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Abstract: SCADA systems monitor critical industrial, energy and other physical infrastructures
in order to detect malfunctions, issue alerts and, in many cases, propose or even take remedial
actions. However, due to their attachment to the Internet, SCADA systems are, today, vulnerable to
attacks such as, among several others, interception of data traffic, malicious modifications of settings
and control operations data, malicious modification of measurements and infrastructure data and
Denial-of-Service attacks. Our research focuses on strengthening SCADA systems with cryptographic
methods and protection mechanisms with emphasis on data and messaging encryption and device
identification and authentication. The limited availability of computing power and memory in
sensors and embedded devices deployed in SCADA systems make render cryptographic methods
with higher resource requirements, such as the use of conventional public key cryptography such
as RSA, unsuitable. We, thus, propose Elliptic Curve Cryptography as an alternative cryptographic
mechanism, where smaller key sizes are required, with lower resource requirements for cryptographic
operations. Accordingly, our approach integrates Modbus, a commonly used SCADA communication
protocol, with Elliptic Curve Cryptography. We have, also, developed an experimental set-up in order
to demonstrate the performance of our approach and draw conclusions regarding its effectiveness in
real SCADA installations.

Keywords: Elliptic Curve Cryptography; SCADA; Modbus protocol; ICT security; TCP/IP protocol

1. Introduction

Supervisory Control and Data Acquisition or SCADA systems are industrial, automated,
supervision infrastructures based on information technologies which are embedded in
industrial installations as well as production lines to ascertain continuous correct op-
eration, enforce quality control and raise alarms in case of malfunctions or efforts of
malicious interference.

In general, interconnected SCADA system components are installed in critical parts of
industrial infrastructures, such as electricity grids, power generation stations, and nuclear
power reactors, in order to detect malfunctions and raise alerts for remedial actions. Most
importantly, for increased versatility and real time alerting capabilities as well as remote
control purposes, during the last decades SCADA systems are installed so as to be connected
to the Internet and the Internet of Things (IoT). This versatility, however, comes at the cost of
exposing SCADA systems and supervised infrastructures to all the cybersecurity threats
that beset the Internet. Thus, today, SCADA systems are vulnerable to attacks such as,
among several others, interception of data traffic, malicious modifications of settings and
control operations data, malicious modification of measurements and infrastructure data
and Denial-of-Service attacks.

Numerous SCADA system failures have been recorded because of a targeted attack
or a non-targeted (i.e., incidental) malware infection [1]. Except for accidental SCADA
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system infections by viruses their target was simple computers, there are also cases of
targeted attacks with software made specifically for SCADA. Such attacks are more recent
and are mainly aimed at impacting the physical world while, in parallel, they may also
target industrial espionage. The first such attack is in 2009, targeting several companies
(Shell, BP, Exxon). The virus that attacks these systems is Night Dragon, which belongs to
the category Remote Access Trojans [2]. His purpose was data theft and espionage through
e-mail theft. Then we have one of the most notorious targeted SCADA attacks which
attracted the attention of the security and safety research communities and organizations
and sparked the alert in SCADA system security. This attack was launched in 2010 by a
virus named Stuxnet and was aimed at an enriched uranium nuclear facility in Iran. The
purpose of Stuxnet was to intercept and modify data that was read from or written to PLCs
(Programmable Logic Controller- the heart of SCADA systems). In addition, Stuxnet aimed
at impairing the nuclear facility and cause devastating damage and, even, human life losses.
The result was the destruction of, almost, 1/5 of the nuclear centrifuges.

After this incident, the interest in securing SCADA systems, and not only the su-
pervised (by SCADA) physical establishment, increased considerably. In the years that
followed, more malware nodules resembling Stuxnet appeared (e.g., Flame and Duqu) [3],
some of which even using portions of Stuxnet’s code. After the incidents discussed above
(and several others) as well as the high cyberattack costs for the targeted organization, the
SCADA research community is engaged in strengthening SCADA systems with crypto-
graphic methods and cryptographic protection mechanisms with emphasis on data and
messaging encrypted protection and device identification and authentication. However, the
limited computation capabilities of many SCADA sensors and embedded devices as well
as the Internet/IoT connectivity, SCADA systems are vulnerable to numerous attacks [4].

Modbus is a data communications protocol for use with its PLCs (Programmable
Logic Controllers) and has become as a standard communication protocol. It is commonly
used and widespread of connecting industrial devices, such as IoTs and applications.
It supports communication among multiple devices connected to a network. Modbus
places few restrictions on the format of the data to be transmitted and the data use char-
acter via communication lines. However, it does not itself support security of both the
data and the commands it manages from interception, and apparently does not support
cryptography [5].

In order to address the weaknesses discussed above, our work provides the follow-
ing contributions:

• The deployment of the Modbus protocol in SCADA, although is particularly common,
has not been studied extensively from the point of view of data and application
security as well as IoT/sensor device identification and authentication. In particular,
the customary Modbus protocol does not provide end-to-end encryption facilities.
Such facilities are provided by our libraries as we demonstrate in what follows.

• Our approach targets one of the most critical aspects of today’s physical infrastruc-
tures which are interconnected on the Internet for remote surveillance based on
SCADA/Modbus-like systems: Cyber Physical Security (CPS). Our work enables
secure information exchange based on confidentiality, integrity and authentication of
involved information exchanges in installations such as smart grids, energy transmis-
sion lines, natural gas processing stations, nuclear plants etc. Our approach targets,
especially, the attached IoT/sensor devices which are, frequently, the weakest links in a
SCADA/Modbus deployment and, thus, the most attractive targets of cybercriminals.

• The IoT devices that area usually deployed in SCADA/Modbus installations are,
usually, inexpensive and open hardware in order to facilitate massive deployment and
easy application development. However, this leads to some inherent weaknesses with
respect to computational power, which may limit their ability to handle conventional
crypto algorithms due to the large parameter sizes they require. Elliptic curves are
particularly useful in this respect since they require much smaller key sizes than
conventional cryptosystems for achieving similar security levels. In other words,
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they require less memory and computation power from IoT/sensor devices than
conventional cryptosystems do. The major reason behind the increased security of
Elliptic Curve based cryptosystems, in comparison with conventional ones, is that the
discrete logarithm problem for elliptic curves appears to have exponential expected time
complexity, in contrast to general groups (e.g., multiplicative) which have a discrete
logarithm problem of subexponential time complexity. This characteristic of elliptic
curves leads to cryptosystems which possess similar security levels with conventional
ones but with much smaller key sizes, as we explain in Section 3.

• Our approach creates a new set of Modbus libraries which can replace, readily, all
Modbus installation existing today since they do not interfere with the client/server
application level (see Section 4 as well as the associated discussion therein). Moreover,
our approach extends the Modbus protocols to IIoT (Industrial IoT) devices in general.
We demonstrate this extension with an experimental setup on an IIoT device which
can be incorporated in any SCADA/Modbus installation (see Section 5).

In summary, our contribution is a fully compatible, “plug-in”, Modbus extension
fully compatible with existing installations which, also, incorporates IIoT/sensor device
security as part of the Modbus extension, owning to the flexibility and small computational
requirements of Elliptic Curve Cryptography. Our work also provides a fully working
proof of concept of the extended library in an experimental set-up incorporating both server
and IIoT devices.

In this paper we describe a fully developed secure SCADA environment based on
extensive cryptographic extension of the Modbus libraries. The parts of the mechanism are
key generation and distribution, message encryption and decryption. Our implementation
is based on two C language libraries, which were extensively modified so as to incorporate
security mechanisms, the libmodbus [6] and the ECCLIB [7] libraries.

The Libmodbus library provides an implementation of the Modbus/TCP protocol
in C and the ECCLIB provides the necessary functionality to implement cryptographic
protocols based on Elliptic Curve Cryptography of ECCLIB. The ECCLIB is a library in C++
that obtain algebraic operations and a rich variety of cryptographic protocols for Elliptic
Curve Cryptography in fields of the form Fp, where p is an odd prime based on the Complex
Multiplication method.

In our work, Libmodbus and ECCLIB were modified and combined in such way in
order to enhance Modbus/TCP protocol leading to a modified version of it, focusing on
the security of the data exchanged among the devices and the supervisory servers. The
mechanisms we implemented include key generation, key exchange/sharing, message
authentication, data integrity check, and encryption/decryption of data.

The key generation and key exchange protocols we implemented using Elliptic Curve
Cryptography functionality. The encryption/decryption keys created by the SCADA
devices are stored in their local memory and are consider “alive” only for the duration of
the current communication session. These keys are used in encryption/decryption of the
exchanged messages, in establishing the integrity of the messages and in the authentication
process of the involved entities.

The modified library was compiled for the Android operating system, to implement
the server side in Android. The client side can be installed on any computer. The communi-
cation between the entities of client and server implements an example of the successful
establishment of sessions using Elliptic Curve Cryptography, based on secure sessions of
Modbus wireless communication between a portable device acting as a supervisor station
and a monitoring and control workstation. Our first performance measurements are, also,
very promising and show the feasibility of embedding Elliptic Curve Cryptography into
SCADA systems, giving a significant approach to an area that had not been studied.

Our approach has two goals. The first was to embed a key generation and exchange
mechanism in Modbus, while keeping the basic Modbus functionality unchanged. The sec-
ond was to assess the result of the new Modbus considering its performance in comparison
with the original Modbus implementation. In other words, our approach aims at exploring
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the feasibility of integrating encryption functionality in industrial SCADA protocols as
well as the interoperability of this integration with existing SCADA installations based
on Modbus.

2. Related Work

There is a significant number of research papers and standards focusing on SCADA
security, vulnerabilities, and ways to protect the infrastructures that deploy SCADA. When
it comes to protecting SCADA systems themselves from attacks, there are many studies
that suggest the use of cryptographic techniques.

There are several standards published, both, by specialized US agencies, such as NSA
and NIST, as well as private organizations that propose several SCADA security methods,
including cryptography. Many of those studies are, mostly, focused on the integration of
authentication and cryptographic protocols, as a means of protecting industrial systems’
Internet traffic [8]. In [9], the authors deploy and assess both symmetric and asymmetric
cryptography as a means to protect Modbus and IEC 6087 traffic.

In a previous paper, [10], the authors deploy the already existing mechanisms for
integrity in SCADA systems to develop a new, low latency, cryptographic protocol. They
also make use of block ciphers for the encryption of the SCADA Internet traffic. The authors
of [11] add an additional field to the standard Modbus packet and use both RSA (Rivest-
Shamir-Adleman) public-key cryptosystem and AES (Advanced Encryption Standard) to
generate keys and encrypt Internet traffic. Another work, discussed in [12], proposed
the possible use of Elliptic Curves for Lowpan sensor networks, and particularly their
integration into the TLS (Transport Layer Security) protocol. Our concrete approach for
this functionality is to use the Elliptic Curve based Diffie Hellman key exchange protocol
to generate and exchange shared communication keys, thus providing an alternative to the
RSA and AES cryptosystems used in the previous papers.

Extensive research has also been conducted for the identification of the vulnerabilities
and the specialized attack vectors of SCADA systems. An attack taxonomy given in [13] cat-
egorized the SCADA attacks according to the type (Serial/TCP) of Modbus. In [14], a study
was published on the security concerns about IP-based SCADA networks. In [15] a study
can be found on the vulnerabilities of SCADA systems and potential security strengthening
approaches. The authors also carried out experiments on SCADA/DNP3 testbeds and
presented their results with respect to SCADA systems’ robustness against cyberattacks.

There have been some recent efforts to incorporate encryption capabilities in the
Modbus protocol [16] by the Modbus Organization. This approach relies on TLS to support
the encryption, thus requiring the setup of a PKI (Public Key Infrastructure) which may
impose several other functional dependencies on third party libraries. Another similar
approach to securing SCADA communications has been published [17], which uses ECC
(Elliptic Curves Cryptography) to secure Modbus communications. Our approach is
different from this since it evaluates the computational load, in terms of additional execution
time required, in specific resource limited devices, a Linux PC and an Android IIoT device.
Although, an Android device may not be a traditional SCADA device, it has already been
proposed and implemented [17,18] and it may gain more popularity in the future, with the
growing needs for easier industrial control and remote monitoring.

Authentication functionality is, also, necessary for the authentication of each IoT device
as well the data the devices exchange. However, it is often neglected over the confidentiality
functionality. In our approach, the IoT devices participating in the communication can
exchange encrypted messages among themselves and the SCADA infrastructure after
having been authenticated first.

In summary, to the best of our knowledge, our approach comprises one of the first
studies in embedding Elliptic Curve Cryptography functionality in Modbus as a pillar to
SCADA systems. Moreover, this enhancement of Modbus comes at a full compatibility
with existing Modbus deployments since the client/server interface layers have not been
changed. To our knowledge, only one approach in this context, i.e., Elliptic Curve Cryp-
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tography and Modbus, exists in [19] that only focuses on the man-in-the-middle attack in
SCADA systems when they allow participants which do not authenticate themselves as
well as the communication keys they use.

3. Elliptic Curve Cryptography

The use of elliptic curves in cryptography was introduced independently by Neal
Koblitz [20] and Victor Miller [21] in 1986–1987. Elliptic Curve based cryptography has a
number of merits over conventional cryptography which we discuss, briefly, below.

Elliptic curves, in general, offer greater flexibility in the definition of a suitable un-
derlying group structure for cryptographic use. For instance, for a specific prime p there
is only one multiplicative/additive group over p. As we will explain, however, although
elliptic curves are, also, defined over the elements of Fp, they also incorporate two more
parameters that may be varied and, thus, give rise to numerous different additive groups
for the same underlying field Fp for the specific prime p.

Moreover, most attacks on elliptic curve cryptosystems rely on solving the Elliptic
Curve Discrete Logarithm Problem or ECDLP. As of today, no subexponential algorithm is
known for this problem, while subexponential algorithms exist for the underlying problems
of other, conventional, cryptosystems such as ElGamal.

Formally, an elliptic curve is defined as follows ([22]):

Definition 1 (Elliptic Curve). Let F be a field with operations “+” (“addition”) and “∗” (“mul-
tiplication”) and characteristic (denoted by char(F)) other than 2 and 3. The characteristic of a
field F with the multiplication operation denoted by “∗”, is the least natural number n (if there
exists such a number at all) such that nr = 0 for every r in F. Also let a and b be two members
of F such that 4a3 + 27b2 6= 0 in F. The condition 4a3 + 27b2 6= 0 guarantees that the equation
y2 = x3 + ax + b does not have multiple roots in the field F.

Then the elliptic curve of the equation y2 = x3 + ax + b over the field F, denoted by
E(F), is the set of pairs (x, y) of elements of F that make the equation hold along with a
special point denoted by “◦” called the point at infinity. The expression −16

(
4a3 + 27b2) is

called the discriminant of E(F) and it is denoted by ∆(E(F)).
The point at infinity “◦” may be thought of as a point infinitely away from the 0 point

on the y-axis, where all lines parallel to this axis “intersect”. It can be shown that the points
defined over an elliptic curve form an additive group.

The definition for the Elliptic Curve Discrete Logarithm Problem (ECDLP) is as follows:

Definition 2 (Elliptic Curve Discrete Logarithm Problem-ECDLP). Let E be an elliptic curve
over a finite field Fq, P a point on E(Fq) of order n and Q a point on E(Fq) such that Q = tP,
with 0 ≤ |t| < n− 1. The ECDLP consists in determining the value of t.

The ECDLP is computationally hard, and the security of EC-based cryptography relies
on this hardness property. More precisely, what makes the groups defined on elliptic curves
exceptional, cryptographically, compared to groups used in conventional cryptography
is that the best-known algorithms for solving the ECDLP require exponential (in the key
size) expected time complexity. It, thus, appears that there is no apparent characteristics of
general elliptic curve groups that can be exploited in order to reduce this time complexity
to subexponential.

In some more detail, we will now compare the key sizes, for equivalent security levels,
of an EC-based cryptosystem depending on E

(
Fq
)
, i.e., the additive group formed by a

suitably chosen elliptic curve over a finite field Fq, and a conventional cryptosystem relying
on the multiplicative group of the finite field Fp, for primes p and q (p and q may be equal,
but not necessarily). The key for this comparison is the difficulty of solving the discrete
logarithm problem in each of these two cryptosystems (see [23–29]). Our discussion below
follows the excellent exposition given in [23].
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Let n = [log2 q] be the size of the underlying field Fq of the elliptic curve E
(

Fq
)

and
N = [log2 p] the size of Fp. Note that according to Hasse’s Theorem (see, e.g., [23]) the
actual number of elements of E

(
Fq
)

ranges from q + 1− 2
√

q up to q + 1 + 2
√

q and, thus,
for our purposes, this number can be approximated by n = [log2 q], with respect to order
of magnitude.

We, now, define the following function, where c is a positive real constant and the
“log” without a subscript denotes natural logarithms (base e) that are, customarily, denoted
by “ln”:

L(p, v, c) = ec(log p)v(loglog p)1−v
, (1)

The behavior of this function depends, heavily, on the values of v. When v = 0, this
function is reduced to the following:

L(p, 0, c) = ecloglog p = (log p)c, (2)

which is polynomial in the size of p.
When v = 1, then the function becomes exponential in the size of p:

L(p, 1, c) = ec log p = pc, (3)

Finally, for v in the open interval (0,1), the function lies between the polynomial and
the exponential extremes, and it is called sub-exponential.

It can then be shown that the discrete logarithm problem in Fp can be solved in time
proportional to [23–29]

L
(

p,
1
3

, c0

)
= ec0(log p)

1
3 (loglog p)

2
3 , (4)

where the value of the constant c0 is approximately 1.92. If by CCONV(N) denotes the
complexity of solving the discrete logarithm problem in a cryptosystem based on Fp with
n = [log2 q], then the following holds:

Cconv(N) = ec0 N
1
3 (log N)

2
3 , (5)

which is sub-exponential in the size of the field Fp. However, if by CEC(n) denotes the
complexity of solving the discrete logarithm problem on E

(
Fq
)
, with n = [log2 q], the

best-known algorithms to date can solve it in time proportional to

CEC(n) = 2
n
2 =
√

q, (6)

which is exponential in the size of the field E
(

Fq
)
.

We proceed by setting CCONV(N) = CEC(n), so as to equate the security level for
both cryptosystems and then solve for N in order to deduce the key size in bits (i.e.,
N) required by a conventional cryptosystem to attain security levels equivalent to an
Elliptic Curve based cryptosystem with key size n. In other words, we use this equation
to see for a given value of key size n of an Elliptic Curve cryptosystem, which key size N
corresponds for a conventional cryptosystem that attains equivalent security levels. After
solving this equation for N, we derive the following (see [23] for an expression without the
involved constants):

N =
1
4

n3

LambertW( 1
2

√
ln2
√

n3

b3c3 )
2
b3c3

, (7)

with b approximately equal to 4.91 and c approximately equal to 1.92 (please [24] for a
derivation of these values).

The plot of (7) in Figure 1, shows, visually, a comparison of key sizes of equivalent
security EC-based (with key size n) and conventional cryptosystems (with key size N).
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Equation (7), in essence, reflects the well-founded by theoretical and applied research
results, that the discrete logarithm problem defined for the additive groups of elliptic curves
is, computationally, harder than the discrete logarithm problem for the multiplicative
groups Z∗q , where q is a prime, deployed by conventional cryptosystems [15].

4. Architecture and Implementation

As stated in the introduction, for our implementation we used an open-source Modbus
library. We chose Modbus because it is one of the most common protocols used in industrial
networks and is supported by a variety of devices in those networks. Modbus is an
application-layer protocol and has a client/server architecture. It enforces communication
between devices connected on different types of communication channels. For example, a
few devices might be connected using serial buses to the network and others may have TCP
connections to connect to the network. The TCP version of the protocol enables Modbus
devices to be accessed through the Internet using the reserved 502 port.

Modbus uses several function codes for its services. Each function code can result in a
different action by a PLC or an actuator. It supports request/reply communication during
which the client sends a request to the server and the server send a reply with a data or
a confirmation.

To modify the library, the first consideration was the level of the library where our new
security mechanisms would be placed. It was deemed appropriate that the mechanisms
should be placed on a relatively low level. This served the purpose of keeping the same
functionality on the higher level of Modbus functions, thus achieving interoperability
with existing installations (our Modbus variant is a “plug-in” replacement of the initial
Modbus variant).

Thus, the general architecture of a SCADA application based on the modified Modbus
architecture is shown in Figure 2.

The shaded parts are the ones which we have modified: the lighter shaded part repre-
sents the modifications related to the handshake protocols so as to deploy the incorporated
security mechanisms while the darker shaded part represents the implemented security
mechanisms. We should emphasize that we have not altered the upper layers, i.e., The
application and the core function layers, so that our modified libraries can be incorporated
directly, as a “plug-in”, in existing Modbus implementations without and changes in the
way that applications interact with the libraries.
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The operations that were added to the Modbus protocol are the following: key gen-
eration, key distribution, message encryption and message decryption. Key generation
and key distribution were implemented as separate functions of the Modbus protocol
as opposed to encryption and decryption, which were included in the send and receive
functions. The encryption used in the Modbus

In our implementation, we encrypt the whole Modbus ADU. The size of the ADU is
typically 260 bytes. When a request/response is, at first, created, it is stored in a uint8 array,
however, to process it, it has to be converted to a multiple precision integer. The resulting
number must be encrypted using the ECCLIB. To make that possible, we increased the size
of the field on which the elliptic curve is defined. Consequently, larger messages could be
processed by the library.

The implementation of the entire mechanism was based on ECCLIB, a C library for
Elliptic Curve Cryptography. A dependency graph is provided in Figure 3, to give a more
detailed explanation of the structure. Again, the shaded parts are the ones which we
have modified.
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The colored functions were either implemented or modified. The encryption function
(appearing in the bottom layer) is not colored since it is used, unchanged, as implemented
in the original ECCLIB.

A brief description of the library’s functionality and operations is provided below. We
describe the additional operations that are taking place in a typical Modbus transaction. All
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operations, except the initial phase of parameter generation, are executed at the initiation
of every new Modbus session [4,6,7,9–12,14].

4.1. Parameter Generation

We assume that the elliptic curve parameters are created and deployed before any
communication takes place. These parameters are the base point of the curve and the order
of the curve. This is a prerequisite for the implementation of our key distribution algorithm.
The parameters are stored locally in each device and before initiating communication, each
device uses them to generate its own keys.

For the rest of the operations, a time sequence diagram is provided in Figure 4.

Future Internet 2022, 14, x FOR PEER REVIEW 9 of 18 
 

 

 

Figure 3. The proposed library and its place within the Modbus protocol. 

The colored functions were either implemented or modified. The encryption function 

(appearing in the bottom layer) is not colored since it is used, unchanged, as implemented 

in the original ECCLIB. 

A brief description of the library’s functionality and operations is provided below. 

We describe the additional operations that are taking place in a typical Modbus transac-

tion. All operations, except the initial phase of parameter generation, are executed at the 

initiation of every new Modbus session [4,6,7,9–12,14]. 

4.1. Parameter Generation 

We assume that the elliptic curve parameters are created and deployed before any 

communication takes place. These parameters are the base point of the curve and the or-

der of the curve. This is a prerequisite for the implementation of our key distribution al-

gorithm. The parameters are stored locally in each device and before initiating communi-

cation, each device uses them to generate its own keys. 

For the rest of the operations, a time sequence diagram is provided in Figure 4. 

 

Figure 4. Time-sequence diagram for the library operations. 

  

Figure 4. Time-sequence diagram for the library operations.

4.2. Key Generation/Distribution

For the generation of the shared key the Elliptic Curve Diffie Hellman algorithm
was implemented. The exchange takes place during the initial connection between two
devices. In SCADA systems the communication is usually initiated by the client/master,
thus these devices are the ones to begin the exchange. Let us assume that we have Device
1 and Device 2 which wish to establish as secure communication channel. Based on the
ECDH algorithm, Device 1 and Device 2 choose random private numbers d1 and d2,
correspondingly. Subsequently, a key is computed by each device who multiply the private
random number d (d1 or d2) with the public base point G of the elliptic curve. The resulting
K1 = d1*G and K2 = d2*G keys are also points on the Elliptic Curve and, thus, they consist of
two parts or Cartesian coordinates. However, in our implementation only one coordinate is
used for the generation of the shared key. Therefore, only the first coordinate is exchanged.

The keys are multiple precision integers based on the GNU Multiple Precision Arithmetic
Library (https://gmplib.org/). To be received correctly, the keys are converted to a character
array. Afterwards the device exchanges keys with another device over an insecure channel
based on the Elliptic Curve Diffie-Hellman key exchange protocol. The keys could be
intercepted at this point; however, the eavesdropper can only obtain the values K1, K2
which are exchanged over the channel. To find the value of d, the eavesdropper would
have to solve the Elliptic Curve Discrete Logarithm Problem (ECDLP) which is is hard,
computationally (the best-known algorithms require exponential time). After the exchange
of the values, the devices compute the shared key by multiplying S = d1*K2 and S = d2*K1.
These values are equal since d1*K2 = d1*(d2*G) and d2*K1 = d2*(d1*G). As we stated above,
an eavesdropper can know only the K1, K2 values and, thus, it is not computationally
feasible to find out the shared key. For implementation purposes, the value S, which is

https://gmplib.org/
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received as a character string is, again, converted to a multiple precision integer based on
the GNU library.

Finally, each device stores the computed shared key in the temporary session structure
which contains all the information of the Modbus session. The structure has been modified
to include a GNU large integer array. The stored key is valid only for the duration of a single
Modbus communication session. The key is recomputed each time a new communication
section is required [30–33].

4.3. Encrypted Communication

After the keys have been established the encrypted communication can be initiated.
The library we have used for our implementation contains the complete Modbus func-
tionality implemented as a set of C functions. Modbus was first developed as a serial
protocol and to this day the serial version is, still, used. Libmodbus provides both serial
and TCP modes of operation for the Modbus protocol suite. Our implementation is a part
of the Modbus TCP backend. The TCP backend “send” function includes, now, the full
encryption functionality (point-to-point encryption). However, the decryption functionality
was implemented on a higher level in the “receive” Modbus function, due to the way
Modbus handles the received messages.

In some more detail, the backend “send” function encrypts each message using the
key that is stored in the appropriate Modbus data structure of the device. The encrypted
message is a character array and, thus, it does not need any type conversions. The Modbus
“receive” function has been modified, however, more extensively. For a Modbus request
to be processed correctly, it has to be received according to a specific sequence of steps.
At first, the function’s return code is received and checked to determine how many bytes
remain in the request. Based on the value of this code, the recipient knows how many more
data items remain to be decrypted in the “receive” Modbus function. Thus, the remaining
bytes are read and processed accordingly. This Modbus functionality must be preserved in
the modified version of the protocol. Consequently, the decryption process should also be
performed in the same sequence of steps followed by the “receive” function. As we deploy
the one-time pad algorithm, the messages are decrypted using an XOR mask comprised of
the shared key.

The encryption/decryption functionalities embedded in the Modbus send/receive
functions, respectively, were implemented with the corresponding cryptograpahic functions
of the ECCLIB, based on two separate functions. The first function is responsible for the
generation of the XOR mask which is then stored to be used for the decryption process.
The mask length was set to the largest possible value. This was an essential decision since
Modbus messages can vary in size and the encryption/decryption process should be able
to handle all possible message sizes. The second function is responsible for executing the
one-time pad algorithm in the corresponding parts of the message and the mask.

4.4. Android Implementation

To demonstrate the use and functionalities of the proposed library on a mobile device,
which can be part of a SCADA network as an IIoT device, the modified Elliptic Curve based
Modbus library was fully compiled for the Android operational system. Our extensions
on the Modbus library require the ECCLIB and GMP libraries. The ECCLIB was compiled
from C source code, but we used the precompiled GMP version for the Android Operat-
ing System [34]. Using the compiled libraries, a simple Modbus server was developed
running on the resource limited Android device. The final generated library was named
libsmodbus.so.

For the main server application, which uses libsmodbus.so, “gen-libs” was used as
a foundation. A simple C file provided the functionality of a Modbus server. The file
contained a JNI function, that could be called from the Main Activity of the application.
Finally, the Main Activity consists of a main view, generated when the application is created
and the JNI function, which is called when the application starts running.
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In our implementation, we encrypt the whole Modbus ADU. The size of the ADU is
typically 260 bytes. When a request/response is, at first, created, it is stored in a uint8 array,
however, to process it, it has to be converted to a multiple precision integer. The resulting
number must be encrypted using the ECCLIB. To make this possible, we increased the size
of the field on which the elliptic curve is defined. Consequently, larger messages can be
processed by the library.

5. Experiments, Results and Discussion
5.1. Experimental Set-Up

Many SCADA systems often contain different types of computers, with varying
computational and storage capabilities. To simulate this diverse type of environment, we
tested the secure Modbus communication functionalities using a regular PC as a client and
an Android device as a server. Both devices’ specifications are shown in Table 1:

Table 1. Server and Client characteristics.

Server Client

CPU Qualcomm Snapdragon 820 Intel Core i7
CPU Speed 2.2 GHz 2 GHz

Memory 4.0 GB 7.8 GB
Disk Capacity 23 GB 44.8 GB

OS Android 7.0 Kali GNU 64 bit

The evaluation environment includes the Arduino Industrial 101 IIoT device, which
is an evaluation platform for the Arduino 101 LGA module. This evaluation platform
is based on the ATmega32u4. Arduino supports a Linux distribution based on Open-
WRT called LininoOS. The board has integrated WiFi (IEEE 802.11b/g/n functions up to
150 Mbps 1 × 1 2.4 GHz), 3 GPIOs (of which 2 can be used as PWM outputs), 4 analog
inputs, 1 USB, 1 Ethernet signal on Pins and a built-in DC/DC converter. If the board is
connected to a computer through a micro USB cable, it can be programmed in the usual
way of programming the microcontroller using the Arduino IDE. The complete features of
the board (see Figure 5) are shown in Table 2 (see [35]):
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Consequently, it was necessary to compile the libraries for the Android operating
system. Considering that the libraries were all written in C, it was essential to use the
Android Native Development Kit to compile them. Along with the Modbus library the
ECCLIB and the GMP library were also compiled, as shared libraries. They were included
in the application, which implemented the functionality of a Modbus server.
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Table 2. Features of the board.

Feature Model/Value of Feature

Microcontroller ATmega32u4
Flash Memory 32 KB

SRAM 2.5 KB
EEPROM 1 KB

Clock Speed 16 MHz
CPU Atheros AR9331
WiFi IEEE 802.11b/g/n
RAM 64 MB DDR2

Flash Memory 16 MB
Input Voltage 5 V

Digital I/O Pins 20 (7 exported on header)
PWM Output 7 (2 exported on header)
Consumption 130 mA

PCB Size 42 × 51 mm
GPIO 3 Exported on headers

DogOLED Support 1 Exported on headers
Weight 0.012 Kg

Product Code A000126

With respect to the supported operations, the Modbus/TCP protocol can be used to
perform the main read and write commands, which are issued from the Client/Master.
In our implementation the tested operations were the following: single bit read/write,
multiple bits read/write, single register read/write and multiple registers read/write. All
the operations were tested using the server, running on the Android device and the client,
running on the Linux PC. Each test consisted of a single session between the client and
the server.

The modified version of the protocol performs the key exchange during the initial
connection between the devices. Consequently, for each different session, the server and
the client need to agree upon a different shared key. Thus, each different session requires
an additional key establishment operation during the connection.

We assumed that the elliptic curve parameters are chosen once, during the setup phase,
and every session key is derived from these parameters. This is a realistic approach since
the parameters, despite being the same, are nevertheless combined (based on appropriate
elliptic curve protocols) with a random value which is generated before the establishment
of each new session. More precisely, this “obscure” operation consists in the product
of a random value with the point of the elliptic curve that are multiplied together and
transmitted. Consequently, an eavesdropper will not be able to extract the random value
from the product with the point, as this would require the solution the (computationally
hard) ECDLP problem.

As stated before, for our experiments we used a desktop computer, acting as the client,
and an Android device acting as the server. Both devices were connected to a central
access point, the client through an Ethernet wired connection and the server through a
wireless connection.

5.2. Results

The main objective of our work was to examine the feasibility and performance of
incorporating security mechanisms based on elliptic curves into the Modbus protocol. In
order to assess feasibility and performance, three factors have to be considered: the storage
requirements for the modified Modbus library modules, the overhead that the EC layer
adds to the standard Modbus communication overhead and the requirements in run-time
memory and CPU speed.

We, first, consider the storage requirements of the library modules. As stated before,
for our experiments, an Android device was used, acting as a server. The libraries were
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ported to this device, as described in Section 4. The end Android application was packaged
as an apk file of size 3.2 MB. After the apk file was installed in the device, the application
required 12.06 MB of storage: 5.49 MB of code and 6.57 MB of data. These requirements are
easily manageable by several IoT and IIoT devices.

The client application, which was used to connect to this Android device performing a
small number of requests, required a storage size of 12.1 KB. The compiled shared libraries
used during the execution of the program and their respective sizes are reported in Table 3.

Table 3. Sizes of compiled libraries.

Library Name Size (in Kilobytes)

libecc-lib.so 293.7
libgmp.so 512.5

libmodbus.so 68.8

Considering, now, the overhead that the mechanism adds to the standard Modbus
communication protocols, we had to determine how many additional bytes were sent over
the communication channel, how frequently they were sent and what was the additional
delay, as compared to the standard Modbus protocol, due to these additional bytes.

The main modification in the communication protocol of Modbus was the additional
information exchange that takes place during the connection. What happens in the modified
version is that before any Modbus packet exchange, the devices connect and during the
connection they establish a shared key. The algorithm used for the establishment is Diffie-
Hellman’s, thus each device sends the values it calculated using a private number and the
curve base point. Consequently, the additional bytes that the protocol sends are dependent
on the size of the underlying finite field of the used Elliptic Curve. In ECCLIB, which was
used for the implementation, the size of the finite field is determined by the parameter
“bitlength”. This parameter is critical for the security of the implementation, and this is the
key size for the cryptographic EC-based primitives.

To calculate the average duration of the key exchange process, the time required to
generate a shared key in 20 consecutive sessions was measured for each pair of devices.
We use 4 pairs and repeat the communication between pairs for 1000 times during each
run of the experiment. After the connection to the same network of each pair of devices,
20 consecutive sessions were performed, and the time required for each one to successfully
generate a key was measured.

We used different field sizes, to generate the corresponding curves and use them
to create keys of various sizes. For each different size, we considered the size of the
information exchanged during the connection phase. The results are presented in Table 4.

Table 4. EC-based vs. conventional crypto key sizes and resulting overhead.

Equivalent EC Key/Conventional
Cryptography Key Sizes

Overhead (Bytes) for Storing Numbers for
the EC Key Size

175/1044 22
192/1293 24
224/1853 29

It is important to note that the overhead times given above are incurred each time a
connection is established but only once when the connection is initiated. After the commu-
nication starts, the shared key is created and from this point on, every Modbus message is
encrypted using only this key, with no additional information exchange being necessary.
During each session, the client can send any number of encrypted messages to the server.
Thus, the small overhead imposed by our modification on the standard Modbus library
depends only on the number of new session establishments between a client and a server
and not on the duration of their subsequent interaction.



Future Internet 2022, 14, 232 14 of 18

As for the additional execution time induced by the modified key exchange algorithm,
it was measured as a function of the key size, for every Modbus function affected by our
modifications. To calculate the average execution time of Elliptic Curve Diffie Hellman for
each key size, we measured the time needed for the key establishment, for 100 consecutive
sessions. The result for each key size was the average value of these measurements. The
results are shown in Table 5 and Figure 6.

Table 5. ECDH times in relation to key size.

Key Size (Bytes) ECDH Time (s)

22 0.004486
24 0.004715
28 0.008835
48 0.009598
64 0.010705

128 0.010904
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We observe that the performance degrades as the size of the finite field is increased.
However, the degradation is not significant. Considering that a size of 192 bits (24 bytes)
is, usually, adequate in several practical cases, this choice could offer the best solution in
terms of performance and security.

In addition, the execution times of the encryption and decryption functions were
measured. We present the time measurements in Figures 7 and 8. Our goal was to observe
the delay that the encryption and decryption operations added to a specific Modbus
function and assess the impact of our modifications on the communication efficiency
between client and server. The function that was tested was the “modbus_write_bit”
function (for a detailed description of the function, see the Modbus library documentation
available at [36]).
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It is apparent that for both functions, i.e., encryption and decryption, the performance
is not very sensitive to the size of the finite field. The cause of this similarity in the execution
times is that both encryption and decryption use the one-time pad with bitwise XOR to
produce the ciphertext and plaintext, respectively. XOR, as a bit-wise operation, is very
fast to compute on the hardware level almost independently of the size of the operands
(unless they are very large, requiring repeating the operation several times sequentially).
Consequently, selecting the finite field size is of concern only in relation with the other
requirements (mainly overhead and performance) for the key establishment phase.

To provide a more accurate, comparative, assessment of the new version of the library,
the execution time for all Modbus functions was measured for, both, the original Modbus
library, and the secure version. The results are shown in Figure 9.
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It is evident that the overhead induced by our library on the original Modbus is
very small and can be tolerated in exchange of the important security benefits offered by
EC-based cryptography.

6. Conclusions

Nowadays, critical infrastructures, such as electricity grids or industrial installations
handling dangerous materials, become increasingly targeted by cyberattacks as they have
been interconnected to remote monitoring communication infrastructures due to the need
for 24/7 remote monitoring and control. Thus, customary SCADA systems have been
enhanced to include outwards communication functionality, most often over the Internet.
To protect communication various cryptographic protocols have been incorporated in the
standard Modbus protocol suite.

However, because of the limited computational and storage capabilities of the cus-
tomarily used SCADA sensors and embedded devices, SCADA systems are vulnerable to
numerous attacks since the crypto key sizes that can ensure a sufficient level of security
are primitively large for SCADA devices. Elliptic Curve based cryptography can offer the
same security levels with the conventional crypto algorithms deployed in various Modbus
implementations using much smaller keys. Based on this fact, in this paper we presented a
portable modified version of a commonly deployed SCADA protocol, the Modbus TCP
protocol, using Elliptic Curve cryptography library modules in a way that does not inter-
fere with Modbus functionality. The experimental evaluation of the library showed that it
imposes almost no overhead on Modbus making it an attractive solution for upgrading
Modbus into the EC based crypto domain gaining the corresponding benefits in security.

Our future work plans include the implementation the of ECDH (Elliptic-curve Diffie-
Hellman) and the ECDSA (Elliptic Curve Digital Signature Algorithm) protocols as well as
the comparison of ECC, ECDH and ECDSA for resource limited devices used in SCADA
systems in order to determine the most efficient approaches with respect to calculation
times. Finally, an equally important future work goal is the case study of how to counteract
an attacker who could steal and use the private key for Elliptic Curve cryptosystems
for malicious actions, assuming the role of an authenticated entity among the devices
supporting a SCADA architecture.
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