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Abstract: Websites on the Internet are becoming increasingly vulnerable to malicious JavaScript
code because of its strong impact and dramatic effect. Numerous recent cyberattacks use JavaScript
vulnerabilities, and in some cases employ obfuscation to conceal their malice and elude detection.
To secure Internet users, an adequate intrusion-detection system (IDS) for malicious JavaScript
must be developed. This paper proposes an automatic IDS of obfuscated JavaScript that employs
several features and machine-learning techniques that effectively distinguish malicious and benign
JavaScript codes. We also present a new set of features, which can detect obfuscation in JavaScript.
The features are selected based on identifying obfuscation, a popular method to bypass conventional
malware detection systems. The performance of the suggested approach has been tested on JavaScript
obfuscation attacks. The studies have shown that IDS based on selected features has a detection rate
of 94% for malicious samples and 81% for benign samples within the dimension of the feature vector
of 60.

Keywords: malware detection; intrusion detection; obfuscated malicious; machine learning;
malicious JavaScript

1. Introduction

Most websites use JavaScript to enhance the usability and functionality of web appli-
cations. The JavaScript programming language, along with hypertext markup language
(HTML) and cascading style sheets (CSS), is one of the three fundamental technologies for
web development. Due to its ease of use and power in creating dynamic and interactive
web pages, the use of JavaScript has become a standard among all web developers. Ac-
cording to a survey, JavaScript is used as a client-side programming language by 97.7% of
all websites [1]. JavaScript code is interpreted in the user’s web browser and executed in
the user’s processor instead of the web server. It allows for interacting with the document
object model (DOM) of a web page and adding client-site behaviour to HTML pages. Some
examples of this usage are animation of objects, validation of user input, and asynchronous
communication. In addition to the web-based environment, JavaScript is also used in
environments such as portable document format (PDF) documents, site-specific browsers,
and desktop widgets [2].

JavaScript, not only brings versatility but also gives attackers new opportunities to
exploit vulnerabilities in browsers and infect users with malicious JavaScript. Malicious
JavaScript is a written program that is considered as a code that shows up as an unwanted
behaviour such as by downloading and installing itself, spamming email or unwanted
advertising. The main motive of obfuscated code is to fool the user to get it to install on
the particular machine indirectly and exploit its execution. There are a few approaches for
detecting the obfuscation of malicious JavaScript code which is like the honeypot technique
or pattern-matching which fall under statistical analysis.

The creators of the malicious scripts exploited obfuscated JavaScript to conduct a
variety of attacks, including cross-site request forgery (CSRF) as well as cross-site scripting
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(XSS). Existing intrusion-detection systems rely on professional expertise, yet this is a
human-prone process even for specialists. To solve this problem, detecting malicious
JavaScript as a defense mechanism has attracted more and more attention in cybersecurity
research. The detection approaches can mainly be classified into three categories. The first
category of approaches is signature-based [3]. Users create a signature for one malicious
sample by generating a hash value or fingerprint, and then compare the signature to a
blacklist.

Although these techniques can effectively identify known harmful samples, they
cannot identify variations with different hash values or fingerprints that have been updated
or obscured [3,4]. The second category of approaches mainly focuses on static analysis
by using machine learning techniques. These approaches extract features from the raw
code of JavaScript and map each JavaScript sample to a point in the feature space, where
malicious ones are separated from benign ones [5]. These approaches are promising and
attractive, not only because they are scalable but also because they achieve impressive
performance in simulations. However, they also have limitations. First, new characteristics
are easily dodged, necessitating hundreds of thousands of data for classifiers to achieve
high accuracy. Second, they cannot be utilised to categorise attack types or identify new
assaults originating from malicious JavaScript. The third category of approaches tries to
execute JavaScript samples and analyse their behaviours by using techniques such as honey
clients or sandbox. In contrast to the static analysis on raw code, these approaches fall in the
class of dynamic analysis. These approaches are normally more accurate than approaches
in the first two categories, because they are able to overcome challenges resulting from
attackers obfuscating malicious JavaScript [6]. But the biggest drawback is that they are
not scalable and require much more time and other resources [7].

Obfuscation is the primary technique used by attackers to disguise their attacks [8].
Attackers attempt to obfuscate JavaScript to evade signature-based and static analysis
approaches. Based on the processes performed, four kinds of obfuscation strategies are
distinguishable among attackers [9].

1. Randomization obfuscation: Without altering the logic of JavaScript codes, attackers
are able to arbitrarily insert or modify certain components. Typical methods include
randomising whitespace, variable, comments, and functions names.

2. Data obfuscation: One or more variables and constants are transformed into their
computational outputs by this method. String splitting and keyword substitution are
both extensively used methods.

3. Encoding obfuscation: There are normally three ways adopted by attackers to encode
original code: converting the code into escape ASCII characters, Unicode or hex-
adecimal representations, and equipping it with customized encoding and decoding
functions, and employing encryption and decryption methods.

4. Logic structure obfuscation: This includes changing the execution flow by inserting
redundant instructions or modifying some conditional branches.

The study [10] demonstrates that all popular antivirus software may be easily cir-
cumvented by using a variety of obfuscation methods. However, it is not true that a
JavaScript code is malicious if it is obfuscated. Obfuscation is also regularly utilized by web
developers to protect code privacy and intellectual property or improve efficiency. Most
notably, heavy usage of JavaScript obfuscation is seen among online advertising vendors.
However, people have realized that obfuscation is not equivalent to malignancy [9]. This
is an obvious simplification of the malicious JavaScript detection problem, which limits
these approaches’ performance in real-world applications and impairs people’s confidence
in these approaches. The paper by Al-Taharwa et al. [11] is the first work that faces the
non-equivalence between obfuscation and malignancy, and the detection problem is split
into two subproblems: distinguishing obfuscated from unobfuscated, and distinguishing
obfuscated malicious from obfuscated benign.

If we acknowledge the fact that not all obfuscated JavaScript codes are malicious, it is
natural to treat the detection problem as a classification problem of two hierarchies. On the
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higher level, we only consider whether a JavaScript sample is obfuscated or not. This is the
main focus of existing intrusion-detection systems. Then, we have two branches leading to
the lower level, and the two corresponding subproblems are classifying an unobfuscated
code as malicious or benign and classifying an obfuscated code as malicious or benign.
Which subproblem should be solved depends on the results from the higher level. We
believe that splitting the problem into subproblems could not only improve detection
performance but also reduce computing resources.

In this paper, we demonstrate the planning and implementation of an intrusion-
detection system that distinguishes malicious from benign JavaScript code swiftly. We
use statistical methods to analyse features of JavaScript code and use machine learning
techniques to build a classification model. JavaScript code that is found to be malicious
can then raise alarms to the user or be further analysed by experts. Our techniques
automatically extract feature attributes, as opposed to previous methods that hand-crafted
feature attributes. In addition, the dimensions of the learned features are small, resulting in
a quicker detection.

This paper is structured as follows. In Section 2, we address similar work. In Section 3,
extracted characteristics and selection techniques are explored. The experimental setup
and findings are presented in Section 4. In Section 5, concluding remarks on future work
are provided.

2. Related Work

The process of deriving useful information from vast amounts of data is referred
to as machine learning. Models of machine learning consist of a set of rules, methods,
or sophisticated “transfer functions” that can be utilised to locate relevant patterns in
data or to recognise or anticipate behaviour. These models can be implemented to either
find or create new data patterns [12]. In the field of anomaly intrusion-detection systems,
machine learning approaches have seen substantial application in recent years. A variety of
algorithms and approaches, including clustering and neural networks, rules for association
and decision trees, as well as genetic algorithms and closest neighbour methods, are used
to extract information from intrusion datasets.

There is some historical study that has investigated the usage of a variety of methods
to construct anomaly-based intrusion detection systems (AIDS). Chebrolu et al. studied
the performance of two feature selection procedures involving Bayesian networks (BN) and
classification regression trees (CRC), and merged these methods for improved accuracy. The
results of their research were published in the journal Computers in Biology and Medicine [13].

Information gain (IG) and correlation attribute evaluation were two of the feature
selection methods that were combined in Bajaj et al.’s suggested method for feature se-
lection, which uses a combination of the aforementioned algorithms. They evaluated the
functionality of the chosen characteristics by using a variety of classification approaches,
including C4.5, naive Bayes, NB-Tree, and multi-layer perceptron, among others [14,15].
In order to determine the relative relevance of IDS traits, a genetic-fuzzy rule mining
technique was utilised [16]. The random tree model was utilised by Thaseen et al. in order
to improve accuracy and reduce the rate of false alarms in their NIDS proposal [17]. It was
recommended by Subramanian et al. to classify the NSL-KDD dataset by utilising decision
tree algorithms to develop a model with respect to their metric data, as well as evaluate the
performance of tree-based techniques [18].

The principles of machine learning have been applied to the development of a variety
of anti-AIDS drugs. The primary goal of developing IDS through the application of machine
learning approaches is to reduce the amount of human expertise that is required while
simultaneously improving accuracy. Over the past few years, there has been a discernible
rise in the quantity of AIDS applications that make use of machine learning strategies.
The primary goal of IDS research that is based on machine learning is to identify patterns
and construct an intrusion-detection system for a given dataset. In the realm of machine
learning, there are often two sorts of approaches: supervised and unsupervised.
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The Zarathustra research software provides a facility to read the DOM memory of a
web browser [19]. A copy of the DOM for a specific website is taken from a clean virtual
machine (VM) and a second copy is taken after the VM has been infected with information-
stealing malware. The Zarathustra software examines the differences between the infected
and uninfected DOM to develop web inject signatures related to the malware family being
tested. The Zarathustra software is written in Java and makes use of the Selenium Web
Driver for Firefox. The Zarathustra software was written in 2014. The Zarathustra software
was built to encounter the problems communicating with the Firefox web driver. This
is due to changes in the web driver protocol which occurred after the completion of the
Zarathustra research. It was decided to look for other methods for reading the DOM rather
than spend time recoding the Zarathustra software.

Through the use of static analysis, Peiser et al. identified malicious JavaScript code by
feeding locality-sensitive hashes into a feed-forward neural network as input features [20].

There have been suggestions made for techniques that make use of machine learning
in order to identify malicious JavaScript programs [21]. One example of this would be
monitoring its execution upon a JavaScript code at run time by using a sequence of events
to collect vectors for categorisation. Learning to recognise dangerous patterns inside the
structure and operation of JavaScript code is a another strategy that can be utilised [22].

Feature clustering can also be accomplished with the assistance of a wrapper technique
and a classifier [23]. This strategy results in the generation of a feature subset via feature
selection. The method employs a feature set that is not comprehensive, and there is a high
probability that the wrapper method will experience overfitting as well as a protracted
processing time.

Attackers with malicious intentions use JavaScript to carry out attacks such as drive-
by download attempts, XSS, and CSRF. Due to the number of such attacks, manually
detecting malicious scripts by using a professional’s specific knowledge is error-prone
and difficult. Deep learning and a neural network called the bidirectional long short-
term memory (BLSTM) are used in Song et al.’s [24] innovative method for identifying
malicious JavaScript code. This method is based on deep learning, and it uses the BLSTM
neural network. Additionally, they constructed a program-dependency graph to extract
JavaScript’s semantic meaning. The model achieved an accuracy of approximately 97.7
percent.

Martin et al. [25] proposed an efficient machine learning strategy for detecting network
intrusion. They included network addresses in the IDS dataset because they were helpful
features. An innovative method for translating (encoding) source and destination network
addresses, which are high-dimensional categorical variables, into a more manageable set
of scalar values that express the likelihood of sharing a network connection at various
granularities within the network address hierarchy has been proposed.

Feature matching or static word embeddings cannot spot the difference between
obfuscated and unobfuscated JavaScript code. Huang et al. [26] introduced JSContana to
address this issue by combining flexible context analysis with efficient key feature extraction.
They used dynamic word embeddings to retrieve the real contextual representation of
JavaScript code during the translation process.

Conventional procedures mainly depend on signature as well as heuristic-based
methods, both of which are vulnerable to zero-day attacks. As a consequence, conventional
methodology produce a substantial number of false negatives and/or positives. To address
this issue, Ndichu et al. [27] uses a machine learning method dubbed Doc2Vec, which is a
neural network model capable of learning text context information. The collected features
are fed into a classifier model (for example, SVMs and neural networks), which determines
the maliciousness of JavaScript code.

Rozi et al. [28] created a deep neural network for assessing the bytecode sequences of
malicious JavaScript code and recognizing harmful JavaScript code to protect consumers
from JavaScript-related cyberattacks. They generated a bytecode sequence by making use
of the V8 JavaScript compiler. A bytecode sequence is an abstract idea of machine code.
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In addition to this, they combined a deep pyramid convolutional neural network, also
known as a DPCNN, with recurrent neural network models that were capable of handling
long-range interactions in a bytecode sequence. This was done in order to discern the
malicious intentions of the attacker.

Martin et al. [29] made significant contributions by extending the gaNet architecture to
incorporate categorization, analyzing future extensions, and introducing the correct classi-
fier (gaNet-C) to two difficult traffic forecasting problems: active and elephant connections.

Radanliev et al. [30] presented a novel epistemological equation developed and
evaluated the use of comparative and empirical analysis. Following the comparative
examination of national digital initiatives, an empirical analysis of cyberrisk-assessment
methodologies was completed. Additionally [31] investigates how AI algorithms can work
on low memory/limited computing IoT devices and also how AI can be developed and
created to generate and compose its own algorithms.

There are several research works for detecting malicious JavaScript code in web
applications. In the measurement study of Wei Xu et al. [32], they illustrate the influence of
obfuscation methods in malware JavaScript code. By examining the detection efficiency of
the 20 greatest common antivirus vendors to detect obfuscation malicious JavaScript, they
provide the evidence of the detail that most prevalent antivirus vendors use the signature
intrusion detection system (SIDS), for which cause most anti-virus vendors couldn’t identify
obfuscated malicious JavaScript code precisely.

Many machine learning techniques have been used to identify JavaScript malware
and assess the accuracy and performance of detecting various classes of JavaScript mal-
ware. Ndichu et al. [10] collect a dataset of obfuscated and non-obfuscated JS codes and
selects and extracts a set of 45 features from the dataset. The features employed include
frequency of given keywords, number of lines, characters per line, number of functions,
and entropy, among others. They are unable to identify obfuscated JavaScript not existing
in the training set.

Using machine learning classification to detect malicious scripts does have a disadvan-
tage. Specifically, machine learning classification techniques are expected to classify a small
subset of normal scripts as possible JavaScript malware. One example of normal and obfus-
cated JavaScript is packed JavaScript. Some web applications select to compress JavaScript
before communicating it to users to decrease the data transmitted or avoid the theft of their
source code. With packed JavaScript, it is possible to create a false positive and it may stop
users from accessing these websites. Therefore, to improve the detection performance of
machine learning, we extract the feature that could detect obfuscated JavaScript malware.

Likarish et al. [33] use the controlled frequency of each JavaScript keyword as a
feature and build the detection model with four supervised machine learning techniques:
NaiveBayes, ADtree, SVM and RIPPER. The limitation of this technique is that it is involved
only with the normalized frequency of each JavaScript keyword and disregards further
important features in the code.

Fraiwan et al. [34] examine the behavior of JavaScript code to create the intrusion-
detection system. Their methods extracted four sets of features for the detection JavaScript
malicious code: URL attributes, JavaScript code results, JavaScript code activities, and
JavaScript code content. However, given that this technique is based on static analysis, they
have limitations in analyzing dynamic features of JavaScript code and detecting obfuscated
JavaScript code.

3. Feature Extraction

Our purpose is to design a classifier with feature selection, which could produce the
best accuracy for each class of malicious JavaScript patterns. The first step is to construct the
different connection models to achieve the best simplification performance for classifiers.
Each feature will be rated as “very important”, “important”, or “unimportant” according
to the following rules:

1. If accuracy high and training time high, then the feature is important.
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2. If accuracy high and training time low, then the feature is very important.
3. If accuracy low and training time high, then the feature is unimportant.
4. If accuracy low and training time low, then the feature is unimportant.
5. If accuracy unchanged and false alarm decreased, then the feature important.

These principles of selection were used by means of information gain. Information
gain, initially applied to calculate splitting criteria for decision trees, is frequently used to
discover how well each single attribute splits the given dataset. The general entropy I of a
given dataset S is defined [5] as

I(S) = −
c

∑
i=1

pilog2 pi

where c denotes the total number of classes and pi the portion of instances that belong to
class i. The reduction in entropy or the information gain is computed for each attribute

according to IG(S, A) = I(S)−∑vEA
|SA,v |
|S| I(Sv) where va value of is A and SA,v the set of

instances where A value has v. We applied information gain into 71 features as the quality
of the feature selection is one of the most important factors that affect the effectiveness of
IDS. The stages of the experiment are shown in Figure 1.

Figure 1. Experiment methodology.

1. Feature selection stage: In this stage, an information theoretical feature selection
approach is used to normalize the training and test dataset for generating reduced
feature set selection.

2. Classification stage: This comprises two phases, specifically the training phase and
the testing phase.

3. Analysis of the result: After the testing phase, we calculate the accuracy rate, false
alarm rate, and the time to build the model.

The static analysis of JavaScript files produces characteristics that can be used in
JavaScript. The features of JavaScript can be broken down into two categories: statistical and
lexical. To extract features out of each section of JavaScript code, a total of 170 characteristics
are used. Table 1 outlines the characteristics along with brief explanations of each one.
Figure 2 shows the correlation coefficients of different features.

In practical implementations of machine learning, the number of characteristics that
result is typically quite enormous, yet many of those do not contribute to accuracy and may
even reduce it. In this study, a decreasing drop in the number of attributes is an important
factor, and it is imperative that this process be carried out while preserving a high degree
of accuracy. This is because the detection process on client computers should not impede
the browsing experience of customers.

We first extract the above 170 features and run an analysis on the effectiveness of these
features. Then feature selection methods are used to determine the effectiveness. We plot
a bar chart for each feature to visualize the difference in values between malicious and
benign samples. We calculate the correlation coefficient to measure the strength of the
relationship between a feature and a group of samples. Based on the correlation coefficient,
we can only select the top features to decrease the dimension of the feature vector as shown
in Figure 2. Figure 3 shows the visualization of differences between malicious and benign
samples for each feature.
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Table 1. Feature extraction.

ID Feature Description

1 Length of the script The number of chars in the script, without
comments

2 # of lines The number of lines

3 Script entropy The Shannon entropy of the script as a whole,
without comments

4 Avg. line length The average length of line

5 % of strings The percentage of chars * belonging to strings

6 % of whitespace The percentage of whitespace

7 Ratio of comments to script The ratio of chars in comments to chars in the
script

8 # of comments The number of comments, including inline and
multiline comments

9 Avg. comments per line The average number of chars in comments per
script line

10 # of strings The number of strings *

11 Avg. string entropy The average Shannon entropy of strings

12 Maximum string entropy The maximum Shannon entropy of strings

13 Avg. string length The average number of chars per string

14 Maximum string length The maximum length of strings

15 # of long strings The number of long strings that have more than 40
chars

16 # of “iframe” strings The number of strings that contain “iframe”

17 # of suspicious tag strings
The number of strings that contain tags that can be
utilized for malicious purposes, such as “script”,

“object”, “embed”, and “frame”

18 # of suspicious strings The number of suspicious strings that contain
“evil”, “shell”, “spray”, and “crypt”

19 # of long variable or function names The number of long variables or function names
that have more than 15 chars

20 Avg. # of arguments per function The average number of arguments per function

21 Avg. argument length The average length of function arguments

22 Avg. length of the function body The average number of chars per function body

23 % of function body The percentage of chars belonging to function
bodies

24 Ratio of # of functions to the script
length

The ratio of the number of function definitions to
the script length

25 # of calls to set event handlers
The number of function calls to set event handlers,
such as document.addEventListener on events: on

error, on load, on before unload, on unload

26 # of encoded chars The number of encoded chars, including unicode
chars and hex numbers

27 # of backslash chars The number of backslash chars

28 # of pipe chars The number of pipe chars
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Table 1. Cont.

ID Feature Description

29–39 # of occurrence of built-in
functions

The number of occurrence of each built-in function:
eval, setTimeout, setInterval, unescape, replace,

document.write, charAt, substring,
String.fromCharCode, String.charCodeAt,

navigator.userAgent

40–50
Ratio of # of occurrence of a
built-in function to the script

length

The proportion of the total length of the script that
is comprised of instances of a built-in function.

51–110 # of occurrence of keywords The number of occurrences of each JavaScript
keyword, totally 60 keywords

111–170 Ratio of # of occurrence of a
keyword to the script length

The amount of times a keyword appears in relation
to the total number of words in a screenplay.

Figure 2. Correlation coefficients of different features. They are in decreasing order.
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Figure 3. Visualization of differences between malicious and benign samples for each feature.

4. Experiments

The machine learning approach adopted here consists of data collection, feature
extraction, training, and testing. We collected a dataset containing several JavaScript for
both malicious and benign groups. We retrieved a collection of attributes for every one of
the samples within the dataset, which were determined by feature analysis. The retrieved
features are then utilised to generate fixed-length feature vectors for training and testing.

4.1. JavaScript Collection

The dataset contains data from two distinct sources.

1. The Alexa Top 500 websites: Downloading the JavaScript discovered on the Alexa Top
500 homepages provided a more understandable picture of actual scripts available on
websites. To retrieve the scripts from such websites, BeautifulSoup was used to parse
them and extract all inlined scripts. (eg., <script>alert(“foo”);</script>). For our
evaluation, we assume samples in this dataset are non-malicious and non-obfuscated.
There are 4342 samples.

2. A set of malicious JavaScript tests from the VX Heaven (vxheaven.org). There are
only malicious samples included in the VX Heaven repository. The majority of the
malicious samples contained in the dataset are either JavaScript downloaders that
are utilised in malspam operations or Exploit Kits resources that are utilised for the
purpose of exploiting vulnerabilities in browser plugins. Almost all of the samples
are, to some extent, obfuscated, and it appears that several obfuscation methods and
tools were used. There are total of 119 malicious samples.

4.2. Model Configuration

In this study, we make use of a support vector machine, often known as an SVM.
The following are some of SVM’s benefits: effective in large dimensional spaces; employs
a subset of training examples in the decision function, which means it also is memory
efficient; alternative kernel functions can be chosen for the decision function in order to
meet a variety of circumstances [8]. We use Scikit-learn, a machine learning package for
Python, to implement SVM. The parameters are: C = 3, kernel = ’linear’, and gamma =
’auto’.
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Because the quantity of benign samples is much greater than that of malicious samples,
out data is highly imbalanced. In order to address the issue of class imbalance, we adopt a
classifier-independent approach to make sure the training data is class-balanced. We use
60% of malicious samples as training data and the remaining 40% as testing data. Then we
arbitrarily select the identical number of benign samples as training data and the left as
testing data. The cross-validation is applied 10 times, and thus 10 datasets are generated.
The results displayed below are averages of the results of the 10 rounds.

Based on correlation coefficients in the feature analysis, we select the top 30, 60, and
100 features. We will compare how this setting will affect the performance of the classifier.

4.3. Experiment Results

Figure 4 displays the accuracy of the categorisation when it was examined by using
the malicious and benign JavaScript samples discussed previously. The level of accuracy
can be determined by taking the total number of samples and dividing it by the number
of successful classifications. The findings are presented in the figure with a breakdown
according to the amount of features that were included in the classifier.

The values show that the classifier has the best performance when the dimension
of the feature vector is 60, with the accuracy of 94% for malicious samples and 81% for
benign samples. The dimension of 30 makes the classifier have a little better performance
on malicious samples but not on benign samples. One thing we should mention here is
that the case of 30 features needs significantly less time to train the classifier than the other
two cases.

Figure 4. The classification accuracies for the three different dimensions of the feature vector.

Figure 5 provides further information regarding the findings presented above by
illustrating the false positive rate (FPR) and the false negative rate (FNR) for each set of
characteristics. The ratios are calculated as one fraction of samples that are malicious and
samples that are benign, respectively.

According to the figure, the rate of false positives is quite high for all configurations,
although the rate of false negatives is comparatively low. This is in contrast to the fact that
the rate of false positives is relatively high. In the best case scenario, which makes use of
60 characteristics, only 6% of harmful samples are misclassified.

However, the large false-positive rate will cause many false alarms and may compro-
mise clients’ user experience. We will further look into this issue from several different
aspects, including optimizing parameters for classifier and feature extraction. Our purpose
is to have high overall precision and a low false-positive ratio.

An IDS is typically evaluated based on the following traditional performance measures:

• True positive (TP): Number of accurately identified malicious codes.
• True negative (TN): Number of accurately identified benign codes.
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• False positive (FP): Number of incorrectly identified benign code, when an indicator
identifies the benign file as malware.

• False negative (FN): Number of incorrectly identified malicious code, when an indi-
cator fails to identify the malware because the virus is new and no signature is still
available.

• Total Accuracy: Proportion of entirely precise classified instances, either one positive
or negative.

Figure 5. The false positive rate (FPR) and false negative rate (FNR) for three different dimensions of
feature vector.

The confusion matrix for a two-class classifier, which is the kind that is typically
utilised in an IDS, is presented in Table 2. The examples that belong to each anticipated
class are represented along the columns of the matrix, whereas the instances that belong to
each actual class are represented along the rows.

Table 2. Confusion matrix of an IDS for evaluation purpose.

A
ct

ua
lC

la
ss Predicted Class

Normal Attack

Normal True negative (TN) False Positive (FP)

Attack False Negative (FN) True positive (TP)

The detailed analysis of the accuracy of SVM classification on dataset shown in Table 3.

Table 3. Detailed accuracy of using SVM classifier.

TP Rate FP Rate F-Measure ROC

0.989 0.272 0.961 0.989 0.858 malware
0.728 0.011 0.907 0.728 0.858 normal
0.955 0.239 0.954 0.955 0.858

Confusion matrix results for the SVM classifier is shown in Table 4.
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Table 4. Confusion matrix results.

Malware Normal

4296 48 Malware
176 470 Normal

Figure 6 provides the evaluation of accuracy of our methodology with the state-of-
the-art works. Figure 5 shows that the SVM produces slightly better accuracy than other
existing malicious JavaScript detection methods.

Figure 6. The comparison of accuracy between the proposed SVM based model with the exist-
ing works [24,28].

The detailed analysis of the accuracy of the naive Bayes classification for the dataset
shown in Table 5.

Table 5. Detailed accuracy of using naive Bayes classifier.

TP Rate FP Rate F-Measure Class

0.344 0.074 0.508 Malware
0.926 0.656 0.292 Normal
0.419 0.15 0.48 Weighted Avg

The detailed analysis of the accuracy of the sequential minimal optimization (SMO)
classification on dataset shown in Table 6.

Table 6. Detailed accuracy of using SMO classifier.

TP Rate FP Rate F-Measure Class

0.989 0.272 0.975 malware
0.728 0.011 0.808 normal
0.955 0.239 0.953 Weighted Avg

Figure 7 provides the evaluation of accuracy of different classification methods.
Figure 7 provides the evaluation of the accuracy of our methodology with the machine

learning techniques. Figure 7 shows that the SVM produces better accuracy than other
machine learning techniques. Figure 8 provides the evaluation of the time taken to build
a model between the SVM and different classification methods. Naïve Bayes produces
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less time to build the model but does not provide good accuracy. SVM gives a good time
for building the model and best accuracy result. Therefore, SVM is selected for detecting
malicious JavaScript.

Figure 7. The comparison of accuracy between the SVM and different classification methods.

Figure 8. The comparison of time taken to build model between the SVM and different classifica-
tion methods.

5. Conclusions and Future Work

Many malicious JavaScripts that are used both on the client-side and on the server-side
are obfuscated to evade the detection of signature-based detection systems. To mitigate
this, in this paper we proposed a novel technique for the prevention and detection of
malicious JavaScript codes that uses anomaly-detection techniques. A total of 170 features
are extracted and we ran an analysis of the effectiveness of these features. Then machine
learning was used to develop an intrusion-detection system. Our techniques automatically
extracted feature attributes contrasted to other previous approaches which use manually
created feature attributes. The data for the analysis was compiled by doing the analysis on
a sample of 10,000 websites, 5000 of which were trusted and 5000 of which were not trusted.
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This method has been tested on a substantial corpus of actual JavaScript code from the real
world and is now available to the general public online. The findings of the evaluation
indicate that it is possible to detect malicious code in a reliable manner by employing
emulation to exert the (possibly hidden) behaviour of the script and trying to compare
this actions with a (learned) model of regular JavaScript code execution. This process was
carried out in order to determine whether or not it is possible to accurately detect malicious
code. Experimental results indicated that our approach could detect JavaScript malware
with a high detection accuracy of 98% by using SVM.
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