
Citation: Buccafurri, F.; De Angelis,

V.; Lazzaro, S. A Blockchain-Based

Framework to Enhance Anonymous

Services with Accountability

Guarantees. Future Internet 2022, 14,

243. https://doi.org/10.3390/

fi14080243

Academic Editors: Massimo Cafaro,

Italo Epicoco and Marco Pulimeno

Received: 20 July 2022

Accepted: 18 August 2022

Published: 21 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Article

A Blockchain-Based Framework to Enhance Anonymous
Services with Accountability Guarantees
Francesco Buccafurri * , Vincenzo De Angelis and Sara Lazzaro

Department of Information Engineering, Infrastructure and Sustainable Energy (DIIES), Università Mediterranea
di Reggio Calabria, Via dell’Università 25, 89122 Reggio Calabria, Italy
* Correspondence: bucca@unirc.it

Abstract: Anonymous service delivery has attracted the interest of research and the industry for
many decades. To obtain effective solutions, anonymity should be guaranteed against the service
provider itself. However, if the full anonymity of users is implemented, no accountability mechanism
can be provided. This represents a problem, especially when referring to scenarios in which a user,
protected by anonymity, may perform illegally when leveraging the anonymous service. In this paper,
we propose a blockchain-based solution to the trade-off between anonymity and accountability. In
particular, our solution relies on three independent parties (one of which is the service provider itself)
such that only the collaboration of all three actors allows for the disclosure of the real identity of
the user. In all other cases, anonymity is guaranteed. To show the feasibility of the proposal, we
developed a prototype with user-friendly interfaces that minimize the client-side operations. Our
solution is then also effective from the point of view of usability.

Keywords: Ethereum; anonymity; accountability; smart contracts

1. Introduction

Anonymous services are privacy-preserving services offered to users without requiring
them to disclose their identities.

We can distinguish two types of services. The first type is represented by one-time
services exploited by users just once. Some examples are electronic auctions [1,2], anony-
mous surveys [3], or e-voting [4]. In the second type of services, users keep an anonymous
account and exploit the same service more times. Each user is associated with a pseudony-
mous username to which their account’s activity is linked. The action of users also includes
possible data generated by the user when leveraging the service. A typical example is
represented by anonymous social networks [5,6], in which, a pseudonymous username is
associated with some data, such as private messages or posts. In this paper, we refer to the
second type of services.

A minimal requirement is to provide anonymity to the users with respect to other
users leveraging the same service. However, in order to be effective, anonymity should
also be guaranteed against the service provider itself.

Even though, for the first type of services, full anonymity may be required, when
referring to the second type, it is impractical to pursue user anonymity without taking
accountability into consideration. Indeed, without the fear of being identified, held re-
sponsible, and punished when abusing the services, users are likely to misbehave due to
selfishness or malice, thereby disrupting system operations and harming everyone else [7].
Therefore, a trade-off between anonymity and accountability exists [8].

In this paper, we try to solve this trade-off by proposing a blockchain-based protocol
including two further parties, in addition to the user and the service provider. They are:
(1) an identity gateway, which interfaces a standard identity provider (knowing the real
identity of the user) with the other entities of our proposal, and (2) a linkage agency, acting

Future Internet 2022, 14, 243. https://doi.org/10.3390/fi14080243 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi14080243
https://doi.org/10.3390/fi14080243
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0003-0448-8464
https://orcid.org/0000-0001-9731-3641
https://orcid.org/0000-0002-0846-4980
https://doi.org/10.3390/fi14080243
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi14080243?type=check_update&version=4

Future Internet 2022, 14, 243 2 of 20

as a third independent party, which allows for the re-identification of the users if needed
(e.g., when required by a court order).

In particular, our solution allows for the identification of the users only when all three
parties (i.e., service provider, identity gateway, and linkage agency) collaborate. In all
other cases, anonymity is guaranteed. Our paper reaches similar goals of approaches such
as [9–11], with the relevant difference that, in our solution, the collaboration of just two
third parties is not enough to de-anonymize the user.

From the security point of view, in our threat model, we require only a minimum
degree of trust in the identity provider, in the sense that it does not perform active attacks
such as impersonation. However, we allow it to passively collude with, at most, one of the
other entities by disclosing the information that it knows (i.e., the real identity of the users),
still preserving unlinkability. No trust is required in the identity gateway, service provider,
and linkage agency.

At the basis of our solution, we rely on a challenge–response mechanism (see Section 4)
leveraging a smart contract deployed on the Ethereum blockchain. This smart contract
also provides an account recovery mechanism in the case where the user loses their access
credentials. Indeed, traditional recovery mechanisms based on the telephone number or
email address cannot be adopted since they would reveal personal information about users.
Finally, another benefit of the blockchain technology is that the re-identification of the user
as a consequence of malicious behaviour can be publicly verifiable by anyone.

To show the applicability of our proposal, we provide a user-friendly implementation,
including a time-cost analysis. In this implementation, we care about usability by reducing
the number of operations performed client-side. This shows that our solution can be easily
applied in real-life contexts.

The structure of the paper is the following. In Section 2, we survey the related literature
and provide some background notions about the Ethereum blockchain. The entities and
the notations used to describe our proposal are introduced in Section 3. In Section 4, we
provide the challenge–response mechanism at the basis of our solution. Then, in Section 5,
we describe our proposal in detail. Its implementation is discussed in Section 6 and its
security is analyzed in Section 7. Finally, in Section 8, we draw our conclusions and discuss
future work.

2. Related Work and Background

In the scientific literature, there exist several papers dealing with the general issue of
balancing anonymity and accountability in different fields.

Refs. [12–14] rely on anonymous credential systems and related schemes. Anonymous
credential systems allow users to interact with a service provider in an anonymous yet
accountable way [15–17]. Ref. [12] is the first paper proposing an anonymous credential
system, in which, to prevent the misuse of anonymity, the anonymity property can be
revoked for particular transactions. Ref. [13] introduces an approach relying on anonymous
credentials that allows access control systems to offer fully anonymous access to resources
along with strong accountability guarantees. It is worth noting that the proposed approach
relies on a trusted third party to build a mechanism to escrow the identity of the user. Most
of the solutions present in the literature assume a client–server architecture in which only
the clients care about their privacy. On the contrary, Ref. [18] aims to reach the right balance
between privacy and accountability in P2P systems, where both clients and servers are peer
users. In [19], the authors deal with the issue of accountability in anonymous publication
and storage services where malicious servers can make documents unrecoverable. To
discourage this kind of behavior, the authors propose the creation of a “buddy system” that
creates an association between pairs of shares from a given document. Therefore, a server
holding a given share is responsible for detecting any anomaly regarding its buddy.

Future Internet 2022, 14, 243 3 of 20

Ref. [20] proposes a framework to provide an anonymous mutual authentication
protocol in wireless mesh networks. The proposed framework utilizes group signatures,
where the private key and the credentials of the users are generated through a secure
three-party protocol. User accountability is implemented via a user revocation protocol,
whose execution can be carried out by two semi-trusted authorities, one of which is the
network operator.

Refs. [21,22] deal with the issue of accountability in anonymous communication net-
works. Indeed, Ref. [22] highlights that both anonymity and accountability requirements
should be satisfied to gain support for the deployment of large-scale anonymity infrastruc-
tures. To achieve this, Ref. [21] presents a mechanism that provides practical repudiation
for the proxy nodes by tracing back a selected traffic to the predecessor node through a
cryptographically verifiable chain.

A proposal that includes some similarities to our work is presented in [23]. Indeed, the
authors proposed a solution that leverages the Bitcoin blockchain as a platform to manage
and determine ownership of users’ access credentials. The authors design an authentication
scheme that is able to provide anonymity and accountability without relying on any trusted
third party. Regardless, the proposed solution achieves accountability only in the sense
that the service provider can blacklist the misbehaving credentials related to a user. Indeed,
as highlighted by [24], accountability can still be obtained by eliminating the reliance on
a third trusted party for credentials revocation, but this comes with a cost: the revoked
user remains anonymous. Another solution relying on blockchain to support anonymous
authentication in VANET is provided in [25].

We conclude this section by discussing some proposals about anonymous social
networks [6]. Indeed, these appear as services that might take advantage of adopting
our solution.

Anonymous social networks completely shift the traditional social networks paradigm.
Indeed, while the latter put the user identity and its social link first, anonymous social
networks encourage communication between strangers and allow users to express them-
selves without fear of bullying or retaliation [5]. Among the most famous anonymous
social networks, we found Whisper [5] and Yik Yak [26].

Several studies in the literature focus on the anonymity guarantees offered by popular
anonymous social networks [5,26,27]. However, to the best of our knowledge, no paper
concerning the accountability problem is available, although several studies suggest that
the lack of accountability may encourage users to engage in illegal behavior, potentially
harming other users [7].

We conclude this section by providing some background notions about the blockchain
technology with a focus on Ethereum. They will be useful for the understanding of some
concepts that we recall in our protocol.

Blockchain is a peer-to-peer network that keeps track of the occurrence of events.
An entity can generate a transaction towards another entity to exchange a value. This
transaction is validated by peers participating in the network, and thus does not require
any third-trusted party to validate the transaction. This represents the main advantage
offered by this technology. Other features are:

• The transactions have to be validated and cannot be modified after their validation.
• Users cannot repudiate a transaction that they had generated.
• Anyone can access and verify the transactions stored on the blockchain.
• The users generating the transactions should remain anonymous.

Regarding the latter point, for example, Ethereum guarantees pseudonymity, in the
sense that the identity of the users is not revealed, but their transactions are linkable.

The above properties are generic of the blockchain technology and apply to almost
all of the existing public-permissionless implementations [28,29], even though there exist
blockchains supporting full anonymity [30,31].

In order to give a concrete proposal, in this paper, we refer to the Ethereum blockchain.

Future Internet 2022, 14, 243 4 of 20

In Ethereum, there are two types of accounts. The first type is represented by the
external owned accounts (EOAs), which are controlled by users through private/public key
pairs. Specifically, a user U generates a random string of 32 bytes. It represents the private
key PRKU of U.

Ethereum leverages the elliptic curve digital signature algorithm (ECDSA) [32] by
selecting the curve secp256k1. Then, by applying the ECDSA algorithm to PRKU , U
obtains a public key PBKU of 64 bytes (it represents the coordinates of a point of the elliptic
curve). Finally, U applies the hash function Keccak256 [33] to PBKU and takes the last
20 bytes to obtain an Ethereum address. This Ethereum address is used to send and receive
transactions, and identifies (in pseudonymous form) U in the network.

Each transaction generated by U is signed with the private key PRKU . The signed
transaction is broadcasted in the blockchain network. Anyone can verify the signature by
retrieving the public key of the signer (from the signature and the transaction) and checking
that it is equal to the expected public key. Furthermore, the Ethereum address of the signer
can be obtained from the public key by applying Keccak256 as described above.

The second type of account is called a contract account, and represents an account
controlled by code (i.e., a smart contract). A smart contract [34] can be viewed as a
collection of data and functions. To deploy an instance of a smart contract, an EOA sends
an Ethereum transaction containing the compiled code (on the Ethereum VM) of the smart
contract without specifying any recipient. Each instance has its own data (also called state)
and functions, and it is associated with an Ethereum address. To invoke a function of
the smart contract, an EOA generates a transaction, including the input of the function,
intended for the address of an instance of the smart contract. This function may change
the state of such an instance. Since the transaction invoking the function is stored on the
blockchain, due to the properties of immutability and non-repudiation, anyone can verify
the correct state of any instance at any time.

3. Actors and Notation

Our solution involves four actors:

• The user U: they require access to an anonymous service offered by a service
provider SP.

• The service provider SP: it offers the anonymous service to U. U interacts with SP
through a pseudonym username userU not linkable to thereal identity IDU of U.

• The identity gateway IG: it does not know IDU , but acts as a gateway between an
identity provider who knows IDU and the Ethereum network. In principle, it may be
included directly in the identity provider. Regardless, we keep it as a separated entity
in order to not require technological changes in the identity provider and maintain it
as compliant with the eIDAS regulation [35].

• The linkage agency LA: it is a third independent party that, after receiving an order
by a court, is able, through the collaboration of IG and SP, to link the real identity
IDU with the username userU .

As discussed in Section 1 and shown in Section 7, the collaboration of just two out of
IG, SP, and LA is not enough to associate IDU with userU , and all three parties have to
be involved.

During the interaction between U and SP, some information is generated and asso-
ciated with userU (since SP does not know the real identity IDU). We denote by IU such
account information. For example, if SP is an anonymous social network, IU is represented
by the private messages exchanged between U and other users, the messages posted by U,
the “likes" released by U, and so on. Like almost all of the web services, IU is maintained
server-side by SP. Observe that the access to IU is what the user has to recover in case of a
loss of credentials.

An association among EOAs (see Section 2) and actors is established. Specifically, U
owns two Ethereum addresses AddU

1 and AddU
2 . SP owns the Ethereum address AddSP.

IG owns the Ethereum address AddIG. Finally, LA owns the Ethereum address AddLA.

Future Internet 2022, 14, 243 5 of 20

Observe that AddU
1 and AddU

2 are pseudonyms of U not linkable between them
or with IDU . AddSP, AddIG, and AddLA are made publicly available by SP, IG, and
LA, respectively.

As we will see in Section 4, our proposal is based on a challenge–response mechanism
implemented by the smart contract reported in Listing 1. A number of instances of such a
smart contract are deployed by SP, IG, and LA.

Listing 1. Smart contract implementing a challenge–response mechanism.

Specifically, SP deploys two instances CSP
1 and CSP

2 with Ethereum addresses AddCSP
1

and AddCSP
2 , respectively. CSP

1 is used by U during the registration phase with SP. It
allows SP to associate the Ethereum address AddU

2 with userU . Clearly, this operation is
performed by SP without knowing the real identity IDU of U. Moreover, userU is not
publicly disclosed. CSP

2 is used by U to retrieve IU in case U loses the credentials to connect
with SP.

IG deploys the instance CIG with Ethereum address AddCIG
. It is used by IG and the

identity provider to associate AddU
1 with the real identity IDU of U without disclosing it

to IG.
Finally, LA deploys the instance CLA with Ethereum address AddCLA

. CLA is used
by LA to link the Ethereum addresses AddU

1 and AddU
2 of U (without knowing the real

identity IDU and the username userU).

Future Internet 2022, 14, 243 6 of 20

To conclude this section, we introduce a notation to model the Ethereum transactions.
In our application, the transactions are generated by the actors only towards instances of
a smart contract to invoke some functions. No user-to-user transaction is performed and
no Ether transfer is needed. Therefore, we modeled an Ethereum transaction as a tuple
T = 〈sender, destination, f unction(params)〉.

sender ∈ {AddU
1 , AddU

2 , AddSP, AddIG, AddLA} represents the Ethereum address of
the actor generating the transaction. destination ∈ {AddCSP

1 , AddCSP
2 , AddCIG, AddCLA}

represents the destination address of the transaction. It can be an instance of the smart
contract. Finally, f unction(params) represents the invoked function of the smart contract
along with the input parameters.

4. Challenge–Response Mechanism

At the basis of our protocol, there is a challenge–response mechanism implemented
by the smart contract reported in Listing 1.

It offers the following three security properties.

• P1: IG, SP, and LA have to be sure that the users really own the claimed Ethereum
addresses.

• P2: if the previous check is satisfied and the owner of an address is able to solve a
given challenge, then the smart contract sets, in a verifiable way, the state of such an
address as “Confirmed”.

• P3: the smart contract allows us to notarize some information.

Even though, at this stage of the paper, it is not clear why we need these properties,
we show as the smart contract allows us to satisfy them. Further details are provided in
Section 5, where we exploit the proposed mechanism to implement our protocol.

Our smart contract includes two mappings, called stateMap and challengeMap, and
two functions, called setChallenge and solveChallenge.

stateMap associates an Ethereum address with a string representing the state of such
an address. We admit three possible states: “” (the built-in default state of Ethereum smart
contracts), “To Confirm”, and “Confirmed”. By default, all of the addresses are in state “”.

challengeMap associates an Ethereum address with a bytes32 variable containing the
challenge that such an address has to solve.

setChallenge can only be invoked by the owner (i.e., the entity who deployed) of
the instance of the smart contract (in our application, the owner can be IG, SP, or LA). It
receives as an input an Ethereum address and a challenge. Then, it associates the challenge
with the address in the challengeMap and sets the state of the address to "To Confirm" in
the stateMap.

solveChallenge can be invoked by anyone and receives the solution to the challenge
as an input. The solution to the challenge is a 32-byte word (corresponding to the digest of
a cryptographic hash function). The technical detail about how this solution is computed is
described in Section 5. First, it checks that the address originating the transaction invoking
this function is in state “To Confirm”. This guarantees P1, since only the owner of an
Ethereum address can generate a transaction from such an address. If the check is positive,
then the function verifies that the solution solves the challenge associated with this address.
In the positive case, the state of the address is set to “Confirmed” in the stateMap. This
clarifies how the smart contract guarantees P2.

The mechanism to verify the solution to the challenge is straightforward. The smart
contract simply checks that challenge = Keccak256(solution).

Regarding P3, the solution to the challenge itself represents the information to notarize.
Observe that, since this information is published clearly on the blockchain, it should not
compromise the anonymity of the user. This will be explained in the next section, in which,
the whole protocol is described.

Future Internet 2022, 14, 243 7 of 20

5. The Proposed Approach

Our solution involves three interactions performed just once (in a registration phase)
by U with IG, SP, and LA, respectively. The goal is to obtain accountability only if LA
collaborates with SP and IG to discover the real identity of a user performing illegally when
using the anonymous service offered by SP. Furthermore, the proposed approach provides
a mechanism to recover the account information IU when U loses the access credentials.

5.1. Interaction between U and IG

Through this interaction, the Ethereum address AddU
1 is associated with the real

identity IDU of U. This is performed without IG learning anything about IDU . At the end
of this phase, AddU

1 will result in state “Confirmed” and will be used by LA in the next
interaction. This phase proceeds as follows.

At the start, we assume that U is registered with an identity provider that knows their
real identity IDU .

In our solution, IG offers a federated-based authentication scheme [36] possibly relying
on different identity providers.

First, U authenticates with IG through the federated scheme by selecting the identity
provider that U is registered to. We denote by IP such an identity provider.

As a standard federated authentication, when IP identifies U, it provides IG with
a signed assertion not containing information associated with IDU . In this assertion, IP
includes Keccak256(R||IDU), where R is a random value. R is then associated with IDU
and stored along with Keccak256(R||IDU) by IP.

Once the authentication is performed, U provides IG with AddU
1 .

Then, IG computes a challenge ch = Keccak256(Keccak256(R‖IDU))) and generates
a transaction T1 = 〈AddIG, AddCIG

, setChallenge(AddU
1 , ch)〉 intended for the instance CIG

of the smart contract. This transaction invokes the function setChallenge that associates
the challenge ch with the address AddU

1 and sets AddU
1 in state “To Confirm”. Finally, IG

sends U the digest Keccak256(R‖IDU).
After receiving this value, U uses it as solution to the challenge ch, i.e., sol = Keccak256

(R‖IDU), and generates the transaction T2 = 〈AddU
1 , AddCIG

, solveChallenge(sol)〉.
This proves to IG that U is the owner of AddU

1 . The function solveChallenge sets
AddU

1 in state "Confirmed".
Observe that the random R acts as a salt for the hash function Keccak256. This way,

IDU cannot be reversed by sol, even when performing dictionary attacks by testing all of
the possible real identities. On the other hand, if the identity provider discloses R to LA,
the association IDU − AddU

1 can be verified through the instance CIG of the smart contract.
Finally, IG verifies the state “Confirmed” of the address AddU

1 and locally stores the
tuple 〈AddU

1 , Keccak256(R‖IDU)〉 to provide LA if needed.
The above steps are summarized in the sequence diagram of Figure 1.
The next two interactions are between U and LA and between U and SP, respectively.

They have to be performed in anonymous form without any authentication of U. Clearly, to
avoid IP geolocation, anonymous communication protocols such as Tor [37] and VPNs [38]
can be adopted. We do not treat this aspect in detail since it is out of the scope of this paper.

5.2. Interaction between U and LA

Through this interaction, LA links AddU
1 and AddU

2 without knowing the real identity
of U.

First, U (anonymously) contacts LA and provides it with AddU
1 . LA needs to verify

two conditions. The first is that AddU
1 is an Ethereum address associated with a real identity.

However, LA does not need to know such a real identity. This condition can be easily
verified by checking that AddU

1 is in state “Confirmed” on CIG. The second condition is
that AddU

1 really belongs to the user contacting LA. This is carried out to avoid a user
trying to impersonate another user already authenticated with IG.

Future Internet 2022, 14, 243 8 of 20

Figure 1. Sequence diagram of the interaction between U and IG.

Even though the challenge–response mechanism used in the previous section allows
this task, we should not use it. Indeed, it requires some interactions through the blockchain
that would disclose the linkage AddU

1 − AddU
2 to anyone.

Therefore, to verify the second condition, LA generates a random R′ and provides
U with it. U signs R′ with the private key associated with AddU

1 , obtaining a signature σ.
Finally, U replies to LA with the pair (σ, AddU

2).
Starting from σ and R′, LA verifies the signature and retrieves the public key associated

with AddU
1 . Then, as explained in Section 2, LA computes the hash function Keccak256 on

this public key and takes the last 20 bytes to obtain the address AddU
1 . If AddU

1 = AddU
1 ,

then LA is sure that the user contacting it owns AddU
1 .

At this point, LA needs to verify that U owns AddU
2 . The same challenge–response

mechanism used with IG is adopted. This way, AddU
2 will move to the state “Confirmed”

on the instance CLA and will be used by SP in the next interaction with U.
In detail, LA picks a random R̄ and generates a challenge ch = Keccak256(Keccak256

(R̄‖AddU
1 ‖AddU

2 ‖σ)).
Then, LA generates a transaction T3 = 〈AddLA, AddCLA

, setChallenge(AddU
2 , ch)〉. This

transaction invokes the function setChallenge that associates the challenge ch with the
address AddU

2 and sets AddU
2 in state “To Confirm”. The random R̄ is provided to U.

U computes the solution of the challenge as sol = Keccak256(R̄‖AddU
1 ‖AddU

2 ‖σ) and
generates the transaction T4 = 〈AddU

2 , AddCLA
, solveChallenge(sol)〉. This proves to LA

that U is the owner of AddU
2 , which will be set in state “Confirmed” by the function

solveChallenge.
Finally, LA verifies the state “Confirmed” of the address AddU

2 and locally stores the
tuple 〈AddU

1 , AddU
2 , R̄, σ〉.

The above steps are summarized in the sequence diagram of Figure 2.

Future Internet 2022, 14, 243 9 of 20

Figure 2. Sequence diagram of the interaction between U and LA.

5.3. Interaction between U and SP

Through the third interaction of our protocol, SP associates AddU
2 with a pseudonym

userU chosen by U. For simplicity, we assume that the access credentials of U are rep-
resented by a username–password pair. However, the password can be replaced by the
device ID of the user’s phone, as with Whisper [5].

Again, we exploit the challenge–response mechanism of Section 4.
U provides SP with (AddU

2 , userU , passU), where passU is the password chosen by U.
SP verifies that AddU

2 is in state “Confirmed” on the instance CLA. Then, it picks a random
R̂ and generates the challenge ch = Keccak256(Keccak256(R̂‖userU)). Finally, SP generates
a transaction T5 = 〈AddSP, AddCSP

1 , setChallenge(AddU
2 , ch)〉. This transaction invokes the

function setChallenge, which associates the challenge ch with the address AddU
2 and sets

AddU
2 to state “To Confirm”. The random R̄ is provided to U.
U computes the solution to the challenge as sol = Keccak256(R̂‖userU) and generates

the transaction T6 = 〈AddU
2 , AddCSP

1 , solveChallenge(sol)〉. This proves to SP that U is the
owner of AddU

2 , which will be set to state “Confirmed” by the function solveChallenge.
Finally, SP verifies the state “Confirmed” of the address AddU

2 on the instance CSP
1

and locally stores the tuple 〈AddU
2 , userU , R̂, passU〉. Observe that the password passU is

not included in the notarized information since it is used by SP only to authenticate U.
The above steps are summarized in the sequence diagram of Figure 3.

Future Internet 2022, 14, 243 10 of 20

Figure 3. Sequence diagram of the interaction between U and SP.

As a final remark, we want to observe that, if the user is not registered with IP, SP does
not provide the anonymous service. Indeed, it checks that the address AddU

2 is in the state
“Confirmed”. Moreover, this state is set by LA, which, in turn, verifies that AddU

1 is in the
state “Confirmed”. The state “Confirmed” of AddU

1 is set by IG only after the identity of U
is verified by IP.

We conclude this section by observing that, as we will see in Section 6.2, in order to
develop a user-friendly application, almost allof the client-side operations are performed
automatically by some scripts without requiring the interaction of the users. They just have
to confirm some operations (the generation of the transactions and signature of messages)
for security reasons. Furthermore, to simplify the client-side operations, the interactions
of U with SP and LA are merged into a single interaction with SP in which the user is
redirected to LA.

5.4. Account Information Recovery

Suppose U loses the access credentials with SP and wants to recover the account
information IU . U just needs to prove to SP the ownership of the Ethereum address AddU

2
with which U is registered at SP. This is carried out, as already discussed in the previous
sections, through the challenge–response mechanism involving the instance CSP

2 of the
smart contract. After verifying the possession of AddU

2 , SP enables the standard module to
change the password and provides U with IU .

5.5. Law-Enforced Re-Identification of U

Suppose a law court receives a notification about an illegal behavior of a user with
username userU when leveraging the anonymous service provided by SP. After verifying
whether such behavior violates the law, it emits an order to ask LA to retrieve, in a verifiable
way, the real identity IDU of the user with username userU . First, LA contacts SP to obtain
the Ethereum address AddU

2 associated with userU . Then, LA retrieves the Ethereum
address AddU

1 linked with AddU
2 (this linkage is maintained by LA itself). Subsequently,

LA contacts IG to obtain the digest Keccak256(R||IDU) associated with AddU
1 . Finally,

LA contacts IP to obtain the real identity IDU of U associated with Keccak256(R||IDU).
Observe that the mapping userU− AddU

2 is verifiable through the instance CSP
1 by disclosing

Future Internet 2022, 14, 243 11 of 20

the random R̂. Similarly, the mapping AddU
1 − AddU

2 is verifiable through the instance CLA

by disclosing the random R̄. Finally, the mapping AddU
1 − IDU is verifiable through the

instance CIP by disclosing the random R.

5.6. Linkage of Multiple Anonymous Accounts

Suppose that a law court wants to monitor the anonymous activity of the user U on
multiple service providers. This means that the court wants to associate the identity IDU
with all of the usernames used in the various service providers. As in Section 5.5, suppose
that the court charges the linkage agency LA to perform this operation. First, LA contacts
IP. We recall that IP stores a set of tuples in the form T = (R, Keccak256(R||IDU)). Observe
that each tuple is associated with a service provider to which U requires an anonymous
service. For each tuple T, LA contacts IG, and, through Keccak256(R||IDU), it retrieves
the address AddU

1 . Then, through the mapping maintained by LA itself, LA retrieves the
address AddU

2 used by U with a service provider SP. Finally, through SP, LA discovers the
username userU .

As in Section 5.5, all of the linkages are verifiable on blockchain.

6. Implementation and Time-Cost Analysis

In this section, we describe the prototype developed to implement the solution pro-
posed in Section 5. The source code of our prototype is publicly available on GitHub at
https://github.com/SaraLazz/AccountAnon (accessed on 18 August 2022).

6.1. Adopted Technologies

We developed three JAVA web applications to implement IG, SP, and LA. Each
application leverages the Apache Struts2 web framework [39]. Struts is an open-source
framework that employs a model, view, controller (MVC) architecture and that enables
the creation of maintainable and flexible web applications. The view part of our web
applications was constructed using JavaServer Pages (JSP) [40]. To improve the user
experience, we used asynchronous JavaScript and XML (AJAX) [41], thus allowing the
user’s interaction with the application to happen asynchronously.

As explained in the previous sections, our web applications need to interact with the
Ethereum blockchain both server-side and client-side.

Regarding server-side, our applications leverage on Infura [42]. The Infura API suite
allows us to access the Ethereum network through HTTPS and WebSockets. Infura has the
main advantage of providing all of the necessary tools to develop on Ethereum, without
the need to locally run any blockchain node.

Regarding client-side, our applications interface with MetaMask [43] via JavaScript.
MetaMask is a very popular application that allows users to write on the blockchain. One
of the main benefits of using MetaMask is that users’ passwords and keys remain on the
user device since they are not shared with any other parties interacting with it.

6.2. Implementation Detail and Prototype Functionalities

Through this section, we describe in detail the implementation of the prototype
(including the three web applications) and describe how it works.

The implementation of the IG web application (whose user interface is represented in
Figure 4) follows on from what has been described in Section 5. The selection of the address
AddU

1 is executed client-side via JavaScript connecting to MetaMask. It replies with the
address that is currently selected in the application. At this point, the challenge–response
mechanism starts. IG generates the challenge server-side and invokes the smart contract
function setChallenge via Infura API. After this, the user, client-side, solves the challenge
by invoking the smart contract function solveChallenge via MetaMask.

Now, we move on to the other two applications.
Even though the high-level workflow described in Section 5 only requires separate

interactions between U and the two parties SP and LA, the technical implementation of the

https://github.com/SaraLazz/AccountAnon

Future Internet 2022, 14, 243 12 of 20

prototype performs this transparently for the user through a redirection of the web traffic
from SP to LA .

Figure 4. User interface of IG.

In detail, when the user asks to subscribe to SP, it will redirect the user to LA for the
verification of their Ethereum addresses. The procedure executed with LA is divided into
four steps, as represented in Figure 5.

Figure 5. Selection of a IG-validated Ethereum account.

The first step is to aid the user in the selection (on Metamask) of the address AddU
1 so

that the user does not have to remember it. The LA client-side application asks MetaMask
the current address selected by the user and verifies whether it is or is not validated by
the IG (i.e., if it is memorized in state “Confirmed” in the instance CIG). In the case where
it is not validated, the LA application returns to the user a message asking them to select
a different address (Figure 5). The procedure continues until the user selects an address
validated by IG. At this point, the user can proceed with the second step (Figure 6).

Figure 6. Completion of Step 1.

During the second step, the user is asked to sign a random provided by the server
(Figure 7). Then, the signature is sent to the server along with the address AddU

1 so that the
server can verify that the user owns the address AddU

1 .

Future Internet 2022, 14, 243 13 of 20

Figure 7. Signature of the LA challenge.

During the third step, the user is asked to switch to an address that is different from
AddU

1 (Figure 8). After carrying this out, the newly selected address (AddU
2) is sent to LA.

At this point, the challenge–response mechanism starts. Therefore, LA sets a challenge on
the instance CLA and provides the client with all of the information necessary to solve this
challenge (i.e., a random R̄). Once received, the user just has to authorize the transaction on
MetaMask in order to invoke the solveChallenge function of the smart contract (Figure 9).

Figure 8. Selection of the Ethereum address AddU
2 .

Figure 9. Transaction to solve the LA challenge.

Future Internet 2022, 14, 243 14 of 20

Once this transaction is confirmed, the user can proceed to the fourth step, which
consists of a message confirming that the whole procedure succeeded. At this point, LA
will redirect the user to SP, forwarding the address AddU

2 (Figure 10).

Figure 10. Completion of the interaction with LA.

On SP (Figure 11), after another challenge–response mechanism, the user can subscribe
by entering a username and a password that will be memorized by SP along with the
address AddU

2 .

Figure 11. Subscription to SP.

This address is also used in the case where the user forgets their login credentials.
Again, the procedure used to recover them consists of the application of the challenge–
response mechanism. We recall that the user needs to select the right address to invoke
the solveChallenge function of the smart contract. To aid the user in the selection of the
right address, the client-side module of SP implements the same mechanism seen in the
first step of the procedure executed with LA. We highlight that this design choice has two
main benefits: (i) the user does not have to memorize AddU

2 and, (ii) it being a procedure
performed exclusively client-side, the user’s other addresses are not disclosed to the server.

6.3. Time-Cost Analysis

We analyzed our implementation by measuring the time taken to perform the opera-
tions required by our solution. The measurements were performed by using a personal
computer equipped with a 2.8 GHz Intel i7-1165G7 CPU and 16 GB of RAM. The obtained
results are reported in Figures 12 and 13.

In Figure 12, the interaction between the user, IG, and blockchain is represented. In
Figure 13, the interaction between the user, LA, SP, and blockchain is reported.

We distinguished between the tasks the executed client-side (marked by CC) and the
tasks executed server-side (marked by SC). The time intervals necessary to perform these
two kinds of tasks are represented with a solid grey line. For each of these intervals, the
time needed to complete it is reported in the figures.

We also represent the user-dependent time intervals (marked by UDT) with a grey
dashed line. Since the duration of these time intervals depends on the time the users need
to click the buttons, we assumed realistic average times of 2–3 s.

Future Internet 2022, 14, 243 15 of 20

Figure 12. Timeline of the interactions between user, IG, and blockchain.

Figure 13. Timeline of the interactions between user, LA, SP, and blockchain.

Finally, the measurements of the time intervals between sending a transaction to the
blockchain and confirming the transaction itself are reported in the two figures. To perform
these measurements, we chose the Ropsten test network [44], since it is able to reproduce
the network conditions of the live Ethereum MainNet.

Our measurements show that the time intervals pertaining to the blockchain timeline
lasted 15–25 s. From our experiments, these values, compared to the duration of the other
measured time intervals, appear to be predominant but still acceptable.

A factor influencing the duration of the time intervals pertaining to the blockchain is
the selected gas price. Indeed, a high gas price causes a transaction to be processed faster,
at the cost of greater transaction fees. For our experiments, we adopted the default gas
price suggested by Metamask.

To summarize the results, we obtained that the entire registration procedure with
IG requires less than 1 min, whereas the registration procedure with SP (including the
interaction with LA) requires less than 2 min.

By using the default gas price suggested by Metamask, we also measured the costs, in
terms of Ethers, resulting from the following operations: smart contract deployment, the
execution of the setChallenge function, and the execution of the solveChallenge function.

Future Internet 2022, 14, 243 16 of 20

In the following, we report the resulting costs in terms of Ethers (ETH) and US dollars
in June 2022:

• Smart contract deployment: 0.00296997 ETH/USD 5.34;
• setChallenge execution: 0.00029962 ETH/USD 0.54;
• solveChallenge execution: 0.00013468 ETH/USD 0.24.

We stress that, although the smart contract deployment has a relatively high cost, it is
a one-time operation performed by SP, LA, and IG, and therefore its cost is sustainable.

From the above results, we can estimate the overall cost of a user registration, which
is approximately USD 2.34. In a real business model, this cost can be charged to the user
willing to use the anonymous service. Therefore, our solution does not result in significant
costs, neither for the user nor for the service providers.

7. Security Analysis

In this section, we discuss the security guarantees offered by our solution.
We analyze the following two compromises possibly affecting our protocol.

• C1: an adversary, not including the collaboration of IP, SP, and LA simultaneously, is
able to discover the link between the username and the real identity of a user.

• C2: an adversary is able to forge a fake link, publicly verifiable on the blockchain,
between the username and the real identity of a user.

Regarding C1, it represents a privacy compromise. As already discussed, our protocol
allows for the de-anonymization of a username only when IP, SP, and LA collaborate. In
the other cases, the real identity–username link should not be disclosed to anyone.

Concerning C2, we refer to attacks in which the adversary attempts to associate a
username userU of a user U with an identity IDŪ of another user Ū to falsely accuse the
latter of an illegal behavior performed by U.

Regarding the trust required to the involved actors, we only make the following
assumption.

• A: IP is honest but curious, in the sense that it legally performs the steps of the protocols
but attempts to cause the two compromises C1 and C2.

In other words, A requires that IP does not swap the real identities of two users. This
is a standard assumption of all of the identity management systems. Indeed, the role of an
identity provider is just to certify the real identity of users. However, in our threat model,
we allow IP to disclose the identities that it knows and show that this does not affect the
privacy of the users.

No assumption is made on IG, LA, and SP. They can be considered fully malicious
with respect to the considered compromises.

Now, we discuss in detail the two compromises and show how our protocol pre-
vents them.
Compromise C1. This compromise occurs when the adversary identifies the real identity
IDU of a user U associated with a given username userU .

Since external users just see the transactions originating from some Ethereum ad-
dresses on the blockchain, we consider SP, IG, IP, and LA as adversaries. They can access
the blockchain too; then, they have at least the knowledge of all external users. By excluding
the collaboration of IP, SP, and LA (by hypothesis), we consider the collaboration of the
three tuples (IP, IG, LA), (IG, LA, SP), and (IP, IG, SP) as an adversary and show that C1
does not occur.

We start by considering the collaboration of IP, IG, and LA. Given the user U, IP
knows the real identity IDU of U. Through the collaboration with IG, IP links IDU with
the Ethereum address AddU

1 . Then, through the collaboration with LA, IP can discover the
Ethereum address AddU

2 linked with AddU
1 . However, no information about the username

userU of U is available to IP, IG, and LA. Indeed, the only public information containing
userU (in obfuscated form) is the transaction T6 generated by U with the address AddU

2 .
This transaction contains the solution to the challenge sol = Keccak256(R̂‖userU). Without

Future Internet 2022, 14, 243 17 of 20

R̂ (maintained by SP), it is not possible to also reverse the hash function Keccak256 through
dictionary attacks on all of the possible usernames.

A similar reasoning applies when considering the collaboration of IG, LA, and SP as
an adversary. Their collaboration just allows for the linkage of AddU

1 , AddU
2 , and userU , but

no information is available to IG, LA, and SP about IDU .
Indeed, the only public information containing IDU (in obfuscated form) is the trans-

action T2 generated by U with the address AddU
1 . This transaction contains the solution to

the challenge sol = Keccak256(R‖IDU). Without R (maintained by IP), it is not possible to
reverse the hash function Keccak256. Keccak256(R‖IDU) is the only information received
by IG from IP, since the assertion does not contain any information linked to IDU .

Finally, consider the adversary composed of the collaboration of IP, IG, and SP.
IP, through IG, knows the mapping AddU

1 − IDU , whereas SP maintains the mapping
AddU

2 − userU . However, without the mapping AddU
1 − AddU

2 (maintained by LA), they
are not able to link IDU with userU . The only public information containing this mapping
(in obfuscated form) is the transaction T4 generated by U. This contains the solution to
the challenge sol = Keccak256(R̄‖AddU

1 ‖AddU
2 ‖σ). Again, without R̄ and σ (maintained by

LA), it is not possible to reverse the hash function Keccak256.
Compromise C2. This compromise occurs when an adversary forges a valid link (publicly
verifiable on the blockchain) between the real identity IDŪ of a user Ū and a username
userU of a different user U.

To forge a valid link, IDŪ has to be present (in obfuscated form) in a transaction
intended for the instance CIG. By Assumption A, IP legally performs the steps of the
protocol and does not provide a tampered digest Keccak256(R||Ū) associated with the real
identity of a user Ū not requiring the anonymous service. Therefore, we consider Ū as
a user with Ethereum address AddŪ

1 such that the link between IDŪ and AddŪ
1 can be

verified through the instance CIG and the random R provided by IP.
To perform the compromise C2, the attacker has two possibilities. The first possibility

is to forge a fake link between AddŪ
1 and AddU

2 verifiable through the instance CLA such that
AddU

2 is associated with userU by SP. To achieve this, the blockchain would have a transac-
tion originated by AddLA including the challenge ch = Keccak256(Keccak256(R̄‖AddŪ

1 ‖
AddU

2 ‖σ̄)), where σ̄ is a signature obtained from the private key associated with the address
AddŪ

1 . Moreover, another transaction originated by AddU
2 , including the solution to the

challenge, would be present on the blockchain. Even though the attacker coincides with
the collaboration of LA and U (the only parties that can generate these two transactions), it
is not able to forge the signature σ̄ without the collaboration of Ū. Therefore, this first case
cannot occur.

The second possibility is that a valid link between AddŪ
1 and AddŪ

2 (both belonging to
Ū) exists and the attacker attempts to forge a fake link between AddŪ

2 and userU . However,
similar to the previous case, in order to accomplish this, the blockchain would have a trans-
action originated by AddSP, including the challenge ch = Keccak256(Keccak256(R̂‖userU)),
and a transaction originated by AddŪ

2 , including the solution to the challenge. Even though
the attacker coincides with the collaboration of SP and U, it is able to forge the first
transaction but not the second. Therefore, this possibility also cannot occur.

This concludes the security analysis.

8. Conclusions and Discussion

Anonymous services have shown increasing popularity over the years. However, for
most of these services, it is crucial to not just provide anonymity to the user but also to
implement an accountability mechanism.

In this paper, we propose a blockchain-based approach as a solution to the account-
ability issue in anonymous services. Our solution requires that only the co-operation of
three independent parties (IG, LA, and SP) can de-anonymize a user who is performing
illegally on the SP platform. This fact represents the main advantage of our solution since
it makes an illegitimate attempt to de-anonymize the user unlikely.

Future Internet 2022, 14, 243 18 of 20

To prove that our solution can be applied in real-life contexts, we provide a prototype
that takes into account usability aspects, as it aims to reduce the number of operations
performed client-side. Moreover we provide a time and cost analysis of our solution in
order to demonstrate its feasibility.

According to our cost analysis, the most expensive operation consists in the smart
contract deployment in the Ethereum network (approximately USD 5). However, such
an operation is meant to be performed only once by IG, LA, and SP. Hence, it is safe to
assume that such a cost is sustainable. The other operation that they have to perform is
setChallenge, whose cost is estimated to be USD 0.54. Even though this operation has to
be performed for each user willing to subscribe to an anonymous service, its results are
acceptable for the service providers. However, in a possible business model, the provider
can charge the user for this cost. On the other hand, the cost to perform the solveChallenge
operation is an equally low price (USD 0.24) and is meant to be paid directly by the user.

Considering instead the cost of a complete user registration (which requires the exe-
cution of both setChallenge and solveChallenge), it turns out to be very cheap (around
USD 2). It is therefore realistic to assume that this cost can be charged to the user in order
to not burden the providers.

Regarding the time analysis that we conducted, our study shows that the registration
procedure with IG requires less than 1 min, whereas the registration procedure with SP
and LA requires less than 2 min. It is worth noting that the time intervals related to the
operations involving the blockchain are predominant (ranging from 15 to 25 s). However,
despite this tolerable drawback, relying on the blockchain for these operations has the
advantage of making them immutable and publicly verifiable. Therefore, untrusted parties
(IG, LA, and SP) cannot hold other users accountable instead of the real misbehaving user.
Furthermore, as the entire registration process is one time, the overall time taken to perform
a complete registration is reasonable.

To conclude, our solution is shown to be usable and reasonably time and cost-efficient.
As for the cost, we may argue that honest users might be encouraged to pay for a service
that, in addition to anonymity, would guarantee them the possibility of reporting dishonest
users who might take advantage of the anonymous service to threaten them. Moreover,
the anonymous service provider itself might be encouraged to employ our solution since
accountability guarantees can discourage users from engaging in illegal behaviour, thus
improving the overall reputation of the anonymous service provider.

As a future work, we plan to further increase the technology readiness level of our research
by proposing its application to real-life environments, possibly with industrial partners.

Author Contributions: Conceptualization, F.B., V.D.A. and S.L.; methodology, F.B., V.D.A. and S.L.;
software, V.D.A. and S.L.; validation, F.B., V.D.A. and S.L.; formal analysis, F.B., V.D.A. and S.L.;
investigation, F.B., V.D.A. and S.L.; resources, V.D.A. and S.L.; data curation, V.D.A. and S.L.; writing—
original draft preparation, F.B., V.D.A. and S.L.; writing—review and editing, F.B., V.D.A. and S.L.;
visualization, V.D.A. and S.L.; supervision, F.B.; project administration, F.B. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This work has been developed in coordination with the activities of “iCARE”
project (CUP J39J14001400007)-action 10.5.12.

Conflicts of Interest: The authors declare no conflict of interest.

Future Internet 2022, 14, 243 19 of 20

Abbreviations
The following abbreviations are used in this manuscript:

EOA External Owned Account
U User
SP Service Provider
IG Identity Gateway
LA Linkage Agency
ECDSA Elliptic Curve Digital Signature Algorithm
VM Virtual Machine
UDT User-Dependent Time
CC Client-side Computation
SC Server-side Computation
ETH Ether
P2P Peer-to-Peer
MVC Model View Controller
JSP JavaServer Page
AJAX Asynchronous JavaScript and XML

References
1. Harkavy, M.; Tygar, J.D.; Kikuchi, H. Electronic auctions with private bids. In Proceedings of the USENIX Workshop on Electronic

Commerce, Boston, MA, USA, 31 August–3 September 1998.
2. Liu, B.; Xie, S.; Yang, Y.; Wang, R.; Hong, Y. Privacy preserving divisible double auction with a hybridized TEE-blockchain system.

Cybersecurity 2021, 4, 1–14. [CrossRef]
3. Hohenberger, S.; Myers, S.; Pass, R. ANONIZE: A large-scale anonymous survey system. In Proceedings of the 2014 IEEE

Symposium on Security and Privacy, Berkeley, CA, USA, 18–21 May 2014; pp. 375–389.
4. Carnley, R.; Bagui, S. A Public Infrastructure for a Trusted Wireless World. Future Internet 2022, 14, 200. [CrossRef]
5. Wang, G.; Wang, B.; Wang, T.; Nika, A.; Zheng, H.; Zhao, B.Y. Whispers in the Dark: Analysis of an Anonymous Social Network.

In Proceedings of the 2014 Conference on Internet Measurement Conference (IMC ’14), Vancouver, BC, Canada, 5–7 November
2014; Association for Computing Machinery: New York, NY, USA, 2014; pp. 137–150. [CrossRef]

6. Gerhart, N.; Koohikamali, M. Social network migration and anonymity expectations: What anonymous social network apps offer.
Comput. Hum. Behav. 2019, 95, 101–113. [CrossRef]

7. Hosseinmardi, H.; Han, R.; Lv, Q.; Mishra, S.; Ghasemianlangroodi, A. Analyzing negative user behavior in a semi-anonymous
social network. arXiv 2014, arXiv:1404.3839v1.

8. Farkas, C.; Ziegler, G.; Meretei, A.; Lörincz, A. Anonymity and accountability in self-organizing electronic communities. In
Proceedings of the 2002 ACM workshop on Privacy in the Electronic Society, Washington, DC, USA, 21 November 2002;
pp. 81–90.

9. Buccafurri, F.; Lax, G.; Nicolazzo, S.; Nocera, A. Accountability-preserving anonymous delivery of cloud services. In International
Conference on Trust and Privacy in Digital Business; Springer: Berlin/Heidelberg, Germany, 2015; pp. 124–135.

10. Buccafurri, F.; De Angelis, V.; Lax, G.; Musarella, L.; Russo, A. An Attribute-Based Privacy-Preserving Ethereum Solution for
Service Delivery with Accountability Requirements. In ARES ’19: Proceedings of the 14th International Conference on Availability,
Reliability and Security; Association for Computing Machinery: New York, NY, USA, 2019. [CrossRef]

11. Russo, A.; Lax, G.; Dromard, B.; Mezred, M. A System to Access Online Services with Minimal Personal Information Disclosure.
Inf. Syst. Front. 2021, 1–13. [CrossRef]

12. Camenisch, J.; Lysyanskaya, A. An efficient system for non-transferable anonymous credentials with optional anonymity
revocation. In International Conference on the Theory and Applications of Cryptographic Techniques; Springer: Berlin/Heidelberg,
Germany, 2001; pp. 93–118.

13. Backes, M.; Camenisch, J.; Sommer, D. Anonymous yet accountable access control. In Proceedings of the 2005 ACM Workshop
on Privacy in the Electronic Society, Alexandria, VA, USA, 7 November 2005; pp. 40–46.

14. Teranishi, I.; Sako, K. K-times anonymous authentication with a constant proving cost. In International Workshop on Public Key
Cryptography; Springer: Berlin/Heidelberg, Germany, 2006; pp. 525–542.

15. Lysyanskaya, A.; Rivest, R.L.; Sahai, A.; Wolf, S. Pseudonym systems. In International Workshop on Selected Areas in Cryptography;
Springer: Berlin/Heidelberg, Germany, 1999; pp. 184–199.

16. Damgård, I.B. Payment systems and credential mechanisms with provable security against abuse by individuals. In Conference on
the Theory and Application of Cryptography; Springer: Berlin/Heidelberg, Germany, 1988; pp. 328–335.

17. Camenisch, J.; Van Herreweghen, E. Design and implementation of the idemix anonymous credential system. In Proceedings of
the 9th ACM Conference on Computer and Communications Security, Washington, DC, USA, 18–22 November 2002; pp. 21–30.

18. Tsang, P.P.; Smith, S.W. PPAA: Peer-to-peer anonymous authentication. In International Conference on Applied Cryptography and
Network Security; Springer: Berlin/Heidelberg, Germany, 2008; pp. 55–74.

http://doi.org/10.1186/s42400-021-00100-x
http://dx.doi.org/10.3390/fi14070200
http://dx.doi.org/10.1145/2663716.2663728
http://dx.doi.org/10.1016/j.chb.2019.01.030
http://dx.doi.org/10.1145/3339252.3339279
http://dx.doi.org/10.1007/s10796-021-10150-8

Future Internet 2022, 14, 243 20 of 20

19. Dingledine, R.; Freedman, M.J.; Molnar, D. The free haven project: Distributed anonymous storage service. In Designing Privacy
Enhancing Technologies; Springer: Berlin/Heidelberg, Germany, 2001; pp. 67–95.

20. Durahim, A.O.; Savaş, E. A-MAKE: An efficient, anonymous and accountable authentication framework for WMNs. In
Proceedings of the 2010 Fifth International Conference on Internet Monitoring and Protection, Barcelona, Spain, 9–15 May 2010;
pp. 54–59.

21. Backes, M.; Clark, J.; Kate, A.; Simeonovski, M.; Druschel, P. BackRef: Accountability in anonymous communication networks. In
International Conference on Applied Cryptography and Network Security; Springer: Berlin/Heidelberg, Germany, 2014; pp. 380–400.

22. Diaz, C.; Preneel, B. Accountable anonymous communication. In Security, Privacy, and Trust in Modern Data Management; Springer:
Berlin/Heidelberg, Germany, 2007; pp. 239–253.

23. Niu, Y.; Wei, L.; Zhang, C.; Liu, J.; Fang, Y. An anonymous and accountable authentication scheme for Wi-Fi hotspot access with
the Bitcoin blockchain. In Proceedings of the 2017 IEEE/CIC International Conference on Communications in China (ICCC),
Qingdao, China, 22–24 October 2017; pp. 1–6.

24. Tsang, P.P.; Au, M.H.; Kapadia, A.; Smith, S.W. PEREA: Towards practical TTP-free revocation in anonymous authentication. In
Proceedings of the 15th ACM Conference on Computer and Communications Security, Alexandria, VA, USA, 27–31 October 2008;
pp. 333–344.

25. Maria, A.; Rajasekaran, A.S.; Al-Turjman, F.; Altrjman, C.; Mostarda, L. Baiv: An efficient blockchain-based anonymous
authentication and Integrity Preservation Scheme for secure communication in VANETs. Electronics 2022, 11, 488. [CrossRef]

26. Black, E.W.; Mezzina, K.; Thompson, L.A. Anonymous social media–Understanding the content and context of Yik Yak. Comput.
Hum. Behav. 2016, 57, 17–22. [CrossRef]

27. Chatzistefanou, V.; Limniotis, K. On the (non-) anonymity of anonymous social networks. In International Conference on
e-Democracy; Springer: Berlin/Heidelberg, Germany, 2017; pp. 153–168.

28. Bernabe, J.B.; Canovas, J.L.; Hernandez-Ramos, J.L.; Moreno, R.T.; Skarmeta, A. Privacy-preserving solutions for blockchain:
Review and challenges. IEEE Access 2019, 7, 164908–164940. [CrossRef]

29. Treiblmaier, H. What Is Coming across the Horizon and How Can We Handle It? Bitcoin Scenarios as a Starting Point for Rigorous
and Relevant Research. Future Internet 2022, 14, 162. [CrossRef]

30. Möser, M.; Soska, K.; Heilman, E.; Lee, K.; Heffan, H.; Srivastava, S.; Hogan, K.; Hennessey, J.; Miller, A.; Narayanan, A.; et al. An
empirical analysis of traceability in the monero blockchain. arXiv 2017, arXiv:1704.04299.

31. Hopwood, D.; Bowe, S.; Hornby, T.; Wilcox, N. Zcash Protocol Specification; GitHub: San Francisco, CA, USA, 2016; p. 1.
32. Johnson, D.; Menezes, A.; Vanstone, S. The elliptic curve digital signature algorithm (ECDSA). Int. J. Inf. Secur. 2001, 1, 36–63.

[CrossRef]
33. Bertoni, G.; Daemen, J.; Peeters, M.; Assche, G.V. Keccak. In Annual International Conference on the Theory and Applications of

Cryptographic Techniques; Springer: Berlin/Heidelberg, Germany, 2013; pp. 313–314.
34. Pierro, G.A.; Tonelli, R.; Marchesi, M. An organized repository of ethereum smart contracts’ source codes and metrics. Future

Internet 2020, 12, 197. [CrossRef]
35. European Union. Regulation EU No 910/2014 of the European Parliament and of the Council. 23 July 2014. Available online:

http://eur-lex.europa.eu/legal-content/EN/TXT\/HTML/?uri=CELEX%3A32014R0910&from=EN (accessed on 18 August
2022).

36. Boehm, O.; Caumanns, J.; Franke, M.; Pfaff, O. Federated authentication and authorization: A case study. In Proceedings of the
2008 12th International IEEE Enterprise Distributed Object Computing Conference, Munich, Germany, 15–19 September 2008;
pp. 356–362.

37. Dingledine, R.; Mathewson, N.; Syverson, P. Tor: The Second-Generation Onion Router; Technical Report; Naval Research Laboratory:
Washington, DC, USA, 2004.

38. Rossberg, M.; Schaefer, G. A survey on automatic configuration of virtual private networks. Comput. Netw. 2011, 55, 1684–1699.
[CrossRef]

39. Roughley, I. Starting Struts 2. 2007. Available online: https://www.infoq.com/minibooks/starting-struts2/ (accessed on 18
August 2022).

40. Kurniawan, B. Java for the Web with Servlets, JSP, and EJB; Sams: Carmel, IN, USA, 2002.
41. Garrett, J.J. Ajax: A New Approach to Web Applications. 2005. Available online: https://immagic.com/eLibrary/ARCHIVES/

GENERAL/ADTVPATH/A050218G.pdf (accessed on 18 August 2022).
42. Infura The World’s Most Powerful Blockchain Development Suite. Available online: https://infura.io/ (accessed on 18 August 2022).
43. MetaMask. A Crypto Wallet & Gateway to Blockchain Apps. Available online: https://metamask.io/ (accessed on

18 August 2022).
44. Ropsten Testnet Explorer, 2006. Available online: https://ropsten.etherscan.io (accessed on 18 August 2022).

http://dx.doi.org/10.3390/electronics11030488
http://dx.doi.org/10.1016/j.chb.2015.11.043
http://dx.doi.org/10.1109/ACCESS.2019.2950872
http://dx.doi.org/10.3390/fi14060162
http://dx.doi.org/10.1007/s102070100002
http://dx.doi.org/10.3390/fi12110197
http://eur-lex.europa.eu/legal-content/EN/TXT\/HTML/?uri=CELEX%3A32014R0910&from=EN
http://dx.doi.org/10.1016/j.comnet.2011.01.003
https://www.infoq.com/minibooks/starting-struts2/
https://immagic.com/eLibrary/ARCHIVES/GENERAL/ADTVPATH/A050218G.pdf
https://immagic.com/eLibrary/ARCHIVES/GENERAL/ADTVPATH/A050218G.pdf
https://infura.io/
https://metamask.io/
https://ropsten.etherscan.io

	Introduction
	Related Work and Background
	Actors and Notation
	Challenge–Response Mechanism
	The Proposed Approach
	Interaction between U and IG
	Interaction between U and LA
	Interaction between U and SP
	Account Information Recovery
	Law-Enforced Re-Identification of U
	Linkage of Multiple Anonymous Accounts

	Implementation and Time-Cost Analysis
	Adopted Technologies
	Implementation Detail and Prototype Functionalities
	Time-Cost Analysis

	Security Analysis
	Conclusions and Discussion
	References

