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Abstract: Accurate forecasts of containerised freight volumes are unquestionably important for port
terminal operators to organise port operations and develop business plans. They are also relevant for
port authorities, regulators, and governmental agencies dealing with transportation. In a time when
deep learning is in the limelight, owing to a consistent strip of success stories, it is natural to apply
it to the tasks of forecasting container throughput. Given the number of options, practitioners can
benefit from the lessons learned in applying deep learning models to the problem. Coherently, in
this work, we devise a number of multivariate predictive models based on deep learning, analysing
and assessing their performance to identify the architecture and set of hyperparameters that prove to
be better suited to the task, also comparing the quality of the forecasts with seasonal autoregressive
integrated moving average models. Furthermore, an innovative representation of seasonality is given
by means of an embedding layer that produces a mapping in a latent space, with the parameters of
such mapping being tuned using the quality of the predictions. Finally, we present some managerial
implications, also putting into evidence the research limitations and future opportunities.

Keywords: deep learning forecasting; machine learning; terminal operator; port management

1. Introduction

In recent years, containerisation and ports have played important roles in international
trade [1,2] for supporting freight traffics efficiently in worldwide competition [3,4]. Today,
nearly all overseas shipments of products such as furniture, toys, footwear, clothing, auto
parts, electronic components, and computers are usually made through containers on cargo
ships. Furthermore, the amount of food goods shipped in refrigerated containers is also
constantly growing [1], and this process has greatly stimulated the business development
of terminal operators [5]. Therefore, shipping companies are using larger and larger
ships that allow the transport of about 24,000 TEUs, minimizing unit transport costs and
developing maritime economics of scale [6] to efficiently manage logistics activities both in
port handling and in container storage on vessels through adoption of the so-called model
of naval gigantism [7].

In this context, the importance of optimal management and planning of ports’ develop-
ment is unquestionable [8]. In particular, construction costs represent sunk costs for a port,
and to ensure that these investments in the development of ports will be profitable, the
number and layout of the terminals [9,10] in the port must be appropriately commensurate
with the volume of container transport in the port itself [11]. It is therefore evident that,
to avoid waste, port managers must be able to accurately predict the container transport
volumes [12,13], as this is essential for planning and organizing port activity [14] and is
also relevant for government departments dealing with transport at both the micro and
macro levels [15].

Future Internet 2022, 14, 221. https://doi.org/10.3390/fi14080221 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi14080221
https://doi.org/10.3390/fi14080221
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0001-9579-5931
https://orcid.org/0000-0001-5725-5061
https://doi.org/10.3390/fi14080221
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi14080221?type=check_update&version=2


Future Internet 2022, 14, 221 2 of 19

The demand forecast for container traffic is a crucial success factor in the business
development of port logistics which allows efficient management of resources by both con-
tainer terminal operators (i.e., concessionaires) and port authorities. Moreover, the strategic
management of these maritime logistic activities depends on port governance models [16]
as well as on the level of vertical integration of container transport processes between
terminal operators and shipping companies [17,18]. In this perspective, port authorities
must forecast—through some concession clauses and the setting of target performance—the
achievement of economic and operational outcomes by terminal operators [19], measurable
in terms of traffic demand, logistics effectiveness, and efficiency managed by the “land-
side”. Therefore, container terminal operators manage and plan critical logistic activities
in accordance with port authority marketing strategies [20,21] to support port competi-
tiveness in the worldwide scenario [4,22]. Technological advances—such as digitalisation
and the Internet of Things—offer clear opportunities to streamline and synchronise opera-
tions, increase efficiency, and improve productivity toward the building of the so-called
smart port [23,24]. However, automation and port call optimisation involve digital in-
vestments, both for initial deployment and for keeping abreast of recent advances, and
these investments are linked to traffic volume monitoring to support the port’s competitive
advantage [25].

Coherent with the aforesaid statements, this study comes at an opportune time when
substantial variation can be observed in containerised shipment volumes, owing to factors
such as trade tensions, protectionism, regionalisation of supply chains, the availability
of mega container ships, and last but not least, the global pandemic [26]. In a scenario
filled with uncertainty, port managers have to carefully rethink their development plans.
Regulators and port authorities are also facing the challenges of a changing environment,
especially insofar as they grant container terminal concessions. Finally, there is a fine-
grained model capable of forecasting several categories of container traffic fits separately
but simultaneously with the efforts to reduce carbon emissions due to shipping and the
increased attention ports are giving to landside operations and logistics.

2. Related Work

Forecasting the container transport volume is a hot topic in the maritime transportation
literature, and several approaches have been developed to improve the predictions. In this
section, a brief review of the literature is conducted.

Given the time-dependent nature of the phenomenon, models typical of time series
analysis have been applied. The autoregressive integrated moving average (ARIMA) [27]
models represent the most common approach, and some interesting empirical studies that
apply these models to container transport volume forecasting can be found in the work by
Chan et al. [28].

Other authors have highlighted the presence of seasonal fluctuations in the container
transport volume data [29,30] and suggested the use of models able to take these effects
into account. In this direction, the Seasonal-ARIMA (SARIMA) models appeared to be
the natural extension of the traditional ARIMA models. Schulze and Prinz [31] applied
SARIMA models to predict the container transport volume in German ports.

The main limitation of the ARIMA and SARIMA models is the assumption of linearity,
which could make them unable to capture the complexity present in some empirical evi-
dence. The need for more accurate predictions directed scientific interest towards more
complex and non-linear models. Some interesting examples are trigonometric regres-
sion models [30] and machine learning-based models, such as artificial neural networks
(ANNs) [32] and support vector machines (SVMs) [33]. Focusing on an intercontinental
liner service, Wang and Meng [34] proposed a method for forecasting the number of con-
tainers to be transported between two continents. They used piecewise linear regression,
autoregression, and artificial neural networks. Using real-case booking data, they found
that a combination of the three methods yielded forecasts of satisfactory precision. To cope
with changing trends and limited data, Chen and Liu [35] developed a predictive method
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based on a GM(1,1) grey model and generalised contour lines to forecast Chinese port
cargo throughput. Fouries analysis was used in combination with a SARIMA model in
an empirical study of cargo and container throughput for the ports of Hong Kong and
Kaohsiung. Numerous other approaches, based on decomposition methods or hybrid
models, have been proposed. The interested reader may refer to the classic book by Box
et al. [27].

The mainstream literature, especially in the last period, has shown a growing interest
in machine learning (ML). Barua et al. [36] provided an exhaustive review of the progress
in ML for transportation management. The interesting point of forecasting with ANNs is
that the optimal model is determined from the data itself. The first paper that employed
ANNs in this field is dated 1999, when an ANN-based model was used to predict the
volume of container trade in the port of Kaohsiung in Taiwan [37]. More recent studies are
proposed by Gosasang et al. [38], who analysed data relating to the port of Bangkok, and
Milenković et al. [39], who focussed on data from the port of Barcelona. Working on data
relating to the port of Shanghai and Shenzhen, Xie et al. [40] proposed a hybrid approach to
predicting container trading volume based on the least squares SVR (a regression version of
the traditional least squares SVM method) and offered an interesting comparative analysis
with some models, including ARIMA and SARIMA models.

Notable new approaches include the one by Wang et al. [41], who discussed a genera-
tive model based on an autoencoder coupled with an ANN for forecasting the quality of
production, the one by Zhou et al. [42], who incorporated dynamic factors into a recurrent
network, and the one by Du et al. [43], who combined variational mode decomposition to
isolate multiple seasonal components and an extreme learning machine. Another relatively
recent paper proposes a univariate long short-term memory (LSTM) network model to
forecast the future volume of container transport [44]. LSTMs are a type of recurrent neural
network [45] specifically designed to analyse data with sequential structures, and they have
recently become extremely popular after the excellent results achieved in various fields
such as handwriting and speech recognition and text translation [46,47].

This paper contributes to the literature in two directions. First, we explore two other
ML-based algorithms specifically designed for processing sequential data: 1-D convolu-
tional neural networks (CNNs) and gate recurrent unit networks (GRUs). We also introduce
in the neural network architectures investigated an additional component that explicitly
models the seasonal effect via embedding neural networks. Second, we develop a multi-
variate forecasting approach able to predict the container traffic not only at the macro level
(i.e., the entire port) but also on a micro level (e.g., the specific terminal operator).

3. Materials and Methods
3.1. Methods

This section briefly describes the neural network (NN) blocks used in this research. In
particular, neural networks represent a class of algorithms replicating the human brain’s
learning process. They are constituted by a set of interconnected units arranged in layers
that learn from experiences using training algorithms. The way these neurons are connected
(i.e., through the synapses) configures different types of neural networks with different
characteristics and properties [48]. NNs have been proven to be promising function
approximators and are extensively used for complex forecasting tasks. Neural networks
represent a promising tool for modelling the dynamics of container traffic volume, which is
generally characterised by strong nonlinearity and seasonality effects. This is especially true
when modern deep learning networks (DLN) designed explicitly for processing time-series
data (such as recurrent and 1D-convolutional data) are considered. The mathematical
descriptions of these kinds of neural networks, which were used in this research, are
provided in the following subsections.
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3.1.1. Fully Connected Neural Networks

In feedforward networks, the information propagates along the synapses from the in-
put to the output layer in only one direction. Each layer transforms the data, and successive
transformations are chained to produce a composition of functions.

We denote by x = (x1, x2, . . . , xd)
> ∈ X the vector of features. Mathematically, a

q ∈ N-dimensional feedforward (or fully connected) neural network layer can be seen as a
vectorial function that maps the training samples in a new space. The coordinates of the
data in the new space are the output of the neurons in the layer, and each unit computes
the nonlinear function zi(x) as follows:

zi(x) = φ

(
wi,0 +

d

∑
l=1

wi,l xl

)
i = 1, 2, . . . , q,

where wi,l ∈ R are coefficients to learn and φ(·) denotes the activation function. The
most popular choices of the activation function in the machine learning literature are
the sigmoid, hyperbolic tangent, or rectified linear units, where the latter is known as
a ramp function outside the machine learning parlance. In matrix form, the output
z(x) = (z1(x), z2(x), . . . , zq(x))′ ∈ Rq can be also expressed as

z(x) = φ(w0 + Wx), (1)

where w0 = {wi,0}1≤i≤q ∈ Rq and W = {wi,l}1≤i≤q,1≤l≤d ∈ Rq×d.
If the network has a single layer, the new features z(x) are used directly to calculate

the output. Otherwise, multiple layers are staked. The output of each layer represents the
input of the next one and so on for the following layers. A network with several layers is
called a deep network. Considering a deep network architecture with m ∈ N layers, the
mechanism behind can be formalised as follows:

z(1)(x) = φ1

(
w(1)

0 + W(1)x
)

z(2)j (x) = φ2

(
w(2)

0 + W(2)z(1)(x)
)

. . .

z(m)(x) = φm

(
w(m)

0 + W(m)z(m−1)(x)
)

,

where qk indicates the number of units in the k-th layer (with q0 = d), w(k)
0 ∈ Rqk , W(k) ∈

Rqk×qk−1 are the coefficients to optimise, and φk(·) is the activation function applied by the
k-th layer. The network learning is carried out by optimising the coefficient matrices and
vectors according to a specific loss function. It poses the minimisation of a high-dimensional
non-convex function, and the backpropagation algorithm is generally used. The coefficients
are iteratively adjusted by minimising the error of the network outputs with respect to
some reference values.

An extensive description of neural networks and backpropagation can be found in [32].

3.1.2. Embedding Neural Networks

Sometimes, information is available in the form of categorical variables. In the statisti-
cal literature, the standard procedures for dealing with categorical variables are one-hot
and dummy encoding. Nevertheless, these coding schemes produce high-dimensional
sparse vectors, which could present potential reliability problems in the obtained esti-
mations when there are many categorical features or one of the variables presents many
levels. Embedding is an innovative technique to analyse categorical variables that appeared
for the first time in the natural language processing context [49]. With embedding, the
ability of the neural network to learn representations has been used to encode the levels of
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categorical variables into numerical vectors. The coordinates of the levels of the categorical
variables in the new space are the network’s parameters learned during the training process.
Furthermore, the Euclidean distance in the new real-valued space of the levels indicates
that they are similar concerning the target variable.

Let B = {b1, b2, . . . , bnb} be a discrete set of categories. An embedding layer is
a function

zb : B 7→ Rqb

where qb ∈ N is a hyperparameter defined by the modeller describing the size of each
embedding layer. This function is equivalent to applying different qb-dimensional FCN
layers to the levels of the categorical variable after one-hot encoding. In this setting, the
output of each neuron will be equal to the weight multiplied by the only element equal to
one. Consequently, they can be trained in the same way as the other network parameters
related to the other layers [50]. The output of these layers can be seen as the coordinates of
the levels of the categorical variables in the new qb-dimensional space. Furthermore, the
Euclidean distance in the new space of the levels indicates that they are similar concerning
the target variable.

Denoting with nb = |B| the number of levels of the categorical feature, the number of
weights that must be learned in the embedding layer during training is nb × qb.

3.1.3. Recurrent Neural Networks

Recurrent neural networks (RNNs) provide additional synapses that connect neurons
cyclically [45]. The result of the previous elaborations is reprocessed as input in the fol-
lowing sessions. In this way, previsions are influenced by what has been learnt from the
past. The recurrent nature of these architectures makes them powerful tools for processing
sequential data [51,52].

Let x(t) ∈ Rd, 0 ≤ t ≤ T be multivariate time series. Then, the output of an RNN layer
with q ∈ N can be formulated as:

z(x) = φ

(
w0 + Wx(t) + Uz(t−1)

)
(2)

where U = {uj,k}1≤j,k≤q ∈ Rq×q represents the weights associated with the recurrent
synapses (with an initial value z(0) = 0q). The RNN training is carried out using backpropa-
gation thorugh time, which generally converges slowly and has vanishing gradient issues.

In order to overcome these problems, two more sophisticated cell-based architectures
were proposed: long short-term memory (LSTM) and gated recurrent unit (GRU) networks.

3.1.4. Long Short-Term Networks

Long short-term memory (LSTM) networks, one of the earliest approaches to RNN
architectures with nontrivial state control [46], in addition to the recurrent synapses con-
taining the short-term memory, has an additional memory cell that stores and releases the
long-term information through a system of subnets called gates. Combining these two
types of memory, LSTMs have achieved excellent results in several fields. Greff et al. [53]
offered an exhaustive overview of LSTM architectures.

Mathematically, denoting with W(p) ∈ Rq×d, U(p) ∈ Rq×q, and w(p)
0 ∈ Rq the weights

associated to each subnet p ∈ {i, o, f , z}, the output of the LSTM layer with q ∈ N can be
described as follows:
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i(t) = σ

(
w(i)

0 + W(i)x(t) + U(i)z(t−1)
)

(3)

o(t) = σ

(
w(o)

0 + W(o)x(t) + U(o)z(t−1)
)

(4)

f (t) = σ

(
w( f )

0 + W( f )x(t) + U( f )z(t−1)
)

(5)

z(t) = tanh
(

w(z)
0 + W(z)x(t) + U(z)z(t−1)

)
(6)

c(t) = c(t−1) � f (t) + i(t) � z(t) (7)

z(t)(x) = φ
(
c(t)
)
� o(t) (8)

where σ(·) : R 7→ (0, 1) and tanh(·) : R 7→ (−1, 1) are the sigmoid and the tanh activation
function, respectively, and c(t) is the state memory cell at time t (with an initial value
c(0) = 0q). The forget input and output gates regulate the mechanism of storing and
releasing the information.

Chronologically, the forget gate is the first gate to act on the memory cell (Equation (5)).
It uses the sigmoid function to delete a percentage of information considered obsolete.
Next, the input gate (Equation (3)) adds to the output of the forget gate (Equation (7)) the
new useful information extracted from the data input. Finally, the state of the memory cell
c(t) is combined with the output gate (Equation (6)) to compute the output value of the
LSTM cell (Equation (8)).

The number of weights in an LSTM layer with q units is equal to 4× q× (d + q + 1).
A graphical illustration of the LSTM cell is showed on the left side of Figure 1.

LSTM unit

-1

GRU unit

Figure 1. A pictorial representation of the LSTM unit (left) and GRU unit (right).

3.1.5. Gated Recurrent Unit Networks

Gated recurrent unit (GRU) networks [54] seem to be one of the most promising
alternatives to LSTM. Being recently developed, their architecture does not provide a
memory cell but includes two gates called the update gate and reset gate, which govern
the flow of information. In fact, GRU represents a simplified version of LSTM and allows
avoiding the gradient vanishing using a lower number of parameters. Using the previously
adopted notation, the number of weights in a GRU layer with q units equal to 3× q× (d +
q + 1) is lower than an LSTM layer.

Let W(p) ∈ Rq×d, U(p) ∈ Rq×q, and w(p)
0 ∈ Rq be the weights indexed by p ∈ {o, r, c}.

The output of the q-dimensional GRU layer can be formalised as follows:
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o(t) = σ

(
w(o)

0 + W(o)x(t) + U(o)z(t−1)
)

(9)

r(t) = σ

(
w(r)

0 + W(r)x(t) + U(r)z(t−1)
)

(10)

c(t) = tanh
(

w(c)
0 + W(c)x(t) + U(r)(r(t) � z(t−1))

)
(11)

z(t)(x) = (1− o(t))� z(t−1) + o(t) � c(t) (12)

The reset gate (Equation (10)), using the sigmoid activation function, determines when the
hidden state has to ignore the previous hidden state and uses the input data (Equation (11)).
The update gate (Equation (9)) helps the RNN store long-term information, determining
how much of the previous memory should be kept. In fact, it realises a task similar to that
performed by the memory cell in the LSTM network. Finally, the output of the GRU cell is
computed by combining the outputs of both gates (Equation (12)).

Generally, a GRU layer contains several units, each having separate reset and update
gates. This mechanism is used to learn the dependencies over different time scales. Some
units will tend to have reset gates that are frequently active and therefore learning short-
term dependencies, while other units will have most active update gates, and so they will
be able to capture longer-term dependencies.

The number of weights in a GRU layer with q units equal to 3× q× (d + q + 1) is
lower compared with the number of parameters in an LSTM layer with the same number
of units. A graphical representation of the GRU cell is shown on the right side of Figure 1.

3.1.6. Convolutional Neural Networks

Convolutional neural networks (CNN)s, proposed in [55], are feedforward NNs that
make use of the mathematical operator called convolution to extract new feature maps from
data. They work by multiplying subsets of the input data matrix by another matrix, called
a filter, to extract useful latent features. CNNs typically process multidimensional arrays,
and the number of dimensions to which the convolution operator is applied distinguishes
1D, 2D, and 3D convolutional networks.

The main characteristics that differentiate CNNs from the traditional fully connected
ones are basically twofold [32]. The first is local connectivity, where nodes are only connected
to a smaller region of the input, and each component of the feature maps is obtained by
processing only a subset of the input data. The second is weights sharing, where each
member of the kernel is used at every position of the input, meaning that all the nodes in
the output detect exactly the same pattern.

Let x(t) ∈ Rd, 0 ≤ t ≤ T be a multivariate time series of input variables. A 1D-CNN
layer with filters W(j) = (wj,1, wj,2, . . . , wj,m) ∈ Rd×m and biases wj,0 ∈ R for j = 1, . . . , q
extracts a new feature map {zs,j(x)}0≤s≤T+1−m,1≤j≤q from the input data, where each
component is a nonlinear function of some input data and is given by

zs,j(x) = φ
(

wj,0 + (W(j) ∗ x)s

)
= φ

(
wj,0 +

m

∑
l=1
〈wj,l , x(m+s−l)〉

)
.

where ∗ indicates the convolution operator and 〈·, ·〉 denotes the scalar product in Rd. It
must be remarked that the index j refers to the different filters. Each filter W(j) produces
a set of new features. The second index s refers to the different features extracted from a
given filter.

3.2. The Model

This section describes the neural network models developed. Let S = {s1, s2, . . . } be
the ordered set of the different seasons considered (i.e., quarterly data have |S| = 4 and
monthly data |S| = 12) and Y = {y1, y2, . . . } be the set of years under investigation. We
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denote by r(t) ∈ Rl the multivariate time series of the container traffic volume with a given
level of detail at time t. The index t is supposed to vary in T = {t ∈ N : t ≤ |Y × S|}
such that each integer t ∈ T uniquely identifies a pair (y, s) ∈ Y × S according to the
chronological order of the seasons and the years.

We model r(t) as a function of the season s ∈ S and its previous |S| ∈ N time lags:

r(t) = f (s, r(t−1), r(t−2), . . . , r(t−|S|)). (13)

We modelled the function f (·) using neural networks since they are known to be
universal approximators [56]. Our neural network architecture combines some of the
network architecture described in Section 3.1.

The season s is modelled using embedding networks. When choosing an embedding
size qs ∈ N, an embedding layer maps

zS : S → Rqs , p 7→ z∫ (s). (14)

where z∫ (s) is a set of new features that summarises the information concerning the
seasonal effect and represents s in a way that is optimised with respect to the desired output
in a qs real-valued dimensional space. Information related to the previous |S| time lags
of r(t) is processed by neural networks layers specifically designed to process sequential
data such as LSTM, GRU, or CNN layers. For illustrative purposes, we will consider the
LSTM networks, but an interesting comparison among these different neural networks
architecture will be carried out in the numerical experiments section.

Let R(t) = {r(t0)}t−|S|≤t0<t ∈ Rl×|S| be the matrix that contains the previous |S|
observations of r(t). An LSTM layer with qr ∈ N units processes it as illustrated in equations
R(t), and the output is

zr(r) = f (R(t)).

The set of new features zr(r) ∈ Rqr summaries the information related to the container
traffic volume of the previous |S| time lags. Let z = (zs, zr)′ ∈ Rqs+qr be the full set of
features obtained concatenating the output of the embedding and LSTM layer. The quantity
of interest r(t) can be calculated by processing z with a fully connected layer:

r(t+1) = φ(b0 + Wz). (15)

The embedding weights (zs, ∀s ∈ S), the LSTM weights (W(p), U(p), w(p)
0 , ∀p ∈ {r, z, c}),

and the weights of the fully connected layer (b0 and W) must be properly optimised in
order to minimise the error of the network outputs with respect to the reference values. A
graphical representation of the proposed neural network model is provided in Figure 2.

3.3. Data

In order to validate the effectiveness of the proposed methodology, we carried out
some experiments on data downloaded from the website of the port of Barcelona. These
data were also used in [39]. This port is one of the most important maritime logistics
ports in the Mediterranean, with a land area of 10.653 square kilometers. Barcelona is
the third largest port for container activity in Spain (after Valencia and Algeciras) and
ninth in Europe. The port is managed by the Barcelona Port Authority. As one of the
main ports in Spain—where it adopted the landlord governance model [16]—the Port of
Barcelona is coordinated by Ports of the State, a state-owned organisation responsible for
the meta-management of the 28 main Spanish port authorities that are in national seaports
of general interest. In the port of Barcelona, there are two terminal operators specialised
in container handling: “APM Terminals Barcelona” and “BEST—Barcelona Europe South
Terminal”. Both these container operators manage international terminals—linked with
rail facilities—with more than 3000 m of berthing line and 17 container cranes.
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Figure 2. A graphical diagram of the proposed neural network model.

The website of the Port of Barcelona provides multivariate time series data related to
container traffic. The dataset includes monthly observations from January 2010 to December
2020 (|S| = 12, |Y| = 11, and T = {t ∈ N : t ≤ 132}) related to the count of containers,
which are broken down into six categories: loaded and unloaded foreign, loaded and
unloaded domestic, empty, and transit. A separate analysis of the different categories is
also especially interesting in light of the reshaping of global supply chains, with a thrust
toward regionalisation that is being amplified by attempts to build resilience in response to
the COVID-19 outbreak.

First, explanatory data analysis was carried out. Table 1 reports some statistics (mean,
coefficient of variation (CoV), and range) of our dataset. We observe that the time series
under analysis presented very different magnitudes. For example, the volume of full
unloaded domestic containers was the smallest, while the volume of containers in transit
was the largest.

Table 1. Data statistics.

Type Mean CoV Min Max Range

empty 48.3668 0.2611 27.5010 86.2680 58.7670
full loaded domestic 7.5032 0.1888 3.7720 10.4460 6.6740
full loaded foreign 52.8784 0.1842 26.3830 71.5410 45.1580
full transit 47.7746 0.6771 14.0320 126.9690 112.9370
full unloaded domestic 1.7183 0.2168 1.0070 2.8020 1.7950
full unloaded foreign 40.4105 0.1722 26.4280 56.8010 30.3730

Figure 3 provides pairwise scatter plots (below the main diagonal) and Pearson
correlation coefficients (above the main diagonal) among the time series of interest, arranged
in matrix form. From both, we noted moderate positive correlations. The 3 stars next to
the correlation coefficients indicate that the corresponding p-values were less than 0.001.
This evidence suggests that a multivariate model could exploit the information among the
different series and produce more accurate predictions.

Figure 4 shows the box plots for the different container types grouped by month.
The red boxes refer to the warm months, while the blue ones represent the cold months.
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Some common elements can be observed among the different series. First, we observed
that container traffic increased in the warm weather months, but this effect was more
pronounced in some series and less so in others.
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Figure 3. Pairwise scatter plots of the container traffic volume data. Correlation coefficients are
marked with *** if the p-value of them being zero is less than 0.001.



Future Internet 2022, 14, 221 11 of 19

●

● ●

●

●

●

●

●

●

●

●

full_transit empty

full_loaded_foreign full_loaded_domestic

full_unloaded_foreign full_unloaded_domestic

Ja
n

F
eb

M
ar

A
pr

M
ay Ju
n

Ju
l

A
ug

S
ep O
ct

N
ov

D
ec Ja
n

F
eb

M
ar

A
pr

M
ay Ju
n

Ju
l

A
ug

S
ep O
ct

N
ov

D
ec

Ja
n

F
eb

M
ar

A
pr

M
ay Ju
n

Ju
l

A
ug

S
ep O
ct

N
ov

D
ec Ja
n

F
eb

M
ar

A
pr

M
ay Ju
n

Ju
l

A
ug

S
ep O
ct

N
ov

D
ec

Ja
n

F
eb

M
ar

A
pr

M
ay Ju
n

Ju
l

A
ug

S
ep O
ct

N
ov

D
ec Ja
n

F
eb

M
ar

A
pr

M
ay Ju
n

Ju
l

A
ug

S
ep O
ct

N
ov

D
ec

1.
0

1.
5

2.
0

2.
5

5
7

9
30

40
50

60
70

80

30
40

50
30

40
50

60
70

25
50

75
10

0
12

5
va

lu
e

clime

hot

cold

Figure 4. Seasonal box plotsof the container traffic volume data.

4. Results

In this section, we present the results of some numerical experiments carried out on
the data described in Section 3.3. A comparative analysis of the out-of-sample accuracy of
some models in predicting the container traffic volume is carried out. The aim is to find the
model able to more accurately forecast, out of sample, the container traffic volumes. We
evaluated and compared the out-of-sample performance of the different methods using the
mean absolute percentage error (MAPE):

1
n
·∑

i

∣∣∣∣ ŷi − yi
yi

∣∣∣∣ ∗ 100.

The comparison includes the standard SARIMA models, the deep learning model
described in Section 3 based on LSTM and embedding networks, and two variants that
use GRU and 1D-convolutional networks (in place of the LSTM network) to process the
time-specific component.

Let T be the full set of the time points available. We considered two different forecast-
ing scenarios:

• In the first scenario, the models were calibrated using data up to December 2018, and
forecasts were made for the calendar year 2019. In other words, data were partitioned
in the training set, including data related to T (1)

train = {t ∈ T : t ≤ 108} (from January

2010 to December 2018) and a testing set T (1)
test = {t ∈ T : 108 < t ≤ 120} (from

January 2019 to December 2019) for measuring the out-of-sample performance.
• In the second scenario, the models were calibrated using data up to December 2019,

and forecasts were made for the calendar year 2020. In this case, we defined the
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training set and testing set as T (2)
train = {t ∈ T : t ≤ 120} (from January 2010 to

December 2019) and T (2)
test = {t ∈ T : 120 < t ≤ 132} (from January 2020 to December

2020), respectively.

We treated these two years separately since 2020 presented very different features
from other years.

First, we discuss the calibration of all the models investigated. As far as the SARIMA
models are concerned, in order to find the most suitable model specification, we used
the “auto.arima” algorithm available in the R package “forecast” [57]. The “auto.arima”
algorithm explores the ARIMA model space, selecting a recommended model based on the
Akaike information criterion (AIC) and unit root tests. Table 2 lists the models selected by
the “auto.arima” algorithm for the different time series and for both forecasting scenarios.
The autoregressive (AR), differentiation (I), and moving average (MA) orders for non-
seasonal and seasonal components (denoted by the lower index 12) are reported with the
resulting AIC quality index.

Table 2. Best SARIMA models selected.

Non-Sesonal Orders Sesonal Orders
Type AR I MA AR12 I12 MA12 AIC

2019 Forecasts

full unloaded foreign 0 1 2 0 1 1 477.7100
full unloaded domestic 0 1 2 0 0 0 −73.9716
full loaded foreign 5 1 0 1 0 1 648.0511
full loaded domestic 2 1 0 1 0 0 224.9120
full transit 0 1 1 0 0 2 792.7719
empty 1 1 1 2 0 0 713.5212

2020 Forecasts

full unloaded foreign 0 1 2 1 1 2 540.6166
full unloaded domestic 0 1 1 0 0 1 −58.0310
full loaded foreign 0 1 2 0 0 2 717.8455
full loaded domestic 1 1 1 1 0 0 252.6635
full transit 0 1 1 1 0 0 882.7890
empty 1 1 1 2 0 0 794.4201

As expected, in almost all cases, the algorithm selected models that provided seasonal
components. Only for the full unlodead domestic data in the 2019 forecasts did the best
model results have only non-seasonal terms.

Regarding the deep learning models, some details must be provided. According to
machine learning best practices, preliminary pre-processing is performed. The time-specific
data concerning the volume of container traffic were scaled to [0, 1] via min-max scaling,
while the month names were coded into integer values. We considered the minimum and
maximum values in the training set in the min-max scaling. Furthermore, the minimum
value were reduced by 10% of the variation range, and the same percentage increases
were applied to the maximum value to ensure the testing set data were in [0, 1] after the
scaling. In all the architectures investigated, we set the size of the month embedding layer
to qs = 5. For the LSTM (GRU) model, we used an LSTM (GRU) layer with 64 units, while
in the case of the CONV model, we used 64 filters of a 6× 6 size. In the latter case, the filter
matrices slid along the data matrix backwards along the time dimension. The filter weights
were multiplied by the input data matrix (lag values of the container traffic volume) and
combined in a non-linear fashion (via an activation function) to extract the optimal features
with respect to the quantity of interest. In addition, three different activation functions
were considered to process the time-specific component:

• The linear activation φ(x) = x;
• The tanh φ(x) = ex−e−x

ex+e−x ;
• The relu function φ(x) = max(0, x).

The fitting of the neural networks was performed using the Adam optimiser [58],
setting the parameters to the default values. The network weights were recursively adjusted,
aiming to minimise the mean absolute error between the predicted and actual values. To



Future Internet 2022, 14, 221 13 of 19

avoid overfitting, we used leave-out validation by using 10% of the training set as the
validation set. The update of the weights was calculated using the remaining 90% of the
data, and at each epoch, the loss function was evaluated on the training and validation sets.
To avoid overfitting, we saved the weight configuration that produced the lowest value of
the loss function on the validation set. This was a set of data that the neural network did not
use during training. The performance obtained on this set could be a reliable estimate of the
model’s forecasting performance. A review of other possible validation techniques can be
found in [59]. The results of training a neural network are sensitive to some components of
the training process: the starting point of the optimisation algorithm, the random sampling
of batches of training data employed to calculate the network weight updates, and so on.
Then, analysing the results of a single run could be not sufficient to make a judgment. We
fit each architecture 10 times and compared the performance on the testing set in terms of
accuracy and stability.

Figure 5 shows the box plots of the outsample MAPE for all three networks (LSTM,
GRU, and CONV) for the different activation functions. This analysis shows the sensitivity
of the different models concerning the starting point of the optimisation algorithm and the
random sampling of batches. Some evidence may be noted.

●

●

●

●

0.1

0.2

0.3

0.4

CONV GRU LSTM
variable

M
A

P
E

activation

linear

relu

tanh

Figure 5. Forecasting MAPEbox plots for CONV, GRU, and LSTM.

First, we observed that the tanh activation (blue boxes) function produced the best
performance for all the network architectures investigated. The linear function (red boxes)
was the runner-up, while the relu activation (green boxes) produced the lowest out-of-
sample accuracy in our tests. Analysis of the variability of the results confirmed this
ranking: the tanh activation produced less variable results except for the GRU model, while
relu activation was associated with less stable results. According to these results, we can
conclude that the tanh activation function appeared to be the best activation function for
the investigated phenomenon.

Table 3 compares the results of the SARIMA models against the LSTM, CONV, and
GRU models with tanh activation in both forecasting scenarios. For the deep learning
models, we considered the ensemble prediction, obtained as the average of the forecasts
in 10 different runs. The MAPEs obtained by the different methods were reported at the
single time series level and at the aggregate level, where all values were summed. First, we
observed that the errors increased dramatically when moving from the 2019 forecasting
scenario to the 2020 forecasts. This is quite reasonable, since container traffic volume
showed a highly irregular pattern over the last year due to the COVID-19 outbreak. In
addition, it is visible that the LSTM and GRU methods produced a lower global MAPE
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than the SARIMA models in both forecasting scenarios. On the contrary, the CONV model
had poorer performances. This probably suggests that the evolution of container traffic
can be better modelled by using recurrent neural network architectures than convolutional
ones. Considering both scenarios, the GRU model appeared to be the best model. A further
comparison between the performances of the GRU and SARIMA models is depicted in
Figure 6 using barplots. Looking at the performance on individual series, in the 2019
forecasts, we observed that the improvement induced by the GRU models was especially
large for the “full transit” and “empty” container volumes, which were two of the largest
series in terms of size. In particular, the training of the deep learning models was carried
out simultaneously on all data and pursued the minimisation of the global MAE in the
training set. In this setting, it is not surprising that the learning algorithm put more weight
on the larger series, which could produce larger residues, than the smaller ones. At the
same time, the SARIMA approach appeared to be highly competitive on both “full loaded”
series. The comparison between the forecasts obtained by the GRU and SARIMA models
in this forecasting scenario is also graphically represented in Figure 7. In the 2020 forecasts,
the GRU and LSTM models still overperformed the SARIMA model at the overall level,
but the improvement appeared to be smaller. In this scenario, the only case in which the
SARIMA approach yielded a lower MAPE than the GRU was the “full transit” container
traffic volume. This evidence is in contrast with that observed in the first forecasting
scenario. However, when analysing in greater detail the behaviour of the “full transit”
container volume traffic, we observed that this series presented a large downward peak
in the initial months of 2020 and a rebound in the summer months of 2020. All of the
models investigated failed to predict the evolution of the “full transit” series, and this is
not surprising given that these troughs were probably due to the COVID-19 outbreak. The
reasons why the effects of the pandemic on the predictive ability of models were large in
this particular series have yet to be clarified, and we plan to shed some light on this theme
in a forthcoming work.

Table 3. Forecasting MAPE results for SARIMA, CONV, LSTM, and GRU models in 2019 and 2020.

Type SARIMA CONV LSTM GRU

2019 Forecasts

empty 14.97% 19.94% 9.51% 11.83%
full loaded domestic 7.43% 8.62% 11.27% 13.37%
full loaded foreign 6.96% 8.00% 8.19% 11.34%
full transit 23.48% 9.10% 10.14% 9.05%
full unloaded domestic 14.86% 42.85% 11.99% 9.83%
full unloaded foreign 7.56% 7.27% 6.27% 5.49%
on aggregate 12.54% 15.96% 9.56% 10.15%

2020 Forecasts

empty 29.75% 19.51% 22.09% 21.13%
full loaded domestic 20.28% 14.48% 19.60% 19.55%
full loaded foreign 10.84% 10.58% 8.72% 9.43%
full transit 19.08% 23.45% 28.42% 25.85%
full unloaded domestic 12.39% 43.13% 9.36% 7.79%
full unloaded foreign 13.10% 11.79% 14.46% 13.09%
on aggregate 17.57% 20.49% 17.11% 16.14%

Figure 8 shows the standardised residuals obtained by the SARIMA and GRU model,
distinguished by month for all the time-series data. We observed that both models presented
positive and negative residuals in all months. This evidence suggests that the SARIMA and
the GRU model did not have a systematic error component. Furthermore, we note that the
amplitude of the errors was generally stable over the different months.
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Figure 8. Standardised residuals of the SARIMA and GRU models for the different months.

We conclude this paragraph by analysing the representation of the seasonal compo-
nents learned by the network during the training process. We focus on the GRU model in
this part. The embedding layer, as described in Section 3.2, mapped the elements of the set
S (the months of the year) in a qs = 5-dimensional space, in which they were represented
in an optimal way with respect to the outcome variable. The Euclidean distance of the
levels in the new space is a measure of their similarity with respect to the target variable.
In our case, the distance measured the similarity of the months to the container traffic
volume. Since the visualisation of a month embedded in a five-dimensional space was
complex, we performed principal component analysis (PCA) on the embedding features to
reduce the dimensionality of the data with a minimum loss of information. In particular,
we extracted the first two (of five) components, and the months were mapped into a new
two-dimensional space R5 7→ R2. In our numerical experiments, the first two principal
components explained about 95% of the total variability and represented the months of
the year in a new bivariate space that allowed a simple graphical representation. Figure 9
plots the months of the year in this reduced-size space. We observed that the months
characterised by similar (average) temperatures tended to be close to each other in the
new space. In particular, the warm weather months (in red) were concentrated at the new
space’s bottom, while the cold weather months (in blue) were located in the remaining
part of the new space. This suggests that the network recognises similar patterns in data
referring to times of the year characterised by a similar climate and assigned similar weights
to months with similar characteristics.
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Figure 9. Graphical representation of the months embedding zs(s) ∈ R5 after the dimensionality
reduction (from 5 to 2) via principal component analysis.
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5. Conclusions

The availability of multivariate predictive models for container throughput with a
breakdown for domestic and foreign freight will be beneficial for ports, shippers, and
terminal operators, as well as for national regulators and authorities. Bearing in mind
the increased variability and the quick evolution of the scenario, further accelerated as
various interventions are implemented to mitigate the pandemic and its fallouts, adding
forecasting models based on neural networks to the arsenal of tools available has not
only the potential to yield better estimates but to complete and reduce the variation when
used in combination with other methods. The ability to rapidly identify trends will have
effects on directing efforts towards building capacity, and this applies equally to human
resources training and recruitment. Therefore, the adoption of deep learning forecasting
models turns out to be useful not only for the container terminal operators (e.g., “APM
Terminals Barcelona” and “BEST—Barcelona Europe South Terminal”) but also for the
public organisations responsible for port management at the national level (e.g., Ports of
the State) and local level (e.g., Barcelona Port Authority). In fact, the demand estimation for
maritime container services allows an efficient management of ports from the perspective of
global competitiveness. Moreover, a correct estimate of these data allows one to strategically
sustain the stable development of vertical alliances between container terminal operators
and shipping companies.

This paper sheds some light on the potential of predictive models based on neural
networks to forecast the volume of containerised freight. The two recurrent neural net-
work models outperformed SARIMA and the CNN in both of the forecasting scenarios
analysed, achieving an absolute reduction in the MAPE—for the aggregate data—of about
3 percentage points in the first scenario and 1.5 percentage points in the second. The
embedding realised by a neural network showed a clear spatial separation between the
warmer and cooler months. The proposed approach can be extended, keeping in mind
external regressors so that additional available information can be integrated. Future work
will also include a refinement of the embedding used to build a meaningful representation
of seasonality so that additional insights can be gained, as well as an investigation of
hierarchical models.
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