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Abstract: Domain name generation algorithms are widely used in malware, such as botnet binaries, to
generate large sequences of domain names of which some are registered by cybercriminals. Accurate
detection of malicious domains can effectively defend against cyber attacks. The detection of such
malicious domain names by the use of traditional machine learning algorithms has been explored
by many researchers, but still is not perfect. To further improve on this, we propose a novel parallel
detection model named N-Trans that is based on the N-gram algorithm with the Transformer model.
First, we add flag bits to the first and last positions of the domain name for the parallel combination
of the N-gram algorithm and Transformer framework to detect a domain name. The model can
effectively extract the letter combination features and capture the position features of letters in the
domain name. It can capture features such as the first and last letters in the domain name and the
position relationship between letters. In addition, it can accurately distinguish between legitimate
and malicious domain names. In the experiment, the dataset is the legal domain name of Alexa and
the malicious domain name collected by the 360 Security Lab. The experimental results show that
the parallel detection model based on N-gram and Transformer achieves 96.97% accuracy for DGA
malicious domain name detection. It can effectively and accurately identify malicious domain names
and outperforms the mainstream malicious domain name detection algorithms.

Keywords: malicious domain name; DGA; parallel detection model; N-gram; Transformer model;
N-Trans

1. Introduction

People’s lives are increasingly inseparable from the Internet. By the end of 2021, the
number of China’s Internet users reached 1.032 billion, with 42.96 million new Internet
users compared with December 2020, and the Internet penetration rate reached 73.0% [1].
However, the application of the Internet has enriched people’s lives while also increasing
security risks. When accessing a website, the domain name entered is resolved to an IP
address through a DNS service, which locates the target server to browse the corresponding
Web service. Because the domain name system has no security detection mechanism,
malware and viruses often use DNS services to communicate with external servers [2].

Malicious domain names are widely used as communication carriers for malware,
viruses, and malicious servers by organizations engaged in hacker attacks and APT. In
order to meet the attacker’s attack needs, prevent the malicious domain names from being
discovered by security vendors, and disrupt the attack behavior, attackers often use the
DGA algorithm to generate a large number of malicious domain names, which can hide
the real malicious server.

The existing malicious domain name detection algorithms can be improved [3]. For
example, machine learning algorithms are efficient for training, but require a lot of work up
front to find the right features. The recognition rate of detecting malicious domain names
still needs to be improved by using deep learning algorithms, such as LSTM and RNN.
Given this, a parallel detection model named N-Trans based on N-gram and Transformer is
proposed in this paper, and the main work and contributions are as follows:
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1. In the data processing stage, flag bits are added at the beginning and end of the
domain name, and the dataset is processed using the N-gram algorithm. The location
features are added to the features of the phrase elements obtained from the original
N-gram processing;

2. In the model training stage, the Transformer model is used to identify the malicious
domain name, further enhancing the model’s learning of deep features such as location
information and text features and improving the accuracy of identification;

3. A parallel combination of the N-gram algorithm and Transformer model to further
enrich the text features trained by the model based on a single detection model;

4. Experiments are conducted on the Alexa and 360 Security Lab datasets to compare
with the Naive Bayesian algorithm, XGBoost algorithm, RNN model, LSTM model, Bi-
LSTM model, etc. The experiments show that the accuracy of the algorithm proposed
in this paper reaches 96.97%, and the recall rate reaches 97.07%, which is better than
the comparison models.

The arrangement of the paper is as follows: Section 2 introduces the research related
to malicious domain detection from machine learning and deep learning perspectives,
leading to the model proposed in this paper based on the existing research. Section 3
introduces the N-Trans parallel detection model from data pre-processing and the parallel
module. Section 4 presents the experimental environment and dataset details and verifies
the effectiveness of the N-Trans model in detecting malicious domain names. Section 5
summarizes the work of this paper and proposes directions for future research.

2. Related Work

Machine learning is commonly used for character features to detect malicious domain
names. Based on the difference in character distribution between legitimate and mali-
cious domain names, Yadav et al. [4] detected malicious domain names by looking at the
distribution of unigram and bigram features in the same set of IP addresses. Agyepong
et al. [5] detected DGA based on a frequency analysis of character distribution and domain
name weighted scores. Furthermore, Wang et al. [6] proposed a method based on random
forest to identify malicious domain names using features such as domain name length.
Meanwhile, Shi et al. [7] combined character features, DNS features, and WHOIS informa-
tion of websites to identify malicious domain names using an extreme machine learning
(ELM) model. The traditional machine learning approach of extracting character features
to analyze malicious domain names is laborious and takes too much time [3]. Furthermore,
the features extracted by this method may be avoided by DGA users. For example, the
dictionary-based domain name generation algorithm generates malicious domain names
that are not easily detected by traditional methods.

Deep learning methods are more complex than traditional machine learning methods
models, which can mine deeper features of the dataset and derive new features from a
limited set of features in the training set. Zhao et al. [8] used the word-hashing technique [9]
to convert domain names into binary syntax strings, mapped the domain name to a
high-dimensional vector space using a bag-of-words model, and built a five-layer deep
neural network to train classification detection on the domain name. The traditional
RNN algorithm is difficult to solve in the case of gradient diffusion in malicious domain
name experiments. Xu et al. [10] used a bidirectional recurrent neural network to extract
effective semantic features and used a recurrent network to effectively solve the problem of
gradient diffusion and gradient explosion, which greatly improved the operation efficiency
of the algorithm.

It is challenging to detect longer malicious domains using RNN, such as emotet and
ranbyus. To solve this problem, many scholars use LSTM models to detect malicious do-
mains and try to find more features in domain names. Ghosh et al. [11] used an improved
LSTM model by adding ALOHA (auxiliary loss optimization for hypothesis augmenta-
tion) [12] to the traditional LSTM model to increase the accuracy of detecting malicious
domain names based on domain generation. Xu et al. [13] used word vector embedding to
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encode characters in domain names and fused convolutional neural networks and long
and short-term memory networks. They trained malicious domain name detection models
to solve the problems of sparse matrices and dimensional disasters in one-hot encoding,
which improved the algorithm’s efficiency. Zhang et al. [14] used a CNN network to extract
the features of character combinations in domain names to avoid the sparse distribution
of features in N-gram and then used LSTM to mine the contextual information in domain
name strings. Wang et al. [15] constructed BiLSTM-CNN, a hybrid model of bidirectional
long- and short-term memory neural networks and convolutional neural networks, and
implemented domain names classification in their self-built dataset. Zhang et al. [16] used
LSTM to improve the encoding of the Transformer model to better capture the character lo-
cation information to solve the high false-positive rate on abbreviated domain names. This
model can effectively distinguish between DGA and abbreviated domain names. Although
the above scholars achieved better detection results, according to the characteristics of the
LSTM model, it cannot mine the location features of characters between domain names,
and the effect of domain names with low randomness still needs to be improved. Thus,
the N-Trans model is proposed to detect malicious domain names, which can mine the
combination and location relationship between characters and train the model in parallel
with higher efficiency than the model only based RNN or LSTM.

3. N-Trans

In order to further improve the accuracy of identifying malicious domain names, this
paper proposes a detection model based on parallel N-gram and Transformer. It digs deeply
into the location information and text features of malicious domain names.

The model first uses the tldextract module in Python to process domain names, retain-
ing the main part that can uniquely identify the domain name, and then adds “#” as a flag
bit to the beginning and end of each domain name. The domain names are processed in
parallel using a combined N-gram and Transformer algorithm, the number of parameters
is reduced by a global average pooling layer, the network connections are deactivated by a
dropout layer, and the detection results are obtained using sigmoid after activation using
the Relu layer.

The detection model is shown in Figure 1.
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Figure 1. Parallel detection model. x is the number of features obtained. It describes the process
by which the model detects malicious domains. The model is divided into three stages: data pre-
processing, parallel training, and domain name category prediction.

3.1. Data Pre-Processing

The dataset is first processed using the tldextract module in Python; we remove the top-
level domain and hostname and reserve them for the second-level domain of the domain
names. After that, a symbolic flag bit (e.g., “#”) is added to each string’s first and last part
using the word-hashing technique. Although adding the sign bit increases the number of
word-hashing vectors after N-gram processing, the increased word-hashing vectors contain
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information about the first and last positions of the domain names’ character combinations,
which enriches the dimensionality of the extracted features. Taking the domain name
“www.baidu.com” as an example, processing is shown in Figure 2.
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Figure 2. Word-hashing to process “www.baidu.com”.

For the malicious domain name detection problem, after adding the first and last flag
bits, N-gram encoding reduces the loss of memory to a certain extent when building deep
learning. The feature model does not need to be modified as the samples increase.

3.2. Parallel Training

Using the parallel combination of N-gram and Transformer, we obtain richer textual
features and increase the variety of phrase elements in the features more than using a
single N-gram algorithm. This model eliminates the need to select and process features
compared to common machine learning detection algorithms. Due to the multi-head
attention mechanism in Transformer, the extracted features are more focused on inter-
textual character features than deep learning models, such as CNN and LSTM, which
improves the effectiveness of detecting malicious domain names.

After experimental validation, a parallel model combining N-gram (N = 2, 3, 4, it
represents that bigram, trigram and 4-g methods are used in the model to process domain
names.) and Transformer is selected for processing, and the features are spliced and input
to the subsequent network for training. The parallel model is shown in Figure 3.
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3.2.1. Domain Encoding

In natural language processing problems, one-hot encoding is often used to convert
text information into vector form that can be used directly by deep learning, but the
converted vectors are very sparse. Facing the sparse matrix generated by one-hot encoding,
the word2vec technique is usually used to map the high-dimensional vector space to the
low-dimensional vector space. Because the sample units of malicious domain names are

www.baidu.com
www.baidu.com
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in strings and have no contextual environment, the word2vec technique cannot reduce
the dimensionality of the space after converting malicious domain name samples into
vectors. The number of phrase elements encoded by the N-gram algorithm is limited, and
its dimensionality is not too large. Compared with the huge sparse matrix generated using
the one-hot encoding method, the N-gram algorithm can improve resource utilization.

N-gram is a statistical language modeling algorithm that implements “associative”
behavior in the process of natural language processing. The N-gram algorithm considers
the occurrence of a word to be dependent on several other words, so it can be used to
determine whether the composition of a sentence is reasonable. The more information
obtained, the more accurate the predicted information is. For a deterministic string, the
N-gram algorithm processes all substrings of the string of length N. For the domain name
“www.linkedin.com”, when N = 2, the process is shown in Figure 4.
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The N-gram algorithm is used in malicious domain detection with letters as the
smallest unit. To avoid redundancy in the N-gram results, only second-level domains are
used as the model input, and top-level domains are ignored. Suppose we now have a
domain name s = (w1, w2, · · · , wn) consisting of n letters; each letter wi is related to the
first letter w1 to its preceding letter wn−1, as shown in Equation (1).

p(S) = p(w1w2 · · ·wn)
= p(w1)p(w2|w1) · · · p(wn|wn−1 · · ·w2w1)

(1)

Equation (1) introduces too many variables in the operation process, and for the N-
gram model, the results obtained are very sparse when N is large. To solve this problem, the
probability of occurrence of the ith letter wi is only related to the first N letters of the current
letter by using the assumption of the Markov chain, and the computation of Equation (1) is
drastically reduced by the assumption, which is shown in Equation (2).

p(w1w2 · · ·wn) = ∏ p(wi|wi−1 · · ·w1)
≈ ∏ p(wi|wi−1 · · ·wi−N+1)

(2)

www.linkedin.com
linkedin.com
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When N = 1, it is equivalent to the N-gram method to conduct word frequency statistics,
and the common values of N are 2 and 3. Equation (3) shows the process of calculating the
frequency statistics for binary phrase elements with N = 2 as an example.

p(S) = p(w1w2 · · ·wn)
= p(w1)p(w2|w1) · · · p(wn|wn−1)

(3)

3.2.2. Transformer Model

The pre-processed phrase elements are fed into the Transformer model. The trans-
former model [17] is the encoder–decoder model that incorporates the attention mechanism.
The common encoder–decoder framework is implemented using RNN networks, but is
usually inefficient because its reliance on sequential order features prevents training from
progressing in parallel. In the Transformer model, the data can be processed in paral-
lel, and both input and output are from the same sequence, which captures the global
information well.

This paper uses the encoder part of the Transformer structure for model training. The
parameters of the Transformer structure are as follows: the input dimension of the token
is the number of samples (the token is the key parameter in the Transformer model and
each domain name is token), and the output dimension is 64; the input dimension of the
position part is the number of N-gram-processed features, and the output dimension is 64;
the head number of the multi-head Attention is five. There is no sequential structure in the
Transformer model like in RNN, so the position information of the elements is needed, and
the position information is calculated as shown in Equation (4).

P(pos, n) =


sin( pos

10000
2i

dmodel

), n = 2i

cos( pos

10000
2i

dmodel

), n = 2i + 1
, (4)

where pos is the position of the letter in the domain string, i is the dimension of the vector,
and dmodel is the dimension of token, which is processed using the cos function when i is
odd and the sin function when i is even.

The core of the Transformer is the multi-head attention mechanism, which consists
of several self-attentive mechanisms. The self-attention mechanism is a Q(Query)-vector
of a phrase element in the domain name and K(Key)-vectors of other phrase elements in
the domain name multiplied one at a time to get the initial weights. After processing, it is
multiplied with V(Value) to obtain the sum of weights, as shown in Equation (5).

Attention(Q, K, V) = so f tmax(
QKT
√

dk
)V, (5)

where dk is the dimension of K, and the softmax function normalizes the result. N-gram
treats domain names as collections of phrase elements. In the study of malicious domain
name detection, Q is the phrase element in the domain name, K is the other phrase element
in the domain name, and V is the vector representation of the phrase element after N-gram
processing. Multiple linear mappings of the inputs Q, K, V are performed to obtain the
attention headi, as shown in Equation (6).

headi = Attention(QWQ
i , KWK

i , VWV
i ). (6)

Wi
Q, Wi

K, and Wi
V are the parameter matrices when linearly varied. The final result

of multi-head attention is obtained by splicing the multiple headi for linear variation, as
shown in Equation (7).

MultiHead(Q, K, V) = Concat(head1, · · · , headn)Wo. (7)
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In Equation (7), n denotes the number of heads in the multi-head attention mechanism,
and Wo is the linearly varying parameter matrix.

3.2.3. Network Structure

The network model processed by the Transformer are shown in Figure 1. Here, the
features after Transformer processing are averaged using global averaging pooling for all
features of each channel, and the obtained average is transported to the 64-dimensional
channel. After the global averaging pooling layer, it can effectively reduce the parameters
during the model processing and suppress the overfitting during the model training. The
obtained results are randomly deactivated after the dropout layer, randomly reducing some
neurons with a 5% probability.

The results go through the 32-dimensional Relu activation function layer, retaining the
part of the features with values > 0, and changing the values of features < 0 to 0, removing
useless information and data noise. The depth information of the features is not changed,
which accelerates the network learning process and simplifies the model. Finally, the
features are fed into the fully connected layer, and the prediction results are obtained after
the sigmoid function operation.

4. Experiment and Analysis
4.1. Dataset and Test Environment

The dataset used in this paper includes legitimate domain names and malicious
domain names. The legitimate domain names are from the collection of the top 1 million
domain names collected by Alexa [18]. The malicious domain names are from different
DGA families of malicious domain names publicly collected by the 360 Network Security
Lab [19] such as nymaim, necurs, and other well-known malicious domain name families.

The experiments in this paper are based on the deep learning framework of keras, and
the back-end uses the Tensorflow module. The specific experimental environment is shown
in Table 1.

Table 1. Experimental environment configuration.

Environment Configuration Parameters

Operating System Ubuntu 16.04.12
Memory/GB 128 GB

CPU 2.2 GHz Inter (R)
Python 3.8.10

Tensorflow 2.5.0

4.2. Data Analysis

Ten thousand legitimate and ten thousand malicious domain names were randomly se-
lected as the dataset for the experiment. For each domain name, because the characteristics
of legitimate and malicious domain names at the first level are not obvious, the first-level
domain was discarded and constituted the dataset D. The training set and test set in the
experiment were partitioned using the sklearn module at 40% for the test set. After mixing
the malicious domain names from 360 Network Security Lab, 10,000 data were randomly
selected, and each family had no more than 1400 malicious domains.

The selected families of malicious domain names and the number of them are shown
in Table 2. Refer to Vranken [20] for a detailed description of the dataset, and refer to the
DGALab study to classify the types of DGA. The column ‘DGA type’ indicates whether
the DGA is Static DGA (Static), Seed-based (Seed), or Date-based (Date) [21]. The column
‘Number’ indicates the count of domain names; the column ‘Length’ indicates the length
(min, max) of the second-level domain names. The last two columns show examples of
second-level domain names.
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Table 2. Characteristics of DGA families.

DGA Family DGA Type Number Length Sample1 Sample2

simda Static 921 8–14 digivehusyd lymylur
virut Static 869 6 yvvioe zuzmoq

rovnix Static 1092 18 rc7thuhy8agn43zzgi lryja5lrm835m7byr8
suppobox Seed 1282 9–18 sharmainewestbrook arivenice

tinba Seed 1400 12 nvfowikhevmy oykjietwrmlw
banjori Seed 1400 15–26 earnestnessbiophysicalohax iutcererwyatanb

gameover Date 791 20–28 14dtuor1aubbmjhgup7915tlinc 2id0lapmam6w1799w7315zaqj5
nymaim Date 1400 5–12 zzayzoabsi msfctioj
necurs Date 845 7–21 wiyqgyiwgm otenbmgbpuskiasvehxm

For dataset D, there were 1417 phrase elements after bigram processing, 31,220 phrase ele-
ments after trigram processing, 127,469 phrase elements after 4-g processing, and 138,636 phrase
elements after 5-g processing. The N-gram algorithm was used for the legitimate and mali-
cious domain names in D. The distribution of the phrase elements of the domain names
was obtained as shown in Figure 5a,b.
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Figure 5. Distribution of legitimate and malicious domain phrase element frequencies. After using N-
gram processing, the phrase elements were sorted from highest to lowest frequency. The frequency of
the top 20 ranked phrase elements in legitimate domain names and those corresponding to malicious
domain names were selected for comparison. (a) The processing result when N = 2. (b) The processing
result when N = 3.

From the N-gram distribution (N = 2 or 3) results of legitimate and malicious domain
names, there was a great difference in the frequency of phrase elements of malicious and
legitimate domain names. The distribution of phrase elements of malicious domain names
was more uniform, while the distribution of phrase elements of legitimate domain names
varied greatly, so the phrase elements generated after bigram segmentation had better
domain name classification characteristics. When N = 4 or 5, legitimate domain names
still had a good frequency distribution of phrase elements. Malicious domain names have
an increased variety of phrase elements, become more random, and correspond to fewer
phrase elements.

The numerical characteristics of the phrase elements after N-gram algorithm pro-
cessing are analyzed. The data analysis uses mean, variance, skewness, and kurtosis as
indicators of numerical characteristics to analyze the results of N-gram processing for two
types of domain names. The results are shown in Table 3.
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Table 3. N-gram algorithm results analysis. The mean value is an indicator of the concentration trend
of the distribution of the phrase elements; the variance shows the trend of the number of phrase
elements; the skewness shows whether the distribution of the phrase elements of the domain name is
symmetrical; the kurtosis can get the difference of the data distribution of the domain name phrase
elements data compared with the normal distribution.

N-Gram Digital Features Legitimate Malicious

N = 1 Mean 2007.154 4190.865
Variance 2146.498 2152.575
Skewness 1.0524 −0.87408
Kurtosis 0.1087 −1.19031

N = 2 Mean 62.24157 110.4813
Variance 127.3123 87.4684
Skewness 3.588488 0.18239
Kurtosis 16.4035 −1.62526

N = 3 Mean 6.768033 4.553918
Variance 14.68101 3.503929
Skewness 6.177821 0.848823
Kurtosis 55.35392 0.086178

N = 4 Mean 2.286315 1.13609
Variance 4.317711 0.428017
Skewness 12.90284 1.241187
Kurtosis 303.786 2.659457

N = 5 Mean 1.519426 1.024079
Variance 2.262212 0.249301
Skewness 16.31627 11.2395
Kurtosis 445.1127 128.8666

From Table 3, it can be concluded that, when N = 1, it is equivalent to performing the
frequency statistics of letters, ignoring the order relationship between letters. When N = 2,
3, 4, and 5, the phrase element variance of legitimate domain names is larger than that
of malicious domain names. The smaller the value, the more uniform the distribution of
domain name phrase elements, which is a randomly generated domain name. The larger
the variance, the more the frequency distribution of the phrase elements deviates from
the mean, which is more likely a domain name generated by human intervention. The
skewness of phrase elements of legitimate domain names is larger than that of phrase
elements of malicious domain names. In terms of data distribution, malicious domain
names have better symmetry than legitimate domain names. In terms of kurtosis, the data
distribution of malicious domain names fits more closely to the normal distribution than
the data distribution of legitimate domain names.

Taking the data after bigram processing as an example, the experiment uses the word-
hashing technique to add the flag bit “#” at the beginning and end of each second-level
domain name, and the number of data elements increases from 1417 to 1486. The increase of
the first and last flag bits marks part of the location information of the domain name, which
enriches the features in the recognition process without causing significant redundancy.
Therefore, the data pre-processing method of adding the first and last flag bits and using
the N-gram algorithm can effectively extract the character frequency and character location
information features of domain names.

4.3. Experimental Results and Analysis

To validate the results of the proposed parallel detection model based on the N-gram
algorithm and Transformer to identify malicious domain names, four sets of experiments
were designed based on the same dataset.

1. The optimal parallel model was selected to detect malicious domain names by chang-
ing the parallelism and combining N-gram algorithms in the parallel detection model;
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2. By changing the head value in the Transformer model, the appropriate number of
heads was selected as a parameter in the model training;

3. In order to verify the detection effect of the model proposed in this paper, the Naive
Bayesian and XGBoost machine learning algorithms and RNN, LSTM, and Bi-LSTM
models in deep learning were selected to compare with the model designed in
this paper;

4. Through ablation experiments, we compare the number of features, training time,
and evaluation metrics to analyze the effects of adding sign bits and L1 regularization
in a single detection model and compare the effects of adding sign bits in a parallel
detection model.

The following experiments are implemented in the keras deep learning framework,
Tensorflow back-end, and sklearn module.

4.3.1. Evaluation Indicators

Accuracy (Acc) was used in the experiments to evaluate the classification accuracy of
the algorithm for domain names, and recall was used to evaluate the model’s classification
of malicious domain names. The accuracy formula is shown in Equation (8).

Acc =
TP + TN

TP + TN + FP + FN
, (8)

where TP denotes the number of malicious domain names predicted to be malicious, FN
denotes the number of malicious domain names predicted to be legitimate, TN denotes the
number of legitimate domain name predicted to be legitimate, and FP denotes the number
of legitimate domain names predicted to be malicious.

The formula for calculating the recall is shown in Equation (9).

recall =
TP

TP + FN
. (9)

From Equation (9), we can see the total number of malicious domain names in the
dataset, so the recall can calculate the model’s effectiveness in detecting malicious domain
names. The detection effects of different network models will also be compared using the
precision and F1-score.

4.3.2. Parallel Detection Model Construction Experiments

In order to select a malicious domain detection model with better results, possible
combinations of N-gram algorithms in the proposed parallel detection model are analyzed.
In the single N-gram experiment when N ≥ 3, although more features can be captured and
the ability to predict characters is significantly improved, a large number of sparse matrices
are generated in the model. This can lead to distortion of the calculated probabilities, and
a large parameter space can cause a dimensional disaster; thus, the model will have a
considerable time and memory loss during training, resulting in the experiment not being
carried out smoothly. Based on the original N-gram and Transformer detection models,
the features are optimized using a feature selection algorithm based on L1 regularization.
After feature gain processing, in addition to achieving the filtering feature purpose, the
high-dimensional matrices are also dimensionally reduced, which reduces the experimental
time and memory loss, making the experiments feasible.

Different combinations of N were tested to explore the most suitable N-gram combi-
nation and Transformer composition for the parallel detection model. The experimental
procedure is shown in Table 4.
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Table 4. Parallel detection model combination. Experiments were performed for possible N-Trans
combinations. The experiments compared the number of features obtained from model training,
training time, accuracy, and recall. N was too large (N > 5) to cause the algorithm to proceed properly,
so the corresponding experiments were not performed.

The Values and
Combinations of N

Characteristic Number
of Gain Training Time/s Acc Recall

1 35 13.3100 0.9201 0.9210
2 441 92.1600 0.9604 0.9599
3 106 32.7600 0.7591 0.8725
4 28 12.3700 0.5869 0.9955
5 12 8.6600 0.5322 1.0000

1,2 476 60.4457 0.9542 0.9613
1,3 141 27.6050 0.9020 0.8907
1,4 63 13.2781 0.9218 0.9066
1,5 47 10.6808 0.9315 0.9034
2,3 547 82.7185 0.9573 0.9556
2,4 469 57.7871 0.9353 0.9493
2,5 453 55.7214 0.9403 0.9461
3,4 134 26.2685 0.7603 0.9032
3,5 118 22.5284 0.7637 0.9015
4,5 40 9.6938 0.5820 0.9997

1,2,3 582 63.1049 0.9537 0.9388
1,2,4 504 58.0790 0.9483 0.9070
1,2,5 488 61.4247 0.9535 0.9393
1,3,4 169 31.1952 0.9125 0.9373
1,3,5 153 25.2881 0.9243 0.9264
1,4,5 75 14.7553 0.9145 0.8659
2,3,4 575 77.4251 0.9697 0.9707
2,3,5 559 69.9106 0.9417 0.9257
2,4,5 481 57.6231 0.9472 0.9142
3,4,5 146 25.4514 0.7630 0.9113

1,2,3,4 610 83.7084 0.9465 0.9445
1,2,3,5 594 67.2344 0.9395 0.9040
1,2,4,5 516 53.0182 0.9582 0.9479
1,3,4,5 181 29.2953 0.9105 0.9430
2,3,4,5 587 90.5120 0.9368 0.9578

1,2,3,4,5 622 73.3525 0.9545 0.9573

The experimental results show that, for a single N-gram algorithm, the number of
phrase elements in the domain names must be reduced because the basic units of the phrase
elements are expanding, and the number of phrase elements matching the same category
in the domain names must be reduced as the N-value changes. Therefore, the effective
features obtained from training are reduced. Taking “linkedin” as an example, there are
749 “li” phrase elements in the dataset. After trigram processing, there are 192 “lin” phrase
elements in the dataset, which is less than the result of binary phrase element processing.
At the same time, the accuracy of the trained model decreases, and the recall increases,
indicating overfitting.

The features extracted by a single algorithm are expanded for the parallel detection
model by stitching the features from different N-gram algorithms and Transformer pro-
cessing. As can be seen from Table 4, the parallel detection model, including bigram, has
better detection results and achieves the best results at N = 2, 3, and 4. However, it is not
the case that the more parallel approaches are included, the better the detection results
are. It is found that the model detection accuracy and recall decrease when 5-g is included,
but then the detection results become better again if N = 1 is included in the model. The
domain location and text features are extracted more comprehensively after learning with
the multi-head attention mechanism. The model combined with bigram had improved
accuracy and recall over the single bigram-based model.
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After comparing the experimental results, the model using the parallel combination
of bigram, trigram, 4-g, and Transformer at N = 2, 3, 4 was more effective in identifying
malicious domain names.

4.3.3. Multi-Head Attention Head Comparison Experiment

In the Transformer model, the number of heads also affects the experiment, which is
conducted by changing the heads value; the experimental results are shown in Figure 6.
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From Figure 6, we see that the model achieves the best results regarding accuracy
and recall when the number of heads is five. At this time, changing the number of heads
does not improve the detection effect of the model, and increasing the number of linear
mappings to the feature matrix does not allow the extraction of effective features in the
increased linear space.

According to the results of this experiment, the head value of five in the detection
model optimizes the detection of malicious domain names.

4.3.4. Network Model Comparison Experiment

The Naive Bayesian algorithm, XGBoost algorithm, RNN model, LSTM model, Bi-
LSTM model, and the parallel detection model proposed in this paper were selected for
comparison. The experimental results are shown in Table 5.

Table 5. Comparison of model training algorithms. The parameters in the experiments are set as
follows: the Naive Bayes algorithm and XGBoost algorithm both use features extracted by bigram for
processing. The output dimension of the RNN hidden layer was 64, and the output dimension of the
Relu activation function was 32; the output dimension of the LSTM hidden layer was 64; the loss rate
of the dropout layer was 0.1, and the rest of parameters in the network are default values.

Model Training Time/s Acc Recall Precision F1-Score

Naive Bayesian 23.2281 0.8000 0.7276 0.8976 0.8037
XGBoost 27.3884 0.9055 0.8666 0.9421 0.9028

RNN 327.4625 0.9152 0.9208 0.9105 0.9156
LSTM 353.3754 0.9252 0.9574 0.8996 0.9276

Bi-LSTM 370.1486 0.9395 0.9074 0.9695 0.9374
Parallel detection

model with N = 2,3,4 77.4251 0.9697 0.9707 0.9748 0.9727

Machine learning algorithms, such as the Naive Bayesian algorithm and XGBoost
algorithm, require human selection of features and the process takes a lot of time. The
features extracted with bigram alone cannot accurately distinguish legitimate domain
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names from malicious ones. After the word embedding process, RNN, LSTM, and Bi-LSTM
improve the accuracy and recall compared to machine learning algorithms and focus more
on the features of character frequency provided by word embedding. However, they lack
the learning of similarity between phrase elements compared to the Transformer model,
which introduces a multi-head attention mechanism. As can be seen from the precision,
the N-Trans model predicts fewer errors in the results for malicious domains. In terms of
the speed of feature learning, the Transformer model significantly improves the speed of
training compared to the model that relies on the sequential relationship between elements
due to its ability to operate in parallel. Combined with the F1 score, the N-Trans model can
better distinguish malicious domain names from legitimate domain names compared with
other network models.

Since the parallel detection model can effectively extract the location information
and multi-text features of domain characters, and the model can capture more features
among word combinations, it achieves better results in the malicious domain names
classification problem.

4.3.5. Ablation Experiments

In order to further verify the impact of each part of the detection model on the
experiments, the single N-gram and Transformer malicious domain name detection models
proposed in this paper are first subjected to ablation experiments. Firstly, we use bigram
and Transformer experiments, and to verify the effectiveness of word-hashing, we use
the word-hashing processed dataset for malicious domain name detection. After that, we
compare the models before and after feature gain by adding L1 regularization to verify the
effect of feature gain on the model; the experimental results are shown in Table 6.

Table 6. Experimental analysis of single detection model.

Model Number of
Characteristics Training Time/s Acc Recall

bigram + Transformer 1417 327.46 0.9370 0.9370
Add flag bit + bigram + Transformer 1486 353.37 0.9424 0.9484

Add flag bit + bigram + L1
Regularization + Transformer 441 67.16 0.9604 0.9599

When the L1 regularization was removed, the features processed by the parallel
detection model increased significantly; the number of features obtained without adding
the first and last flag bits was 160,106, and the number of features obtained after adding the
first and last flag bits was 181,018, which means the experiment could not be carried out
smoothly. Therefore, only the effect of adding the flag bits on the parallel detection model
is verified. The ablation experiments were performed with or without adding the flag bits;
the results are shown in Table 7.

Table 7. Experimental analysis of parallel detection model.

Model Number of
Characteristics Training Time/s Acc Recall

L1 Regularization + Parallel Detection 547 73.9109 0.9413 0.9435
Add flag bit + L1 Regularization +

Parallel Detection 575 77.4251 0.9697 0.9707

Tables 6 and 7 show that adding flag bits can increase the first and last position
information in the domain names string, resulting in a small increase in the accuracy
and recall of the model detection. After adding L1 regularization, the time for model
training was significantly reduced; at the same time, the detection effect of the model was
optimized, and the accuracy and recall of detection were further improved. The results
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show that adding the first and last marker bits can enrich the features learned by the model;
L1 regularization makes the experiment feasible, reduces the training time and memory
consumption, and the features after L1 regularization gain can detect malicious domain
names more accurately.

In summary, the parallel detection model based on the N-gram and Transformer frame-
work proposed in this paper can effectively and accurately detect malicious domain names.

5. Conclusions and Future Work

In response to the shortcomings of existing malicious domain name detection models,
a parallel detection model based on N-gram and Transformer is proposed, incorporating
location information and multi-text features in domain name strings. For the malicious
domain name detection problem, aspects of this framework still need to be improved,
and the network model is optimized to make it more suitable for the malicious domain
name application scenario and to improve the accuracy of identification. The detection
model is improved to apply to the future multi-classification problem of malicious domain
name families, as well as to explore the deeper reasons for the relationship between the
combination of N and malicious domain name detection results. The analysis of numerical
characteristics and the selection of evaluation metrics with reference to Iwendi et al. [22]
will be applied to the model proposed in the model.

The next step will be to mine other deep features among letters, such as the distribution
of adjacent consonants and the statistics of consonant–vowel combinations. The malicious
domain names generated by wordlist have low randomness, are more similar to legitimate
domain names, and will be studied in depth to detect malicious domain names generated
by wordlist in the future. Furthermore, text generation algorithms [23] are continuously
researched for adversarial generative networks, and whether the network structure can
resist the attack of malicious samples is a challenge for future research.
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