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Abstract: Low-orbit micro-satellite technology has developed rapidly in recent years due to its
advantages of low time delay, low cost and short research period. However, among the existing inter-
satellite routing algorithms, the classical flooding and greedy algorithms and their derivatives also
have some limitations. The path delay calculated by the flooding algorithm is small but the calculation
is large, while the greedy algorithm is the opposite. In this paper, a balanced inter-satellite routing
algorithm based on partition routing is proposed. This paper presents the simulation experiments
for the following indexes of the classic inter-satellite routing algorithms and the balanced partition
routing algorithm: computation complexity, single-node computation pressure, routing path delay,
path delay variance (data in Topo table satisfy µ = 5, σ2 = 10). The results reveal that the balanced
partition routing algorithm achieves better performance. In this paper, two optimization directions of
the balanced partition routing algorithm are simulated under conditions that the data in the Topo
table satisfy µ = 5, σ2 = 6, σ2 = 10 and σ2 = 15, respectively, when comparing their performance
indicators. The experiments show that these two optimization methods can be adapted to various
application scenarios and can further reduce the hardware cost of satellite nodes.

Keywords: low orbit; micro-satellite technology; star chain; routing algorithm; partitioning algorithm

1. Introduction

Due to the advantage of large coverage and little limitation of ground geographical
conditions, a micro-satellite network has become an effective means to provide communica-
tion service in areas where ground communication facilities are difficult to cover. In recent
years, many countries and companies have put forward plans to build a new generation of
micro-satellite networks, setting off a boom in satellite network research [1]. For instance,
the commercial rocket company SpaceX launched a star-link project to provide Internet
service to remote areas [2]. What is more, Tsinghua University has proposed the plan of
GRID (Gammy Ray Integrated Detectors) to explore astrophysics.

Different from the ground network, the constant motion of satellites will inevitably
bring about frequent switching of links between satellites. These switches result in the
constant changes in the topology of the whole satellite network, and the routing information
needs to be updated accordingly. Therefore, routing algorithms have a great influence on
the efficiency of inter-satellite communication and have become one of the hot topics [3,4].
In satellite networks, the transmission cost of a path is mainly determined by propagation
delay and waiting delay. Compared with the ground network, the distance between satellite
nodes is longer, so the propagation delay occupies a larger proportion of the total delay.
This paper focuses on the end-to-end shortest delay routing algorithm.

At present, mainstream inter-satellite routing algorithms still have their limitations.
Current real-time dynamic routing algorithms mainly include flooding and backtracking
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algorithm and the greedy algorithm. The principle of the flooding and backtracking
algorithm is to traverse every inter-satellite node and compare the length of each path to
find the shortest path [5]. This algorithm needs to backtrack to find out which one of these
paths goes through fewer inter-satellite nodes or if more than two paths have the same
path length. Hence, its advantage is that the routing path calculated must be the optimal
path. On the other hand, the algorithm has too much calculation and poor scalability. The
routing strategy of the greedy algorithm is to find the nearest node under the condition
of a local optimal path. The greedy algorithm has a small amount of calculation while the
path calculated is usually not the globally optimal path. Both the flooding algorithm and
the greedy algorithm have major drawbacks. For these two algorithms, the calculation
of the routing path must be completed by a single star node at a time. This means that
the computational burden cannot be shared by multiple nodes. When the actual system
is running, the inter-star traffic cannot be evenly distributed to each star node, and the
calculation pressure of some star nodes is too high. However, it is not known in advance
which star nodes will have high computational pressure, so redundancy design can only
be carried out to ensure reliability. We know that satellites are powered by solar energy to
perform all kinds of calculations in space, and more satellites need to install larger solar
panels, which will greatly increase the cost of satellite hardware [6–8].

This paper has the following structure: Section 2 presents related work on academic
achievements of predecessors and the main contribution of the paper; Section 3 provides a
mathematical analysis of the inter-satellite routing algorithm; two optimization directions
of the balanced partition routing algorithm are discussed in Section 4; lastly, Section 5
summarizes the work.

2. Related Works
2.1. The Work of Predecessors

In this field, many experts and scholars have carried out research for many years.
Weng Yao, from the Software Institute of the Chinese Academy of Sciences, proposed an
on-demand partial topology routing algorithm in LEO satellite networks. The algorithm
guarantees the minimum delay and better convergence time of the constructed route, so it
is very suitable for those services requiring a higher delay in low orbit satellite networks.
However, it is still a flooding algorithm in essence, and the cost of routing detection is
still very large. The algorithm only needs to send data to the routing detection, and each
node does not need the global topological information, so as to avoid a lot of link-state
information exchange, minimize the overhead due to routing protocols, and smaller local
topology protocol convergence time is the biggest advantage of this routing algorithm [9].
In 2001, Henderson designed a distributed routing algorithm to realize the minimum delay.
Henderson’s algorithm is based on terrain factors and believes that a continuous local
optimization strategy can make the final path tend to be globally optimal [10]. The datagram
routing algorithm introduced by Ekici is applicable to polar satellite constellations. Satellite
nodes are regarded as a network structure composed of virtual nodes, and data packets are
transmitted in a distributed way in a fixed topology structure [11].

Weng’s algorithm can be regarded as a variant of the flooding algorithm, while
Henderson and Ekici’s algorithms are improvements to the greedy algorithm. These
algorithms also have the inherent defects of the flooding algorithm and greedy algorithm.
Moreover, the above routing algorithm mainly relies on a one-star node to complete the
calculation of each planned route. In the actual inter-satellite system, each star is often not a
uniformly distributed workload. This will cause some nodes to bear a lot of computational
pressure and consume a lot of energy. The principle of maximum redundancy would
require each star to be fitted with a payload with more computing power and a larger
capacity of solar panels, which would greatly increase the cost of satellite hardware. This
is where we would like to further improve the existing inter-satellite routing algorithm.
Therefore, we propose a balanced routing algorithm based on the partition routing idea in
the original partition routing algorithm.
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2.2. Main Algorithm Ideas and Contributions of the Paper

In this paper, the constellation is assumed to consist of N satellite nodes.

Topo =

 a11 · · · a1N
...

. . .
...

aN1 · · · aNN


The Topo table represents the direct distance between two star nodes. For instance,

a11 represents the distance from the No. 1 satellite to the No. 1 satellite, and the distance
of course is 0. aij represents the direct distance from the No. i satellite to the No. j
satellite [12,13].

Inspired by the above research, we propose a balanced routing algorithm based on
the partition routing idea. In the original partition routing algorithm, as long as the com-
munication nodes between two partitions have problems, the mutual communication
will be affected [14] and the balanced partition routing algorithm determines the exter-
nal communication nodes between partitions in a dynamic way. If the original optimal
communication nodes have problems, our algorithm will consider the distance between
the original communication nodes to be infinite. Then, the algorithm will immediately
update and calculate the new communication node, so that the destruction resistance will
be greatly enhanced [15].

In this paper, N star nodes are divided into three groups. Star nodes in group A
are numbered 1 through N

3 . By parity of reasoning, nodes in group B are numbered
N
3 + 1 through 2N

3 and nodes in group C are numbered 2N
3 + 1 through N. The direct

communication distance and the variance of the distance between star nodes in the same
group are smaller. aij approximately satisfies the following relation:{

aij ∼ N
(
µ1, σ2

1
)
, i, j ⊆ ϕ

aij ∼ N
(
µ2, σ2

2
)
, i ⊆ ϕ, j * ϕ

In the above formula, µ1 > µ2, σ2
1 > σ2

2 , ϕ refers to one group [16]. The algorithm first
calculates the two nearest star nodes between each group, and these two star nodes serve
as the gateway communication nodes between each group. For instance, the routing path
between node No. i and node No. j needs to be calculated. The specific algorithm is as
follows:

(1) If node No. i and node No. j belong to the same group, then we only need to address
the route within the group. The routing algorithm within the group performs the
partial flooding and greedy algorithm at the same time and selects the shorter one as
the final routing path.

(2) In the other case where node No. i and node No. j do not belong to the same group,
then we need to calculate the two nearest communication nodes between the two
groups that node No. i and node No. j belong to. It is assumed that these two star
nodes are node No. i + m and node No. j + n. Finally, the algorithm needs to calculate
the shortest routing paths from node No. i to node No. i + m and from node No. j + n
to node No. j. Therefore, our final routing path is No. i->No. i + m->No. j + n->No. j.

The simulation results reveal that compared with other algorithms, the proposed
balanced partition routing algorithm achieves better performance.

In the latter part of this paper, the balanced partition routing algorithm was further
explored. We have yet to explore two different optimization directions on the premise
of further reducing the computational pressure of a single node. One way is to divide a
large group into smaller groups (which can be interpreted as smaller groups belonging to a
larger group), and the other way is to divide nodes into more groups directly. Experimental
results show that these two optimization methods can further reduce the complexity of
the algorithm. What is more, the hardware cost of nodes is greatly reduced. Finally, these
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two optimization ideas can make the algorithm adapt to various application scenarios and
have better flexibility.

3. Algorithmic Mathematical Analysis

This section analyzes the algorithms mentioned above from a mathematical perspec-
tive, including the overall computation complexity of the algorithm, the computational
pressure of a single node, and the average path delay of the algorithm.

3.1. Algorithm Complexity Analysis

Greedy algorithm: For the source node, it only needs to find the next jump node with
the shortest path in each step until it reaches the target node. At most, N − 2 nodes are
passed through from the source node to the target node, and the average expectations are
N−2

2 nodes. Every time the information arrives at one node to find the next node, N nodes
need to be traversed to calculate the locally optimal path [17].

Its computational complexity is:

G(N) =
(N − 2)·N3

2
(1)

Flooding and backtracking algorithm: Its computational complexity is:

F(N) =
N−2

∑
m=0

(N − 2)!
(N − 2 − m)!

·N2 + δ1 (2)

In this formula, (N−2)!
(N−2−m)! is the number of satellite nodes to be traversed when the

source node passes m forwarding satellites. It can be deduced that finding the routing path

from the source node to the destination node takes
N−2
∑

m=0

(N−2)!
(N−2−m)! calculations. There are N2

paths to calculate here. δ1 is a positive number tending to be infinitesimally small, which
represents the backtracking part of the flooding algorithm. Only when more than one path
with the same distance is founded during traversal, backtracking is performed to compare
the number of nodes that pass through and select the path with fewer nodes. However,
this situation is very rare and can almost be ignored [18,19].

Partition routing algorithm: For the source node, the destination node has a chance

of
N
3 −1
N−1 being in the same group and a chance of

2N
3

N−1 being outside the group [20].
For stars nodes within the same group, its computational complexity is:

N
6 −2

∑
m=0

(
N
3 − 2

)
!(

N
3 − 2 − m

)
!
+ δ2 (3)

For stars nodes outside the group, its computational complexity is:

2·(
N
6 −1
∑

m=0

( N
3 −2)!

( N
3 −2−m)!

+ δ2)

δ2 = δrecall + δgreed

δgreed =

(
N
3 − 2

)
·N

3

2
(4)

Both partial flooding algorithms and greedy algorithms are used to calculate the path
within the group. δrecall refers to the overhead of the backtracking part of the flooding
algorithm. δgreed represents the overhead of the greedy algorithm. Compared with the
huge calculation time cost of the flooding algorithm, the time cost of the greedy algorithm
and backtracking can almost be ignored [21].
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Hence, the average computational complexity of the total algorithm is:

P(N) = (
N
3 − 1
N − 1

·
N
6 −1

∑
m=0

(
N
3 − 2

)
!(

N
3 − 2 − m

)
!
+ δ2 +

2N
3

N − 1
·(

N
6 −1

∑
m=0

(
N
3 − 2

)
!(

N
3 − 2 − m

)
!
+ δ2)·2)·N2 (5)

Balanced partition routing algorithm: In contrast to the partition routing algorithm,
a balanced partition routing algorithm adds the process of dynamically calculating commu-
nication nodes between the groups.

So its computational complexity is:

C(N) = (
N
3 − 1
N − 1

·
N
6 −1

∑
m=0

(
N
3 − 2

)
!(

N
3 − 2 − m

)
!
+ δ2 +

2N
3

N − 1
·((N

3
)

2
+ (

N
6 −1

∑
m=0

(
N
3 − 2

)
!(

N
3 − 2 − m

)
!
+ δ2)·2))·N2 (6)

The computational complexity of the balanced partition routing algorithm and flood-
ing algorithm is compared below:

It is easy to derive from the above equation:

C(N) <

((
N
3

)2
+

N
6 −1
∑

m=0

( N
3 −2)!

( N
3 −2−m)!

·2
)
·N2 = C1(N)

F(N) =

(N − 2)! +
N−3
∑

m= 5N
6 −2

(N−2)!
(N−2−m)! +

5N
6 −3
∑

m= 2N
3 −2

(N−2)!
(N−2−m)! +

2N
3 −3
∑

m=0

(N−2)!
(N−2−m)!


F(N)− C1(N) = [

(
(N − 2)! −

(
N
3

)2
)
+

 5N
6 −3
∑

m= 2N
3 −2

(N−2)!
(N−2−m)! −

N
6 −1
∑

m=0

( N
3 −2)!

( N
3 −2−m)!



+

 N−3

∑
m= 5N

6 −2

(N − 2)!
(N − 2 − m)!

−
N
6 −1

∑
m=0

(
N
3 − 2

)
!(

N
3 − 2 − m

)
!

+

2N
3 −3

∑
m=0

(N − 2)!
(N − 2 − m)!

] (7)

It can be proved that the balanced partition routing algorithm is much lower than the
flooding algorithm in terms of algorithm complexity. A balanced partition routing algo-
rithm adds the process of calculating communication nodes between groups dynamically.
Therefore its algorithm complexity is greater than that of the partition routing algorithm.

In terms of the partition routing algorithm and the flooding and backtracking algorithm:

C(N) >

1
2
·

N
6 −1

∑
m=0

(
N
3 − 2

)
!(

N
3 − 2 − m

)
!
+

1
2
·

(N
3

)2
+

 N
6 −1

∑
m=0

(
N
3 − 2

)
!(

N
3 − 2 − m

)
!

·2

·N2 >
3
2
·

N
6 −1

∑
m=0

(
N
3 − 2

)
!(

N
3 − 2 − m

)
!
·N2 = C2(N)

C2(N)− G(N) =
3
2

(N
3
− 2
)

! +
1
2
·
(

N
3
− 2
)

! −
(

N − 2
2

)
+

N
6 −3

∑
m=0

(
N
3 − 2

)
!(

N
3 − 2 − m

)
!

·N2 > 0 (8)

Therefore, the computation complexity of the partition routing algorithm is higher
than the greedy algorithm. In conclusion, the flooding and backtracking algorithm has the
highest computational complexity, followed by the balanced partition routing algorithm
and the partition routing algorithm, and the greedy algorithm has the lowest computa-
tional complexity.

3.2. Minimum Computation Force of Star Node

In actual routing, each node only needs to calculate the path to the next node. For
both the flooding and backtracking algorithm and the greedy routing algorithm, a single
star node needs to calculate the global route. Compared with the traditional algorithm, the
partition routing algorithm can allocate the computation force to two or more nodes. In
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practice, the hardware requirements for inter-satellite nodes are reduced, and the cost is
also reduced objectively [22]. The requirements of the above algorithms on the computing
capacity of a single node are shown below:

Greedy algorithm:

Gnode(N) =
(N − 2)·N3

2
(9)

Flooding and backtracking algorithm:

Fnode(N) =
N−2

∑
m=0

(N − 2)!
(N − 2 − m)!

+ δ1 (10)

Partition routing algorithm:

Pnode(N) =

N
3 −2

∑
m=0

(
N
3 − 2

)
!(

N
3 − 2 − m

)
!
+

(
N
3 − 2

)
·N

3

2
+ δrecall (11)

Balanced partition routing algorithm:

Cnode(N) =

N
3 −2

∑
m=0

(
N
3 − 2

)
!(

N
3 − 2 − m

)
!
+

(
N
3

)2
+

(
N
3 − 2

)
·N

3

2
+ δrecall (12)

3.3. Algorithm Validity Analysis

It is assumed that the direct distance aij between any two star nodes satisfies
aij ∼ N

(
µ, σ2).

It is easy to know that the flooding and backtracking algorithm compares all possible
paths between two star nodes and finds the shortest path among them. If there is more
than one shortest path, the path with the least number of inter-star nodes will be selected.
Therefore, the flooding and backtracking algorithm is definitely optimal [23].

For greedy algorithms, the average expected route path distance is:

Gpath(N) =
N
2
·µ·ε· 1

σ2 (13)

ε is an undetermined parameter. For greedy algorithms, in principle, the larger σ2 is,
the smaller its expected distance is. The average expected path distance is proportional to
µ and inversely proportional to σ2.

For the balanced partition routing algorithm:{
aij ∼ N

(
µ1, σ2

1
)
, i, j ⊆ ϕ

aij ∼ N
(
µ2, σ2

2
)
, i ⊆ ϕ, j * ϕ

µ1 < µ < µ2, σ2
1 < σ2 < σ2

2

Cpath(N) =
N
3 − 1
N − 1

·µ1·ε1·
1
σ2

1
+

2N
3

N − 1
·
(

2µ1·ε1·
1
σ2

1
+ µ2·ε2·

1
σ2

2

)
< Cpathε (14)

Among them:

Cpathε = 2µ1·ε1·
1
σ2

1
+ µ2·ε2·

1
σ2

2
(15)

Further, it can be concluded that:

Gpath(N)− Cpathε =
N
2
·µ·ε· 1

σ2 −
(

2µ1·ε1·
1
σ2

1
+ µ2·ε2·

1
σ2

2

)
(16)
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The greater the value of N, the more likely the greedy algorithm is to be less efficient
than the balanced partition routing algorithm. When the number of inter-star nodes is
small, specific variance and average step size should be considered for specific analysis.

3.4. Simulation and Analysis

Firstly, the computational complexity of the above algorithm is simulated.
Figure 1 on the left is an actual simulation, and the data on the right are the loga-

rithmic processing. As can be seen from the left figure, with the increase in the number
of satellites, the computational complexity of the flooding and backtracking algorithm
increases exponentially, while other algorithms increase slowly. From the figure on the
right, in general, the flooding and backtracking algorithm has the highest computational
complexity, followed by the two partition routing algorithms, and the greedy algorithm
has the lowest computational complexity. When the number of inter-star nodes is not very
large, the computational complexity of the balanced partition routing algorithm is slightly
higher than that of an ordinary partition algorithm.

Figure 1. Simulation of computational complexity of three algorithms.

The computation force of a single star node under different algorithms is simulated:
As can be seen from the analysis of Figure 2, with the increase in the number of

star nodes in the system, the requirement of the flooding and backtracking algorithm on
the computing capacity of a single star node increases rapidly. However, the computing
capacity of the two partition routing algorithms increases slowly for a single star node,
even approaching the level of a greedy algorithm. This shows that a balanced partition
routing algorithm can well distribute computing pressure to multiple star nodes, with
stronger destruction resistance and better scalability.

Figure 2. Simulation of calculated pressure for a single node.
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Next, the efficiency of the above algorithms is simulated, and the inter-satellite node
number is set to 15.

There were a total of 20 simulations. The average path delay of the greedy algorithm is
the highest, and the variance of the average delay in each experiment is large. However, the
efficiency of the flooding and backtracking algorithm is relatively stable, and the average
delay calculated by this algorithm is significantly less than that of the two partition routing
algorithms. Figure 3 shows that the average route length of the balanced partition routing
algorithm is shorter than that of the classical partition routing algorithm. In other words,
the path calculated by the balanced partition algorithm is better than that of the classical
partition routing algorithm.

Figure 3. Simulation of average path length for four algorithms.

Twenty simulation experiments were conducted here. It can be seen from Figure 4
that the variance of each shortest path length calculated by the flooding and backtracking
algorithm is nearly 0, followed by the two partition routing algorithms. The variance
calculated by the greedy algorithm is the largest and the stability is the worst. However,
considering that the computation complexity of the balanced partition routing algorithm is
much lower than that of the flooding and backtracking algorithm, the balanced partition
routing algorithm still has high application significance.

Figure 4. Simulation of the variance of average path length for four algorithms.
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3.5. Analysis of Hardware Architecture Cost

The inter-star model is composed of nine star nodes. We randomly conducted 1000
communication missions among these star nodes. We only considered the calculation power
consumption of these nodes in calculating the routing path, and the energy consumption
of the nodes is positively correlated with the calculation amount. In the actual space
environment, the payload of the satellite relies on solar panels to collect solar energy to
provide energy.

Table 1 shows the calculation amount for the routing calculation for each node under
different algorithms in a simulation experiment. Something that looks like 1012 or 105 is an
order of magnitude. The amount of computation here is expressed only in numbers, not in
units. The larger the value is here, the greater the amount of computation performed on this
node. This means that this node will consume more power and require higher hardware
costs. According to the principle of reliability, since we do not know the calculation pressure
of each node in advance, the design index of each node should refer to the node with the
largest calculation pressure. For example, in this experiment, the design index of the
satellite nodes should refer to the No. 1 star under the flooding algorithm, and the No. 6
star under the greedy algorithm. In other words, the actual hardware design cost of satellite
nodes is mainly determined by which node bears the most computational pressure.

Table 1. Amount of computation for each node.

Types of Algorithms
Satellite Number

1 2 3 4 5 6 7 8 9

Flooding (1012) 13.04 1.75 2.89 1.28 5.38 8.57 2.25 4.11 9.51

Greedy (104) 0.09 2.73 1.00 1.99 1.34 21.9 12.8 2.37 2.62

Partition routing (105) 6.11 6.36 5.22 7.31 5.45 6.26 6.21 6.32 6.25

Balanced partition routing (105) 7.62 7.70 7.71 7.67 7.88 7.63 7.67 7.64 7.60

In order to increase the reliability of the experiment, we conducted a total of 10 ex-
periments. In Table 2, we omit the computation amount of each star node under various
algorithms and only show the numerical value of the node with the most computation in
each experiment.

Table 2. Largest amount of computation for single node in each experiment.

Sequence

Types of Algorithms Greedy(
105) Flooding(

1012) Partition Routing(
105) Balanced

Partition
Routing (105)

1 2.19 13.04 7.31 7.88

2 1.21 9.63 6.29 7.99

3 7.41 9.99 6.38 8.06

4 3.53 3.92 6.72 8.09

5 1.75 1.26 6.02 8.08

6 6.44 2.57 5.98 8.16

7 5.32 19.9 5.68 8.14

8 8.01 3.78 6.48 8.18

9 2.11 2.82 6.46 8.28

10 1.07 6.11 6.18 8.22

It can be seen from this table that the computing capacity requirements of the flooding
algorithm for the nodes are not in the same order of magnitude as those of the other three
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algorithms. If the flooding algorithm is used, the hardware cost for the star nodes will be
very large. In theory, the average calculation pressure of each node of the greedy algorithm
should be far less than that of the partition routing algorithm and balanced partition routing
algorithm. However, each route calculation of the greedy algorithm can only be completed
by one node independently and cannot be dispersed to multiple nodes. It leads to great
calculation pressure on some nodes. According to our simulation results, the node with the
greatest computational pressure of the greedy algorithm is the same order of magnitude
as that of the two partition routing algorithms, and the hardware cost among them is
also close. From this point of view, on the premise of obtaining extremely high algorithm
effectiveness, the hardware cost of a balanced partition routing algorithm is much lower
than the flooding algorithm and the cost is close to the greedy algorithm and partition
routing algorithm, which have good economic benefits.

4. Optimization of Balanced Partition Routing Algorithm

This section mainly explores the two optimization directions of the balanced partition
routing algorithm. As shown in Figure 5, in order to further reduce the calculation pressure
of a single node, the balanced partition routing algorithm can further optimize the grouping
on the basis of the original grouping. One way is to divide the larger group into smaller
groups, each of which belongs to the larger group. This article calls this partitioning method
2. Another method is to divide the original large group into several smaller groups. After
the separation, the original large group is cleared. We call it partitioning method 3. This
section will explore the calculation pressure of a single node, average path length and
variance of average path length under conditions of these two optimization directions.

Figure 5. Two kinds of optimized partitioning (method 2 is left, method 3 is right).

4.1. Computational Complexity Analysis under Two Partitioning Methods

Method 1: Method 1 here is the balanced partition routing algorithm mentioned
above, and its total computational complexity and computation pressure of a single node
are shown in Equations (6) and (12).

Method 2: As shown on the left side of Figure 5, all nodes are divided into three large
groups, with two small groups inside each large group. To calculate the routing path from
star node numbered i to star node numbered j, there may be three cases to consider.

(1) In the first case, the two star nodes are in the same small group and the routing path
is calculated directly in the group.

(2) In the second case, the two nodes are not in the same small group, but in the same
large group. Assuming that the two communication nodes belong to small groups,
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these two nodes are numbered i + x and j + y, respectively. The communication nodes
of each group should be calculated first, and then the paths of these two nodes to their
communication nodes should be calculated. Therefore, the total routing path is going
to be: i -> i+x -> j+y -> j.

(3) In the third case, the two nodes are not in the same large group. For node i and node j,
the first step is to calculate the communication nodes of large groups that these two
nodes i, j, respectively, belong to. Assuming that two large communication nodes are
numbered i + m and j + n. Assuming that the two small communication nodes in the
large group where node i is located are i + m1 and i + m2. In the same way, we can
obtain j + m1 and j + m2 and then we have to think about whether i + m and i are in
the same small group. We also need to consider whether j + n and j are in the same
group. There are four possibilities:

(3.1) The first possibility is that node i + m and i are in the same small group and
node j + n and j are also in the same small group. The path in this possibility
is going to be: i− > i + m− > j + n− > j.

(3.2) The second possibility is that node i + m and i are not in the same group while
node j + n and j are in the same group. In this possibility, we need to calculate
the routing path from i to i + m in the large group firstly and the total routing
path is going to be: i− > i + m1− > i + m2− > i + m− > j + n− > j.

(3.3) The third possibility is that node i + m and i are in the same group while
j + n and j are not in the same group. The total routing path is: i− > i+m− >
j + n− > j + j + m1− > j + m2− > j.

(3.4) The last possibility is the exact opposite of the first and its routing path is:
i− > i + m1− > i + m2− > i + m− > j + n− > j + m1− > j + m2− > j.

Minimum computing force requirements for a single node:

Cmethod 2node
(N) =

 N
12−1

∑
m=0

(
N
6 − 2

)
!(
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)
!
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(
N
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)2
 (17)

Total algorithm complexity:
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U1 =
N
6 −1
N−1 ·

( N
6 −2
∑

m=0

( N
6 −2)!

( N
6 −2−m)!

+ δ2

)
+

N
6

N−1 ·
(

2·
( N

6 −2
∑

m=0

( N
6 −2)!

( N
6 −2−m)!

+ δ2

)
+
(

N
6

)2
)
)

U2 =
N
6

N−1

[(
2·
( N

6 −2
∑

m=0

( N
6 −2)!

( N
6 −2−m)!

+ δ2

)
+
(

N
3

)2
)
+ 2·

(
3·
( N

6 −2
∑

m=0

( N
6 −2)!

( N
6 −2−m)!

+ δ2

)
+
(

N
3

)2
+
(

N
6

)2
)
+

(
4·
( N

6 −2
∑

m=0

( N
6 −2)!

( N
6 −2−m)!

+ δ2

)
+
(

N
3

)2
+ 2·

(
N
6

)2
)]

Simplified to obtain:
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2
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Method 3: As shown in Figure 5, method 3 is similar to method 1. Nodes in the
system are evenly divided into more small groups. All nodes are divided into six groups.
To calculate the routing path from star node numbered i to star node numbered j, there may
be two cases to consider.

(1) In the first case, the two star nodes are in the same small group and the routing path
is calculated directly in the group.
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(2) In the second case, the two nodes are not in the same group. Assuming that the two
communication nodes of the groups these two nodes belong to are numbered i + x
and j + y, respectively. Therefore, the total routing path is going to be: i->i+x->j+y->j.

Minimum computing force requirements for a single node:

Cmethod 3node
(N) =

N
12−1

∑
m=0

(
N
6 − 2

)
!(

N
6 − 2 − m

)
!
+

(
N
6

)2
+ δ2 (19)

Total algorithm complexity:

Cmethod 3(N) =
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Then:

Cmethod 2(N)− Cmethod 3node
(N) =

(
N
3

)2
> 0 (21)

Cmethod 2(N)− Cmethod 2(N) =
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Therefore, both the computational complexity of a single node and the total computa-
tional complexity of method 2 is greater than that of method 3.

4.2. Algorithm Efficiency Analysis

The inter-star model we selected is composed of 30 star nodes. The data in the Topo
table represent the direct distance between stars and satisfy the distribution of

(
µ, σ2).

We explore the actual performance of two balanced partition routing algorithms under
different variances. We first simulate the average routing path delay calculated by the two
optimization algorithms under different variances and the µ is 5. The simulated data are
shown in Table 3.

Table 3. Data of simulated time average path cost.

Sequence

Conditions µ = 5, σ2 = 6 µ = 5, σ2 = 10 µ = 5, σ2 = 15

Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 1 Algorithm 2 Algorithm 3

1 6.9727 7.5565 7.7721 8.9871 11.7425 11.1119 13.3474 19.5487 12.4728

2 7.0034 7.1166 5.8530 8.5744 8.9300 7.9212 14.4343 17.5625 15.6544

3 6.3184 6.1110 7.3742 8.6316 9.8857 13.3193 11.9705 15.7141 11.0548

4 6.7229 8.0088 6.3971 9.4518 10.9890 10.8876 12.9407 16.1883 18.7025

5 6.8002 7.8050 6.9728 8.0303 12.5435 11.8771 14.0550 20.2276 12.5364

6 6.3598 6.6342 9.6275 10.0427 13.6140 8.8530 15.1775 18.2937 14.5067

7 6.4300 10.3892 8.0600 9.33365 15.3480 9.5072 11.2382 14.7445 10.6957

8 6.5192 7.7034 6.9728 9.0030 14.7181 10.7664 12.3992 11.9626 15.5931

9 6.5477 8.1679 7.8820 9.5419 12.8866 11.8589 15.3509 21.4360 21.0220

10 6.4357 7.7889 7.7813 8.1095 11.3909 10.6629 13.1029 12.5283 9.7106

average 6.611 7.728 7.469 8.971 12.205 10.677 13.402 16.821 14.195

Notation: The units of the metrics in this table are second(s).

It can be seen from the above table that we carried out 10 simulation experiments.
According to the average value of data obtained from the 10 simulations, the routing path
delay calculated by algorithm 1 is the best, algorithm 3 is the second, and algorithm 2 is
the worst. In order to eliminate chance, we performed another 20 simulations and drew a
simulation graph of the average routing path delay.
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Figures 6–8 are the simulation diagrams of the actual average route path length
calculated by two optimization algorithms with different variances. As can be seen from
the figures, an overall trend is that with the increase in data variance in the Topo table, the
average path length calculated by the three algorithms increases. However, in terms of
internal comparison, the average path length obtained by algorithm 1 is the shortest, while
that obtained by algorithm 2 is the longest.

Figure 6. Simulation of average path length (µ = 5,σ2 = 5).

Figure 7. Simulation of average path length (µ = 5,σ2 = 10).
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Figure 8. Simulation of average path length (µ = 5,σ2 = 15).

As can be seen from the Tables 3 and 4, as the variance of data in the Topo table
increases, so does the variance of the average path length calculated by each algorithm.
Internally, under the same conditions, the variance of the average path length calculated by
algorithm 2 is the smallest, indicating that the path length calculated by algorithm 2 for
each routing path is relatively close, and the efficiency of the algorithm is the most stable.
Figures 9–11 also reflect the same results. In practical applications, such algorithms are
more resistant to destruction. If the lengths of different paths calculated differ greatly, some
star nodes will be overloaded while others are idle, which wastes resources and reduces
the efficiency of inter-star communication [24].

4.3. Analysis of Hardware Architecture Cost

The inter-star model is composed of 18 star nodes. Other experimental details and
methods are exactly the same as the simulation experiment in 3.5. Table 5 shows the
calculation amount of routing calculation for each node under three algorithms in a simula-
tion experiment.

Table 4. Data of variance of simulated time average path cost.

Sequence

Conditions µ = 5, σ2=6 µ = 5, σ2=10 µ = 5, σ2 = 15

Algorithm
1

Algorithm
2

Algorithm
3

Algorithm
1

Algorithm
2

Algorithm
3

Algorithm
1

Algorithm
1

Algorithm
1

1 17.8395 19.1632 14.8941 28.2624 42.7909 57.4118 89.3170 63.3746 72.3029

2 20.1273 18.5325 28.2469 39.2474 19.0063 39.1743 91.8820 79.7508 104.3368

3 16.1741 16.3519 26.0751 47.5303 36.6430 51.3725 85.5774 52.7638 124.6169

4 14.2612 12.0631 21.4181 44.6129 36.2415 48.4760 80.2696 55.0811 84.7636

5 18.3008 12.6547 15.6712 46.5585 32.7720 63.5157 94.9057 89.1324 85.5036

6 26.0488 17.1340 21.1393 41.6227 23.0475 35.6929 84.2496 52.8075 102.9034

7 13.5860 14.0287 20.7693 30.3912 34.6619 50.8909 82.9925 97.9406 131.0594

8 19.6410 15.0383 17.7038 34.5207 23.5419 66.3233 96.1250 56.6428 96.4693

9 17.2942 23.9701 22.5576 40.6512 48.1517 44.1655 54.0130 73.5422 108.1908

10 19.7617 14.4214 33.9848 54.4098 43.6303 50.8788 90.8565 49.9056 126.0783

average 18.303 16.336 22.460 40.781 34.049 50.790 85.019 67.095 103.623

Notation: The units of the metrics in this table is s2.
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Figure 9. Simulation of the variance of average path length (µ = 5,σ2 = 5).

Figure 10. Simulation of the variance of average path length (µ = 5,σ2 = 10).

Figure 11. Simulation of the variance of average path length (µ = 5,σ2 = 15).
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Table 5. Amount of computation for each node.

Types of Algorithms

Satellite Number 1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18

Method1 (106)
1.83 1.85 1.90 1.93 1.82 1.96 1.93 1.87 1.85

1.84 1.90 1.84 1.86 1.90 1.88 1.90 1.88 1.85

Method2 (105)
4.74 4.94 5.12 5.32 5.37 4.99 4.95 5.18 5.11

5.17 5.17 4.72 5.12 5.00 4.86 4.87 5.27 4.85

Method3 (105)
6.05 6.19 6.37 6.17 6.20 6.08 6.34 6.18 6.23

6.08 6.26 6.21 6.06 6.18 6.13 6.18 6.15 6.15

Table 5 shows the calculation power consumption of each star node under various
algorithms in the first experiment. Table 6 reflects the node with the highest calculated
pressure in the 10 experiments. It can be seen from the two tables that the computational
pressure borne by each node under these three algorithms is relatively average, which
means that each node was fully utilized. To be specific, the average and maximum compu-
tational pressures borne by each node of the two algorithms after optimization are indeed
significantly lower than those before optimization, which proves that the two optimization
directions can further reduce hardware costs.

Table 6. Largest amount of computation for single node in each experiment.

Sequence
Types of Algorithms

Method 1 (106) Method 2 (105) Method 3 (105)

1 1.96 5.37 6.37

2 2.02 5.46 6.34

3 2.07 5.48 6.39

4 2.06 5.23 6.51

5 2.10 5.30 6.14

6 2.04 5.38 6.20

7 2.08 5.26 6.41

8 2.08 5.47 6.30

9 2.02 5.87 6.34

10 2.06 5.30 6.22

5. Conclusions

This paper proposes a new inter-satellite balanced partition routing algorithm. Firstly,
the total computation complexity and single node’s pressure of the algorithm and other
traditional algorithms are analyzed from the point of view of mathematics. The simulation
model is built to simulate the performance of the four inter-satellite routing algorithms,
including average path propagation delay, the variance of the path propagation delay, and
the calculated pressure of a single node. Simulation results reveal that compared with other
algorithms, the proposed balanced partition routing algorithm achieves better performance.

In the latter part of this paper, two further optimization directions of a balanced
partition routing algorithm are analyzed. Firstly, experimental results show that these
two optimization methods can further reduce the complexity of the algorithm. Moreover,
the hardware cost of nodes is greatly reduced. Finally, the further optimization of the
balanced partition routing algorithm can adapt to various scenarios and has good mobility.
This algorithm could not only be used as an alternative scheme in the routing planning
of low-orbit micro-satellite constellations and star links but also be used as a general
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scheme for decentralized data fusion in cooperative systems such as unmanned aerial
vehicle formations.

In our following work, we intend to study the grouping of balanced partition routing
algorithms. In our branch of experimental study, we found that the average path delay cal-
culated by different grouping methods is huge for the balanced partition routing algorithm.
The good grouping method will greatly improve the efficiency of the algorithm. On the
other hand, the processing delay of data within the nodes will also be considered in our
future research [1].
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Abbreviations
The following abbreviations are used in this manuscript:

N Number of satellite nodes in the system
Topo A table storing direct distances between stars
No. Satellite identification
aij Direct distance from the No. i to the No. j satellite
µ Average of the data in Topo table
σ2 Variance of the data in Topo table
ϕ A group
G C omputational complexity of Greedy algorithm
F C omputational complexity of Flooding algorithm
δ1 Cost of backtracking part of the Flooding algorithm
P C omputational complexity of Partition routing algorithm
δ2 Cost of δrecall + δgreed
δrecall Cost of backtracking part of Partial Flooding algorithm
δgreed Overhead of the greedy algorithm in the group
C C omputational complexity of Balanced partition routing algorithm
Gnode Calculated pressure of a node in Greedy algorithm
Fnode Calculated pressure of a node in Flooding algorithm
Pnode Calculated pressure of a node in Partial Flooding algorithm
Cnode Calculated pressure of a node in of Balanced partition routing algorithm
Gpath Average path length of Greedy algorithm
Fpath Average path length of Flooding algorithm
Ppath Average path length of Partial Flooding algorithm
Cpath Average path length of Balanced partition routing algorithm
Cmethod 2node

Calculated pressure of a node in of Balanced partition routing algorithm (2)
Cmethod 3node

Calculated pressure of a node in of Balanced partition routing algorithm (3)
Cmethod 2 Average path length of Balanced partition routing algorithm (2)
Cmethod 3 Average path length of Balanced partition routing algorithm (3)
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