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Abstract: Software-defined networking (SDN) is an innovative network paradigm, offering sub-
stantial control of network operation through a network’s architecture. SDN is an ideal platform
for implementing projects involving distributed applications, security solutions, and decentralized
network administration in a multitenant data center environment due to its programmability. As
its usage rapidly expands, network security threats are becoming more frequent, leading SDN se-
curity to be of significant concern. Machine-learning (ML) techniques for intrusion detection of
DDoS attacks in SDN networks utilize standard datasets and fail to cover all classification aspects,
resulting in under-coverage of attack diversity. This paper proposes a hybrid technique to recognize
denial-of-service (DDoS) attacks that combine deep learning and feedforward neural networks as
autoencoders. Two datasets were analyzed for the training and testing model, first statically and then
iteratively. The auto-encoding model is constructed by stacking the input layer and hidden layer of
self-encoding models’ layer by layer, with each self-encoding model using a hidden layer. To evaluate
our model, we use a three-part data split (train, test, and validate) rather than the common two-part
split (train and test). The resulting proposed model achieved a higher accuracy for the static dataset,
where for ISCX-IDS-2012 dataset, accuracy reached a high of 99.35% in training, 99.3% in validation
and 99.99% in precision, recall, and F1-score. for the UNSW2018 dataset, the accuracy reached a
high of 99.95% in training, 0.99.94% in validation, and 99.99% in precision, recall, and F1-score. In
addition, the model achieved great results with a dynamic dataset (using an emulator), reaching a
high of 97.68% in accuracy.

Keywords: autoencoder; denial-of-service (DDoS); deep neural network; DDoS detection; software-
defined network (SDN)

1. Introduction

Software-defined networking (known as SDN) makes the management and program-
ming of network systems easier. By separating the control and data planes, SDN increases
network efficiency by putting everything in one place. Once a traditional network is con-
figured with policies, it is difficult to change. Moreover, manually configuring a network
is time-consuming and prone to mistakes, and it does not fully use the physical network
infrastructure. SDN is widely used, solves these problems easily, and makes better use of
network equipment.

In software-defined networking (SDN), the controller connects with the forwarding
plane via a south-bound application programming interface (API) using a secure transport
layer service. In this system, flow tables allow network switches to match traffic flows.
When a packet reaches a switch, whose header areas do not match with the flow table, the
packet is sent to the controller as a packet-in message. Then, the controller transmits a
packet-out or flow-mod signal with specific flow rules, which is then integrated into the
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flow table. This indicates that the next time a related packet comes to the switch, it can be
acted upon without the need to refer to the controller [1,2].

While the high degree of centralization of the controllers greatly simplifies network
administration, it is a security nightmare. If these controllers are subject to a large amount
of requests, they can be taken offline, rendering the network inoperable [3]. This makes
SDN highly vulnerable to distributed denial-of-service attacks (DDoS), which overload
the capacity of the controller and the flow tables in the switch, halting the processing of
packets and leading the network to be ineffective. This weakness necessitates the need for
backup controllers.

DDoS attacks are one of the most common types of attacks. A DDoS attacker uses
multiple compromised network devices to send numerous forged packets with random
source IP addresses toward the target host in the same network, degrading service quality.
By flooding the victim’s device with these packets, the attacker attempts to deny legitimate
users access to the services offered by the victim server.

However, backup controllers face similar challenges, and can also be attacked and
taken offline if network traffic is directed at them [4]. Due to this possibility, a system for the
early detection and mitigation of these attacks is required. A powerful intrusion detection
system (IDS) would preserve network performance, increase data security, prevent the
loss of intellectual property, and limit potential liability for compromised notes or network
data [5]. This need has resulted in extensive research on DDoS detection techniques. Neural
networks have emerged as one of the most widely used IDS tools [6].

Many contributions to research on DDoS detection models include ways to identify
and quantify common characteristics of the massive sets of illegitimate traffic that are used
to flood a victim’s network during DDoS attacks. Our objective is to design a model that
detects DDoS attacks using a hybrid technique for detecting malicious network flows using
an autoencoder and deep neural networks. The proposed model prevents the overfitting
of predetermined malicious patterns. The driving force behind this objective is the idea
that the use of an autoencoder will develop a more accurate classifier model alongside the
deep neural network model, similar to the traditional neural network model for detecting
malicious network traffic. Our primary responsibilities are creating a data representation
model utilizing autoencoder techniques and a malware flow detection model using a deep
neural network. Experiments were conducted to evaluate the proposed solution. Finally,
the results obtained are compared with other state-of-the-art techniques.

2. Related Works

In recent years, several method-based DNN algorithms have been developed. Nam [7]
proposed two DDoS assault detection methods based on the self-organizing map. The
proposed methods and their detection architecture utilize flexible and programmable SDN
technology. The SDN controller enables us to execute sophisticated classification and
detection algorithms rapidly. By creating a testbed environment, we successfully analyze
the accuracy and computational requirements of our suggested methods. The experimental
results demonstrate that these algorithms minimize processing time, while maintaining an
acceptable level of precision.

Pekta and Acarman [8] proposed a model-based deep learning architecture that com-
bines CNN and LSTM to learn spatial-temporal features of network flows. When tested on
the ISCX 2012 dataset, the model achieved 99.09% in accuracy, 99.08% in recall, 99.10% in
precision, and 99.09% in F1-score. For CICIDS2017, the model achieved 97.97%, 98.83%,
98.89%, and 98.86%, respectively. Elsayed et al. [9] provided a systematic benchmark-
ing analysis of four existing machine-learning techniques for attack traffic detection in
SDNs, SVM, J48m, Naive Bayes, and Random Forest. They identified the shortcomings of
traditional machine-learning-based methods and laid the groundwork for a more robust
framework. Their experiments used the NSL-KDD dataset, and their results showed that
J48 achieved the best result compared with the three other ML techniques.
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Sindian et al. [10] proposed an enhanced deep sparse autoencoder-based framework
for detecting DDoS attacks, as well as a strategy for minimizing costs. The sparse au-
toencoder is used to extract datasets, and the SoftMax layer is used to determine whether
traffic is malicious or not. Since intrusion detection methods occasionally produce wrong
predictions, metrics, such as accuracy, precision, detection rate, and specificity, are used
to evaluate the models. Their solution used the CICDoS2019 dataset [11], and success-
fully detected intrusions with high accuracy and a low false positive rate. The model
achieved 98% in accuracy, a 98.1% detection rate, 91% in precision, and 98% in specificity.
Radanliev et al. [12] provided a new mathematical approach for the integration of percep-
tion engine design concepts, edge computing, artificial intelligence, and machine learning
to automate anomaly detection. This engine drives incremental change by applying ar-
tificial intelligence and machine learning embedded at the edge of the internet of things
(IoT) network to provide secure, actionable, real-time intelligence for predictive cyber risk
analytics. In their review, the authors reported that denial-of-service (DoS) and DDoS
are the most common and dangerous IoT attacks, which can flood the network of IoT
devices with traffic. These attacks lead to connection overload and network exhaustion,
preventing IoT devices from communicating. The small computational power on high-end
hardware makes it difficult to solve DDoS attacks. However, IoT aims to connect objects
over the internet, and the SDN orchestrates the network management by decoupling the
control and data planes. As a result, the SDN provides flexibility and programmability in
the IoT network without disturbing the underlying architecture of existing implementa-
tions. Therefore, we limited the scope of our work to the detection of DDoS attacks in an
SDN environment, and, as a result, this will serve IoT. Tang et al. [13] proposed a hybrid,
unsupervised deep learning approach for detecting distributed denial-of-service (DDoS)
attacks using a stack autoencoder and a one-class support vector machine (SAE-1SVM).
The experimental results showed that with a small set of flow features, the proposed
algorithm achieves an average accuracy of 99.35%. The SAE-1SVM demonstrates that it sig-
nificantly reduces processing time, while maintaining a high detection rate. In conclusion,
the SAE-1SVM detects anomalies in imbalanced and unlabeled datasets with high accuracy.
Kushwah et al. [14] proposed a hybrid machine-learning-based technique to detect these
attacks. The extreme learning machine (ELM) model and the black hole optimization
algorithm implement the proposed technique. Several experiments proposed an evaluation
of the performance of their proposed method. Additionally, several experiments were
conducted using four benchmark datasets: NSL KDD, ISCX IDS 2012, CICIDS2017, and
CICDDoS2019. With these four datasets, the accuracy reached 99.23%, 92.19%, 99.50%,
and 99.80%, respectively. Moreover, a comparison is carried out on the following: Alterna-
tive ELM-based techniques, ANNs trained with blackhole optimization, backpropagation
ANNs, and other state-of-the-art techniques. Gadze et al. [15] investigated deep-learning-
based models for DDoS classification: Long short-term memory (LSTM) and convolutional
neural networks (CNN). The dataset was dynamically generated via Mininet, using Open-
Flow switches and Floodlight as an external controller. The results showed that RNN LSTM
achieved an accuracy of 89.63%, outperforming linear-based models, such as SVM (86.85%)
and Naive Bayes (82.61%). The KNN algorithm, a linear-based model, had an even higher
accuracy than their model accuracy of 99.4%. Moreover, the model performed best when
using a data split of 70/30 (train/test split ratios). Singha and Jang-Jaccard [16] proposed a
hybrid autoencoder model called MSCNN-LSTM-AE, which uses a combination of a multi-
scale convolutional neural network (MSCNN) and LSTM to find anomalies in network
traffic. The approach first uses the MSCNN-autoencoder to evaluate the spatial features
of the dataset, then an LSTM-based autoencoder network is used to identify the temporal
features of the latent space features learned from MSCNN-AE. For testing, the authors used
UNSW-NB15 [17], NSL-KDD [18], and CICDDoS2019. Their model (MSCNN-LSTM-AE)
achieved an accuracy of 93.76% and recall of 92.26%. Ivanova et al. [19] proposed an opti-
mized feed-forward neural network model for detecting IoT-based DDoS attacks through
network traffic analysis directed at a specific target, which could be monitored continuously
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by a tap. The proposed model applies to DoS and DDoS attacks involving TCP, UDP, and
HTTP flood, keylogging, data exfiltration, OS fingerprinting, and service scan activities. It
simply distinguishes this network traffic from normal network flows. As a solver, the neural
network employs Adam optimization and the hyperbolic tangent activation function in all
neurons from a single hidden layer. Depending on the targeted accuracy and processing
speed, the number of hidden neurons can be varied. Testing on the BotIoT dataset reveals
that developed models can be used with 8 or 10 features and have a discrimination error
of 4.91 × 10−3%. Prasad et al. [20] proposed a multimode framework based on voting
to combat volumetric DDoS (VMFCVD) attacks. VMFCVD is based on three different
detection modes: Fast detection mode (FDM), defensive fast detection mode (DFDM), and
high accuracy mode (HAM). FDM is designed to classify network traffic when a server is
under attack. The highly dimensional and reduced dataset aids FDM’s detection speed.
In most cases, the dimension reduction for FDM was greater than 97%, while maintaining
an accuracy of 99.9% during our experiment. DFDM is an enhanced version of FDM that
improves the detection accuracy of malicious network traffic by tightening the detection
technique. HAM focuses on detection accuracy, outperforming FDM and DFDM signifi-
cantly. When the server is stable, HAM is activated. VMFCVD has been extensively tested
on the most recent benchmark DDoS and botnet datasets, including the UNSW NB15,
UNSW2018 BoTIoT, CSE-CIC-IDS2018 (BoT and DDoS), CICIDS2017 (BoT and DDoS),
DoHBrw2020, NBaIoT2018 (Mirai), and CICDDoS2019 (DNS, LDAP, SSDP, and SYN). The
results of VMFCVD show that it outperforms recent studies. When the server is under a
DDoS attack, VMFCVD performs remarkably.

3. The Concept of Detection DDoS Attacks in SDN

Distributed denial-of-service (DDoS) attacks are generally carried out by several ma-
chines. These attacks follow a similar pattern to a basic denial-of-service (DoS) attack.
However, the use of multiple machines simultaneously as separate origins of attack ampli-
fies the attack’s impact, while making it challenging to locate the attackers. The attacker
forms a network of machines, consisting of a master (Master) and many remote hosts
(Slaves). During the course of the attack, the attacker connects to the master, which sends
an order to all remote hosts. Then, these hosts attack the target using a technique chosen by
the attacker [21].

Defense mechanisms against DDoS attacks have become one of the most significant
challenges in network security. Consequently, a large number of defense classifications and
taxonomies have emerged. One important way to categorize defense options is through
the main characteristics of their defense. This results in three main categories and policies:
(1) Stopping attacks before they reach the target [22] with firewalls as an example of this
prevention mechanism; (2) attacking detection through the identification of anomalies
in the traffic entering the network; (3) identifying the attack’s ultimate origin. This last
technique is complicated by two aspects of the IP protocol [23]. First, it can be easy for an
attacker to spoof source IP addresses. Second, one cannot know the full end-to-end path
of a packet. SDN presents a solution to these shortcomings, thanks to its holistic view of
the entire network. Additionally, SDN makes it possible to organize a set of OpenFlow
switches through a single controller, allowing the centralization of the network control
plane. This centralization makes it more viable to trace the end-to-end path of a packet, as
the controller has a global vision of the network [24].

Deep-learning (DL) algorithms are used for threat detection, bandwidth optimization,
power efficiency, and network traffic management. In machine learning, data are of the
utmost importance for decision-making, as opposed to specific conditions presented by the
algorithm [25]. DL algorithms are classified into three types: Supervised, unsupervised, and
reinforcement learning. In supervised learning, labeled data are utilized for classification
and regression. Unsupervised learning focuses on the classification of unlabeled data
into distinct classes [26]. This work is focused on investigating the use of two common
deep-learning techniques, LSTM and CNN, and their integration with an autoencoder.
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4. Proposed Model Structure

The proposed DDoS detection model presents the implementation of SDN along with
a method using deep learning to classify network traffic and construct a classification
model. The proposed model includes a 2-hidden-layer autoencoder network with sigmoid
activation functions, as shown in Figure 1. Model testing is carried out using the intrusion
detection evaluation dataset ISCXIDS2012 [27], as recommended in [28]. During attack
simulations, the controller routes the traffic entering the SDN platform by modifying the
flow tables. By examining the flow table’s rules, the controller can decide whether to
forward, drop, or block traffic, employing machine-learning algorithms to determine the
optimal routing path. The algorithm provides a knowledge base for decision-making when
classifying new flow instances, taking information from previously known classes in the
supervised learning portion.
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In supervised learning, the input-to-output relationship is modeled in two phases:
Training and examination. In training, the classification model is constructed by analyzing
the training dataset during the learning phase, i.e., the training process. Using the ‘TCP-
dump’ networking tool, data in the form of ‘pcap’ files are captured in real-time. This
allows for labels to be added to network traces in real-time, indicating that these traces
can then be used for training. During the testing phase, new instances are classified using
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the model developed during the training phase. The mapping between active and output
network traffic is determined using the supervised learning algorithm. The first obstacle to
network traffic classification is obtaining a labeled dataset. Using a portion of the data as a
training set (e.g., 80% for training) and the remainder as a testing set (e.g., 20% for testing)
is one solution. The second obstacle is the possibility of newly generated network traffic
to not belong to known traffic classes. The third obstacle is classifying traffic in real-time,
i.e., during the online mode. Based on [29], the following flow instance data can be used to
train a DL algorithm:

• Source IP, as well as destination IP along with port number;
• The protocol type (TCP, UDP, or ICMP) and header length;
• The number of packets transmitted at every switch;
• The number of packets received at each switch;
• The packet count (the number of packets within each flow).

In SDN infrastructure, the controller is an agent. The controller monitors the network
status to make decisions regarding data forwarding:

• Feature extraction through normalization and autoencoder;
• Training the model using deep neural network;
• Classifying the traffic for one of the two classes: Normal and DDoS.

An autoencoder is a feedforward neural network that has one or more hidden layers.
It is a type of unsupervised neural network, where the network attempts to match outputs
to input vectors as closely as possible. Additionally, it can be used to generate higher or
lower dimensionality representation of inputted data. The use of unsupervised learning of
compressed data encoding makes neural networks extraordinarily versatile. In addition,
these networks can be trained one layer at a time, which minimizes the computational
resources needed to design an effective model [30]. If the hidden layers are less dimensional
than the input and output layers (as shown in Figure 2), then the network will be used for
data encoding (as it allows for compression). Multilayered autoencoders can be trained
in series, allowing for the gradual compression of information, creating what is called a
stacked autoencoder [31].
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The self-encoding model consists of input, hidden, and output layers. The flow table
feature vector is [32]:

xi =
[
xi1, xi2, xi3, . . . ., xij

]T

where i represents the i-th flow table feature vector, and j represents each flow table feature.
The vector contains j features. The hidden layer encodes and compresses the input feature
vector of the flow table according to Equation (1) [33]:

encoder = W1xi + b1 (1)

where W1 is the weight connecting the input layer and the hidden layer, xi is the input
feature vector of the i-th flow table, and b1 is the bias of the hidden layer neuron.

After the encoding is completed and determined on the output result of the hidden
layer, the output layer is decoded and reconstructed to produce an output of the same size
as the input layer neuron, using Equation (2) [33]:

decoder = f (W2(encoder)i + b2) (2)

where f is the activation function, W2 is the weight between the hidden and the output
layer, (encoder)i is the stream table feature vector compressed by the hidden layer coding,
and b2 is the bias of the output layer neuron.

Finally, the goal of training the self-encoding model is achieved by minimizing the
loss function using Equation (3) [34]:

loss =
n

∑
i=1

(xi − (decoderi))
2 (3)

where n is the number of flow table feature vectors, xi is the input flow table feature vector,
and (decoderi) is the flow table feature vector output by xi through the self-encoding model.

To achieve dimensionality reduction and feature extraction when constructing the
model, we intend to use the deep stack auto-encoding model [35]. The deep stack auto-
encoding model is constructed by stacking the input layer and hidden layer of self-encoding
models’ layer by layer. Each self-encoding model generates a hidden layer. After the flow
table feature vector is learned by the first self-encoding model, the compressed abstract
features are obtained in its hidden layer, and the hidden layer of the first self-encoding
model is used as the input layer of the second self-encoding model. The learning of the
second auto-encoding model indicates that more abstract features are obtained after further
compression in its hidden layer. Then, the text of the second auto-encoding model is used
to achieve the purpose of dimensionality reduction and abstract feature extraction when
constructing the model.

When building a deep-learning model, the use of convolutional layers of different
depths will have a significant impact on the detection accuracy of the model, and training
the model leads to better performance. Two models have been investigated, one based on
multilayer convolutional neutral networks (CNN) with Max pooling, and the second based
on bidirectional long short-term memory (BDLSTM). We intend to use a batch size of 50 for
model training by default. We will test CNN models containing three convolutional layers,
two max pooling layers, one flatten, and two dense layers (as described in Table 1).

The BDLSTM model has one LSTM and four dense layers (the structure is provided in
Table 2).
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Table 1. CNN structure.

Layer (Type) Output Shape

Conv 2D (None, 48, 48, 50)
Max Pooling (None, 24, 24, 50)

Conv 2D (None, 22, 22, 64)
Max Pooling (None, 11, 11, 64)

Conv 2D (None, 9, 9, 64)
flatten (Flatten) (None, 5184)

Dense (None, 64)
Dense (None, 1)

Table 2. BDLSTM Structure.

Layer (Type) Output Shape

Dense (None, 18, 64)
Bidirectional (None, 128)

Dense (None, 32)
Dense (None, 16)
Dense (None, 12)
Dense (None, 1)

5. Evaluation Metrics

Metrics commonly used for evaluation include training accuracy, validation accuracy,
recall, precision, F1-score, and the confusion matrix. These metrics are calculated using the
following equations [36,37]:

1. Training/validation accuracy: This metric measures the percentage of true detections
through total traffic trace. It is computed as follows:

Trained/validate Accuracy =
TP + TN

TP + TN + FP + FN
(4)

where TP is the (true positive), which is the number of anomaly records that is correctly
classified. TN is the (true negative), which represents the number of normal records
that is correctly classified. FP is the (false positive), which is the number of normal
records that is incorrectly classified. FN is the (true negative), which represents the
number of anomaly records that is incorrectly classified.

2. Recall: This metric is used to show the percentage of predicted intrusions against all
intrusions presented. The aim is to achieve higher recall values. It is computed using
the following equation:

Recall =
TP

TP + FN
(5)

3. Precision: This metric is used to show the many intrusions predicted by the intrusion
detection system (NIDS), which are actual intrusions. The aim is to achieve higher
precisions than the lower false alarms. It is computed using the following equation:

Precision =
TP

TP + FP
(6)

4. F1-score: This metric attempts to better measure the accuracy of an intrusion detection
system (NIDS) by considering both the precision and recall. The aim is to achieve
higher F1-scores. It is computed as follows:

F1-Score =
2 × Precision × Recall

Precision + Recall
(7)
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Using the confusion matrix (CM), all of the above metrics can be obtained, as well as
receiver operating characteristics (ROC).

6. Results and Discussion

The model was tested using the ISCXIDS2012 dataset, and then using simulation
topology for the generation of normal and DDoS attacks.

6.1. Test Using ISCXIDS2012

The model was tested to observe whether it could detect DDoS attacks from the
ISCXIDS2012 dataset. The input parameters are 50,000 for regular traffic and 50,000 for
DDoS attacks, in which each involves a 50,000 flow status interval. The data were split into
60% for training, 20% for validation, and 20% for testing. Attacks were labeled with 1 and 0
for the regular traffic, and the model was trained for 20 epochs (Table 3; Figure 3).

Table 3. Results of tests using the ISCXIDS2012 dataset for three models.

Network Loss Accuracy Val. Loss Val. Accuracy

ANN-Autoencoder 0.5842 0.6612 0.5641 0.6484
CNN-Autoencoder 0.1027 0.9554 0.5907 0.6279

BDLSTM-Autoencoder 0.0388 0.9935 0.0624 0.9930
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The single autoencoder model was less accurate in both training and validation,
achieving 64.05% for training and 62.11% for validation. The CNN-autoencoder model
suffered from overshooting, in which the training accuracy reached a high of 95.54%, while
the validation accuracy was around 61.14%. The BDLSTM-autoencoder model achieved
the highest result with a high of 99.35% in training and 99.30% in validation, in which the
two are very close. Based on these results, we selected the BDLSTM-autoencoder model as
the primary DDoS classifier, subject to more testing in the future.

6.1.1. Effect of Data Splitting

The effect of splitting on DDoS detection was investigated using train-test-validate
split in three different ways: (60-20-20), (70-15-15), and (80-10-10), as shown in Table 4.
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Table 4. DDoS detection results under the BDLSTM-autoencoder model for three different train-test-
validate data splits.

Network Accuracy Val. Accuracy Precision Recall F1-Score

(60, 20, 20) splitting 0.9935 0.9930 0.99 N
0.99 At

0.99 N
0.99 At

0.99 N
0.99 At

(70, 15, 15) splitting 0.9875 0.9826 0.98 N
0.99 At

0.99 N
0.98 At

0.99 N
0.99 At

(80, 10, 10) splitting 0.9927 0.9884 0.97 N
1.0 At

1.0 N
0.97 At

0.99 N
0.99 At

N: Normal traffic; At: DDoS Attack.

In Table 4 and Figure 4a–f, the tests found that splitting was not very influential on
the results, as no significant differences are found in accuracy and other metrics. However,
60-20-20 splitting achieved relatively more accuracy and a more stable result.

6.1.2. Effect of Activation Function in Output Layer Neurons

The effect of using different activation functions in output layer neurons of the
BDLSTM-autoencoder model on DDoS detection was investigated using sigmoid ReLU or
SoftMax (Table 5).
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Table 5. BDLSTM-autoencoder model DDoS detection results for four activation function models.

Network Accuracy Val. Accuracy Precision Recall F1-Score

Proposed model 0.9935 0.9930 0.99 N
0.99 At

0.99 N
0.99 At

0.99 N
0.99 At

ReLU 0.9554 0.6114 0.00 N
0.49 At

0.00 N
1.00 At

0.00 N
0.65 At

SoftMax 0.9935 0.9930 0.00 N
0.48 At

0.00 N
1.00 At

0.00 N
0.65 At

tanh 0.4920 0.5148 0.51 N
0.00 At

1.00 N
0.00 At

0.68 N
0.00 At

N: Normal traffic; At: DDoS Attack.

As shown in Figure 5 and Table 5, the experiments found that when the output layer
neurons use the sigmoid activation function, detection accuracy is better than when using
activation functions, such as ReLU, SoftMax, or tanh. The sigmoid function better solves
the linear bottleneck problem, and the resulting model is easier to train.

6.2. Test Using UNSW2018

The model was tested to observe whether it could detect DDoS attacks from the
UNSW2018 dataset [17]. The input parameters comprise 100,000 for regular traffic and
100,000 for DDoS attacks, in which each involves a 100,000 flow status interval. The data
were split into 80% for training and 20% for testing. Attacks were labeled with 1 and 0 for
the regular traffic, and the model was trained for 10 epochs (Table 6; Figure 6).

Similar to the previous dataset, the single autoencoder model was less accurate in
both training and validation, achieving 67.02% for training and 62.11% for validation.
The CNN-autoencoder model suffered from overshooting, in which the training accuracy
reached a high of 95.54%, while the validation accuracy was around 61.14%. The BDLSTM-
autoencoder model achieved the highest result, reaching a high of 99.95% in training and
99.94% in validation, in which the two are very close. Based on these results, we selected
the BDLSTM-autoencoder model as the primary DDoS classifier, subject to more testing in
the future.
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Table 6. Results of tests using the UNSW2018 dataset for three models.

Network Loss Accuracy Val. Loss Val. Accuracy

ANN-Autoencoder 0.5746 0.6453 0.5787 0.6512
CNN-Autoencoder 0.1338 0.9611 0.0880 0.986

BDLSTM-Autoencoder 0.0020 0.9995 4.9197 × 10−4 0.9994
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6.3. Comparison with Previous Work

The result of the proposed system was compared with some recent related works
using the ISCXIDS2012 dataset and UNSW2018 BoTIoT (Table 7).

Table 7. Comparison results between BDLSTM-autoencoder model and some recent works.

Ref Dataset Algorithm Accuracy Val. Accuracy Precision Recall F1-Score

Proposed model

IS
C

X
ID

S2
01

2 BDLSTM-Autoencoder 0.9935 0.9930 0.9978 N
0.9991 At

0.99 N
0.99 At

0.9981 N
0.9987 At

Dehkordi et al. [38]
Model 0. 8711 —- 0. 3708 N

0. 3574 At — 0.4580 N
0.5266 At

Naive Bayes 0.9584 —– 0.9156 —- 0.9116
Random Tree 0.9984 —– 0.9966 —- 0.9967

Proposed model

U
N

SW
20

18 BDLSTM-Autoencoder 0.9995 0.9994 0.95 N
0.99 At

0.94 N
0.99 At

0.95 N
0.99 At

Ivanova et al. [19] Model 0.9999 0.9999 0.8255 N
0.9999 At

0.6635 N
0.9999 At

0.7357 N
0.9987 At

Prasad et al. [20] Model 0.9999 0.9999 0.8772 N
0.9999 At

0.8255 N
0.9999 At

0.8197 N
0.9999 At

6.4. Test Using Dynamic Value

The OpenDaylight controller and Mininet emulator, which have been applied in the
adopted work, were performed on a PC with 16 GB RAM and an Intel Core i7 processor.
The Mininet emulator further tested the BDLSTM-autoencoder model’s ability to detect
DDoS attacks. A Scapy script inside Mininet generates UDP packets and spoofs the source
IP address of the packets. The protocol configuration was DP:0, TCP:2, ICMP:3. The input
parameters are shown in Table 8.

Table 8. Input parameters for network traffic implementation of an emulated test of the BDLSTM-
autoencoder model’s ability to detect DDoS attacks.
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7 10.0.0.3 10.0.0.10 247 24,206 535 41,000,000 2.53 × 1011 13 . . . 0 1 ICMP 2 35,897 31,370 0
7 10.0.0.12 10.0.0.17 122,751 7,119,558 410 808,000,000 4.11 × 1011 3 . . . 251 1 TCP 2 33,018,521 470,020,975 0
5 10.0.0.16 10.0.0.3 168,663 91,078,202 322 297,000,000 3.22 × 1011 5 . . . 545 1 TCP 1 6,115,457 144,666,612 0
6 10.0.0.12 10.0.0.7 605 59,290 620 214,000,000 6.20 × 1011 3 . . . 0 1 ICMP 3 65,744 135,525,618 0
4 10.0.0.2 10.0.0.8 35,970 38,344,020 78 820,000,000 7.882 × 1011 6 . . . 451 0 UDP 3 3236 3404 0
4 10.0.0.9 10.0.0.2 792 77,616 811 590,000,000 8.12 × 1011 5 . . . 0 0 ICMP 2 105,851 135,561,984 0

DeepInsight has been used to transform the data to a matrix format for CNN architecture.
Figure 7 shows converting non-image dataset to image dataset using the DeepIn-

sight methodology, the feature density matrix, and DeepInsight for train data shown in
Figure 7a,b. The green line consists of all feature data, while the red line represents the
extracted data in DeepInsight. Moreover, the blue dots feature denotes extracted data in
the density matrix.

The classification result is shown in Table 9, Figures 8 and 9.
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7. Conclusions

In this work, the BDLSTM-autoencoder model, which combines deep neural network
techniques with autoencoder-based feedforward neural networks, proved successful in
terms of detecting DDoS attacks in an SDN environment. The deep stack auto-encoding
model is constructed by stacking the input layer and hidden layer of self-encoding models’
layer by layer. Each self-encoding model generates a hidden layer. After the flow table
feature vector is learned by the first self-encoding model, the compressed abstract features
are obtained in its hidden layer. Then, the hidden layer of the first self-encoding model
becomes the input layer of the second self-encoding model. The learning of the second
auto-encoding model obtains more abstract features after further compression in its hidden
layer. Then, the auto-encoding model can be used to achieve the purpose of dimensionality
reduction and abstract feature extraction when constructing the model. Two deep-learning
models have been investigated, one based on multilayer convolutional neural networks
(CNN) with Max pooling, and the second based on bidirectional long short-term memory
(BDLSTM). In this article, two datasets that train and test DDoS attacks (ISCX-IDS-2012 and
UNSW2018) were compared with related works. Additionally, the data generated make
use of a Scapy script inside Mininet to create UDP packets and spoof the source IP address
of the packets.

The model-based BDLSTM-autoencoder achieved higher accuracy than the CNN
model. Dataset splitting had no significant effect on detection accuracy, although a 60-20-20
training, testing, and validation split was relatively better. The activation function in the
output layer highly affected both the stability and accuracy of detection, with sigmoid as
the best choice for model success. The ISCX-IDS-2012 dataset accuracy reached a high of
99.35% in training, 99.3% in validation, and 99.99% in precision, recall, and F1-score. In
addition, the UNSW2018 dataset accuracy reached a high of 99.95% in training, 0.99.94%
in validation, and 99.99% in precision, recall, and F1-score for attacks and 99.5%, 99.4%,
and 99.5% in precision, recall, and F1-score, respectively. Moreover, the model achieved
great results with a dynamic dataset (using an emulator), reaching a high of 97.68% in
accuracy. However, further exploration on the use of autoencoders with other deep-learning
techniques is still necessary, as well as testing with different DDoS datasets.
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