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Abstract: At present, the interaction mechanism between the complex indoor environment and
pseudolite signals has not been fundamentally resolved, and the stability, continuity, and accuracy of
indoor positioning are still technical bottlenecks. In view of the shortcomings of the existing indoor
fingerprint positioning methods, this paper proposes a hybrid CSI fingerprint method for indoor
pseudolite positioning based on Ray Tracing and artificial neural network (RT-ANN), which combines
the advantages of actual acquisition, deterministic simulation, and artificial neural network, and
adds the simulation CSI feature parameters generated by modeling and simulation to the input of the
neural network, extending the sample features of the neural network input dataset. Taking an airport
environment as an example, it is proved that the hybrid method can improve the positioning accuracy
in the area where the fingerprints have been collected, the positioning error is reduced by 54.7%
compared with the traditional fingerprint positioning method. It is also proved that preliminary
positioning can be completed in the area without fingerprint collection.

Keywords: CSI fingerprint; ANN; pseudolite; ray tracing; indoor positioning

1. Introduction

Compared with the outdoor open free space, the indoor channel environment and
spatial topology are more complex, and the GNSS space signal service cannot be effectively
covered in the indoor environment due to the attenuation of building occlusion. A pseu-
dolite (PL) is a ground navigation transmitter that can transmit GNSS-compatible signals.
In an indoor environment, pseudolites transmit the signals similar to the space satellite
signals to the user terminal through the transmitting antenna. For location prediction,
indoor and outdoor continuous positioning services can be provided through software
upgrades without changing the existing hardware of smart terminals on the market [1–3].

However, in the indoor environment, the pseudolite signal will produce propagation
effects such as path loss and multipath fading under the influence of multipath propagation
and shadow shading. The mature theoretical methods of traditional GNSS positioning
are not fully applicable for indoor pseudolite positioning. The well-known distance-
based localization techniques, such as Time of Arrival (TOA), Time Difference of Arrival
(TDOA), and Angle of Arrival (AOA) [4], do not work well in complex indoor environments.
Fingerprint-based localization methods are not limited by line-of-sight (LOS), and have
the advantages of low cost, high accuracy, and good stability, so they are widely used. The
pros and cons of different indoor localization technologies such as AoA, ToF, RTOF, and
RSS are discussed in reference [5], and several common fingerprint matching methods are
also introduced in this article.

Fingerprint localization has been extensively studied by researchers. An indoor
localization approach is presented in reference [6], which utilizes the magnetic data from
smartphone magnetic sensors to localize a pedestrian. The authors train a convolutional
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neural network to recognize the indoor scene, and build a database of magnetic field
patterns to lower the device dependence. Reference [7] proposes a method using the
intersection area of AP to calculate the user’s position, which alleviates the influence of
human body loss on the positioning accuracy and reduces the device’s dependence on the
fingerprint database. Reference [8] proposes an indoor fingerprint positioning sensor fusion
framework that combines Wi-Fi RSSI signals, smartphone sensors, and the PDR algorithm,
which shows reasonable localization accuracy with fewer IMU sensor errors. The authors
of [9] propose an algorithm that utilizes high-level features extracted by deep learning,
extreme learning machines, and autoencoders to improve localization performance in
feature extraction and classification, while increasing the amount of training data to improve
localization performance. The authors of [10] use the K-Nearest Neighbor (KNN) algorithm
to study the accuracy of wireless fingerprint localization and compare its performance with
other fingerprint localization algorithms. Reference [11] proposes an indoor positioning
algorithm that combines fingerprint positioning and dynamic prediction. The proposed
algorithm can alleviate the influence of received signal strength (RSS) fluctuations and has
better positioning accuracy and stability.

In addition to the above-mentioned RSS, the data form currently obtained based
on indoor positioning fingerprints also includes channel state information (CSI). RSS
represents the signal strength value superimposed at the receiving point. When it is used
as the only fingerprint feature, much useful information such as phase are ignored, so that
the propagation characteristics of the signal in the channel are not well-reflected. RSS can
only achieve ideal results in some simple environments, and CSI is more stable than RSS in
traditional indoor environments. CSI contains both amplitude and phase information, and
can provide richer frequency domain information than single-valued RSS. In conclusion,
CSI has better stability and location sensitivity than RSS, which provides a new idea for
achieving a more robust and accurate indoor positioning effect.

Reference [12] proposes an indoor fingerprint positioning method based on carrier
phase difference, which uses GPS/BDS-compatible satellite signals transmitted by pseu-
dolite base stations, compared with RSS fingerprints, the positioning accuracy is greatly
improved. Reference [13] proposes a localization algorithm that combines RSS and CSI.
The algorithm selects high-correlation RSS and CSI based on deep learning to build a
fingerprint library, which improves the localization accuracy. Reference [14] proposes a
localization method using autoregressive (AR) modeling entropy of CSI magnitude as a
location fingerprint, which not only has the advantage of simple structure, but also retains
location-specific statistical channel information. The experimental results show that the
method significantly improves the localization performance. Reference [15] constructs a
fingerprint database based on CSI values, further reduces its dimensionality by using a
multi-dimensional scaling algorithm, and then uses KNN to obtain the estimated target
location. Reference [16] proposes an EKF ranging scheme based on CSI and RSSI, which
solves the ranging accuracy problem under high-load APs. The experimental results show
that the method effectively improves the accuracy in an indoor environment.

Two methods are widely used to obtain CSI, one is a statistical method based on actual
channel measurement data, and the other is a mathematical method based on the accurate
calculation of electromagnetic data. The first method is based on actual measurement
data and has poor adaptability to different environmental characteristics, while the second
method relies on ideal simplifications and assumptions about the environment, which
brings an irreparable deviation from the actual situation. In general, deterministic methods
are more accurate than statistical methods because they are not affected by a single acquisi-
tion error. But the deterministic model requires detailed prior environment information
(3D map or scene model), resulting in high computational complexity.

Fingerprint-based indoor positioning technology aims to find the functional relation-
ship between eigenvalues and positions through known CSI information, and predict
indoor positions online through matching technology. In a broad sense, neural networks
can be introduced wherever there is a prediction, classification, or control problem [17,18].
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In reference [19], a deep neural network is used for indoor positioning based on the mag-
netic field. The neural network plays an important role in mitigating the influence of
equipment heterogeneity and improving indoor positioning accuracy. As an efficient and
accurate learning matching algorithm, neural networks can process fingerprint information
to achieve more accurate positioning effects. This is due to two important advantages: the
first is that the neural network is composed of interconnected neurons and can be used
to model highly distributed and highly parallel problems; the second is that the neural
network can learn functional relationships on the basis of the problem to be solved. At
present, researchers usually focus on the improvement of network architectures and lateral
comparisons of various machine learning methods [20–23], and there are relatively few
studies on the diversity and multidimensionality of neural network inputs.

In summary, the CSI fingerprint localization method based on the neural network
can more accurately describe indoor environment characteristics and realize real-time
localization. However, most of the data sets used for training are actually collected data, and
there are two major limitations as follows: (1) Location problem of unknown environment.
The positioning technology using the actual collected fingerprints based on a controlled
experimental environment, the positioning service will not be able to be provided in the
uncollected area; (2) In order to achieve full coverage of the indoor environment, multiple
APs are needed as beacons, and the positioning accuracy is related to the density of test
points. High-precision location service in large indoor venues means huge testing workload,
and is greatly affected by a single acquisition error. Some researchers use the propagation
model to calculate the virtual APs to reduce the deployment of the actual Aps [24–27].
However, errors caused by simplifying different spatial propagation parameters are still
inevitable. On the other hand, the fingerprint feature collection at the test point needs to
actually measure the information of the surrounding APs, and the workload cannot be
reduced accordingly. Some researchers use the existing sparse fingerprint database data to
generate a dense fingerprint database by interpolation algorithm, but it may fail in some
large scene areas (such as shopping malls, gymnasiums, etc.) since the signal features
of these sparse reference points cannot represent the entire positioning area. Moreover,
the running time of the algorithm will increase rapidly with the increase of the number
of reference points, resulting in that the real-time performance of the positioning cannot
be guaranteed.

This paper proposes an indoor pseudolite simulated CSI fingerprint positioning
method that combines measured data, deterministic calculation data, and an artificial
neural network. The channel characteristic parameters obtained by the deterministic calcu-
lation method are used as the training set of the neural network together with the actual
measurement data. The extended input set improves the positioning accuracy in the area
where the fingerprints have been actually collected, and can also complete the preliminary
positioning in the area where the fingerprints are not actually collected. The main work of
this paper is summarized as follows:

1. Selecting position-specific CSI parameters, and deriving the conversion relationship
between the simulation parameters of the ray tracing method and the actual CSI parameters;

2. An indoor pseudolite CSI fingerprint positioning method combining measured data,
deterministic calculation data, and artificial neural network were proposed. On the basis of
the original fingerprints input, the simulation feature parameters were added, expanding
the sample features of the neural network input dataset.

3. Build an indoor test environment in the arrival hall of an airport, and verify the
positioning performance of the proposed algorithm in a large indoor environment.

The rest of the paper is organized in the following manner. Section 2 presents an
overview of the indoor pseudolite fingerprint positioning method from the aspects of
fingerprint feature selection and fingerprint positioning principle. Section 3 introduces the
basic principle and calculation formula of the ray tracing method. Section 4 describes the
proposed approach while Section 5 details the experiment setup and analyzes the results.
Finally, conclusions are given in Section 6.
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2. Indoor Pseudolite Fingerprint Positioning Method
2.1. Selection of Feature Fingerprints for Pseudolite Observations

The original observation information output by the pseudolite receiver includes the
pseudorange, carrier phase, integral Doppler, carrier-to-noise ratio, and other observational
values of each epoch [28]. The location specificity and stability of each observation are
different and need to be analyzed and selected.

(1) Pseudorange observations
Pseudorange observation is the most basic observation in GNSS positioning, and is a

necessary condition for absolute single-point positioning. In complex indoor environments,
it can directly reflect the distance between the pseudolite transmitting antenna and the
receiving antenna, but the pseudorange measurement value has low precision and poor
stability due to the influence of multipath propagation.

(2) Carrier Phase Observations
The carrier phase observation is another basic observation output by the receiver,

which represents the difference between the phase of the carrier signal reproduced by the
receiver and the phase of the carrier signal received by the receiver. The carrier phase
difference between channels is more stable than the pseudorange difference, and is basically
a constant value, that is, the distance difference between the pseudolite antennas and the
receiving antenna. Carrier phase difference can eliminate the effects of receiver clock
differences, but cannot eliminate the effects of space-specific multipath, so it can be added
to the signature database as an information source.

(3) Carrier-to-noise ratio Observations
The carrier-to-noise ratio (C/N0) observation is the ratio between the received carrier

signal strength and the local noise, describing the quality of the signal received by the
receiver. Although the observed value of C/N0 has a certain relationship with the signal
processing capability and signal bandwidth of the receiver itself, C/N0 can clearly reflect
the distance or occlusion between the receiver and the transmitter when the same receiver
is used to receive the same system signal.

Since no dynamic measurements are involved, Doppler observations are not con-
cerned. Considering the convenience of measurement and the stability of data, we use
the simulating channel parameters TOA and RSS, corresponding to the carrier phase and
C/N0 in the measured CSI data as eigenvalues for position prediction. Through actual
measurements in an indoor environment, the data stability and location specificity are
shown in Figure 1. It can be seen that both have good spatial resolution and stability, clearly
indicating that these two parameters can be used as the input of the neural network.

2.2. Positioning Principle

Pseudolite observational feature fingerprint matching positioning technology is based
on the correlation between the original observational information output by the receiver
and the indoor physical location. Specifically, positioning is performed by using different
signal responses reflected by multi-dimensional observations at different indoor locations.
Figure 2 is a schematic diagram of the principle of pseudolite fingerprint positioning.

The positioning process is mainly divided into two phases: offline data acquisition and
online position calculation. In the offline collection phase, sample collection is performed
at the reference point, the feature values of each sample parameter are extracted, and the
function mapping relationship between them and the physical reference position is learned
to construct a feature fingerprint database. In the online phase, the real-time observations
of the receiver are input into the feature fingerprint database, and the positioning result is
obtained through matching algorithm [29–31].
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Figure 1. Location specificity and stability of carrier phase difference and C/N0. (a) Location
specificity and stability of carrier phase difference. (b) Location specificity and stability of C/N0.

Figure 2. The principle of pseudolite fingerprint positioning.
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Figure 3. Establishment of location fingerprint database.

(1) Offline phase
The correspondence between location and fingerprint is established in the offline phase,

as shown in Figure 3. The space area is gridded, and pseudolites are deployed around
the service area to ensure that all user receivers can receive the pseudolite signal. At each
grid point, the channel observations from each pseudolite receiver are obtained through
data sampling over a period of time. The grid point coordinates and the corresponding
CSI fingerprints form a fingerprint feature database. This process is sometimes called the
labeling stage, and this fingerprint database is sometimes called a signal map.

(2) Online Phase
In the online positioning phase, we compare and calculate the CSI eigenvalues of

the to-be-located point with the eigenvalues in the fingerprint database, and obtain a set
of closest eigenvalue parameters in the fingerprint database to obtain the corresponding
position coordinates, thereby completing the positioning of the receiver. The matching
method used in this paper is the nearest neighbor selection method:

First calculate the Euclidean distance between the feature value group (F1, F2, . . . , Fn)
of the point to be located and the reference feature value group in the fingerprint database,
the details are as follows:

Li =

√√√√ n

∑
j=1

∣∣Fj − Fij
∣∣2 (1)

where Li is the Euclidean distance between the point to be located and the ith reference
point in the fingerprint database. Fj is the eigenvalue of the jth dimension in the eigenvalue
group of the point to be located, Fij is the eigenvalue of the jth dimension of the ith reference
point in the eigenvalue fingerprint database. i = 1, 2, . . . , m, j = 1, 2, . . . , n.

Then select k(k ≥ 2) reference points from near to far in Li, the position coordinates of
the point to be located can be estimated from these k reference points:

(x̂, ŷ) =
1
k

k

∑
i=1

(xi, yi) (2)

where (x̂, ŷ) is the estimated coordinate of the point to be located; (xi, yi) is the coordinate
of the ith point in the k nearest reference points.

The weighted k-nearest neighbor (WKNN) classification algorithm assigns a weight
to each nearest neighbor reference point coordinate, the weight value is obtained by
Gaussian transformation from the distance Li between the to-be-located point and the
nearest reference point:

Wki = ae
(Lki−Limin)

2

2b2 (3)
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where Wki is the weight of the ith point in the k nearest reference points, Lki is the distance
from the to-be-located point to the ith point in the k nearest reference points, Limin is the
minimum distance from the to-be-located point to the ith point in the k nearest neighbor
reference points. a is the maximum weight value, which is usually 1; b is the half-peak
width, which can be adjusted according to the value of k.

The coordinates of each adjacent reference point are combined with the corresponding
weight, and the coordinates of the point to be located can be obtained by the WKNN algorithm:

(x, y) =
∑k

i=1 Wki × (xi, yi)

∑k
i=1 Wki

(4)

3. Ray Tracing
3.1. Algorithm Principles

Ray Tracing (RT) is a method of simulating high-frequency electromagnetic waves in
the research environment into light waves. Combined with the consistent diffraction theory,
it is widely used to study the propagation of high-frequency electromagnetic waves [32–35].
On the premise that the signal frequency belongs to the high frequency band, the signal can
be regarded as a ray propagating along a straight line in space and interface. The pseudolite
signal adopts the L frequency band, which belongs to the ultra-high frequency band, so it
conforms to the theoretical premise of ray tracing.

Specifically, the pseudolite is abstracted into a point source that emits electromagnetic
rays in all directions, and electromagnetic parameters are calculated for each propagating
ray by electromagnetic calculation methods, as shown in Figure 4. After the ray reaches
the receiving end R, the detailed information such as the arrival amplitude, propagation
delay relative to the first path, arrival phase, and arrival angle of each ray is obtained, then
the vectors of all arriving rays are superimposed to obtain the simulation data of indoor
pseudolite signals at the receiving point.

Figure 4. Mirror ray propagation process.

Ray tracing is a deterministic calculation method using Maxwell’s equations, all
electromagnetic rays are traced back to the emission source according to the imaging theory,
and the computational efficiency of the model is highly dependent on the complexity of the
environment. The direct transmission of rays is also called LOS. When the rays are reflected
on the surface of the object, the direction of the generated signal rays is determined by
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the reflection and refraction characteristics of the surface material [36], and the energy is
calculated by the Fresnel equation. Similarly, when rays penetrate an object (transmission)
or diffract and scatter at the edges of the object, the Fresnel equations are combined with
imaging theory to determine the energy and direction of the resulting rays.

3.2. Typical Characteristic Parameters

(1) Received power [37–40]
The total received power at the receiving point is:

PR =
NP

∑
i=1

Pi (5)

where Np is the number of paths and Pi is the time-averaged power of the ith path.

Pi =
λ2β

8πη0

∣∣Eθ,igθ(θi, φi) + Eφ,igφ(θi, φi)
∣∣2 (6)

where λ is the wavelength and η0 is the impedance of free space (377 Ω), Eθ,i and Eφ,i
are the θ and φ electric field components of the ith path at the receiving point, θi and φi
indicates the direction of arrival.

The direction of arrival of the signal at the receiving point is given by:

gθ(θ, φ) =
√
|Gθ(θ, φ)|ejϕθ (7)

where Gθ is the θ component of the receiving antenna gain and ϕθ is the relative phase
of the θ component of the electric field in the far region. β is the overlapping part of the
frequency band of the transmitted signal ST( f ) and the frequency band that the receiver
SR( f ) can receive:

β =

∫ fT+(BT/2)
fT−(BT/2) ST( f )SR( f )d f∫ fT+(BT/2)

fT−(BT/2) ST( f )d f
(8)

where fT and BT are the center frequency and bandwidth of the transmitted waveform,
respectively. At present, the narrowband waveforms are assumed to be flatly distributed:

S( f ) =
{

1 f0 − B
2 < f < f0 +

B
2

0 others
(9)

where f0 is the center frequency and B is the bandwidth.
The total received power is:

PR =
λ2β

8πη0

∣∣∣∣∣
Np

∑
i=1

[
Eθ,igθ(θi, φi) + Eφ,igφ(θi, φi)

]∣∣∣∣∣
2

(10)

(2) TOA
The arrival time of each propagation path is:

ti =
Li
c

(11)

where Li is the total length of the ith electromagnetic ray path, and c is the speed of light.

4. Fingerprint Localization Method Based on RT-ANN

The neural network architecture for training fingerprint positioning in the existing
public literature is generally shown in Figure 5, and the data of the input layer comes from
the CSI information measured in the environment [41–45]. This approach leads to many



Future Internet 2022, 14, 235 9 of 18

inherent errors and inconveniences: (1) There are many obstacles in the indoor environment.
The material and thickness of walls, floors, doors and windows have a great impact on the
propagation of indoor pseudolite signals, and the process of environmental characterization
is more complicated; (2) There are inherent errors that cannot be eliminated by relying
only on measured data for model training, such as personal factors of testers, errors of the
receiver itself, errors of environmental dynamic changes, etc. (3) Only relying on the actual
measurement to establish a fingerprint database, the positioning coverage and positioning
accuracy are limited by the collection workload.

Figure 5. ANN network structure.

In view of the feasibility of the artificial neural network for channel modeling and the
shortcomings of statistical fingerprint input data, a hybrid algorithm of artificial neural
network and ray tracing (RT-ANN) is designed in this paper, which uses the characteristic
parameters generated by deterministic modeling to improve the original artificial neural
network, that is, the location of the receiving point of an indoor scene is jointly trained and
predicted by the lower density measurement data set and the higher density simulation
data set of the area.

The C/N0 in the measured data corresponds to the received power in the simulation
parameters. The received power at the receiving point is obtained through ray tracing
deterministic simulation and then converted to C/N0. The conversion process is as follows.

The signal-to-noise ratio at the receiving point is expressed as:

SNR =
S

N0Bn
(12)

SNR(dB) =
C

N0(dB·Hz)
− Bn(dB) (13)

where Bn is the filter bandwidth of the receiver, S is the received signal power, N0 is the
noise power spectral density.

The conversion relationship between C/N0 and received power is as follows:

C
N0

= 10lg
(

S
N0Bn

)
+ Bn(dB) (14)

As for carrier phase positioning, the distance between satellite S and receiver R can be
described by:

ρ = λ(ϕS − ϕR) (15)
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where ρ = c·TOA, c is the speed of light, λ is the carrier wavelength, ϕ is the carrier phase.
It is more accurate to use the carrier phase difference considering the influence of the
clock difference:

∆ρ = λ· 4 (ϕS − ϕR) = c·TDOA (16)

Since the actually measured carrier phase has the strongest correlation signal after
demodulation, the simulated carrier phase also corresponds to the path with the strongest
power; thus, Equation (16) can be written as:

4 (ϕS − ϕR) =
c
λ
·(TOASmax1 − TOASmax2) (17)

The proposed algorithm framework and process are shown in Figure 6.

Figure 6. RT-ANN network structure.

For accurate representation of more complex environments, the deterministic simula-
tion parameters of the training data set are added. Since the deterministic modeling process
comprehensively considers information such as the layout and material of the building,
the environmental characteristics can be described more accurately. On this basis, it is
considered to increase the number of hidden layers of the original neural network, so as
to attain multi-level abstraction of input features, especially a fully connected Multilayer
Perceptron (MLP) between different layers can obtain a more robust channel model. In
addition, the forward modeling process based on deterministic computing can just elim-
inate random factors such as personal factors of testers, errors of the receiver itself, and
errors of environmental dynamic changes. The specific implementation steps are described
as follows:

(1) CSI fingerprints collection is performed in the actual environment to obtain the
measured values of carrier phase difference and C/N0 at relatively sparse test points;

(2) Modeling the environment based on a 3D map or dimensional material information
of the actual environment, and then simulated CSI information such as signal arrival power
and arrival delay at relatively dense test points can be calculated by ray tracing. The density
of test points can be flexibly set according to the required accuracy.

(3) After the simulation data is converted by Equations (12)–(17), it is used as the input
of the neural network together with the measured data.

(4) The following Algorithms 1 is used for offline model training.
The essence of an artificial neural network is to learn by adapting and modifying the

weights of internal connections based on the input and desired output. During the learning
process, the network can adjust the input parameters by choosing weights and biases with
the goal of minimizing the loss function. Different from the past, the training data of this
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network is not only the measurement data, but also the simulation data calculated by ray
tracing, which expands the sample characteristics of the dataset.

The input layer contains two input eigenvectors, the corresponding measurement
parameters are C/N0 and carrier phase, and the corresponding simulation parameters
are RSS and TOA. The neural network has four hidden layers, the first hidden layer
contains 30 hidden neurons, the second layer contains 20 hidden neurons, the third layer
contains 10 hidden neurons, the fourth layer contains 8 hidden neurons, the output layer
contains two neurons, which are the coordinates (x, y) of the positioning position. During
training, the algorithm’s accuracy threshold and validation checks have an impact on the
training process. The training process terminates once the prediction accuracy is satisfied
or the error metric of the test set does not decrease within a certain number of consecutive
iterations. The model training process is shown in Algorithm 1, where Reconstruction loss
and Classification loss and Kullback-Leibler loss are the loss functions.

Algorithm 1: Model Training

Input: Pseudolite Observation dataset: X1 =
[

X(1)
1 , X(2)

1 , . . . , X(n)
1

]
, Ray Tracing simulation

dataset X2 =
[

X(1)
2 , X(2)

2 , . . . , X(n)
2

]
, n is the number of pseudolites.

Location label: y.
Output: Representation: z and parameter: φ; θ, Classification model: Modelclassi f ier{(z, y)}

1: Initialization Parameters: Number of neurons for all layers;
The number of iterations (epochs);

2: while {φ, θ} not converged do
3: D ← getMinibatch()
4: µθ , θθ ← x, y ;
5: Sampling ε;
6: Sampling from the posterior z← qφ(z|x, y ) using the flowing

Reparameterization trick: z = µθ + σθ · ε;
7: Calculate the gradient of the variational lower bound L (Reconstruction loss and

Classification loss and Kullback-Leibler loss);
8: Minimize L;
9: end while
10: while Classification model Training do
11: Fit ∀{x, y} ∈ D train Classifier Modelclassi f ier{(z, y)}
12: end while

5. Result
5.1. Environment Modeling

The actual measurement and simulation experiment area is the arrival hall of an
airport. The scene description is shown in Table 1. Six pseudolites are arranged on the
roof in an equally divided circle. There are 6 load-bearing columns on the central axis of
the hall, and their cross-section is a square with a side length of 0.5 m, the material of the
wall load-bearing column is concrete, the ground material is ceramic tile, the pseudolite
transceiver antenna is an an omnidirectional antenna, and the store compartment has been
simplified. There are two experimental areas. Text area 1 is an area where the fingerprints
have been collected. In this area, manual CSI fingerprints collection is performed first,
and then deterministic modeling and simulation are carried out to expand the fingerprint
dataset, there are 400 sampling points with an interval of 0.25 m; Text area 2 is an area
without fingerprints collection, and only the simulation fingerprint data is used to train
and predict the position, there are 100 simulated sampling points with an interval of 0.5 m.
The experimental environment and method are shown in Figure 7.
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Table 1. Simulation calculation parameters for airport model.

Parameter Text Area with
Fingerprints Collection

Text Area without
Fingerprints Collection

scene model size 100 m× 20 m× 4.5 m 100 m × 20 m× 4.5 m
bearing pillar size 0.5 m × 0.5 m × 4.5 m 0.5 m × 0.5 m × 4.5 m

wall material/permittivity/conductivity concrete/5/0.0015 concrete/5/0.0015
floor material/permittivity/conductivity tile marble/6/10−8 tile marble/6/10−8

signal frequency 1561.098 MHz 1561.098 MHz
antenna type omnidirectional omnidirectional

receiving area size 5 m × 5 m 5 m × 5 m
receiving point interval 0.25 m 0.5 m

transmitting power −70 dBm −70 dBm
number of reflections/transmissions/diffractions 3/1/1 3/1/1

ray interval 0.25 degree 0.25 degree

Figure 7. Experimental environment and method.

5.2. Fingerprint Data Generation

In the actual test, 25 position reference points with an interval of 1 m are selected to test
the positioning accuracy. In order to show the positioning error intuitively, an appropriate
relative coordinate system is established so that the x and y coordinates of the 25 reference
points are exact integers 1–5. As shown in Figure 7, in test area 1, the observation data of
six pseudolites are collected in real-time by the receiver at an interval of 1 m, the collection
time of each node is 30 s. The collected data is used as the input of the measured part of the
neural network after normalization processing.

In the simulating calculation process, there are multiple propagation paths between the
transmitting and receiving points. The direct path has the shortest transmission distance
and the strongest reaching power. With the increase of the propagation distance and
the number of reflection and transmission times, the signal transmission distance and
the corresponding transmission delay also increase, and the pseudolite signal power
attenuation is more serious until it is lower than the receiver signal power threshold.
As shown in Figures 8 and 9, the electromagnetic information of 400 test points in text
area 1 and 100 test points in text area 2 is obtained through 3D ray tracing calculation,
which is converted and normalized as the simulation input part. Due to space limitations,
Figures 8 and 9 show some examples of electromagnetic calculation results at 10 receiving
test points.
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Figure 8. Simulation result of RSS.

Figure 9. Simulation result of TOA.

5.3. The Location Result of the Area with Fingerprints Collection

The positioning data results of the two experiments are shown in Table 2. Figure 10
shows the test result of neural network positioning without simulation fingerprint data,
the root mean square positioning error is 1.0696 m, Figure 11 shows the test result of neural
network positioning with simulation fingerprint data, the root mean square positioning
error is 0.4850 m. By comparing the results qualitatively and quantitatively, it can be seen
that the improved artificial neural network adding deterministic simulation input features
reduces the positioning test error (the distance between the real position and the positioning
result is shortened), and the root means square error is reduced by 54.7%.
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Table 2. Positioning results of collected fingerprint area.

y

x
1 2 3 4 5

1
before (1.9830, 0.2349) (2.1571, 1.0887) (1.8036, 0.2219) (5.0260, 0.1302) (4.0807, 0.2075)
after (0.9059, 1.2780) (1.7449, 1.2948) (3.2997, 1.1568) (4.4700, 1.1110) (4.8133, 1.3478)

2
before (1.6671, 1.8230) (2.2034, 2.6458) (3.1488, 1.7992) (5.0661, 1.8178) (4.6179, 1.0020)
after (1.1044, 1.9267) (1.8790, 1.5387) (2.7085, 1.7319) (4.0649, 1.8837) (4.8270, 2.0046)

3
before (1.6171, 2.0356) (1.6278, 3.3335) (5.0012, 3.5755) (4.9678, 3.6350) (3.8882, 3.2848)
after (0.5948, 2.780) (1.7703, 4.000) (3.3963, 3.1220) (3.7177, 2.5306) (5.3400, 2.5079)

4
before (0.7725, 3.5277) (2.4902, 4.9436) (3.1220, 4.9431) (4.2499, 4.0586) (5.0921, 2.8164)
after (0.8360, 3.8335) (1.7156, 4.3727) (3.2457, 3.5751) (5.0010, 4.3576) (4.9925, 4.4191)

5
before (1.4846, 5.6723) (1.1861, 3.9457) (3.4669, 3.8620) (5.0229, 5.6108) (5.5693, 5.5765)
after (0.6448, 4.8669) (2.1337, 4.7858) (3.0364, 5.4668) (4.3620, 5.1035) (4.5519, 4.9107)

Figure 10. ANN test results without deterministic simulation input.

Figure 11. ANN test results with deterministic simulation input.

To compare the performance of different algorithms, we choose the commonly used
KNN and SVM methods in fingerprint localization, and methods in [10,13] to compare
with our method. The KNN and SVM model can be directly invoked through the deep
learning framework Keras library. Similarly, the positioning calculation is performed at
the 25 position reference points of test area 1 and compared with the true value points
measured by the total station. Figure 12 is the positioning straight line distance error, and
Figure 13 is the cumulative distribution function of the error. It can be seen that the root
mean square (RMS) error of our method is 0.4850 m and the maximum error is 1.06 m, of
which 92% are better than 1 m. Comparative experiments show that our method has higher
localization accuracy than other methods, the detailed error analysis is shown in Table 3.
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Figure 12. Comparison of positioning errors of different positioning algorithms.

Figure 13. Cumulative Distribution Function of errors from different positioning algorithms.

Table 3. Comparison of Location Accuracy of different fingerprint positioning algorithms.

Algorithm KNN SVM Yuan, Z. [10] Zhou, C. [13] Our Method

RMS error (m) 1.1821 1.0696 0.7714 0.9253 0.4850
95% error (m) 2.2727 1.8424 1.6194 1.4727 1.026

5.4. The Location Result of the Area without Fingerprints Collection

The results of the positioning data of the experiment are shown in Table 4. Figure 14 is
the location test result of test area 2, and the root mean square location error is 1.1237 m.
The results show that the rough positioning can be completed by simply relying on the
fingerprint positioning data generated by the simulation calculation, and it can also meet
the need of low-precision positioning without manual fingerprints collection.
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Table 4. Positioning results of uncollected fingerprint area.

y
x

1 2 3 4 5

1 (1.2377, 0.2349) (0.6923, 1.0887) (1.6501, 0.2219) (3.7950, 0.1302) (5.6715, 1.9023)
2 (2.8339, 1.8230) (1.5664, 2.6458) (3.0349, 2.2396) (3.8759, 3.0136) (3.7925, 1.3151)
3 (0.0412, 2.4235) (2.3426, 3.7335) (3.7254, 2.4245) (5.4897, 2.365) (5.7172, 3.2848)
4 (1.8622, 3.5277) (2.1784, 3.5315) (2.9369, 3.7992) (4.4090, 4.6586) (5.6302, 6.1836)
5 (1.3188, 4.3277) (2.7694, 6.0543) (3.7147, 3.8620) (5.4172, 5.6108) (5.4889, 6.1659)

Figure 14. Positioning results of the area without collected fingerprints.

6. Conclusions

In this paper, an indoor pseudolite CSI fingerprinting method based on ray tracing and
artificial neural network is proposed. According to the positioning requirements of large
indoor scenes, the method uses the characteristic parameters generated by deterministic
modeling to expand the input data set of an artificial neural network. The test environment
is built in the arrival hall of an airport, and the positioning performance of the method has
been tested and verified using the pseudolite positioning terminal developed by the State
Key Laboratory of Satellite Navigation System and Equipment. The results show that the
positioning accuracy is improved in the area where fingerprints have been actually collected,
preliminary positioning can also be completed in the area without fingerprints collection.

Our current work is still rather preliminary at this stage, mostly due to the fact that the
characteristics of simulated and measured CSI data are not sufficiently diverse. In future
work, we intend to propose and analyze more CSI features such as AOA observations
and Doppler observations. We also intend to apply this approach to dynamic localization
testing to improve pedestrian localization accuracy in large venues.
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