensemble models, deep learning models and our proposed
stacking ensemble of the neural network model. The statistical evaluation metrics RMSE and MAE
have been used to evaluate the performance of the models. It has been found that our proposed
stacking ensemble neural network model outperforms all other traditional machine learning and
deep learning models which have been used for comparison in this paper. The lowest RMSE and
MAE values we have received using our proposed model are 0.3626 and 0.3682 percent, respectively,
and the highest RMSE and MAE values are 2.5696 and 2.444 percent, respectively. The traditional
ensemble learning models give the highest RMSE and MAE error rate of 20.4852 and 20.4260 percent,
while the deep learning models give 15.2332 and 15.1668 percent, respectively, which clearly states
that our proposed model provides a very low error value compared with the traditional models.

Keywords: frontier market; time-series; volatility; stacking ensemble of neural network; machine
learning ensemble; deep learning

1. Introduction

Frontier markets are considered as the “pre-emerging” market, which means these
markets have lower market capitalization than the emerging markets. The term “frontier
markets” was coined in 1992 by the International Finance Corporation (IFC), a private sector
arm of the World Bank Group [1]. The frontier market has fewer standards in the developing
world as it carries too much inherent risk, but countries in the earliest stage of economic
development make investments in the frontier market for the economy’s potential growth
over decades. About 26 countries, Argentina, Bahrain, Bangladesh, Bulgaria, Croatia,

Future Internet 2022, 14, 252. https://doi.org/10.3390/fi14090252 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi14090252
https://doi.org/10.3390/fi14090252
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://doi.org/10.3390/fi14090252
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi14090252?type=check_update&version=1

Future Internet 2022, 14, 252 2 of 23

Estonia, Jordan, Kazakhstan, Kenya, Kuwait, Lebanon, Lithuania, Mauritius, Nigeria,
Oman, Pakistan, Qatar, Romania, Serbia, Slovenia, Sri Lanka, Trinidad and Tobago, Tunisia,
Ukraine, the United Arab Emirates and Vietnam, are listed as the frontier markets. The
important fact is that these small economic countries often fail to improve their economic
conditions due the high-risk nature of frontier markets. However, investors who tend to
maintain less risk and stability, but not for the growth of “pre-emerging markets”, always
look for emerging markets. In such cases, the companies listed under a frontier market
neither receive proper attention for investments to grow nor have the proper opportunity
of investigations to solve the issues. The issue associated with the higher risk of the frontier
market can be resolved by proper investigation that may allow the investors to invest in
that market with fewer doubts. To the best of our knowledge, the risk factor of this area
has not been investigated yet. Typically, previous works have tried to analyze the stock
price of the frontier market but not the risk factor. Previously, R. Chowdhury et al. [2]
showed a machine learning and modified Black–Scholes option pricing model particularly
for predicting the stock price of the frontier market. D. G. Anghelet et al. [3] also used the
machine learning approach for predicting the intra-day prices in the frontier market of
Romania. Their works particularly focus on predicting the stock price of the frontier market.
The modern machine learning approach for predicting future observations has become
very effective. However, the main issue of the frontier market is the risk factor, which
needs more attention. In this paper, we have tried to solve this issue by using modern
machine learning and deep learning techniques by analyzing 20 different Bangladeshi
companies’ stock price datasets, as they are of a frontier market. The machine learning
algorithms capture the pattern of the risk factor using the parameter that is responsible for
returning the magnitude of the risk factor with the time sequentially. However, while the
frontier market does not have a parameter that is responsible for representing the risk factor,
the stock market does have that parameter. This is another reason for having trouble of
analyzing the risk factor of the frontier market. This paper shows the process of calculating
the missing parameter called “volatility”, known as the risk factor. Using the parameter
“volatility”, we have trained different machine learning algorithms such as Random Forest,
AdaBoost, Gradient Boosting Machine, Stacking Ensemble and some traditional deep
learning models such as Convolutional Neural Network (CNN), Long Short-Term Memory
(LSTM) and Bidirectional Long Short-Term (BiLSTM). Those machine learning and deep
learning models are able to learn the risk factor pattern based on the previous observations
provided by the parameter. We have observed that the aforementioned models do not
provide a satisfactory performance for all the datasets. Therefore, we have developed a new
stacking ensemble of neural network models for more accurate prediction. Our proposed
model shows the best accuracy among all the machine learning and deep learning models.

2. Background and Literature Review

Since the risk factor of the frontier market is fully undiscovered in the research field,
we have not found any related work; instead, we have gone through some of the time series
related works that have been used the up-to-date analysis approaches.

Lin et al. [4] proposed a modified SVR model which separates the time-series data
into linear and non-linear parts. Their model combined with the linear model and the
SVR model. The linear model predicts the linear part, whereas the SVR model predicts the
non-linear part. Kavita et al. [5] showed a comparative work between the Linear Regression
(LR) and Support Vector Regression (SVR) models. They achieved RMSE values of 12.54
and 12.87, respectively, for the LR and SVR models. Johnson [6] showed a comparative
work between time series models such as GARCH (1,1), EGARCH (1,1) and TGARCH
(1,1), and deep learning models such as ANN and LSTM. They mentioned that none of the
time series models captured the fluctuations properly. They found that long short-term
memory (LSTM) accurately captured the patterns as it remembers the previous pattern
of the data. Madge and Bhatt [7] showed a machine learning approach for predicting
Stock Price; they used a Support Vector Machine (SVM) model for their investigation.

Future Internet 2022, 14, 252 3 of 23

They mentioned that the neural network finds the local minima and SVM finds the global
minima. However, finding local minima may lead the model to underfitting or overfitting
issues, which prevents the model from being generalized. Therefore, they chose SVM to
predict their stock price data. They achieved a mean accuracy within 49.5 percent and
50 percent. Yoon and Swales [8] showed a neural network approach to investigate its
ability to predict complex market stock price prediction. They compared the model with
multiple discriminant analysis (MDA) methods. In their experiment, the NN approach
outperformed the MDA methods. Zhao et al. [9] showed a deep learning ensemble method
using a set of stacked denoising autoencoders (SDAE) for the base model. The prediction
values from the SDAE models are averaged together to form the final prediction value.
They compared their proposed model with a random walk (RW), Markov regime-switching
model (MRS), feedforward neural network (FNN) and Support Vector Regression (SVR) en-
sembled model; their proposed model’s result outperformed all the aforementioned models.
Chen et al. [10] showed multiple machine learning models and one neural network model
to compare the performance of the models. They performed Logistic Regression (LR), linear
discriminant analysis (LDA), RandomForest (RF), XGBoost (XGB), Quadratic Discriminant
Analysis (QDA), Support Vector Machine (SVM) and Long Short-Term Memory (LSTM)
on a bitcoin daily price dataset. The LSTM model has achieved the best accuracy among
all the aforementioned models. Andriopoulos et al. [11] showed a comparative analysis,
where they made the comparison between deep learning methods such as Long short-term
Memory (LSTM), Convolutional Neural Network (CNN), Multi-Layer Perceptron (MLP)
and Artificial Neural Network (ANN). The CNN model has shown the best result among
all the models. Selvin et al. [12] also proposed a comparative work between three deep
learning models, which are: LSTM, RNN and CNN-Sliding Window model. Patel et al. [13]
showed a Multilayer Perceptron Neural Network approach on different stock price datasets.
Lie et al. [14] obtained 72 percent accuracy for the model to predict stock price data by
using the LSTM model. Their experiment precisely states that the LSTM model can play
a better forecasting effect. Siami et al. [15] showed that the BiLSTM model outperforms
the regular unidirectional LSTM model due to the bi-directional learning process. BiL-
STM learns data from both the forward and backward directions. Elliot and Hsu [16]
showed multiple deep learning models such as Recurrent Neural Network (RNN), Long
short-term memory and Generalized Linear Model (GLM) for predicting the stock price.
Elsayed et al. [17] proposed a Gradient Boosted Regression Trees (GBRT) model. They
compared their proposed model with various neural network models. Their model out-
performed others on window-based time-series data. Luong and Dokuchaev [18] showed
a random forest model for forecasting volatility. Qiu et al. [19] proposed a deep learning
stacking ensemble method on three different datasets of electricity load demand. They have
also applied Support Vector Regression (SVR), FeedForward Neural Network (FNN), Deep
Belief Network (DBN) and Ensemble FeedForward Neural Network (ENN) on the datasets
to compare the result with their proposed stacking ensemble model. Their proposed model
was built with 20 DBM models and an SVR model. They evaluated the models’ perfor-
mance using RMSE and some other statistical evaluation metrics. Their proposed model’s
RMSE value showed slightly improved results compared to the existing single models.
Zhao et al. [9] showed a deep learning ensemble method using a set of Stacked Denoising
AutoEncoders (SDAE) for the base model. The prediction values from the SDAE models
were averaged together to form the final prediction value. They compared their proposed
model with a Random Walk (RW), Markov Regime-Switching model (MRS), Feedforward
Neural Network (FNN), and SVR ensembled model. Their proposed result outperformed
all the models. Carta et al. [20] proposed a multilayer stacking ensemble method, where
they preprocessed the time series data into images and used the images as input for their
proposed model. Their proposed model consists of two layers. Layer-1 builds with hun-
dreds of CNN models, and Layer-2 builds with the reinforcement learning process for the
meta-learner. Their proposed model gave the highest accuracy of 0.56 for classifying the
trading day’s decision. Livieris et al. [21] proposed three types of ensemble methods such

Future Internet 2022, 14, 252 4 of 23

as averaging, bagging and stacking. The ensemble methods use LSTM and BiLSTM models
for the base learner and LR, SVR, KNN, and DTR models for meta-learner. They applied the
models on cryptocurrency time-series data and found that the stacking ensemble method
provides the highest accuracy compared to the averaging and bagging ensemble methods.
S. Li et al. [22] showed a similar stacking technique using three convolutional layers. They
extended the stacking technique concept using 3, 5 and 7 layers of CNN models for the
base models with decreasing filter size in each layer. Dey et al. [23] proposed a machine
learning ensemble method called Extreme Gradient Boosting (XGBoost) model. The ensem-
ble method outperformed SVM and ANN with an accuracy of 99 percent for predicting the
stock market’s direction.

Though the aforementioned papers have shown all techniques on time series data, the
risk factor of frontier markets has not been discussed and investigated in detail so far. Thus,
the main target of this paper is to investigate the risk factor of the frontier markets.

3. Materials and Methods
3.1. Dataset

Our dataset consisted of the stock prices of 20 different companies in Bangladesh’s
frontier market. The dataset has approximately two years of data, containing up to 500 trad-
ing days observations. The parameters of this dataset are: date, low, high, open, and
close prices. Among all the parameters, the close price is used to calculate the ‘Volatility’
parameter. Since this work focuses on predicting a frontier market’s risk factor, we are
required to analyze datasets from a frontier market. The companies we have chosen are
responsible for returning the risk factor from Bangladesh’s frontier market and contain a
close price parameter for calculating volatility. However, the whole experiment would be
carried out in any frontier market with a closing price parameter. Dataset can be found
from this link: https://github.com/ShapnaSS/Frontier-market-proj/blob/main/data.rar.
The duration of each dataset is shown in Table 1.

Table 1. List of companies with corresponding durations.

Names of Companies Duration

ABBANK 2018-01-10–2020-12-07

ACIBANK 2018-01-10–2020-12-07

APEXFOOT 2018-02-10–2020-12-07

BANKASIA 2018-01-10–2020-12-07

BATASHOE 2018-01-10–2020-12-02

BERGERPBL 2018-01-10–2020-12-07

BEXIMCO 2018-01-10–2020-12-07

BRACBANK 2018-02-10–2020-12-07

CITYBANK 2018-01-10–2020-12-07

DESCO 2018-01-10–2020-12-07

DHAKABANK 2018-01-10–2020-12-07

DUTCHBANGLABANK 2018-01-10–2020-12-07

Eximbank 2018-01-10–2020-12-02

Fuwangfood 2018-01-10–2020-12-07

IBNSINA 2018-01-10–2020-12-07

IFIC 2018-01-10–2020-12-07

JAMUNABANK 2018-01-10–2020-12-07

KEYACOSMET 2018-01-10–2020-12-07

UTTARABANK 2018-01-10–2020-12-07

GP 2018-01-10–2020-12-07

https://github.com/ShapnaSS/Frontier-market-proj/blob/main/data.rar

Future Internet 2022, 14, 252 5 of 23

3.2. Volatility Calculation

Volatility is the rate at which the price of a market index increases or decreases for a
given set of returns [24]. It is a measurement of the risk of security. If the daily price of a
particular security fluctuates very rapidly over a long period, that causes high volatility;
on the other hand, if the daily price of a particular security fluctuates very slowly over a
long time, then that causes low volatility. Volatility is measured by calculating the standard
deviation of the daily returns over a given period of time. The period which we have
picked to calculate the volatility can be varied with different purposes or events such as
dividends, splits and financial reports. Some companies may report their events after a
specific period of time [25]. Therefore, one can choose any specific or random periods based
on days, weeks or months. Since the companies we have chosen do not share a common
window, we have therefore taken 21 days of the rolling window for each dataset to maintain
consistency. The events can be taken into account while calculating the volatility. In that
case, the value of the rolling window needs to follow the event period [26,27]. However,
volatility has two types: historical volatility and implied volatility. Historical volatility
measures the fluctuations in the security’s prices in the past. However, historical volatility
is mostly used for predicting future trends based on the previous trends. On the other
hand, implied volatility measures the expected magnitude of a stock’s future price changes.
Unlike the historical volatility, it provides a progressive direction on possible future price
fluctuations. We will use historical volatility for predicting future fluctuations based on
the previous trends in our work. The frontier market lacks the “volatility”parameter, so
the “close price” parameter has been used to calculate the “volatility” parameter. First,
we derived the daily returns from the “close price” parameter. The daily return has been
calculated from the percentage of dollar change in the previous day’s closing price. Lastly,
the “volatility” parameter has been estimated from the standard deviation of daily returns
over a given period of time. The formula for the volatility calculation is shown below [2].

σ =

√√√√√ n

∑
i=1

(xi − µ)2

n− 1
(1)

where σ refers to standard deviation/volatility, x refers to daily returns, µ refers to the
mean of stock observations and n refers to the number of observations in the dataset.

3.3. Performance Metrics

Evaluating a model’s performance is necessary since it explains how close the model’s
predicted outputs are to the corresponding expected outputs. The evaluation metrics are
used to evaluate a model’s performance. However, the evaluation metrics differ with the
types of models. The types of models are classification and regression. Regression refers to
the problem that involves predicting a numeric value, whereas classification refers to the
problem that involves predicting a discrete value. The model of classification problem uses
the accuracy metric for evaluation. Unlike the classification problem model, the regression
problem uses the error metric for evaluating the model. Our dataset contains numerical
values which fall into the regression problem, so we use the error metric to evaluate all
used models. The most commonly used error metrics for evaluating a regression model
are: Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) [28–31].

RMSE: RMSE is a widely used error metric for performance calculation process.
The RMSE can be calculated as follows:

RMSE =

√
1
n

n

∑
i=1

(yi − xi)2 (2)

where, yi refers to predicted values, xi refers to actual values, and n refers to number of
samples. A perfect RMSE value is 0, which means all predicted values match the actual
values. the smaller the RMSE value, the better the accuracy is [32].

Future Internet 2022, 14, 252 6 of 23

MAE: Unlike the RMSE, the changes in MAE are linear. This is because MAE does
not square the error value in it; instead, the scores increase linearly. The MAE can be
calculated as follows:

MAE = (
1
n
)

n

∑
i=1
|yi − xi| (3)

where, yi refers to predicted value, xi refers to actual value and n refers to number of
samples. Like RMSE, a smaller MAE score indicates better performance of the model.

In a regression problem, most of the evaluation metric verifies how close the predicted
output with the actual value. Therefore, RMSE and MAE are efficient in checking if a
model works well or not. Some less popular metrics, such as the R2 score, have not been
addressed in previous research works [28,33]. Therefore, we have evaluated only using the
RMSE and MAE metrics.

3.4. Methodology

We have analyzed the time series data of twenty different datasets of a frontier market
by training the data with traditional machine learning models such as random forest,
AdaBoost, gradient boosting machine, stacking ensemble and deep learning models such
as CNN, LSTM and BiLSTM. We have calculated the “volatility” parameter and used the
estimated volatility as the input for all the aforementioned models. We split the input
data ‘volatility’ into two parts: 70 percent for training data and 30 percent for testing data.
This section introduces an overview of the algorithms that we have used for making the
prediction. Finally, we have introduced an overview of our proposed model.

3.4.1. Predictive Model: Random Forest

The most popular ensemble methods are bagging, boosting and stacking. Random
forest is a bagging ensemble learning model. The bagging ensemble learning model mostly
considers similar weak learners. The decision tree is used as the weak learner. The random
forest makes predictions for the regression problem by taking the average outcome of all
decision trees [34,35].

3.4.2. Predictive Model: AdaBoost

AdaBoost is a boosting ensemble learning model. The boosting ensemble learning
primarily considers similar weak learners. It also uses the decision tree as the weak learners
and learns them sequentially. Each decision tree learns from the previous model’s mistakes
by increasing the weights of the misclassified data points. Finally, AdaBoost makes a
weighted sum by combining the outputs from the weak learners. The weighted sum is
considered as the final output [36,37].

3.4.3. Predictive Model: Gradient Boosting

Gradient Boosting is a boosting ensemble learning model which uses the decision tree
model as the individual model. The individual model learns from the previous models, but
unlike AdaBoost, gradient boosting calculates residual errors made by the earlier models.
Finally, Gradient Boosting makes predictions by simply adding up the prediction values of
all decision trees [38,39].

3.4.4. Predictive Model: ML Stacking Ensemble

ML Stacking ensemble is a stacking ensemble learning model. Stacking ensemble
mainly considers similar weak learners, sometimes dissimilar weak learners. The model
learns the weak learners parallelly; takes predictions from them, and combines the pre-
dictions to train the meta learner. Finally, the meta learner gives the final prediction. The
model often uses simple linear regression as the meta learner as it can provide a smooth
evaluation of the base models’ prediction. The purpose of the stacking ensemble learning

Future Internet 2022, 14, 252 7 of 23

model is to improve prediction, and it is capable of performing better than any single model
of ensemble modeling [19,40–43].

3.4.5. Predictive Model: One Dimensional Convolutional Neural Network (1D-CNN)

Convolutional neural network was first introduced by Yann LeCun [44]. Today, one-
dimensional convolutional neural network (1D-CNN) is mostly used in time-series data [45].
1D-CNN architecture has achieved the state-of-the-art for signal processing such as ECG,
fault detection, structural damage detection, and so on [46–54].

In 1D-CNN architecture, the time series data is fed as an input to the input layer
and the input convolves with multiple kernels/filters/weights (w) in the intermediate
convolutional layers (l). A convolution is a linear operation that performs the dot product
operation between the weights and the inputs of the input layers. The weights are assigned
randomly during the convolutional operation, which are responsible for extracting the
input features. The dot product is an element-wise multiplication between the inputs
and the weights, which are then summed, resulting in a single value. The intermediate
convolutional layer consists of n number of neurons, where the linear transformation takes
place through the weighted summation by the weighted scalar [55–57].

Furthermore, 1D-CNNs are advantageous, since the model uses weight sharing, al-
lowing it to converge with fewer parameters. Hence, it makes the 1D-CNN converge
quickly [58].

The proposed model has 64 weights which has been shown in Table 1. The weights
(w1, w2, w3 . . . w64) are shared by both input layer (x1, x2, x3 . . . xn) and output layer
(o1, o2, o3 . . . on). The linear transformation between inputs and weighted scaler occurs
in the following way:

p1 = w1x1 + w2x2 + w3x3 + . . . w64x64

p2 = w1x2 + w2x3 + w3x4 + . . . w64x65

p3 = w1x3 + w2x4 + w3x5 + . . . w64x66

p4 = w1x4 + w2x5 + w3x6 + . . . w64x67

(4)

The scaler outputs (p1, p2, p3 . . . pn) are then passed through a non-linear function.

o1 = g(p1)

o2 = g(p2)

o3 = g(p3)

o4 = g(p4)

(5)

The formula for intermediate transformation layer in 1D-CNN is stated below:

pl
j = bl

j +
nl−1

∑
i=1

conv1D(xl−1
i ∗ wl−1

ij) (6)

where, pl
j denotes the input, wl−1

ij denotes the weight from the ith neuron at layer l − 1,

xl−1
i denotes the output of the ith neuron at layer, bl

j denotes the bias of the jth neuron at

layer l − 1. pl
j are then passed through a activation function for the intermediate output.

ol
j = g(pl

j) (7)

In multilayer 1D-CNN, o1, o2, o3 . . . on are supposed to be the inputs for the next layer
(l + 1). For a single layer, the outputs will pass through the fully connected layer. Before
passing into the fully connected layer, the network is flattened into a single vector to be used
for the fully connected layer. Therefore, a fully connected layer gives the final probabilities
for every label. This process is known as feed-forward propagation.

Future Internet 2022, 14, 252 8 of 23

Since the weights initialized randomly, the fully connected layer’s final probabilities
have minimal chance of meeting the expected result, which is eventually responsible for
poor accuracy. The neural network develops a cost function that penalizes outputs far
from the expected value. Neural network’s weights are updated with the help of partial
derivatives ∂ f (x)

∂x and chain rule. The whole procedure of updating the weights using
gradient descent is known as backpropagation. Therefore, backpropagation is the fine-
tuning method, which updates each layer’s weights based on the error rate obtained in the
previous iteration. Backpropagation learns the patterns by calculating the gradient of a loss
function with respect to all network weights.

The loss function is shown below:

Lt = ∑
i=1

(oi − yi)
2 (8)

oi refers to the output from the fully connected layer, and yi refers to the expected
outputs.

Partial derivatives are used to define the relationship between the cost function and
each weight. Hence it is possible to update these weights through an iterative process using
gradient descent.

3.4.6. Predictive Model: Long Short-Term Memory (LSTM) Architecture

LSTM is a widely used artificial recurrent neural network (RNN) model to deal with
sequential data. Since LSTM process the single data point and the sequential data points, it
is efficient to train sequential data using LSTM. Some examples of sequential data points are
text dataset, time-series dataset, voice dataset and video dataset. Sequential data maintains
long-term dependencies, whereas LSTM is capable of learning long-term dependencies.
LSTM is a modified version of RNN and RNN is capable of remembering previous data
points. The basic architecture of LSTM is followed by the RNN model. An RNN architecture
consists of three layers: input layer, hidden layer, and output layer [59,60]. The fundamental
state (current state) of RNN architecture is as follows:

ht = f (ht−1, xt; θ) (9)

Here, ht refers to the current hidden state, f refers to the function of the previous
hidden state ht−1 and the current input xt, θ refers to the parameters of that function.

The primary mechanism of an RNN architecture is that the hidden layer’s input is the
current input and output derived from the earlier hidden state. Therefore, the hidden layer
works as conditional neural memory and remembers the sequential data. The process is
shown in a textual format and in Figure 1:

(Input + Previous_Hidden_output) –> Hidden –> Output

h

Input(Inp)

output(O)

h1 h2h2 ht

Inp1

O1 O2 O3 Ot

Inp2 Inp3 Inpt

Figure 1. Recurrent neural network (RNN) structure.

The drawback of the RNN architecture is that it forgets the necessary data when a
very large dataset is used. The nature of time-series data is that the current data depends
on the previous data. Hence, time-series data has long-term dependency over time. The
LSTM model proposed by Hochreiter Long [61] is an improved version of RNN that
can memorize the long-term dependency data by forgetting the unnecessary data and
memorizing the necessary data at every updation step of gradient descent [62]. LSTM

Future Internet 2022, 14, 252 9 of 23

architecture comprises of four parts: a cell, an input gate, an output gate, and a forget
cell [32]. The forget cell forgets the unnecessary data and remembers only the necessary
data. The forget gate is responsible for deciding which information should be discarded
based on the state h(t − 1) and input x(t) at the state c(t − 1). The forget gate’s sigmoid
function keeps all 1s and discards all 0s between 0 and 1 values at each cell state. The
value ‘1’ is considered as the necessary value, and ‘0’ is considered as the unnecessary
value [14,61,63,64]. The equation of the forget gate state is as follows:

ft = σ(W f .[ht−1, xt] + b f) (10)

where ft refers to the current forget state, σ refers to the sigmoid activation function, W f
refers to the weights of the forget gate, ht−1 refers to the output from the previous hidden
state, xt refers to current input and b f refers to the bias of the forget gate function.

After forgetting the unnecessary value, new values need to be updated in the cell state.
The process has three parts:

1. A sigmoid layer called the “input gate layer” decides which values to update.
2. A tanh layer creates a vector of new candidate values to add to the state.
3. Combination of step 1 and 2 creates an update to the state.

The sigmoid layer state’s equation is:

it = σ(Wi.[ht−1, xt] + bi) (11)

Sigmoid layer from Equation (11) decides which value should be updated; tanh layer
from Equation (12) creates a vector of new candidates for creating a new value to the
state C(t).

The tanh layer’s state equation is:

C̃(t) = tanh(Wc.[ht−1, xt] + bC) (12)

The updation of the new cell at state C(t) occurs by adding C̃(t) ∗ it with Ct−1 ∗ ft.
The updation state’s equation is:

Ct = Ct−1 ∗ ft + C̃(t) ∗ it (13)

Finally, the output is filtered out by a sigmoid Equation (14) and a tanh Equation (15)
function to decide which output needs to be kept.

Ot = σ(Wo.[ht−1, xt] + bo) (14)

ht = Ot ∗ tanh(Ct) (15)

where ht provides the output values for the next hidden layer’s input.

3.4.7. Predictive Model: BiLSTM Architecture

BiLSTM is almost the same as LSTM, except that it allows both forward and backward
propagation. The BiLSTM model was first proposed by GRAVES [65]. LSTM does only
forward propagation. BiLSTM’s architecture learns both from past-to-future data as well
as future-to-past data. This concept makes the architecture more stable as it does not rely
only on past data. Hence, BiLSTM seems to perform relatively better than LSTM. The
structure of the bidirectional LSTM is shown in Figure 2. The backward propagation layer
is mainly a reverse layer of forwarding LSTM. The hidden layer synthesizes both forward
and backward information [66]. Hence, the reverse layer of LSTM is calculated as “the
reverse direction of forward direction”. The BiLSTM network calculation formula is:

Future Internet 2022, 14, 252 10 of 23

h1 h2

h2 ht

ht

Inp1

O1 O2 O3 Ot

Inp2 Inp3 inpt

h1 h3

h3

Figure 2. BiLSTM neural network structure.

The formulation [66] of backward propagation is as follows:

h f = f (w f 1xt + w f 2ht−1) (16)

hb = f (wb1xt + wb2ht+1) (17)

where h f is the forward layer output, hb is the reverse layer output.
The hidden layer’s final output is given below:

Oi = g(wo1 ∗ h f + wo2 ∗ hb) (18)

3.5. Proposed Model: Stacking Ensemble Neural Network Architecture

We have developed our proposed model using the stacking ensemble learning strategy.
We have considered heterogeneous weak learners for the base models and linear regression
for the meta-learner to build our proposed model. CNN, LSTM and BiLSTM models
are used for creating the base models. We used the parameter “volatility”to feed into
the architecture.

The proposed model’s data separation process is not the same as the process used in
machine learning and deep learning techniques. The data is separated into three parts:
60 percent for training, 10 percent for validation and 30 percent for testing.

This change is necessary to avoid the overfitting tendency during the meta-learner
training phase. Since the predicted dataset from the Level-0 is already a probability of
expected values, the meta-learner has a high chance of giving the exact probabilities as
Level-0. The combination of the validation dataset and the predicted dataset is used to
train the final model (meta-learner) to avoid overfitting issues. The prediction from Level-1
is the final output. The stacking ensemble takes predicted results from multiple models
and uses the predicted results for a final model (meta-learner) which is the output of the
stacking ensemble model.

The problem with the traditional stacking ensemble method is that the same multiple
models are used for the base model, which gives similar predictions. If the base model
performs poorly on the dataset, there is a high chance of obtaining an overall poor result.
However, the single neural network model has a bias and variance tendency towards the
dataset. So, we go for dissimilar models for creating the base model.

Figure 3 illustrates a high-level schematic representation of the proposed stacking
ensemble of neural network model.

As shown in Figure 3, the architecture has two parts: Level − 0 and Level − 1.
Level − 0 is built with CNN, LSTM and BiLSTM model. The three submodels learn

the data pattern and give three predictions parallelly. Each of the models used in Level − 0
has an equal contribution to the whole model.

Level − 1 is built with one linear regression; this is also called the meta-learner of the
architecture. The predicted outputs from Level 0 are used as input for the meta-learner in
Level-1. The meta learner best guesses the final outputs based on the predicted outputs
from Level-0. The meta learner refers to a model that can rapidly learn a new pattern

Future Internet 2022, 14, 252 11 of 23

or adapt to new datasets with a few training examples. The linear regression works as a
meta learner; the meta learner learns the pattern that has already been learned from three
different models. Hence, the model can learn utterly new data very well and can provide a
satisfactory result.

CNN

LSTM

BiLSTM

Meta-model
Training

set

Level-0 Level-1

Prediction-1

Prediction-2

Prediction-3

New
Training

set
consists
of three

predictions
from Leve-

0

Final
prediction
from level-

1

Figure 3. Modified stacking ensemble of neural network model.

4. Result and Discussion

Our proposed model worked best on twenty different companies’ datasets of a frontier
market. Using our dataset, we have trained four machine learning ensemble models, such
as Random Forest, AdaBoost, GradientBoosting, Xgboost, and ML stacking ensemble,
then three deep learning models such as CNN, LSTM, and BiLSTM, and finally, with our
proposed stacking ensemble neural network model. The results in Table 2 have shown
that the machine learning ensemble models have provided substantial RMSE errors. We
have achieved the highest RMSE error of 15.489 and the highest MAE error value of
15.416 using the machine learning models. The machine learning models’ error rates are
higher than the neural network and our proposed models’ error rates. CNN works well
on some of the data patterns, but not all. For instance, companies such as ACIBANK,
BANKASIA, DESCO, DHAKABANK, EXIMBANK, GP, IBNSINA, IFIC, JAMUNABANK
and UTTARABANK have lower RMSE error percentages of 2.3866, 0.6713, 1.5500, 0.8770,
0.8822, 1.6824, 1.4132, 1.1520, 1.0167, and 1.3121, respectively. On the other hand, compa-
nies such as ABBANK, APEXFOOD, BATASHOE, BERGERPBL, BEXIMCO, BRACBANK,
CITYBANK, DUTCHBANGLABANK, FUWANGFOOD and KEYACOSMET have higher
RMSE error percentages of 3.6829, 5.4682, 6.3256, 5.4822, 5.8887, 4.3199, 3.2923, 11.5777,
3.6536, and 6.8706, respectively. LSTM and BiLSTM models also show inconsistent results
over the datasets. LSTM performed better on ACIBANK, BANKASIA, BRACKBANK,
CITYBANK, DESCO, DHAKABANK, EXIMBANK, GP, IBNSINA, IFIC, JAMUNABANK
and UTTARABANK with an error rate of 1.2314, 0.4191, 2.7113, 1.8324, 0.9894, 1.0917,
1.04872, 0.9660, 1.6709, 1.8123, 0.4649 and 0.9504, respectively, and performed poorly on
ABBANK, APEXFOOT, BATASHOE, BERGERPBL, BEXIMCO, DUTCHBANGLABANK,
FUWANGFOOD and KEYACOSMET with RMSE error rates of 3.8222, 4.7450, 7.7107, 5.4605,
5.3503, 15.2332, 4.4977, and 5.8391. BiLSTM provides satisfactory results on ACIBANK,
APEXFOOT, BANKASIA, BATASHOE, BEXIMCO, CITYBANK, DESCO, DHAKABANK,
EXIMBANK, FUWANGFOOD, GP, IBNSINA, IFIC, JAMUNABANK, and UATTARABANK
with the RMSE error rates of 0.2280, 1.3357, 0.4956, 1.5567, 2.5656, 2.7964, 0.7367, 1.6444,
0.4895, 2.2982, 1.0760, 1.0107, 1.8714, 0.7879 and 0.6997, respectively, and unsatisfactory
result on ABBANK, BERGERPBL, BRACBANK, DUTCHBANGLABANK and KEYACOS-
MET with RMSE error rates of 3.9660, 4.4781, 4.0452, 10.1262 and 8.4249, respectively.
These results show that BiLSTM performs comparatively better than CNN and LSTM.
The main problem is that none of the traditional models confirm that they can precisely
predict every dataset. The randomness in the result proves that we cannot rely on those

Future Internet 2022, 14, 252 12 of 23

models. However, our proposed model provides a satisfactory result for every company:
ABBANK, ACIBANK, APEXFOOT, BANKASIA, BATASHOE, BERGERPBL, BEXIMCO,
BRACBANK, CITYBANK, DESCO, DHAKABANK, DUTCHBANGLABANK, EXIMBANK,
FUWANGFOOD, GP, IBNSINA, IFIC, JAMUNABANK, KEYACOSMET and UTTARA-
BANK had RMSE error rates of 0.6766, 1.1880, 1.0634, 0.8139, 0.9859, 0.4721, 0.6300, 2.1705,
0.7283, 0.8349, 0.5206, 1.0317, 1.0317, 2.5696, 2.5696, 0.9153, 0.3626, 0.5614, 1.0614 and 0.6741,
respectively, which clearly evidence that it maintains consistent results on every dataset.
Moreover, our model can maintain high accuracy on multiple data patterns as we have
achieved the RMSE and MAE error values between 0 < result < 3 for all the datasets. Our
proposed model has shown a consistent low error rate and outstanding accuracy as the
RMSE value has remained below 2.

Table 2. Experiment results obtained from 20 different companies’ stock price datasets of a frontier
market using deep learning models such as CNN, LSTM, BiLSTM and our proposed STacking
Ensemble of Neural Network model.

Dataset Deep Learning Models RMSE MAE

ABBANK

CNN 3.6829 3.4811
LSTM 3.8222 3.7760
BiLSTM 3.9660 3.9122
Proposed Stacking Ensemble of Neural Network 0.6766 0.5116

ACIBANK

CNN 2.3866 1.8764
LSTM 1.2314 0.9824
BiLSTM 0.2280 0.1931
Proposed Stacking Ensemble of Neural Network 1.1880 0.8805

APEXFOOT

CNN 5.4682 5.3320
LSTM 4.7450 4.5975
BiLSTM 1.3357 1.0584
Proposed Stacking Ensemble of Neural Network 1.0634 0.9504

BANKASIA

CNN 0.6713 0.5675
LSTM 0.4191 0.3472
BiLSTM 0.4956 6.8461
Proposed Stacking Ensemble of Neural Network 0.8139 0.6806

BATASHOE

CNN 6.3256 6.0763
LSTM 7.7107 7.5957
BiLSTM 1.5567 1.3306
Proposed Stacking Ensemble of Neural Network 0.9859 0.7908

BERGERPBL

CNN 5.4822 5.4256
LSTM 5.4605 5.3972
BiLSTM 4.4781 4.4417
Proposed Stacking Ensemble of Neural Network 0.4721 0.3812

BEXIMCO

CNN 5.8887 5.8245
LSTM 5.3503 5.3172
BiLSTM 2.5656 2.5383
Proposed Stacking Ensemble of Neural Network 0.6300 0.4795

BRACBANK

CNN 4.3199 3.7514
LSTM 2.7113 2.3612
BiLSTM 4.0452 3.3964
Proposed Stacking Ensemble of Neural Network 2.1705 2.4467

CITYBANK

CNN 3.2923 3.1774
LSTM 1.8324 1.7528
BiLSTM 2.7964 2.7133
Proposed Stacking Ensemble of Neural Network 0.7283 0.6993

DESCO

CNN 1.0141 0.8770
LSTM 0.9895 0.8442
BiLSTM 0.7367 0.5795
Proposed Stacking Ensemble of Neural Network 0.8349 0.8349

DHAKABANK

CNN 1.5500 0.8770
LSTM 1.0917 1.0176
BiLSTM 1.6444 1.4745
Proposed Stacking Ensemble of Neural Network 0.5206 0.5206

Future Internet 2022, 14, 252 13 of 23

Table 2. Cont.

Dataset Deep Learning Models RMSE MAE

DUTCHBANGLABANK

CNN 11.5777 11.4175
LSTM 15.2332 15.1668
BiLSTM 10.1262 10.0926
Proposed Stacking Ensemble of Neural Network 1.0317 0.9021

EXIMBANK

CNN 0.8822 0.7254
LSTM 1.04872 0.8899
BiLSTM 0.4895 0.3822
Proposed Stacking Ensemble of Neural Network 0.4631 0.4093

FUWANGFOOD

CNN 3.6536 2.7259
LSTM 4.4977 3.5727
BiLSTM 2.2982 1.8985
Proposed Stacking Ensemble of Neural Network 2.5696 2.444

GP

CNN 1.6824 1.4521
LSTM 0.9660 0.7848
BiLSTM 1.0760 0.9343
Proposed Stacking Ensemble of Neural Network 0.5970 0.4611

IBNSINA

CNN 1.4132 1.2915
LSTM 1.6709 1.5288
BiLSTM 1.0107 0.8399
Stacking Neural Network Ensemble 0.9153 0.9659

IFIC

CNN 1.1520 0.9446
LSTM 1.81234 1.5902
BiLSTM 1.8714 1.8041
Proposed Stacking Ensemble of Neural Network 0.3626 0.3682

JAMUNABANK

CNN 1.0167 0.8089
LSTM 0.4649 0.3752
BiLSTM 0.7879 0.6579
Proposed Stacking Ensemble of Neural Network 0.5614 0.5526

KEYACOSMET

CNN 6.8706 6.6129
LSTM 5.8391 5.7513
BiLSTM 8.4249 8.3693
Proposed Stacking Ensemble of Neural Network 1.0614 0.9095

UTTARABANK

CNN 1.3121 1.0543
LSTM 0.9504 0.7705
BiLSTM 0.6997 0.5853
Proposed Stacking Ensemble of Neural Network 0.6741 0.6611

Table 3 provides the representation of RMSE and MAE error values obtained from
20 different datasets of a frontier market using machine learning ensemble models such as
RandomForest, AdaBoost, GradientBoosting and ML stacking Ensemble Learning.

Table 3. Experiment results obtained from 20 different companies’ stock price datasets of a frontier
market using machine learning models such as RandomForest, AdaBoost, GradientBoosting and ML
stacking Ensemble Learning.

Dataset Machine Learning Models RMSE MAE

ABBANK

ML ensemble method (RandomForest) 4.3384 4.2509
ML ensemble method (AdaBoost) 6.1229 6.0434
ML ensemble method (GradientBoosting) 6.9083 6.8461
ML Stacking Ensemble Learning 5.1710 4.8450

ACIBANK

ML ensemble method (RandomForest) 2.3326 1.6824
ML ensemble method (AdaBoost) 2.7053 2.0491
ML ensemble method (GradientBoosting) 2.4149 1.8078
ML Stacking Ensemble Learning 1.9230 1.6032

Future Internet 2022, 14, 252 14 of 23

Table 3. Cont.

Dataset Machine Learning Models RMSE MAE

APEXFOOT

ML ensemble method (Randomforest) 6.6466 6.4764
ML ensemble method (AdaBoost) 7.3927 7.2382
ML ensemble method (GradientBoosting) 7.6668 7.526
ML Stacking Ensemble Learning 5.2078 5.0352

BANKASIA

ML ensemble method (RandomForest) 0.4049 0.3000
ML ensemble method (AdaBoost) 0.4208 0.2945
ML ensemble method (GradientBoosting) 0.4052 0.2987
ML Stacking Ensemble Learning 0.6428 0.4658

BATASHOE

ML ensemble method (RandomForest) 6.2606 5.9338
ML ensemble method (AdaBoost) 7.1886 6.9948
ML ensemble method (GradientBoosting) 6.0615 5.7666
ML Stacking Ensemble Learning 5.7256 5.6674

BERGERPBL

ML ensemble method (RandomForest) 5.3535 5.2818
ML ensemble method (AdaBoost) 7.8242 7.7765
ML ensemble method (GradientBoosting) 6.6984 7.0529
ML Stacking Ensemble Learning 4.9378 4.8600

BEXIMCO

ML ensemble method (RandomForest) 6.4896 6.3802
ML ensemble method (AdaBoost) 7.1802 7.0570
ML ensemble method (GradientBoosting) 7.1802 7.5636
ML Stacking Ensemble Learning 9.5758 9.5000

BRACBANK

ML ensemble method (Randomforest) 5.8722 4.4277
ML ensemble method (AdaBoost) 6.3241 4.8102
ML ensemble method (GradientBoosting) 7.1432 5.7192
ML Stacking Ensemble Learning 6.5281 5.6115

CITYBANK

ML ensemble method (Randomforest) 3.6603 3.5544
ML ensemble method (Adaboost) 5.1566 5.0716
ML ensemble method (GradientBoosting) 4.5469 4.4633
ML Stacking Ensemble Learning 3.6076 3.5365

DESCO

ML ensemble method (Randomforest) 1.0350 0.8394
ML ensemble method (Adaboost) 1.6060 1.3092
ML ensemble method (GradientBoosting) 1.1690 0.9720
ML Stacking Ensemble Learning 0.9726 0.8290

DHAKABANK

ML ensemble method (RandomForest) 1.4607 1.2543
ML ensemble method (AdaBoost) 1.7555 1.6016
ML ensemble method (GradientBoosting) 1.6657 1.4554
ML Stacking Ensemble Learning 1.6992 1.5735

DUTCHBANGLABANK

ML ensemble method (RandomForest) 15.4895 15.4166
ML ensemble method (AdaBoost) 18.8228 18.7540
ML ensemble method (GradientBoosting) 14.9011 14.8032
ML Stacking Ensemble Learning 20.4852 20.4260

Eximbank

ML ensemble method (Randomforest) 0.9836 0.8807
ML ensemble method (Adaboost) 1.4827 1.3170
ML ensemble method (GradientBoosting) 1.2541 1.0899
ML Stacking Ensemble Learning 0.7287 0.6072

Fuwangfood

ML ensemble method (RandomForest) 7.3138 6.1929
ML ensemble method (AdaBoost) 7.5585 6.2670
ML ensemble method (GradientBoosting) 9.7713 8.6078
ML Stacking Ensemble Learning 5.2664 4.5548

IBNSINA

ML ensemble method (RandomForest) 1.3931 1.1716
ML ensemble method (AdaBoost) 1.5116 1.2887
ML ensemble method (GradientBoosting) 1.4613 1.2196
ML Stacking Ensemble Learning 1.2653 1.0263

IFIC

ML ensemble method (Randomforest) 3.5166 3.4134
ML ensemble method (AdaBoost) 3.8412 3.7434
ML ensemble method (GradientBoosting) 4.2209 4.0965
ML Stacking Ensemble Learning 2.9332 2.8153

Future Internet 2022, 14, 252 15 of 23

Table 3. Cont.

Dataset Machine Learning Models RMSE MAE

JAMUNABANK

ML ensemble method (RandomForest) 0.3725 0.2716
ML ensemble method (AdaBoost) 0.4013 0.2725
ML ensemble method (GradientBoosting) 0.5965 0.4986
ML Stacking Ensemble Learning 0.5364 0.4164

KEYACOSMET

ML ensemble method (RandomForest) 6.7334 6.4327
ML ensemble method (AdaBoost) 7.7225 7.4159
ML ensemble method (GradientBoosting) 8.1252 7.5307
ML Stacking Ensemble Learning 9.0140 8.8783

UTTARABANK

ML ensemble method (RandomForest) 0.9987 0.6482
ML ensemble method (AdaBoost) 1.0256 0.6621
ML ensemble method (GradientBoosting) 1.0327 0.6583
ML stacking Ensemble Learning 0.9832 0.7307

Table 2 provides the representation of RMSE and MAE error values obtained from
twenty different datasets of a frontier market using deep learning models such as CNN,
LSTM and Bi-LSTM and our proposed stacking ensemle of neural network model.

Earlier, several ensemble learning methods have been proposed in the literature
for analyzing the time series data. X. Qiu et al. [19] developed an ensemble learning
model with a different number of epochs using the same feedforward back-propagation
neural networks (FNN) model and experimented on electricity load demand datasets such
as Mackey–Glass, NSW, SA, TAS, CART, FAD and CH. They compared their proposed
model’s result with traditional machine learning and deep learning models such as support
vector regression (SVR), feedforward neural network (FNN), deep belief network (DBN)
and ensemble feedforward neural network (ENN). The RMSE results shown in Table 4
confirm that their proposed model works better than the aforementioned traditional models.
However, the results they received show no significant difference. Therefore, a small
difference does not create any novelty in this research area.

Table 4. RMSE Results derived from existing work.

Dataset Name SVR FNN DBN ENN Proposed

Mackey- Glass 0.0024 0.002 0.0018 0.0226 0.0015

NSW 74.3053 95.8105 90.2061 78.6394 72.2545

SA 44.6742 38.8585 35.9375 34.9473 30.5989

TAS 20.1068 19.7952 19.9187 19.9034 19.7580

CART 0.0406 0.0420 0.0412 0.0428 0.0403

FAD 0.0339 0.0349 0.0320 0.0315 0.0313

CH 0.1637 0.1803 0.1773 0.1615 0.1508

S. Li et al. [22] developed a hybrid convolutional neural network for environmental
sound recognition. They stacked the model with two models, MelNet [67] and RawNet [68].
Each of the models contains five convolutional neural networks and a fully connected layer.
They used the accuracy evaluation metric and evaluated this model on three datasets such
as ESC-10, ESC-50 and Urbansound8k, which are audio signal datasets. They achieved
an accuracy of 91.4 percent for MelNet, which is 9.9 percent and 4.5 percent higher than
the accuracy (81.5 percent) of previous work Piczak’s [69]. Finally, they evaluated the
algorithms on the Urbansound8k dataset. The accuracy of MelNet is 90.2 percent, which is
also higher than the 73.7 percent accuracy of Piczak [69] and the 79 percent of Salamon and
Bello [70]. The concept of their developed model is similar but not identical to ours. The
evaluation metric and dataset differ significantly from the regression problem metric and
time series dataset.

Carta et al. [20] developed a stacking ensemble learning with hundreds of deep
learning decisions, provided by a large number of CNNs trained with historical market

Future Internet 2022, 14, 252 16 of 23

data encoded into GAF images and used them as input for a reinforcement meta learner
classifier. Finally, they use meta learner for final prediction. Though they have improved
the result, the approach they have followed is basically for the classification problem.

The problems with the existing models are showing biased results on a particular
dataset and weak learners. Varying only the parameters is not a good approach since each
parameter can work differently on a different dataset. Moreover, single models are not
capable of working well on multiple datasets. Therefore, we have developed our model by
taking account of those issues. We have developed a completely new deep learning model
for the regression and classification problem and experimented on a time-series dataset
that falls under the regression problem. Since our developed model has not been reported
yet, we have shown comparative analysis with the existing models and found that our
model significantly reduces the value of error metrics.

4.1. Predicted Results

The predicted results of twenty selected datasets of Bangladesh frontier market are
shown in Figures 4 and 5. The CNN, LSTM, BILSTM and proposed models’ results are
individually plotted on the test dataset.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4. Cont.

Future Internet 2022, 14, 252 17 of 23

(j)

Figure 4. Comparison between original and predicted volatility obtained from jupyter notebook using
all models and methods of the last 30 days (a) Of company ABBANK. (b) Of company ACIBANK.
(c) Of company APEXFOOT. (d) Of company BANKASIA. (e) Of company BATASHOE. (f) Of
company BERGERPBL. (g) Of company BEXIMCO. (h) Of company BRACBANK. (i) Of company
CITYBANK. (j) Of company DESCOBANK.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5. Cont.

Future Internet 2022, 14, 252 18 of 23

(j)

Figure 5. Comparison between original and predicted volatility obtained from jupyter notebook
using all models and methods of the last 30 days (a) of company DHAKABANK. (b) Of company
DUCTHBANGLABANK. (c) Of company EXIMBANK. (d) Of company FUWANGFOOD. (e) Of
company GP. (f) Of company IBNSINA. (g) Of company IFICBANK. (h) Of company JAMUNA
BANK. (i) Of company KEYACOSMET. (j) Of company UTTARABANK.

4.2. Forecasting Results

The forecasting results for 20 frontier market datasets are shown in Figures 6 and 7.
Future 10 days of risk factor is forecasted using our proposed model.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6. Cont.

Future Internet 2022, 14, 252 19 of 23

(j)

Figure 6. Forecasting results of volatility obtained from jupyter notebook using our proposed
model for the next 10 days (a) of constituent ABBANK. (b) Of company ACIBANK. (c) Of company
APEXFOOT. (d) Of company BANKASIA. (e) Of company BATASHOE. (f) Of company BERGERPBL.
(g) Of company BEXIMCO. (h) Of company BRACBANK. (i) Of company CITYBANK. (j) Of company
DESCOBANK.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7. Cont.

Future Internet 2022, 14, 252 20 of 23

(j)

Figure 7. Forecasting results of volatility obtained from jupyter notebook using our proposed model
for the next 10 days (a) of company DHAKABANK. (b) Of company DUCTHBANGLABANK.
(c) Of company EXIMBANK. (d) Of company FUWANGFOOD. (e) Of company GP. (f) Of company
IBNSINA. (g) Of company IFICBANK. (h) Of company JAMUNA BANK. (i) Of company KEYACOS-
MET. (j) Of company UTTARABANK.

5. Conclusions

Our paper has shown a new approach for predicting the risk factor of any company in
a frontier market. The approach is useful for a frontier market as it shows both the processes
of finding the missing parameter named “volatility”, which does not exist in this market,
and predicting the risk factor using the estimated “volatility” parameter. The prediction
process is helpful for investors who invest money in this market as well as in other frontier
markets. The volatility prediction may help investors to increase their profit since the high
and low volatility indicate a significant fluctuation from the regular prices. The investors
can obtain an idea of the future risk of the frontier market that will allow them to invest
carefully. The machine learning models are capable of capturing the pattern of the risk
factor depending on the parameter “volatility”. After capturing the pattern, the model can
give future predictions. It should be noted that the future prediction values can be reliable
only if the model performs well. The measurement of the correctness of a model can be
evaluated with the help of evaluation metrics. In our paper, we have used RMSE and MSE
metrics to evaluate all the models. The metric evaluation result shows that our proposed
model performs best among all the machine learning models, which is not more than
RMSE and MAE values of 2.5696 and 2.444 percent, respectively. However, the traditional
machine learning models give very high RMSE and MAE error rates, which are 20.4852 and
20.4260 percent, respectively. The deep learning models also provide a high rate of RMSE
and MAWE value such as the traditional machine learning models, e.g., 15.2332 and 15.1668
percent; for such cases, our proposed model reduces the error rate significantly and gives
an error rate no more than the value of 3. Therefore, our model is capable of providing very
high accuracy even if traditional models fail to do that. The reason for showing the poor
result of the traditional machine learning models is that a single machine learning or deep
learning model has the tendency of bias and variance issues. We have tried to overcome
the issues and achieved a satisfactory result, which concludes that our proposed model can
be useful for predicting the risk factor of the frontier market with high accuracy. Since the
topic of predicting the risk factor of the frontier market is fully undiscovered, we have tried
to contribute in this area by showing the process of calculating the “volatility” parameter,
by making a comparative work using several machine learning and deep learning models
and by developing a new stacking ensemble of neural network model. We believe that by
following our work, future researchers might be motivated to contribute in this area, which
will help the area to be considered as a big and an important part of future investigations.

Future Internet 2022, 14, 252 21 of 23

Author Contributions: Conceptualization, H.S.; Data curation, R.C.; Formal analysis, M.S.A.; In-
vestigation, M.S.A., H.S., R.C. and M.R.C.M.; Methodology, M.S.A.; Project administration, H.S.;
Resources, H.S.; Supervision, H.S. and M.R.C.M.; Visualization, M.S.A.; Writing—original draft,
M.S.A.; Writing—review and editing, H.S., R.C. and M.R.C.M. All authors have read and agreed to
the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets generated during and/or analyzed during the current
study are not publicly available to guarantee the confdentiality and anonymity of the participants.
But it can be available from the corresponding author on reasonable request.

Acknowledgments: We acknowledge Masudur Rahim for the important discussions we had with him.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Gomes, M.; Chaibi, A. Volatility spillovers between oil prices and stock returns: A focus on frontier markets. J. Appl. Bus. Res.

2014, 30, 18. [CrossRef]
2. Chowdhury, R.; Mahdy, M.; Alam, T.N.; Al Quaderi, G.D.; Rahman, M.A. Predicting the stock price of frontier markets using

machine learning and modified Black–Scholes Option pricing model. Phys. A Stat. Mech. Appl. 2020, 555, 124444. [CrossRef]
3. Anghel, D.G. Predicting Intraday Prices in the Frontier Stock Market of Romania Using Machine Learning Algorithms. Int. J.

Econ. Financ. Res. 2020, 6, 170–179. [CrossRef]
4. Lin, K.; Lin, Q.; Zhou, C.; Yao, J. Time series prediction based on linear regression and SVR. In Proceedings of the Third

International Conference on Natural Computation (ICNC 2007), Haikou, China, 24–27 August 2007; IEEE: New York, NY, USA,
2007; Volume 1, pp. 688–691.

5. Kavitha, S.; Varuna, S.; Ramya, R. A comparative analysis on linear regression and support vector regression. In Proceedings of
the 2016 Online International Conference on Green Engineering and Technologies (IC-GET), Virtual, 19 November 2016; IEEE:
New York, NY, USA, 2016; pp. 1–5.

6. Johnsson, O. Predicting Stock Index Volatility Using Artificial Neural Networks: An Empirical Study of the OMXS30, FTSE100 &
S&P/ASX200. Master’s Thesis, Lund University, Lund, Sweden, 2018.

7. Madge, S.; Bhatt, S. Predicting stock price direction using support vector machines. In Independent Work Report Spring; Princeton
University: Princeton, NJ, USA, 2015; Volume 45.

8. Yoon, Y.; Swales, G. Predicting stock price performance: A neural network approach. In Proceedings of the Twenty-Fourth
Annual Hawaii International Conference on System Sciences, Kauai, HI, USA, 8–11 January 1991; IEEE: New York, NY, USA,
1991; Volume 4, pp. 156–162.

9. Zhao, Y.; Li, J.; Yu, L. A deep learning ensemble approach for crude oil price forecasting. Energy Econ. 2017, 66, 9–16. [CrossRef]
10. Chen, Z.; Li, C.; Sun, W. Bitcoin price prediction using machine learning: An approach to sample dimension engineering.

J. Comput. Appl. Math. 2020, 365, 112395. [CrossRef]
11. Andriopoulos, N.; Magklaras, A.; Birbas, A.; Papalexopoulos, A.; Valouxis, C.; Daskalaki, S.; Birbas, M.; Housos, E.;

Papaioannou, G.P. Short Term Electric Load Forecasting Based on Data Transformation and Statistical Machine Learning.
Appl. Sci. 2021, 11, 158. [CrossRef]

12. Selvin, S.; Vinayakumar, R.; Gopalakrishnan, E.; Menon, V.K.; Soman, K. Stock price prediction using LSTM, RNN and CNN-
sliding window model. In Proceedings of the 2017 International Conference on Advances in Computing, Communications and
Informatics (ICACCI), Udupi, India, 13–16 September 2017; IEEE: New York, NY, USA, 2017; pp. 1643–1647.

13. Patel, M.B.; Yalamalle, S.R. Stock price prediction using artificial neural network. Int. J. Innov. Res. Sci. Eng. Technol. 2014,
3, 13755–13762.

14. Liu, S.; Liao, G.; Ding, Y. Stock transaction prediction modeling and analysis based on LSTM. In Proceedings of the 2018 13th
IEEE Conference on Industrial Electronics and Applications (ICIEA), Wuhan, China, 31 May–1 June 2018; IEEE: New York, NY,
USA, 2018; pp. 2787–2790.

15. Siami-Namini, S.; Tavakoli, N.; Namin, A.S. The performance of LSTM and BiLSTM in forecasting time series. In Proceedings of
the 2019 IEEE International Conference on Big Data (Big Data), Los Angeles, CA, USA, 9–12 December 2019; IEEE: New York, NY,
USA, 2019; pp. 3285–3292.

16. Elliot, A.; Hsu, C.H. Time Series Prediction: Predicting Stock Price. arXiv 2017, arXiv:1710.05751.
17. Elsayed, S.; Thyssens, D.; Rashed, A.; Schmidt-Thieme, L.; Jomaa, H.S. Do We Really Need Deep Learning Models for Time Series

Forecasting? arXiv 2021, arXiv:2101.02118.
18. Luong, C.; Dokuchaev, N. Forecasting of realised volatility with the random forests algorithm. J. Risk Financ. Manag. 2018, 11, 61.

[CrossRef]

http://doi.org/10.19030/jabr.v30i2.8421
http://dx.doi.org/10.1016/j.physa.2020.124444
http://dx.doi.org/10.32861/ijefr.67.170.179
http://dx.doi.org/10.1016/j.eneco.2017.05.023
http://dx.doi.org/10.1016/j.cam.2019.112395
http://dx.doi.org/10.3390/app11010158
http://dx.doi.org/10.3390/jrfm11040061

Future Internet 2022, 14, 252 22 of 23

19. Qiu, X.; Zhang, L.; Ren, Y.; Suganthan, P.N.; Amaratunga, G. Ensemble deep learning for regression and time series forecasting.
In Proceedings of the 2014 IEEE Symposium on Computational Intelligence in Ensemble Learning (CIEL), Orlando, FL, USA,
9–12 December 2014; IEEE: New York, NY, USA, 2014; pp. 1–6.

20. Carta, S.; Corriga, A.; Ferreira, A.; Podda, A.S.; Recupero, D.R. A multi-layer and multi-ensemble stock trader using deep learning
and deep reinforcement learning. Appl. Intell. 2021, 51, 889–905. [CrossRef]

21. Livieris, I.E.; Pintelas, E.; Stavroyiannis, S.; Pintelas, P. Ensemble deep learning models for forecasting cryptocurrency time-series.
Algorithms 2020, 13, 121. [CrossRef]

22. Li, S.; Yao, Y.; Hu, J.; Liu, G.; Yao, X.; Hu, J. An ensemble stacked convolutional neural network model for environmental event
sound recognition. Appl. Sci. 2018, 8, 1152. [CrossRef]

23. Dey, S.; Kumar, Y.; Saha, S.; Basak, S. Forecasting to Classification: Predicting the Direction of Stock Market Price Using Xtreme Gradient
Boosting; PESIT South Campus: Bengaluru, India, 2016.

24. Albaity, M.S. Impact of the monetary policy instruments on Islamic stock market index return. Econ. Discuss. Pap. 2011.
[CrossRef]

25. Selemela, S.M.; Ferreira, S.; Mokatsanyane, D. Analysing Volatility during Extreme Market Events Using the Mid Cap Share
Index. Economica 2021, 17, 229–249.

26. Ederington, L.H.; Guan, W. Measuring historical volatility. J. Appl. Financ. 2006, 16, 10.
27. Poon, S.H.; Granger, C. Practical issues in forecasting volatility. Financ. Anal. J. 2005, 61, 45–56. [CrossRef]
28. Botchkarev, A. Performance metrics (error measures) in machine learning regression, forecasting and prognostics: Properties and

typology. arXiv 2018, arXiv:1809.03006.
29. Garosi, Y.; Sheklabadi, M.; Conoscenti, C.; Pourghasemi, H.R.; Van Oost, K. Assessing the performance of GIS-based machine

learning models with different accuracy measures for determining susceptibility to gully erosion. Sci. Total. Environ. 2019,
664, 1117–1132. [CrossRef]

30. Bouktif, S.; Fiaz, A.; Ouni, A.; Serhani, M.A. Optimal deep learning lstm model for electric load forecasting using feature selection
and genetic algorithm: Comparison with machine learning approaches. Energies 2018, 11, 1636. [CrossRef]

31. Altan, A.; Karasu, S. The effect of kernel values in support vector machine to forecasting performance of financial time series.
J. Cogn. Syst. 2019, 4, 17–21.

32. Song, H.; Dai, J.; Luo, L.; Sheng, G.; Jiang, X. Power transformer operating state prediction method based on an LSTM network.
Energies 2018, 11, 914. [CrossRef]

33. Botchkarev, A. Evaluating Performance of Regression Machine Learning Models Using Multiple Error Metrics in Azure Machine
Learning Studio. 2018. Available online: https://ssrn.com/abstract=3177507 (accessed on 10 July 2022). [CrossRef]

34. Xu, W.; Zhang, J.; Zhang, Q.; Wei, X. Risk prediction of type II diabetes based on random forest model. In Proceedings of the
2017 Third International Conference on Advances in Electrical, Electronics, Information, Communication and Bio-Informatics
(AEEICB), Chennai, India, 27–28 February 2017; IEEE: New York, NY, USA, 2017; pp. 382–386.

35. Shaik, A.B.; Srinivasan, S. A brief survey on random forest ensembles in classification model. In Proceedings of the International
Conference on Innovative Computing and Communications, VŠB-Technical University of Ostrava, Ostrava, Czech Republic,
21–22 March 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 253–260.

36. Schapire, R.E. Explaining adaboost. In Empirical Inference; Springer: Berlin/Heidelberg, Germany, 2013; pp. 37–52.
37. Hu, W.; Hu, W.; Maybank, S. Adaboost-based algorithm for network intrusion detection. IEEE Trans. Syst. Man Cybern. Part B

(Cybern.) 2008, 38, 577–583. [PubMed]
38. Zhang, Y.; Haghani, A. A gradient boosting method to improve travel time prediction. Transp. Res. Part C Emerg. Technol. 2015,

58, 308–324. [CrossRef]
39. Bentéjac, C.; Csörgő, A.; Martínez-Muñoz, G. A comparative analysis of gradient boosting algorithms. Artif. Intell. Rev. 2021,

54, 1937–1967. [CrossRef]
40. Polikar, R. Ensemble learning. In Ensemble Machine Learning; Springer: Berlin/Heidelberg, Germany, 2012; pp. 1–34.
41. Sagi, O.; Rokach, L. Ensemble learning: A survey. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2018, 8, e1249. [CrossRef]
42. Zhang, C.; Ma, Y. Ensemble Machine Learning: Methods and Applications; Springer: Berlin/Heidelberg, Germany, 2012.
43. Sun, X. Pitch accent prediction using ensemble machine learning. In Proceedings of the Seventh International Conference on

Spoken Language Processing, Denver, CO, USA, 16–20 September 2002.
44. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998,

86, 2278–2324. [CrossRef]
45. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef]
46. Kiranyaz, S.; Ince, T.; Hamila, R.; Gabbouj, M. Convolutional neural networks for patient-specific ECG classification. In

Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC),
Milan, Italy, 25–29 August 2015; IEEE: New York, NY, USA, 2015; pp. 2608–2611.

47. Kiranyaz, S.; Ince, T.; Gabbouj, M. Real-time patient-specific ECG classification by 1-D convolutional neural networks. IEEE
Trans. Biomed. Eng. 2015, 63, 664–675. [CrossRef]

48. Avci, O.; Abdeljaber, O.; Kiranyaz, S.; Inman, D. Structural damage detection in real time: Implementation of 1D convolutional
neural networks for SHM applications. In Structural Health Monitoring & Damage Detection, Volume 7; Springer: Cham, Switzerland,
2017; pp. 49–54.

http://dx.doi.org/10.1007/s10489-020-01839-5
http://dx.doi.org/10.3390/a13050121
http://dx.doi.org/10.3390/app8071152
http://dx.doi.org/10.2139/ssrn.1973469
http://dx.doi.org/10.2469/faj.v61.n1.2683
http://dx.doi.org/10.1016/j.scitotenv.2019.02.093
http://dx.doi.org/10.3390/en11071636
http://dx.doi.org/10.3390/en11040914
https://ssrn.com/abstract=3177507
http://dx.doi.org/10.2139/ssrn.3177507
http://www.ncbi.nlm.nih.gov/pubmed/18348941
http://dx.doi.org/10.1016/j.trc.2015.02.019
http://dx.doi.org/10.1007/s10462-020-09896-5
http://dx.doi.org/10.1002/widm.1249
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1109/TBME.2015.2468589

Future Internet 2022, 14, 252 23 of 23

49. Kiranyaz, S.; Gastli, A.; Ben-Brahim, L.; Al-Emadi, N.; Gabbouj, M. Real-time fault detection and identification for MMC using
1-D convolutional neural networks. IEEE Trans. Ind. Electron. 2018, 66, 8760–8771. [CrossRef]

50. Ince, T.; Kiranyaz, S.; Eren, L.; Askar, M.; Gabbouj, M. Real-time motor fault detection by 1-D convolutional neural networks.
IEEE Trans. Ind. Electron. 2016, 63, 7067–7075. [CrossRef]

51. Abdeljaber, O.; Avci, O.; Kiranyaz, M.S.; Boashash, B.; Sodano, H.; Inman, D.J. 1-D CNNs for structural damage detection:
Verification on a structural health monitoring benchmark data. Neurocomputing 2018, 275, 1308–1317. [CrossRef]

52. Avci, O.; Abdeljaber, O.; Kiranyaz, S.; Boashash, B.; Sodano, H.; Inman, D.J. Efficiency validation of one dimensional convolutional
neural networks for structural damage detection using a SHM benchmark data. In Proceedings of the 25th International Congress
on Sound and Vibration 2018, (ICSV 25), Hiroshima, Japan, 8–12 July 2018; pp. 4600–4607.

53. Kiranyaz, S.; Avci, O.; Abdeljaber, O.; Ince, T.; Gabbouj, M.; Inman, D.J. 1D convolutional neural networks and applications: A
survey. Mech. Syst. Signal Process. 2021, 151, 107398. [CrossRef]

54. Ragab, M.G.; Abdulkadir, S.J.; Aziz, N.; Al-Tashi, Q.; Alyousifi, Y.; Alhussian, H.; Alqushaibi, A. A Novel One-Dimensional CNN
with Exponential Adaptive Gradients for Air Pollution Index Prediction. Sustainability 2020, 12, 10090. [CrossRef]

55. Haidar, A.; Verma, B. Monthly rainfall forecasting using one-dimensional deep convolutional neural network. IEEE Access 2018,
6, 69053–69063. [CrossRef]

56. Huang, S.; Tang, J.; Dai, J.; Wang, Y. Signal status recognition based on 1DCNN and its feature extraction mechanism analysis.
Sensors 2019, 19, 2018. [CrossRef]

57. Wang, H.; Liu, Z.; Peng, D.; Qin, Y. Understanding and learning discriminant features based on multiattention 1DCNN for
wheelset bearing fault diagnosis. IEEE Trans. Ind. Inform. 2019, 16, 5735–5745. [CrossRef]

58. Zhao, X.; Solé-Casals, J.; Li, B.; Huang, Z.; Wang, A.; Cao, J.; Tanaka, T.; Zhao, Q. Classification of Epileptic IEEG Signals by CNN
and Data Augmentation. In Proceedings of the ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), Barcelona, Spain, 4–8 May 2020; IEEE: New York, NY, USA, 2020; pp. 926–930.

59. Mandic, D.; Chambers, J. Recurrent Neural Networks for Prediction: Learning Algorithms, Architectures and Stability; John and Wiley
and Sons: Hoboken, NJ, USA, 2001.

60. Sherstinsky, A. Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network. Phys. D
Nonlinear Phenom. 2020, 404, 132306. [CrossRef]

61. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
62. Schmidhuber, J. A fixed size storage O (n 3) time complexity learning algorithm for fully recurrent continually running networks.

Neural Comput. 1992, 4, 243–248. [CrossRef]
63. Graves, A. Long short-term memory. In Supervised Sequence Labelling with Recurrent Neural Networks; Springer: Berlin/Heidelberg,

Germany, 2012; pp. 37–45.
64. Fischer, T.; Krauss, C. Deep learning with long short-term memory networks for financial market predictions. Eur. J. Oper. Res.

2018, 270, 654–669. [CrossRef]
65. Wang, Y.; Huang, M.; Zhu, X.; Zhao, L. Attention-based LSTM for aspect-level sentiment classification. In Proceedings of the

2016 Conference on Empirical Methods in Natural Language Processing, Austin, TX, USA, 1–4 November 2016; pp. 606–615.
66. Du, J.; Cheng, Y.; Zhou, Q.; Zhang, J.; Zhang, X.; Li, G. Power load forecasting using BiLSTM-attention. Proc. Iop Conf. Ser. Earth

Environ. Sci. 2020, 440, 032115. [CrossRef]
67. Vasquez, S.; Lewis, M. Melnet: A generative model for audio in the frequency domain. arXiv 2019, arXiv:1906.01083.
68. Jung, J.w.; Heo, H.S.; Kim, J.h.; Shim, H.j.; Yu, H.J. Rawnet: Advanced end-to-end deep neural network using raw waveforms for

text-independent speaker verification. arXiv 2019, arXiv:1904.08104.
69. Piczak, K.J. Environmental sound classification with convolutional neural networks. In Proceedings of the 2015 IEEE 25th

International Workshop on Machine Learning for Signal Processing (MLSP), Boston, MA, USA, 17–20 September 2015; IEEE: New
York, NY, USA, 2015; pp. 1–6.

70. Salamon, J.; Bello, J.P. Deep convolutional neural networks and data augmentation for environmental sound classification. IEEE
Signal Process. Lett. 2017, 24, 279–283. [CrossRef]

http://dx.doi.org/10.1109/TIE.2018.2833045
http://dx.doi.org/10.1109/TIE.2016.2582729
http://dx.doi.org/10.1016/j.neucom.2017.09.069
http://dx.doi.org/10.1016/j.ymssp.2020.107398
http://dx.doi.org/10.3390/su122310090
http://dx.doi.org/10.1109/ACCESS.2018.2880044
http://dx.doi.org/10.3390/s19092018
http://dx.doi.org/10.1109/TII.2019.2955540
http://dx.doi.org/10.1016/j.physd.2019.132306
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1992.4.2.243
http://dx.doi.org/10.1016/j.ejor.2017.11.054
http://dx.doi.org/10.1088/1755-1315/440/3/032115
http://dx.doi.org/10.1109/LSP.2017.2657381

	Introduction
	Background and Literature Review
	Materials and Methods
	Dataset
	Volatility Calculation
	Performance Metrics
	Methodology
	Predictive Model: Random Forest
	Predictive Model: AdaBoost
	Predictive Model: Gradient Boosting
	Predictive Model: ML Stacking Ensemble
	Predictive Model: One Dimensional Convolutional Neural Network (1D-CNN)
	Predictive Model: Long Short-Term Memory (LSTM) Architecture
	Predictive Model: BiLSTM Architecture

	Proposed Model: Stacking Ensemble Neural Network Architecture

	Result and Discussion
	Predicted Results
	Forecasting Results

	Conclusions
	References

