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Abstract: In order to safely and efficiently use their power as well as to extend the life of Li-ion
batteries, it is important to accurately analyze original battery data and quickly predict SOC. However,
today, most of them are analyzed directly for SOC, and the analysis of the original battery data and
how to obtain the factors affecting SOC are still lacking. Based on this, this paper uses the visualization
method to preprocess, clean, and parse collected original battery data (hexadecimal), followed by
visualization and analysis of the parsed data, and finally the K-Nearest Neighbor (KNN) algorithm is
used to predict the SOC. Through experiments, the method can completely analyze the hexadecimal
battery data based on the GB/T32960 standard, including three different types of messages: vehicle
login, real-time information reporting, and vehicle logout. At the same time, the visualization
method is used to intuitively and concisely analyze the factors affecting SOC. Additionally, the
KNN algorithm is utilized to identify the K value and P value using dynamic parameters, and the
resulting mean square error (MSE) and test score are 0.625 and 0.998, respectively. Through the
overall experimental process, this method can well analyze the battery data from the source, visually
analyze various factors and predict SOC.

Keywords: data visualization; KNN; SOC; vehicle battery; data analysis

1. Introduction

As the world is moving towards sustainable survival and development, the shortage
of oil and increasingly prominent environmental pollution make research on new energy
and renewable energy an inevitable trend for the development of all walks of life [1–6].
Among them, new energy vehicles have gradually become the main development object in
the transportation industries of various countries, and the battery components necessary for
new energy vehicles have become increasingly perfect with the continuous development of
science and technology [7,8]. At present, lithium-ion batteries with low cost, small volume,
and long service life have been put into production through continuous experiments and
improvement, and their safety and reliability have been continuously improved [9–11].
Lithium-ion batteries have been widely used in new energy vehicles, electric bicycles,
aerospace, the military, and other fields, especially in the field of electric vehicles [12,13].
However, the current lithium-ion battery has poor abuse resistance and is vulnerable to
the external environment, resulting in safety-related accidents. In order to improve the
utilization rate of the battery, prevent overcharge and overdischarge of the battery, prolong
the service life of the battery, and monitor the state of the battery, major manufacturers have
conducted in-depth research on battery technology, thus the battery management system
came into being. The battery management system (BMS) will monitor the battery, including
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real-time monitoring of battery physical parameters, battery state estimation and charging
control. However, when relevant faults occur, the battery management system itself cannot
analyze the original data generated by the battery. It can only artificially analyze the stored
data and the messages in the CAN bus, and it can not find the root cause of the battery
faults [14,15].

In recent years, with the continuous improvement and maturity of battery technology,
the battery energy storage system (present battery maximum capacity at a certain condition
is called the SOC of the battery) has been used as an important indicator to evaluate the
battery state [16]. Since Li-ion batteries are renewable energy sources and intermittent in
nature, the interpretation and analysis of SOC is important in the development of effective
charging and discharging schemes [17], so the analysis and evaluation of battery energy
storage is the top priority in the development of new energy vehicles. A previous paper [18]
has conducted a detailed study on some data of new energy batteries, and introduced
the cyclic neural network (RNN) to visualize and warn on battery data management;
Ref. [19] proposed a method to analyze battery fault diagnosis of electric vehicles based
on short-term and long-term memory networks. In reference [20], the author proposed
a two-way coupled electrochemical thermal model to study and analyze the effects of
water cooling liquid inlet and flow rate on the effectiveness of battery thermal management
system. The original battery data and factors impacting SOC have not been explored
in the aforementioned literature, despite the fact that a variety of approaches have been
suggested to detect battery failure. However, the SOC of the battery is affected by many
factors (vehicle state, voltage, temperature, etc.). The existing methods focus on the direct
prediction of SOC but ignore the importance of analyzing and visualizing the original data.
There is no practical method to analyze the factors affecting SOC.

In order to solve the shortage of existing parsing of original battery data, visual
analysis, and analysis of factors affecting SOC, this paper is based on parsing the original
battery data (hexadecimal) intuitively, visualizing and analyzing each index of the battery
on the data, and finally using the indexes affecting SOC to realize the prediction of SOC by
the KNN algorithm.

The organizational structure of this paper is as follows: Section 2 includes the relevant
methods mainly used in data analysis, visual analysis, and SOC prediction. Section 3
describes the relevant data sets of the experiment and the various indicators of the data.
Section 4 is divided into three parts. Part 1 describes how to visually analyze the obtained
battery data; Part 2 makes a visual analysis of the analytical data obtained in the first part
to find out the indicators that affect SOC; In the third part, the KNN algorithm is built for
the analyzed indicators, and the SOC is predicted by comparing the selected parameters.
Section 5 presents the results and analysis of the methods in Section 4. Finally, Section 6
summarizes the conclusions.

2. Related Work

Nowadays, there is little work carried out to analyze the original data of a battery,
and it is very uncommon. The SOC that directly affects the battery is studied. In Ref. [21],
Deng Ma proposed an adaptive tracking EKF (ATEKF) method to estimate the SOC of
a battery. In Ref. [22], the authors compared machine learning methods with different
characteristics to estimate the performance of battery SOC, showing that different methods
of machine learning are useful for both measuring and predicting SOC. However, there
is a lack of research on the original data generated by Li-ion batteries, because Lithium-
ion batteries generate hexadecimal data, which are not intuitive, and the hidden voltage,
current, temperature, and SOC are difficult to obtain directly.

Based on the observation results reported above, we introduced a scheme to realize
the visual analysis of lithium battery data and SOC prediction from the source. The scheme
helps to use abstract password-like lithium battery data to visualize the various metrics
that affect battery performance and analyze them to predict SOC. Our work has two
contributions: (I) through investigation and acquisition of a large number of lithium
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battery data, we first make a rough analysis, and then conduct codification research to
illustrate the intuitiveness and feasibility of the method; (II) the parsed data are cleaned
and pre-processed, visualization studies are performed to filter out the valid data, the
factors affecting SOC are analyzed in the visualization, and finally, SOC is predicted by the
KNN algorithm.

3. Data
Data Analysis

• New Energy Vehicle Battery Dataset 1

The data provided include the message data obtained from the lithium battery, in-
cluding protocol type, the server receiving time, message time, message type, and the
original messages. We mainly extract and analyze the original messages, which include
the current vehicle status, vehicle position, battery voltage, battery voltage, and engine
status. However, the message data are all composed of hexadecimals, so it is difficult
to directly obtain understandable data. Therefore, it is necessary to analyze and obtain
intuitive related indicators to promote the next analysis. See Figure 1 for an explanation.

Figure 1. Power battery data format composition and original hexadecimal message.

• New Energy Vehicle Battery Dataset 2

The data set consists of one CSV file including 36 indicators of vehicle battery data
(vehicle status; total voltage; cumulative mileage; total current; vehicle speed; SOC; opera-
tion mode; insulation resistance; DC–DC status; charging status; minimum voltage battery
subsystem number; minimum voltage battery cell code; minimum temperature value; mini-
mum temperature subsystem number, etc.).The collection interval is 10 s, which includes all
the data of lithium battery operation, reducing the contingency of subsequent experiments.
This data set is used for visual analysis and SOC prediction in Sections 4 and 5. See Figure 2
for an explanation.

Figure 2. New energy vehicle battery dataset 2 structure.
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4. Methods

Since the original data of lithium batteries are provided by new energy vehicles that all
meet the production standards, all comply with the GB/T32960 standard that specifies the
remote service and data format of electric vehicles. The hexadecimal messages generated
by the battery are following its defined data format. In Section 4.1, the data set format,
analysis method, and related algorithm structure defined in the GB/T32960 standard will
be explained in detail. In Section 4.2, the new energy vehicle battery dataset 2 is used for
visualization to find the factors with high SOC correlation. In the last subsection, how to
design the KNN algorithm is explained.

4.1. GB/T32960 Standard Introduction and Data Format Analysis
4.1.1. Introduction to GB/T32960 Standard

GB/T32960, “technical specification for electric vehicle remote service and manage-
ment system”, is divided into three parts in terms of content, which are general, on-board
terminal, communication protocol, and data format [23].

The general structure diagram of the electric vehicle remote monitoring system is
given in GB/T 32960.1-2016, part I, general provisions. As can be seen from Figure 3, after
the vehicle terminal obtains vehicle data, it uploads the data to the enterprise platform by
means of CAN bus communication, and then the enterprise platform interacts with the
public platform by means of CAN bus.

Figure 3. Structure of electric vehicle remote service and management system.

4.1.2. Data Format Analysis

GB/T 32960.3 specifies the protocol structure, communication connection, data packet
structure and definition, data unit format, and definition in the electric vehicle remote
service and management system. Before introducing the packet structure, first, the data
types in the packet specified in the protocol are analyzed. The defined data types specify
the composition of battery message information. The protocol has five data types: byte,
word, dword, string, and byte[n]. It should be noted that the protocol uses the big end
mode to transfer multi-byte data types.

A complete data message consists of a start, command cell, unique vehicle identifier,
data encryption method, data unit length, data unit and check code. A battery packet sent
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from the vehicle terminal to the server side always follows the general structure, as shown
in Table 1.

Table 1. Packet structure definition.

Start Byte Definition Type of Data Describe

0 Starter STRING Fixed to ASCII characters ‘#’
i.e., 0 × 23, 0 × 23

2 Command ID BYTE See Table 2

3 Response ID BYTE 0 × FE: command packet, received
Party does not answer

4 VIN STRING Vehicle Unique VIN Car

21 Data encryption method BYTE
0 × 01: Data is not encrypted

0 × 02: RSA encryption
0 × 03: AES128 encryption

22 Data unit length WORD Data Unit Length Total Words

24 Data unit COMPOUND Divided into information type flag
and information body

Penultimate Check code BYTE BCC XOR check

The header of the packet is first composed of two ASCII characters ‘#’, representing
the beginning of the packet. Then, the definition of response ID and command ID is shown
in Table 2.

Table 2. Command identification.

Coding Definition Directions

0 × 01 Vehicle login Go up
0 × 02 Real-time information reporting Up
0 × 03 Real-time information reporting Up
0 × 04 Vehicle logout Go up
0 × 07 Heartbeat Go up
0 × 08 Terminal time Up
0 × 80 Query command Down
0 × 81 Set command Down

It can be seen that if it is a real-time information reporting frame, the third byte should
be filled with 0 × 02. Next, you should fill in the unique vehicle identification number,
namely VIN (vehicle identification number). Because the information length is not fixed,
the data unit length represents the length of the next data information, so that the server
can find the end of the frame when parsing. This paper mainly discusses the protocol
content and packet structure involved in the most commonly used real-time information
reporting as an example.

The real-time information reporting first includes the data collection time, which is
represented by a 6-byte BCD code in the format of month, year, and day. Then is the
information type; information type does not require the order and items can be freely
combined. There are many types of information, such as vehicle data, drive motor data,
fuel cell data, engine data, etc. See Table 3 for specific information type definitions. Finally,
there is the message body, whose length and data type will vary depending on the type of
message [23].
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Table 3. Sign of information type.

Type Code Illustrate

0 × 01 Vehicle data
0 × 02 Drive motor data
0 × 03 Fuel cell data
0 × 04 Engine data
0 × 05 Vehicle location
0 × 06 Extreme data
0 × 07 Alarm data
0 × 08 Rechargeable energy-storage device voltage Data
0 × 09 Rechargeable energy-storage device temperature data

Because there are many types of information, this paper uses the vehicle data format
for example analysis. The vehicle data format, fuel cell data, drive motor data and other
information types are detailed in the literature [23].

4.1.3. Analytical Thinking

From the above data format, the data packets generated by the lithium battery comply
with the format shown in Table 1. Therefore, different states of different vehicles are
expanded based on data in Table 1. The whole message data output is mainly divided into
three types: Vehicle login, real-time information reporting, and vehicle logout. First, for the
overall analysis of the idea, the detailed steps of the analysis are as follows.

1. The entire message is structured according to the structure and definition of the packet,
and the message is divided into starters, command units, unique vehicle identifiers,
data encryption methods, data unit lengths, data unit, and check code.

2. Judge the vehicle status (vehicle login, real-time information reporting, vehicle logout)
contained in this message by the command ID in the command unit.

3. Further analyze the vehicle status in detail according to different modules defined in
the data unit format. Details can be seen in Figure 4.

Figure 4. Global analysis.

Next, for the different types to parse, after the overall structure of the division of
the hexadecimal message mainly for its command unit is further split, we look for the
command ID to determine the type to which it belongs. Since the types obtained from the
command unit are divided into three types, but the overall parsing structure is roughly the
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same, the most complex real-time information is mainly reported. The analysis of real-time
information-reporting type message is shown in Figure 5.

Figure 5. Analysis of real-time information-reporting type message.

The command unit in Table 1 finds 0 × 02, which indicates that this message is a
real-time information report. After determining the type, the overall structure of the
message is divided according to the format in which the information is reported, then
finds the corresponding data type of the message according to Table 3 (data unit format
definition), and finally fuses the parsing information. The real-time information-reporting
message generally includes vehicle data, drive motor data, fuel cell data, position data,
extreme value data, alarm data and battery voltage data. During parsing, each step is
linked, and parsing is carried out based on the last two bits of the previous message (one
byte corresponds to two messages).

4.1.4. Codification

After the division and analysis of Tables 1–3, the overall structure of the code-based
parsing process is shown in Figure 6. The overall parsing structure is mainly divided into
six modules to parse the command ID to start parsing, each parsing a module to find the
first mark of the remaining messages, and grabs the command ID of the message to start
the subsequent message parsing until all the parsing is complete. The whole process is
similar to a workshop with six different workshops, and a car is sent to the workshop in
turn to check it.

Figure 6. Analysis of the idea.

Because the message is hexadecimal, it is necessary to perform a binary conversion
first. The main idea is to convert the hexadecimal to a decimal (multiply precision first,
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then offset), and then the converted byte number corresponds to the description so as to
achieve the purpose of parsing. “0 × FE” means exception and “0 × FF” means invalid
two in consideration. A global var is defined to capture the global parsing type and pass it
to the next parsing module. From the above reasoning, the algorithm structure is shown in
Table 4.

Table 4. Algorithm structure.

Algorithm Structure Parsing Algorithm

(1) Public fun Base conversion
(2) Global Var Define global variables
(3) Fun_01to06 Overall division analysis (Table 1)

(4) Self.nextMark Expand with the first token of the remaining message
(5) Fun_07 Command bit parsing
(6) Self.ol Display in columns

(7) Self. next Identify remaining messages

Parsing process: (all the parsing is carried out according to the technical specification
of electric vehicle remote service and management system part 3: communication protocol
and data format). First, regardless of the vehicle status, the overall parsing (fun_01to06) is
required: (start → command ID → response ID → unique identification code → data unit
encryption method → data unit length). Idea: firstly, the number of bytes represented by
each description is input, followed by binary conversion, using (self.ol) to display the origi-
nal message in the form of columns, then (self.pj) to start parsing and display the parsing
results in the form of columns (self.pl), and finally it continues to identify the remaining
messages (self.next), find the first mark of the remaining messages (self.nextMark), and
grab the command mark of the message to start the subsequent message parsing (self.mo).
Next, the command mark bit is identified and parsed (fun_07), and the type of the whole
message is parsed for subsequent parsing.

By constructing the main body, the message data to be detected are divided into the
overall message structure and the type of the message (vehicle login, information reporting,
vehicle logout, platform login, platform logout) is judged. Each module is detected and
finally merged. See Figure 7 for details.

Figure 7. Analysis of code algorithm.

4.2. Visual Analysis

Based on the above Section 4.1, the abstract hexadecimal original message is parsed
into intuitive data such as voltage, current, mileage, SOC, and temperature. In order to
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further analyze the SOC-related factors that are crucial to the battery, we will visualize the
parsed data to analyze the data of the lithium battery. Data visualization is scientific and
technological research on the visual representation of data, which mainly uses graphical
means to clearly and effectively convey and communicate information [24,25]. Here, the
data visualization tool in Python is used to visualize the parsing [26].

Due to the rapid development of new energy vehicles, research on batteries is becom-
ing more and more important. However, battery SOC is unable to be measured directly and
can only be estimated by the parameters of the battery voltage, current and temperature,
which are also affected by various uncertainties such as battery aging, environmental
temperature changes and vehicle driving status, so accurate SOC estimation has become an
urgent problem in the development of electric vehicles.

Data Preprocessing

Since the SOC predictions are to be made in Section 5, it is important to pre-process
these metrics. The main characteristics included in the dataset are battery voltage, current,
mileage, maximum temperature, and minimum temperature, which are organized as
shown in Table 5. The collected data contain a total of 36 pointa and there are null values
and redundant data not related to SOC. So, in order to accurately predict the battery SOC,
a lot of data preprocessing is needed before the model prediction, where 80% of the work is
carried out in the process of cleaning and preparing the data [27]. By using Pandas and
Numpy tools to analyze the parsed battery data completely, we first filter the data for null
values and outliers (combined with visual analysis) and then use the describe() function to
calculate the number (count), mean, standard deviation (std), minimum (min), maximum
(max), and median of battery data. Based on this, the battery data are segmented and
analyzed as a whole to preliminarily understand the driving state and charging state of the
car, so as to pave the way for subsequent visual analysis.

In the data cleaning stage, it is necessary to understand the missing values, duplicate
values, and abnormal points in the data. The first is missing values, and there are three
common data-missing situations: complete random missing, random missing, and non-
random missing [28,29]. There are two types of missing values:

1. Since the missing values account for less than 10% of the total data, they can be
deleted directly.

2. If the missing values account for a larger proportion of the total data, the missing
data need to be filled in. The common ways of filling in are mean interpolation and
regression replacement methods.

3. Outliers are missing.

Through experiments in this paper, it is found that there are zero missing values in
the data set used, and the number of abnormal values is very small. However, due to
different criteria for determining outliers, there will be deviations in the identification of
outliers. At the abstract level, exceptions are defined as patterns that do not conform to the
expected normal behavior, so a simple exception detection method is to define an area that
represents the normal behavior and declare any observations in the data that do not belong
to the normal area as exceptions [30].
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Table 5. Data retained after pretreatment.

Index Illustrate

Vehicle status
01: Vehicle start; 02: Turn off;

03: Other; 254: Abnormal;
255: Invalid

Charge status
01: Parking and charging;
02: Driving and charging;

03: Not charging;
04: Charging completed;

254: Abnormal; 255: Invalid
Speed Valid value range: 0∼220 km/h, 65,534 means

abnormal, 65,535 means invalid

Sum mileage
Valid value range: 0∼99,999.9 km,

4,294,967,294 means abnormal. 4,294,967,295
means invalid

Sum voltage Valid value range: 0∼1000 V, FFFE means
abnormal, FFF means invalid

Sum current Valid value range: −1000∼+1000 A, 65,534
means abnormal, 65,535 means abnormal

Soc Valid value range: 0∼100%, 254 means
abnormal, 255 means invalid

Gearnum
Binary bits, 0–6 binary bits represent neutral

gear–sixth gear, 1101 reverse gear, 1110 D gear,
1111 parking P gear

Maxbatterysinglevoltageval
Valid value range: 0∼15 V, minimum

measurement unit: 0.001 V, 65,534 means
abnormal, 65,535 means invalid

Minbatterysinglevoltageval
Valid value range: 0∼15 V, minimum

measurement unit: 0.001 V, 65,534 means
abnormal, 65,535 means invalid

Maxtmpval
Valid value range: −40∼+210 °C, minimum

measurement unit: 1 °C, 254 means abnormal,
255 means invalid

Mintmpval Valid value range: −40∼+210 °C , minimum
measurement unit: 1 °C, 254 means abnormal,

255 means invalid

4.3. K-Nearest Neighbor Algorithm

From the visual analysis, it can be seen that the SOC value has a linear regression
relationship with some indicators, and the correlation is high, while the KNN algorithm is
very effective for classification and regression problems. So, we use the KNN algorithm to
predict SOC simply and quickly.

KNN was originally an intuitive classification method and has been widely used
in pattern recognition. With a little modification, it can also be effectively applied for
regression purposes. However, because different models have different requirements for
data, KNN can ensure better prediction results only by selecting appropriate models in
combination with the characteristics of the data themselves [31]. The core idea of the KNN
nearest neighbor algorithm is that if most of the K nearest samples in the feature space
belong to a certain category, the sample also belongs to this category. K is usually an integer
no greater than 20. The implementation of KNN classification prediction is divided into
the following steps:

1. Randomly select K tuples from the training tuples as the initial nearest neighbor
tuples, and calculate the distance from the test tuples to the K tuples, respectively;

2. Sort according to the increasing relationship of distance;
3. Select the K points with the minimum distance;
4. Determine the occurrence frequency of the category of the first K points;
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5. The category with the highest frequency among the first K points is returned as the
prediction classification of test data [32].

In this paper, the training data are divided 8:2 for training and testing, and KNN
constructs a range instead of setting the most important n_neighbors, weights and P as
default. Dividing the training and test sets, a grid search method is used to let the KNN
algorithm itself find the optimal parameters and the highest overlap according to the data
set assignment. The setting of hyperparameters affects the selection of K and P values, and
here we will analyze and compare different ranges to obtain the optimal solution. The
distance P is calculated by (1) and (2), which reflects the similarity of the two points before.
The feature space of the K-nearest neighbor method is generally the n-dimensional real
vector space Rn, and the Euclidean distance and Manhattan distance [33] are used in the
distance corresponding to Equations (1) and (2), respectively.

d(Xi, Yi) =

(
n

∑
i=1
|xi− yi|2

)2

(1)

d(Xi, Yj) =
n

∑
i=1
|xi− yi| (2)

where xi denotes the predicted value, yi is the sample value, and |xi − yi| denotes the
absolute value between the predicted value and the sample value [34].

To avoid the distance deviation caused by the different sizes of different features,
standardization is first required in data preprocessing. The prediction process of the KNN
algorithm is shown in Figure 8.

Figure 8. KNN algorithm flow.

5. Results and Discussion
5.1. Visualization

In this experiment, according to the method in Section 4.2, first we filtered and elimi-
nated missing values and outliers, secondly, combined with correlation functions for the
overall analysis of battery data, the screening analysis results are shown in Table 6, and
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finally, the visual analysis results are gradually carried out by using the correlation function.
Figure 9 shows the battery-related data and the visual analysis of vehicle status in turn.

Figure 9. Battery data visualization.

Table 6. Mean, variance, maximum value, and minimum value of battery data.

Vehiclestatus Chargestatus Speed Summileage Sumcurrent Sumvoltage Soc Maxtmpval Mintmpval

Count 5111.0000 5111.0000 5111.0000 5111.0000 5111.0000 5111.0000 5111.0000 5111.0000 5111.0000
Mean 1.1545 2.6497 23.8796 43,048.9649 −0.7088 377.0951 73.1655 25.5437 23.8385

Std 0.5004 0.6657 25.1968 101.3028 42.3631 16.3452 17.7004 3.7593 1.9647
Min 1.0000 1.0000 0.0000 42,886.0000 −233.700 347.5000 40.0000 23.0000 22.0000
Max 3.0000 4.0000 85.8000 59,776.0000 107.0000 405.0000 100.0000 255.0000 34.0000

According to the results shown in Table 6 and combined with Table 5, we can roughly
learn that the vehicle is divided into three states, vehicle start, off, and other, mostly using
start for driving. The vehicle charging state is for parking charging, driving charging, not
charging and charging is complete. The maximum speed is 85.80 km/h, and the cumulative
mileage ranges from 42,886.00 km to 59,776.00 km (16,890 km in total). SOC is more than
30%, with an average of 73%. The car’s maximum temperature value is mostly below 100 °C.
Minimum temperature’s highest value is also 35 °C, and fluctuates within −40∼42 °C. This
means that the whole vehicle is in a good driving condition and the battery is in a healthy
state. Basically, it is intuitive to understand the overall data of each indicator of the car.
First, we grasp the data distribution as a whole so as to prepare for the next step of detailed
visualization work. Combined with Figure 10, from (a), there is no direct relationship
between SOC and speed, and the speed is basically below 80 km/h. However, it can be
seen that the battery goes through two processes of discharging and charging, and the
vehicle goes through two states of parking charge and discharging. This can also be derived
from (b) the SOC versus time graph, and (c) shows the SOC in turn with sumvoltage,
minbatterysinglevoltageval and sumcurrent. It can be seen that the SOC is almost the same
as the sumvoltage and minbatterysinglevoltageval, in the stage of charging the current
displays a process of first falling and then rising. Then, from (d), it is seen that there is no
substantial pattern between the maximum, minimum temperature and SOC curves, and
the correlation is low.

Finally, combined with the thermodynamic diagram, as shown in Figure 11, the
correlation between these 15 battery data indicators is further intuitively obtained, in which
the correlation between minbatterysinglevoltageval, sumvoltage and SOC is 0.98, basically
close to 1, showing a high correlation. Through the analysis, it can be seen that the SOC
of the battery has the highest linear correlation with the minbatterysinglevoltageval and
sumvoltage, indicating that they have the greatest impact on the SOC in the operation of
the battery, and can better predict the SOC value. Based on the above analysis, we take
these two indicators as samples for reference, use the KNN algorithm for prediction, and
then add a sumcurrent as a reference to eliminate contingency.
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Figure 10. (a) SOC and speed; (b) SOC and time; (c) SOC and sumvoltage, sumcurrent, and minbatterys-
inglevoltageval; (d) SOC and maximum temperature and minimum temperature.

Figure 11. Heat map of each data of battery.

5.2. KNN Prediction

The article divides the data set and filters the hyperparameters by the method in
Section 4.3, and selects the sumcurrent, sumvoltage and minbatterysinglevoltageval as
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the prediction index to construct the model to predict SOC. The two most important
hyperparameters of the KNN algorithm are K (the number of specified nearest neighbor
samples) and P (the selected distance), and we design several sets of value ranges to
compare this aspect of hyperparameters and use the mean square error (see Equation (3))
as the evaluation index, where y_test is the tested data and y_pre is the predicted data, so
as to find the optimal parameters. See Table 7 for details.

Table 7. Comparison of results for different values of K and P.

Hyperparameter Range K, P Value Selected MSE Test Score

(3, 18), (2, 8) K = 3, P = 2 0.6257625297381677 0.9987738423863558
(5, 18), (1, 8) K = 5, P = 1 0.5864392223608215 0.9989231053759856

It can be seen that the selected K = 5 and P = 1 (P = 1 is the Manhattan distance and
P = 2 is the Euclidean distance), which are the hyperparameters of KNN and have an MSE
of 0.5864. The test score arrives at 0.9989, which is 0.0394 higher than the MSE (0.6258)
and test score (0.9988) with the hyperparameters of K = 3 and P = 2, so the predicted
distributions fit the original data better and the accuracy of predicted SOC is slightly
improved. Figure 12 below shows the prediction results obtained with different K and
P values.

Figure 12. (a) K = 3, P = 2; (b) K = 5, P = 1.

MSE =
SSE

n
=

1
N

N

∑
i=1

(
ytest − ypre

)2 (3)

Red represents the SOC data in the original data and the green represents the SOC
value predicted according to the key factors visually analyzed. It can be seen that regardless
of the selection range of K and P values, the sumcurrent, sumvoltage, and minbatterysingle-
voltageval analyzed in Section 5.1 can accurately predict the SOC value of a lithium battery.

6. Conclusions

In this paper, a new analytical method based on the original data of lithium batteries
is proposed. This method analyzes the abstract hexadecimal message data generated by
the lithium battery at the source end, parses it into intuitive and understandable data
according to the GB/T32960 standard design algorithm, and gradually analyzes the key
factors in the original data that are highly linear with SOC by using the visual method.
Finally, the KNN algorithm is used to model, the key factors are taken as input, and the
range of hyperparameters is set, so that the KNN algorithm can independently select
parameters according to the characteristics of the data set distribution. The test score
of SOC prediction will reach 0.9988, improving the accuracy of SOC prediction. After
verification, the parsing method can completely parse the original battery data of the
GB/T32960 standard, including three different types of messages: vehicle login, real-time
information reporting and vehicle logout, with a correct parsing rate of over 95%. This
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offers a fresh approach to the study of battery data. It can also be connected to the current
BMS in the future for intuitive data processing and early warning judgment.
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