
Citation: Dong, J.; Mohd Rum, S.N.;

Kasmiran, K.A.; Mohd Aris, T.N.;

Mohamed, R. Artificial Intelligence in

Adaptive and Intelligent Educational

System: A Review. Future Internet

2022, 14, 245. https://doi.org/

10.3390/fi14090245

Academic Editor: Eirini

Eleni Tsiropoulou

Received: 9 August 2022

Accepted: 22 August 2022

Published: 23 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Review

Artificial Intelligence in Adaptive and Intelligent Educational
System: A Review
Jingwen Dong , Siti Nurulain Mohd Rum * , Khairul Azhar Kasmiran, Teh Noranis Mohd Aris
and Raihani Mohamed

Faculty of Computer Science & Information Technology, Universiti Putra Malaysia, Serdang 43400, Malaysia
* Correspondence: snurulain@upm.edu.my

Abstract: There has been much discussion among academics on how pupils may be taught online
while yet maintaining a high degree of learning efficiency, in part because of the worldwide COVID-19
pandemic in the previous two years. Students may have trouble focusing due to a lack of teacher–
student interaction, yet online learning has some advantages that are unavailable in traditional
classrooms. The architecture of online courses for students is integrated into a system called the
Adaptive and Intelligent Education System (AIES). In AIESs, reinforcement learning is often used
in conjunction with the development of teaching strategies, and this reinforcement-learning-based
system is known as RLATES. As a prerequisite to conducting research in this field, this paper
undertakes the consolidation and analysis of existing research, design approaches, and model
categories for adaptive and intelligent educational systems, with the hope of serving as a reference
for scholars in the same field to help them gain access to the relevant information quickly and easily.
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1. Introduction

Machine learning technology can be used in many fields, such as commerce [1],
biology [2], medicine [3], and pedagogy [4], where algorithms can be used to analyze
data quickly and obtain results that are difficult for the human brain to calculate. In
education, machine learning technology has also been widely used, for example, to analyze
student performance and achievement and in order to implement the necessary measures
to improve student satisfaction and help them graduate [5], and big data have been used to
analyze data on students at different stages of learning in order to improve educational
policy [6]. As the application of machine learning technology in the field of education
continues to develop, scholars have started to use machine learning in order to develop
teaching strategies, resulting in a series of educational systems, such as the Adaptive
Learning System [7], Adaptive Intelligent Tutoring Systems [8], and the Adaptive and
Intelligent Educational System [9]. In AIESs, reinforcement learning is often used in
conjunction with the development of teaching strategies, and this reinforcement-learning-
based system is known as RLATES [10].

If reinforcement learning is applied to the development of teaching strategies, the
interaction between the student and the system can lead to a personalized optimal learning
strategy [10]. Based on existing research, the performance of RLATES is often limited by
the following factors:

1. Current research only applies the classical Q-learning algorithm to train the system
and scheme appropriate teaching strategies [11], but the classical Q-learning algorithm
has a weakness in that, in some cases, the Q-learning algorithm overestimates the
value of the action [12].

2. The model in an intelligent teaching system may be unsatisfactory for cases that have
not been repeatedly trained [13].
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3. The over-practice problem means that more practice does not necessarily lead to a
longer study time [14].

4. Next, let us further elaborate on these three limitations.

Firstly, with regard to the overestimation problem mentioned in the first point, which
is mentioned in Van Hasselt’s [12] article, this problem cannot be avoided by a classical
Q-learning algorithm. Nevertheless, a large number of studies still choose to use a classical
Q-learning algorithm when applying reinforcement learning to intelligent educational
systems [9,13,15], and in these studies, the authors do not address the issue of overesti-
mation. For the field of reinforcement learning, the double Q-learning and double DQN
algorithms have been developed that are more sophisticated than the classical Q-learning
algorithm, and potential overestimation problems can be avoided to some extent if these
two algorithms are applied to the intelligent educational system.

Concerning item two, in Shawky and Badawi’s [13] article, Q-learning is applied in an
intelligent teaching system, but the model of the system suffers from an implementation
problem if the user is not trained enough, i.e., if there is not a large number of repetitions
for the system to learn, the system may not perform ideally. Despite the issue of the system,
their contribution cannot be ignored. In their research, the system allows for new actions
or states to be dynamically added to the system in real time, which means that teachers
and students can independently add content to the system that they consider helpful or
necessary, and the system can be automatically updated with new states or actions. This
means that the system is fully adaptive and user-friendly.

About the last item, there are also authors who apply uncommon algorithms in in-
structional strategy development systems, such as Proximal Policy Optimization (PPO) [14]
and the Partially Observable Markov Decision Process (POMDP) [16]. In Bassen’s study,
the over-practice problem was significant, as completing more activities did not always
result in an increase in learners’ engaged time. Nevertheless, the use of neural networks
in this paper reduced the dimensionality of the state and action space, thus reducing the
number of samples that the algorithm needed to converge. However, in Zhang’s research,
the over-practice problem did not exist, but the reward values of the reinforcement learning
algorithm in the paper could be adjusted to obtain better performance. The most striking
contribution of this study is that the Partially Observable Markov Decision Process can still
be used when the information provided by the student is incomplete, as the method allows
for the optimal solution to still be given in such a case. Moreover, the system proposed in
Zhang’s paper can obtain the information locally when providing a correct answer to a
question from student users.

The purpose of this paper is to provide a quick overview of how reinforcement
learning can be applied in AIESs and to compare and summarize related works so far to
assist scholars in related fields develop their works better.

This paper contains four sections. Section 2 introduces different types of reinforcement
learning and some related works and the principle of reinforcement learning; moreover,
different reinforcement learning algorithms are introduced, and a comparison between
reinforcement learning and Bayesian networks is presented at the end. Section 3 presents
the systematic structure of RLATES and comparison among some related studies. Finally,
Section 4 presents the conclusions and limitations.

2. Reinforcement Learning

Reinforcement learning is a branch of machine learning, a parallel paradigm to super-
vised and unsupervised learning. Figure 1 clearly shows the machine learning paradigms.
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Figure 1. Machine Learning paradigms.

Reinforcement learning generally consists of five elements [17], namely, agent, environ-
ment, action, reward, and state. In a reinforcement learning algorithm, two main elements
interact, the agent and the environment. The agent can interact with the environment to
generate actions, and the environment returns a reward based on the actions of the agent;
then, the agent can perceive the state of the environment and perform the next action based
on the reward received. Figure 2 better explains this process.

Figure 2. A typical framework of RL scenario.

2.1. Model-Based and Model-Free Reinforcement Learning

Reinforcement learning algorithms can be divided into two broad categories, model-
based and model-free reinforcement learning algorithms [18]. Simplistically, model-based
reinforcement learning algorithms require the agent to learn in the environment, combine
the learning experience to generate a model, and then formulate an action strategy based
on this model; in this case, the agent interacts with the virtual environment. For model-
free reinforcement learning algorithms, the agent learns and formulates action strategies
directly from the experience of interacting with the environment, in which case no model is
generated, and the agent interacts with the real environment.

Model-based reinforcement learning algorithms are not used as much as model-free
reinforcement learning algorithms in the field of pedagogy, and the data in Table 1 were
obtained by examining the articles published in the mainstream databases over the last five
years (2018–2022).

Table 1. Number of articles for model-based and model-free reinforcement learning algorithm.

Database Model-Free Model-Based

SpringerLink 93 99
ScienceDirect 122 81
IEEE Xplore 25 27

Total 240 207

Many algorithms, such as Imagination-Augmented Agents (I2As) [19], World Mod-
els [20], and Model-Based Value Expansion (MBEV) [21], belong to the category of model-
based reinforcement learning algorithms.
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Compared with model-based reinforcement learning algorithms, model-free reinforce-
ment learning algorithms, such as Q-learning [22], Deep Q-Network (DQN) [23], Deep
Deterministic Policy Gradient (DDPG) [24], Categorical Distributional RL (C51) [25], Prox-
imal Policy Optimization (PPO) [26], and Soft Actor-Critic (SAC) [27], are applied in a
broader range.

Figures 3 and 4 provide a more intuitive description of the classification for reinforce-
ment learning algorithms.

Figure 3. Model-free reinforcement learning algorithms.

Figure 4. Model-based reinforcement learning algorithms.

2.2. Markov Decision Processes

Reinforcement learning is established based on a Markov Decision Process (MDP),
which is a tuple consisting of a finite set of actions and state transfer probabilities. The
MDP model comprises a reward function and a transition function; the functions are shown
below [28].

T : S× A× S→ [0, 1] (1)

R : S× A× S→ R (2)

Many different versions of Markov decision processes have evolved over time, and
three types of Markov decision processes are succinctly described in Table 2.

Table 2. Different versions of Markov decision processes.

MDP Versions System Form State Characteristic Reference

Fully Observable MDP
(FOMDP) Discrete All observable [29]

Partially Observable MDP
(POMDP) Discrete Partially observable [16]

Semi-MDP(SMDP) Continuous All observable [30]

2.3. Q-Learning

The quintessential reinforcement learning algorithm is Q-learning, a model-free, off-
policy algorithm, which is also one of the most commonly used in many reinforcement-
learning-related studies.

The essence of Q-learning is derived from the Bellman equation [31], which is formu-
lated as shown below.

Vπ(s) =∑
a

π(s, a)∑
s′

p
(
s′ | s, a

)(
Ws→s′ |a + γVπ

(
s′
))

(3)
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Qπ(s, a) =∑
s′

p
(
s′ | s, a

)(
&Ws→s′ |a + γ ∑

s′
π
(
s′, a′

)
Qπ

(
s′, a′

))
(4)

In the Bellman equation,

Ws→s′ |a = E
[
rt+1 | st = s, at = a, st+1 = s′

]
(5)

Vπ (s) is the state value function, and Qπ (s, a) is the action value function. In the
equation above, s represents the state, as the state s to the next state s + 1 is uncertain; hence,
the expectation E needs to be added to the equation, and r represents the reward.

For the Q-learning algorithm, the policy is selected based on the Q-table, which is
structured as S*A, where S represents the state, and A represents the action. Based on
the given Q-table, the next action can be determined based on the current state of the
environment. After deciding which action to perform, the agent proceeds with the next
action accordingly, and after performing the action, the agent receives a reward from
the environment. After each action, the Q-table in the environment is updated, and the
adjustment of the Q-table is carried out according to the following formula [32]:

Q(st, at)← Q(st, at) + α

[
r + γmax

at
Q(st+1, at)−Q(st, at)

]
(6)

In this formula, s represents the state, a represents the action, r represents the reward,
α represents the learning rate, and γ represents the discount factor. α and γ both range on a
scale from 0 to 1.

However, in 1993, Thrun and Schwartz [33] suggested that, since random errors may
uniformly occur in the action values, there may be a bias in the path of progressively seeking
the optimal, consequently resulting in a sub-optimal solution rather than the optimal
solution. Seventeen years later, van Hasselt’s paper [34] showed that environmental noise
might also cause overestimation problems in classical Q-learning algorithms.

In Hasselt’s paper, a Double Q-learning algorithm was proposed to solve the overesti-
mation problem, and later, Van Hasselt, Guez, and Silver [12] also proposed an algorithm
called Double DQN to solve this problem; the details of which are presented in the next sec-
tion.

2.4. Deep Q-Network and Double Deep Q-Network

DQN is a subordinate branch of deep reinforcement learning and is a value-based
reinforcement learning algorithm [23], in which only the value function and not the policy
network is involved. It is an upgrade to classical Q-learning algorithms. As tasks become
increasingly complicated, classical Q-learning algorithms do not sufficiently perform these
tasks because in classical Q-learning algorithms, if the Q-table is excessively huge, it is a
challenge for the computer to store all the data, thus making computation difficult and an
excessively large Q-table also makes the retrieval of Q-values sluggish. When convolutional
neural networks are implemented, states and actions can be used as inputs to calculate the
corresponding Q-values, thus sparing the space required to store the Q-table and the time
required to retrieve the Q-values. DQN introduces a convolutional neural network as an
approximation function to approximate the value function. The ε-greedy strategy is used
in DQN to select the next action. ε-greedy is a greedy strategy, where the option with the
highest reward is chosen for each selection.

Next, the operation of the DQN is explained. First, the environment provides a state
value, and the agent can determine all the states and actions currently available to the
agent based on the value function. In order to determine the next action, an ε-greedy policy
is used to determine what the next action will be, and after the selection is completed,
the environment returns the corresponding reward value and the new state value. Up to
this stage, it is a selection loop, and DQN makes a continuous loop of these to obtain the
optimal policy [21].
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Unfortunately, similarly to Q-learning, the overestimation problem cannot be avoided
by DQN, but an article published in 2016 proposed a new algorithm that provides an
initial solution to the overestimation problem [12]. In this article, a function called Double
DQN is defined, which solves the overestimation problem at its core by stopping the
constant propagation of overestimation between states. In simple terms, after selecting
the maximum Q-value for the first time, the maximum Q-value is picked again in another
network according to the corresponding action value, and if the Q-value is the maximum
value in both networks, then the probability of overestimation is reduced to a large extent,
even though it still occurs sometimes. Double DQN is a significant improvement over
classical Q-learning and classical DQN for the overestimation problem.

2.5. Comparison with Bayesian Network

For intelligent educational systems, there are studies that apply other artificial intelli-
gence algorithms to systems in addition to reinforcement learning, such as the application
of the Bayesian Network to intelligent teaching systems [35,36].

Similar to reinforcement learning, Bayesian Network is also a process of seeking
optimal solutions. If applied to intelligent educational systems, the system design is
largely consistent with the concept of learning from students’ knowledge and student
characteristics and, based on this, recommends appropriate teaching strategies for the
corresponding groups.

But essentially, Bayesian Network is an iterative process and is stateless [37]. Although
the process is called iterative, each function call is independent of others, which means that
the previous call does not affect the next step.

However, for reinforcement learning, the optimization process is an overall process
that is stateful, and each transition between states affects each other, which means that the
choice of the previous step affects the transition to the next state. If the optimum solution is
desired by reinforcement learning, then the accumulative sum of all rewards is required,
which is quite different from Bayesian Network.

3. Reinforcement Learning in Adaptive and Intelligent Educational System (RLATES)

Distance learning has attracted increasing attention in recent years. When students and
teachers are unable to attend classes face to face in the same classroom, distance learning is
essential. Sometimes, learning through resources on the web (text, video, pictures, voice,
etc.) or online tutorials provided by teachers can fulfill the basic requirements of distance
learning. However, when questions are encountered, students are unable to accurately
find the answers through online resources, and the one-to-many teacher–student sessions
ultimately do not fulfill one function, which is adaptive instructions [38]. The reason why
one-to-one lessons are more effective and more satisfying than small group lessons is
that one-to-one lessons allow for personalized teaching strategies, but because of the high
financial cost of one-to-one lessons, it is impossible to extend this approach to all groups
of students. Based on this situation, the Adaptive Intelligence Educational System was
designed to allow students to develop their own personalized teaching strategies if they
have access to a computer, thus allowing them to benefit from a one-to-one teaching model
at a relatively low cost and allowing each student to have their own virtual teacher.

The principle of AIESs is to resequence all course knowledge modules based on
student characteristics, and a variety of machine learning techniques are used in the system
to learn student characteristics [39]. According to the principles of AIESs, if reinforcement
learning is introduced into the system, it allows the student to interact with the system
and allows the system model to continuously improve its learning, thus enhancing its
performance. The type of system that introduces reinforcement learning into AIESs is
called RLATES.

RLATES comprises two models, the knowledge model and the pedagogical strategy
model [11]. In the knowledge model, the content of the teaching is decided, for example,
which chapters of the textbook will be covered and which format (video, audio, text, or
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pictures) will be used for delivery. In the pedagogical strategy model, the teaching strategy
is developed, which determines how the material will be delivered.

However, RLATES is not available for teaching directly from the beginning. At the
early stage, the model needs to first be trained by feeding it with training data so that the
system learns which teaching strategy to use when confronting students with different
characteristics. Therefore, the whole experimental process should be separated into two
phases when designing the system, the training phase and the teaching phase [10]. Only
after the model has been successfully trained can it be implemented into real teaching.

3.1. Current Research

In this section, the current status of the research in the domain of intelligent educational
systems is presented. Although there are numerous studies that focus on intelligent
educational systems similar to AIESs, the retrieval shows that only a fraction of them
adopted reinforcement learning algorithms. The details are shown in Table 3.

Table 3. Current research for intelligent tutoring system.

No. Author and Year Algorithm Assessment Metrics Description

1 Dorça et al. [9] Q-learning
Performance value

(PFM)/distance between
learning style (DLS)

Three different automated control
strategies are proposed to detect

and learn from students’
learning styles.

2 Iglesias et al. [10] Q-learning Number of actions/number
of students

Apply the RL in AIESs with
database design.

3 Iglesias et al. [11] Q-learning Time consumption/number
of students

Apply the reinforcement learning
algorithm in AIESs.

4 Shawky and Badawi [13] Q-learning Number of actions/number
of steps/cumulative rewards

The system can update states and
adding new states or actions

automatically.

5 Thomaz and Breazeal [15] Q-learning Number of
actions/state/trials

Modify the RL algorithm to
separate guidance and feedback

channel.

6 Bassen et al., 2020 [14]
PPO

(Proximal Policy
Optimization)

Course completion
rate/learning gains

Applied neural network to reduce
number of samples required for the

algorithm to converge.

7 Zhang, 2013 [16]
POMDP

(Partially Observable
Markov Decision Process)

Rejection rate

The model provides local access to
the information when selecting the

correct answer to a student’s
question.

According to Table 3, it can be concluded that, in the domain of intelligent teaching
systems, most authors still adopt the classical Q-learning algorithm since the Q-learning
algorithm is a model-free and policy-free reinforcement learning algorithm that is suitable
for implementation in intelligent teaching systems. However, due to the defects of Q-
learning, the processing speed is sluggish, and the system response time increases when the
Q-table is excessively large. Nonetheless, the Q-learning algorithm is one of the classical
algorithms of reinforcement learning and is relatively simple in practical applications
compared with other model-free reinforcement learning algorithms, which is probably part
of the reason why many authors chose the Q-learning algorithm in their studies.

For the articles listed above, although articles 1–5 all adopt the Q-learning algorithm,
their evaluation metrics are distinct. Most of the authors selected the number of actions,
the number of students, or time consumption to evaluate the performance of the model.
However, the most remarkable article is article 1, in which the authors develop an evalu-
ation metric themselves called PFM. According to the authors’ settings in that article, if
PFM ≥ 60, then the performance of the model is good, and if PFM < 60, then the per-
formance of the model is poor. Meanwhile, an assessment using PFM can also indicate
the difficulty of the learning content to some extent; if the performance is poor, then this
indicates that the learning content is probably relatively difficult. The authors use this
evaluation metric to compare the three strategies within the article, and although it does
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not permit a horizontal comparison of the model’s performance to other articles, it makes
the evaluation results more intuitive and straightforward to peruse and understand.

3.2. Applied Reinforcement Learning in RLATES

Based on the introduction to reinforcement learning in Section 3, it can be seen that
reinforcement learning comprises five main components. In order to apply reinforcement
learning to RLATES, it is essential to ensure that the components of the system correspond
to each of the five components of reinforcement learning algorithms. Therefore, in this
section, the application of reinforcement learning to RLATES is introduced.

First, the following descriptions are given of how the components of RLATES corre-
spond to those of the reinforcement learning algorithm [10]:

1. Agent: In RLATES, the agent refers to the student. The learning system is used
through the student interacting with the system for subsequent processes; therefore,
the student corresponds to the agent in the reinforcement learning algorithm.

2. Environment: In a broad sense, the environment is the entire knowledge structure of
the system, and it collects information on the characteristics of the students and tests
their knowledge through exams and quizzes distributed throughout the knowledge
modules.

3. Action: Actions are the selections that an agent needs to take at each step, so in
RLATES, the actions correspond to the knowledge modules, each of which represents
an action.

4. State: In reinforcement learning algorithms, the state refers to the state that the
environment returns to when the agent performs an action. Therefore, in RLATES,
the state corresponds to the student’s learning state, i.e., how the student mastered
the knowledge. Here, a vector is used to store the data, and all state values are in the
range of 0–1. For a student, if the knowledge has been fully mastered and correctly
understood, the state value is set at 1. If the knowledge has not been mastered by the
student, then the state value is set at 0.

5. Reward: For reinforcement learning algorithms, each selection returns a different
reward value, and similarly, in RLATES, each knowledge module corresponds to a
different reward according to the significance. Moreover, in RLATES, the intention is
to maximize the cumulative value of this reward.

Next, the application of the reinforcement learning algorithm to RLATES is described
in Algorithm 1. Coupling the components in RLATES to the elements in the reinforcement
learning algorithm yields the following process [10,11]:

Algorithm 1 Apply reinforcement learning algorithm to RLATES

Initialize Q (s, a) for s ∈ S and a ∈ A
Test the current situation of student’s knowledge s
Loop for each episode,
Pick a knowledge module a, show this module to the student, by using the ε-greedy policy
Get the reward r, while the RLATES goal is achieved, a positive r will be obtained, else a null r will be obtained.
Test the current situation of student’s knowledge s′

Update Q (s, a):

Q(s, a)← Q(s, a) + α
[

R + γmax
a

Q(s′, a)−Q(s, a)
]

s← s’
until s reaches the goal state

4. Conclusions

In this paper, a literature review on the development of adaptive intelligent educa-
tional systems is provided, and work related to the application of reinforcement learning to
intelligent educational systems is also discussed, as well as a brief introduction to the prin-
ciples of the systems and algorithms. This paper synthesizes the research work conducted
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in recent years and can assist researchers in related domains in developing their work. The
following conclusions can be extracted from this literature review:

1. Due to the features of intelligent educational systems, reinforcement learning is
appropriate for application in the construction of a system and can be very helpful in
providing proper teaching strategies for students with the same characteristics.

2. Although many scholars have worked on how to integrate reinforcement learning
into intelligent instructional systems, the majority still only adopt classical Q-learning
algorithms, and the application of the more sophisticated reinforcement learning
algorithms to the field of intelligent instructional systems has rarely been conducted.
When evaluating the system performance, most studies use similar evaluation metrics,
which facilitates scholars to make comparisons between different studies. However,
some studies have developed their own evaluation metrics, which can better evaluate
the experimental results for future optimization, but the disadvantage is that they
cannot compare the experimental results with other studies, which has limitations.

3. Research on the application of reinforcement learning to intelligent instructional sys-
tems has rarely been conducted in recent years, but as online learning is increasingly
required by students, research in this area is expected to increase in popularity in the
future. Although online education cannot completely replace offline education, the
combination of computer technology and education can make education gradually
online, which is the trend of future development.

Although both reinforcement learning and AIESs are presented and analyzed as
extensively as possible in this paper, these are based on literature aspects only and have not
been validated and analyzed in practical experiments, which is a limitation of this paper.

In future work, we plan to combine the Bayesian Network with parts of the reinforce-
ment learning process in order to improve the computational efficiency of the algorithm
and the working efficiency of the system.
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