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Abstract: Network Function Virtualization (NFV) is a virtual network model, the goal of which
is a cost-efficient transition of the hardware infrastructure into a flexible and reliable software
platform. However, this transition comes at the cost of more security threats. A key part of this
virtualization environment is the hypervisor, which emulates the hardware resources to provide a
runtime environment for virtual machines (VMs). The hypervisor is considered a major attack vector
and must be secured to ensure network service continuity. The virtualization environment contains
critical non-control data where compromise could lead to several misuses, including information
leakage and privilege and resource modification. In this paper, we present a misuse pattern for
an attack that exploits the security vulnerabilities of the hypervisor to compromise the integrity
of non-control data in the NFV environment. Misuse patterns are used to describe how attacks
are carried out from the attackers’ perspective. The threat of modification of non-control data can
lead to several misuses, and in this paper, we discuss three of them. The defenses to this attack
can be incorporated into the Security Reference Architecture (SRA) of the NFV system to prevent
these misuses.

Keywords: network function virtualization (NFV); cloud computing; virtualization; non-control data;
hypervisor; misuse patterns

1. Introduction

Network service providers need to deploy network equipment such as firewalls,
domain name servers (DNSs), load balancers, routers, and switches at the consumers’
premises to deliver a network service. These network hardware devices may connect many
computers with different operating systems and protocols, which increases the complexity
of network infrastructure [1,2]. In addition, TSPs may require deploying additional network
equipment to cover the consumers’ needs [3], which expands the network infrastructure
and increases the operational expenditure (OpEx) and the capital expenditures (CapEx),
making managing the network infrastructure a cumbersome process [4]. The heterogeneity
of these pieces of equipment also makes it difficult to have a secure network environment.

A different paradigm has emerged in the network industry that developed the net-
work infrastructure and its service delivery. Network Function Virtualization (NFV) takes
advantage of virtualization to deliver virtual network functions, i.e., virtual firewalls,
virtual switches, etc. It promises independence in hardware and software development,
because they are not integrated with each other, and reduces the OpEx, the CapEx, and
even the total cost of ownership (TCO) [5,6]. NFV also ensures a sharable and scalable
network environment in which many NFV consumers can share and scale the network
resources provided by TSPs according to their requirements. We consider here TSPs as
NFV providers.

Although NFV promises many benefits, as mentioned previously, it leads to security
issues [7,8]. NFV providers are required to undertake substantial efforts to ensure a
secure NFV service environment. To provide a secure NFV service, we need to study
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and understand the possible threats. In [9], we looked at the main security threats in
NFV and the possible countermeasures to these threats. In this survey, we classified the
vulnerabilities and mapped them to their possible threats. Here, we use misuse patterns to
describe one of these threats, the threat of maliciously modifying non-control data. Misuse
patterns are used to describe how an attack is carried out from the point of view of the
attacker [10]. They also define the environment in which the attack can be carried out, the
possible countermeasures to mitigate it, and the forensic information that could be used to
trace the attack once it happens [10]. The patterns are part of an ongoing catalog that can
be used by system designers to consider security aspects when building an NFV system.

The threat of modifying non-control data has been studied in various systems. In [11],
the authors demonstrated real-world applications vulnerable to such attacks to show how
non-control data attacks are realistic. In [12], the authors described some possible cases of
kernel non-control data attacks. In [13], a data-oriented programming technique was used
to construct non-control data attacks on nine applications. The authors also used a dataflow
stitching technique to generate data-oriented exploits that led to non-control data attacks.
Another scenario of a non-control data attack is explained in [14], in which a memory
corruption vulnerability was leveraged. Although many researchers have explained the
possibility of this threat, no one in the literature has used patterns to analyze the threat
of non-control data in an NFV system. Patterns have proved convenient to describe the
threats in several environments, such as cloud [15], IoT [16], and VoIP [17].

The remainder of this paper is arranged as follows: Section 2 provides a background
on Network Function Virtualization (NFV), architectural modeling using patterns, and
the threat of modifying non-control data. Section 3 presents a misuse pattern that results
in modifying a non-control data threat in NFV. Section 4 shows how this pattern could
be used to extend the SRA from [18], while Section 5 considers related work. Section 6
contains conclusions and future work. Appendix A, at the end of the paper, describes a
variation in the POSA template, which we use for misuse patterns [10]. We consider the
POSA template to be more suitable for describing misuse patterns [19].

2. Background
2.1. Network Function Virtualization

NFV transforms the traditional network architecture from a static architecture that
comprises physical hardware to an agile one that provides network functions as software
running in virtual machines (VMs). Decoupling the network functions from its dedicated
hardware and emulating them to virtual servers will result in the following benefits [19]:

• Flexibility: The network will be provided as a software service, ensuring flexible and
faster deployment;

• Elasticity: NFV consumers will be able to dynamically scale the network resources;
• Extensibility: It would be possible to dynamically add more network services within

the network service;
• Faster deployment: The network service will be configured faster.

The European Telecommunication Standards Institute (ETSI) introduced the first archi-
tecture of NFV, shown in Figure 1 [20]. It consists of three main components: the network
function virtualization infrastructure (NFVI), virtualized network functions (VNFs), and
NFV management and orchestration (MANO).

The NFV infrastructure is the foundation platform for the network service and contains
hardware resources (storage, CPU, network, etc.); virtualized resources (virtual storage,
virtual CPU, virtual network, etc.); and the virtualization layer, which contains the hy-
pervisor. The hypervisor, also called the virtual machine manager (VMM), deploys VMs,
emulates the necessary resources, and allows for resource sharing, while also ensuring
isolation among them [21].
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Figure 1. NFV Reference Architecture Framework [20].

Further, VNFs are software implementations of the network functions that are de-
ployed on the NFVI. A single VNF may contain several components (VNFCs), which are
software components of a VNF, or may contain only one network function in order to
maintain its scalability. VNFs are hosted by VMs [22] or even a container [23].

The third component is the NFV MANO, which covers the lifecycle management
and orchestration of the virtual network service. It contains three management units: the
virtualized infrastructure manager (VIM), responsible for managing the interaction between
the VNFs and the NFVI resources; the VNF manager, which manages and monitors the VNF
resources; and the NFV orchestrator (NFVO), which provisions the necessary resources for
the network service.

2.2. Patterns

A pattern is a solution to a recurrent problem in a given context. Patterns embody
abstractions and provide common vocabularies for system designers. Their solutions are
suggestions, not plug-ins [19], which means that they are prototypes and there are many
ways to instantiate a pattern. There are several types of patterns, intended for specific
design purposes. Design and architectural patterns are used to build the functional aspects
of extendable systems [24]. Security patterns are used to build secure systems by defining a
way of controlling vulnerabilities or stopping specific attacks [10]. Threat patterns describe
the steps of an attack that could lead to several misuses [25]. Misuse patterns are used



Future Internet 2022, 14, 201 4 of 17

to describe, from the attacker’s perspective, a generic method of attacking a system by
exploiting a vulnerability. They also describe the environment in which an attack may be
performed, the possible countermeasures to mitigate it, and the method to find forensic
information to trace the attack once it happens [10].

Patterns are described using templates; each template is different based on the type of
pattern. For example, a misuse pattern template contains countermeasures, consequences,
and forensic sections that are not available in a design pattern template. We use the
Pattern-Oriented Software Architecture (POSA) template as we consider it more suitable
for describing security aspects [10]. The descriptions of patterns may be written in textual
language, and their solutions are usually shown in Unified Modeling Language (UML).

2.3. Modifying Non-Control Threat

Most security threats are related to altering the control flow of the targeted system, either
by injecting a code or by reusing existing code such as return and call instructions [26,27]. It
mainly refers to the data loaded in the processing counter during program execution, in which
the attacker exploits, for instance, a memory corruption vulnerability, such as buffer overflow
or integer overflow, to compromise the system [28,29]. It has been indicated that threats related
to non-control data are also possible in real-world applications and are closely equivalent to
control data threats [11,30]. Non-control data attacks do not affect the control flow of a system;
instead, they are carried out by altering the non-control data of a targeted program, such as
configuration data, decision-making data, user identity data, and user input [29]. There are
also other critical non-control data in the kernel level susceptible to an attack, such as user
privilege data, resource utilization data, and service policy data [12,31].

The threat of modifying non-control data is also possible in the virtualization environ-
ment. The hypervisor is being used as a virtualization layer in many systems, including
Network Function Virtualization (NFV) [32], due to its ability to enable resource sharing
and, at the same time, ensure isolation among virtual machines. Since hypervisors have
a smaller code base, it has been assumed that they and the VMs running on top of them
are secure [33–36]. However, some hypervisors indeed are quite complex and have large
lines of codes. For instance, Xen contains more than 900K lines of codes [37]. Kernel-based
Virtual Machine (KVM) contains around 850K lines of codes [38]. Continuing bug and
exploit reports indicate that hypervisors are not secured, as has been assumed [39–42], and
neither are non-control data, which are considered an exploitable attack vector [12,13,31].
In the following section, we show a misuse pattern from modifying non-control threats
that could lead to several misuses in the NFV environment.

3. Misuse Patterns from the Threat of Modification of Non-Control Data in NFV
3.1. Intent

Threats related to resource modification are possible in the virtual environment. An
attacker modifies the resource-utilization-related data (i.e., processing resources) of virtual
machines with the aim to degrade their performance or even deny their services.

3.2. Context

Hypervisors emulate the necessary resources (i.e., processing, storage, and network)
from the cloud infrastructure to virtual machines and provide isolation among them.
The hypervisor contains critical data for each VM, which can be classified as control and
non-control data. The non-control data include configuration data, user input data, etc.

3.3. Problem

How can an attacker compromise the integrity of non-control data of an NFV con-
sumer’s virtual machine, which may lead to several misuses? The attack can be carried out
by exploiting the following vulnerabilities:
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1. VMs communicate with their hosting hypervisor via hypercalls, which are low-level
system calls for basic processing and resource access requests. Thus, it would be
difficult to distinguish between malicious and legitimate hypercalls [39,43].

2. An attacker is able to take advantage of a malicious network service request translated
by a VM to a malicious hypercall, which enables the attacker to access hypervisor files
and modify its data [44–46];

3. In a virtualization environment, hypervisors are complex and have large lines of
source codes, which increases the chances of vulnerabilities being present [40,47,48]
and makes it difficult to maintain their security [49].

4. An attacker can exploit existing vulnerabilities to run arbitrary code, which leads to
illegal access to host files [50–52].

5. Emerging attacks aim to execute existing codes within the host domain files instead of
injecting new codes, such as return-oriented attacks [45]. Real-world software appli-
cations contain critical non-control data. Neglecting their protection may compromise
their integrity, which will affect the virtual network service [11,53].

6. Because the network service is hosted in a sharable environment, if one VNF is
compromised, it may affect the other VNFs that share the same environment [54].

3.4. Solution

We assume that the attacker is a regular NFV consumer who has a valid account with
a network service provider. The attacker requests a network service that could include
one or a bundle of VNFs. The hypervisor emulates resources from NFV infrastructure
(NFVI) and assigns these resources to VMs. Processing and resource requests are sent
as hypercalls. VMs pass these system calls to the hypervisor, which executes them in
hardware. These hypercalls can be maliciously made for the purpose of controlling or
accessing the hypervisor files [45,46]. There are several vulnerabilities that exploit a heap
overflow and could help the attacker access the hypervisor files and arbitrarily modify the
resource utilization data [50–52,55].

The hypervisor deals with emulated vCPUs and schedulers to ensure that VMs receive
the necessary processing resources. Each VM is associated with two resource properties,
called weight and cap. The weight indicates the amount of physical CPU resource that
the VM receives, while the cap is an absolute value that represents the maximum share of
resource each VM can consume. A cap of 100 means the VM can use one physical CPU,
50 means half a physical CPU, and 300 means three physical CPUs; the default value is 0,
which indicates that there is no upper limit. These non-control data are critical and affect
the network service when their integrity is compromised [11,53].

The non-control data are stored in a file within the hypervisor, called the domain
structure [31]. Each VM has its own associated domain structure. In Xen hypervisors,
for instance, the first domain is the privileged domain called Dom0, which creates other
unprivileged VMs (Dom1, Dom2, DomN) [56]. The attacker can identify a victim’s VM by
looking at its domain_id, which is 0 for Dom0, 1 for Dom1, 2 for Dom2, etc. Therefore, by
traversing Dom0, the attacker can identify users’ domains [31].

Here is a possible scenario for modifying a non-control attack. The attacker, or the
NFV consumer, runs a malicious application to construct a payload that calls the vulnerable
hypercall in which the VM passes it to the hypervisor [13,57]. The result of the hypercall is
access to the hypervisor files and implementation of a return-oriented attack (ROP) [58,59]
that aims to modify codes already existing in files, instead of injecting new codes, to modify
the weight and cap of a victim’s VM. For example, if the VM has a weight of 256 and a
cap of 4, the attacker may modify the weight to 128 and the cap to 1, which will reduce
the amount of CPU the VM should receive. This attack is applied in the virtualization
environment and possible in the NFV environment in a way to compromise the integrity of
resource utilization of a network service [54,60].
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3.5. Structure

Figure 2 shows a class diagram for modifying a non-control attack in NFV. The NFV
consumer connects to the network service, or VNFs, through an application programming
interface (API). VMs are created using virtual machine image (VMI); the image contains
software configuration, including the operating system and application programs. VMs are
created and managed by the hypervisor, which emulates the hardware resources from the
NFV infrastructure (NFVI) and may contain vCPUs and schedulers. The VIM is a software
unit that manages and monitors the NFVI. Lastly, the domain is a structure that stores the
basic resource information of VMs, such as weight and cap.
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3.6. Dynamics

Use case 1 (a misuse): Gain unauthorized access to hypervisor files by executing a
malicious hypercall.

Summary: The attacker, who can be an NFV consumer, constructs a payload and
writes a malicious application in the VNF that enables the attacker to make a malicious
hypercall and access hypervisor files. The dynamics of this misuse are shown in Figure 3.

Actor: NFV consumer (attacker)
Precondition: The attacker has a valid account and active network services.
Description:

1. The attacker runs a malicious application.
2. The attacker constructs a payload that enables the attacker to make a hypercall.
3. The malicious hypercall is initiated and sent through the application.
4. The malicious hypercall is forwarded to the VNF.
5. The VNF passes the hypercall to its hosted VM.
6. The VM passes the hypercall to the hypervisor.
7. The hypervisor executes the malicious hypercall.
8. As a result of the hypercall execution, access is granted to the attacker.
9. The attacker is able to illegally access hypervisor files.

Postcondition: The attacker controls the hypervisor and has direct access to its files.
Use case 2 (a misuse): Degrade the performance of the victim’s network service.
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Summary: The attacker, who is an NFV consumer, maliciously modifies the resource
utilization data of the victim’s VM, which affects the network service. In this misuse, the
attacker modifies the weight value of the victim’s VM from 256 to 64, which results in the
victim having fewer resources than authorized. The dynamics of this misuse are shown in
Figure 4.

Future Internet 2022, 14, x FOR PEER REVIEW 8 of 18 
 

 

 
Figure 4. Sequence diagram for use case “Degrade the performance of the victim’s network service”. 

Use case 3 (a misuse): Upgrade the performance of the attacker’s network service. 
Summary: The attacker, who is an NFV consumer, maliciously modifies the resource 

utilization data of their own VM in order to gain more resources. In this misuse, the at-
tacker changes the value of the cap from 400 to 0, which results in the attacker having an 
unlimited cap. The dynamics of this misuse are shown in Figure 5. 

Actor: NFV consumer (attacker) 
Precondition: The attacker has a valid account and active network services.  
Description: 

1. The attacker performs Steps 1 to 9 of UC1 and gains control of and access to the hy-
pervisor files. 

2. The attacker accesses the domain structure of their own VM. 
3. The attacker runs a return-oriented attack (ROP) in order to modify the cap value.  
4. The attacker changes the value in the offset of the cap field in the domain structure. 
5. The resulting modification of the resource utilization data leads to the upgraded per-

formance of the attacker’s VM. 
Postcondition: The network service of the attacker has been maliciously upgraded.  

Figure 4. Sequence diagram for use case “Degrade the performance of the victim’s network service”.

Actor: NFV consumer (attacker)



Future Internet 2022, 14, 201 8 of 17

Precondition: The attacker has a valid account and active network services.
Description:

1. The attacker performs Steps 1 to 9 of use case 1 (UC1). As a result, the attacker controls
and accesses the hypervisor files.

2. The attacker accesses the domain structure of the victim’s VM.
3. The attacker runs a return-oriented attack in order to modify the value of the

VM’s weight.
4. The attacker changes the value in the offset of the weight field in the domain structure.
5. The resulting modification of resource utilization data leads to degraded performance

of the victim’s VM, which then affects the network service (VNF) hosted in that VM.

Postcondition: The network service of the victim has been maliciously degraded.
Use case 3 (a misuse): Upgrade the performance of the attacker’s network service.
Summary: The attacker, who is an NFV consumer, maliciously modifies the resource

utilization data of their own VM in order to gain more resources. In this misuse, the attacker
changes the value of the cap from 400 to 0, which results in the attacker having an unlimited
cap. The dynamics of this misuse are shown in Figure 5.
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network service”.

Actor: NFV consumer (attacker)
Precondition: The attacker has a valid account and active network services.
Description:

1. The attacker performs Steps 1 to 9 of UC1 and gains control of and access to the
hypervisor files.

2. The attacker accesses the domain structure of their own VM.
3. The attacker runs a return-oriented attack (ROP) in order to modify the cap value.
4. The attacker changes the value in the offset of the cap field in the domain structure.
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5. The resulting modification of the resource utilization data leads to the upgraded
performance of the attacker’s VM.

Postcondition: The network service of the attacker has been maliciously upgraded.

3.7. Consequences

A successful attack leads to the following consequences:

1. The attacker is able to compromise the integrity of the NFV system by breaking into
the hypervisor files [31,39,48].

2. The attacker will be able to carry out various activities related to misuse, such as
migrating machines, stopping VNFs, and terminating network services [60,61].

3. NFV consumers, or victims, may receive less processing resources than they should
receive, such as vCPU cap and weight, because the attacker has modified the resource
utilization data [31].

4. The attacker can deploy a malicious payload, rendering out the resources of the
system, causing a denial of service (DoS) [61].

5. The reputation of the targeted NFV provider could be negatively affected as they will
appear to have security breaches [62].

Possible sources of failure include the following:

1. In the virtualization environment, different providers use different commercial hyper-
visors to run their virtualized services. For instance, in Xen hypervisor, the attacker
must know the exact version of this hypervisor to ensure the success of such an attack.

2. This attack relies highly on the domain structure of VMs; the fields of domain struc-
tures may vary among commercial hypervisors.

3. The domain structures of VMs may also vary based on the configuration of the host
hypervisor, which is accomplished by the administrator.

4. The method used in the attack scenario to identify the victim’s VM is possible in
an environment running a Xen hypervisor and may not work on other commercial
hypervisors, such as VMware.

5. ROP attacks can be implemented in open-source hypervisors but would be difficult to
implement in closed-source hypervisors because their data layout is not known [31].

3.8. Forensics

Evidence of such as attack can be discovered by the following actions:

1. NFV providers should keep logs of all hypercalls sent by VMs of all NFV consumers.
Such logging will help to identify any malicious requests, whether sent by privileged
or unprivileged users, that trigger the attacks.

2. NFV providers should apply security features that could help to detect evidence of
ROP chain payload, such as ROPMENU [63]. This evidence involves artifacts that
have been injected by malicious components.

3.9. Countermeasures

Attacks related to modifying non-control data can be mitigated using the following
countermeasures:

1. Vendors of hypervisors should regularly patch hypervisor vulnerabilities that could
lead to successful attacks. For instance, modifying non-control attacks can be mitigated
using a vendor’s patch in [64] if the attacker exploits this vulnerability [65].

2. Pointer Taintedness detection, an architectural technique that can mitigate both control
and non-control data threats, should be implemented [66].

3. A data-oriented detection model should be used that analyzes the program source
code to detect memory corruption on non-control data that could lead to illegal
hypercalls [46].

4. NFV providers can apply several security tools to mitigate ROP attacks, such as
G-Free [67], HyperCrop [68], HyperVerify [69], ROPecker [70], YARRA [29], and
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PointGuard [71], as well as the hardware virtualization mechanism proposed in [72].
Stopping ROP attacks can stop the misuses in Figures 4 and 5.

5. Security schemes should be used to verify the authenticity and correctness of hyper-
calls, such as the Message Authentication Code (MAC) [73]. This defense can stop the
attack in Figure 3.

6. Catching techniques, such as Hypercall Access Table (HAT), can be used to distinguish
addresses of legitimate hypercalls and prevent calls from other locations not listed in
the table [73]. However, this method will not mitigate attacks coming from authentic
users. This defense also can stop the attack in Figure 3.

7. Trie Graph, a novel ROP attack defense methodology that monitors the integrity of
control flow in the user space, should be applied [74]. This defense can stop the
attacks in Figures 4 and 5.

8. ROPStop, a code reuse detection algorithm that can detect ROP exploits, should be
applied [75]. This defense can stop the attacks in Figures 4 and 5.

9. RootkitDet, a defense system against the data modification threats at the kernel-level,
should be applied [76].

3.10. Known Uses

The author in [45] explains the possibility of compromising the Xen hypervisor using
the ROP attack. This scenario is applied in the cloud environment, in which NFV is
an application of this virtualization environment. Therefore, in the context of NFV, the
attack is possible in a way that compromises the integrity of resource utilization data and
affects the performance of the victim’s VMs [60]. Further, an integer overflow vulnerability
in OpenSSH [77] has been discovered that allows attackers to write arbitrary data in
any memory location; a detailed analysis of this vulnerability and its consequences are
provided in [78–80]. Other incidents where non-control attacks have occurred are explained
in [11–13].

3.11. Related Patterns

1. A Misuse Pattern for NFV based on Privilege Escalation: Shows the attackers the pos-
sibility to escalate the privilege of their VMs by exploiting a malicious hypercall [81].

2. NFV Virtual Machine Environment [22]: Describes the environment in which the
hypervisor emulates resources, and creates and manages VMs for the purpose of
providing virtualized network services.

3. Pattern for Network Function Virtualization [82]: Presents an abstract pattern for NFV
architecture in which network services are created and deployed as cloud Software-
as-a-Service (SaaS).

4. Virtual Machine Operating System Architecture (VMOS) [10]: Describes how VMs
can run different operating systems, while remaining isolated from each other.

5. A Pattern for Network Function Virtualization Infrastructure (NFVI) [83]: Describes
the architectural layer of NFV that contains the physical and virtual resources.

4. Use of Misuse Patterns

We presented a Security Reference Architecture for NFV [18]. In that work we showed
three misuse patterns for three threats in NFV: privilege escalation [81], VM escape [84],
and denial-of-service [85]. These misuse patterns were considered the first step toward
building a security reference architecture (SRA) because they show what defenses (security
patterns) can prevent the attack. As shown in the pattern diagram in Figure 6, a misuse
pattern defines a threat to the NFV Reference Architecture (RA), and it can be mitigated by
a security pattern. We can obtain an SRA by adding security patterns to the RA to control
all the identified threats. In other words, an SRA is an RA where all its identified threats
have been controlled by adding security patterns. If there are many threats, it is useful to
perform a risk analysis where the probability of occurrence and the impact of the threat
are evaluated. In our case, the defenses include several possible actions, any of which can
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stop this attack. Figure 7 shows an extended version of the SRA in [18] showing where the
defenses would be applied. The authenticator pattern in the hypervisor is used to verify
the authenticity and correctness of the hypercall arguments coming from the guest VMs.
This can mitigate the described attack by preventing the malicious hypercalls coming from
compromised applications. More descriptions of the security patterns shown in Figure 7
can be found in [18]. Note that this is a partial SRA that can be completed by finding more
threats and writing their corresponding misuse patterns.
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5. Related Work

The threat of modification of non-control data has been studied several times. The
authors in [11] demonstrated how non-control data threats are realistic and can target
real-world applications, such as FTB, SSH, Telnet, and HTTP servers. These applications
have been reported by CERT as among the leading categories of vulnerable programs. In
their scenarios, the attacks exploit buffer and integer overflow, heap corruption, and format
string vulnerabilities. Further, the authors in [13] presented an expressive non-control
data exploit using a data-oriented programming (DOP) technique, which uses only the
data plane for malicious purposes without compromising the integrity of the control plane.
They demonstrated that the attack is possible in nine real-world applications, eight of
which showed possible arbitrary exploitations, and two of them were confirmed to build
Turing-complete attacks.

Further, the authors in [12] showed different scenarios of modifying non-control data
threats at the kernel level. One resultant scenario is a resource waste attack, which aims to
degrade the performance of the applications running over the machine by creating artificial
memory pressure and producing a large amount of unused memory spaces. The authors
in [53] proposed a deep learning model to identify the security critical non-control data in
program binaries; their neural model was effective as it achieved 87% accuracy.

The authors in [14] explained how a Control-Flow Binding (CFB) attack, a general-
ization of non-control data, is realistic in five real binaries. A CFB attack does not only
modifies the data that affects the control-flow of the program as non-control data threats do,
but also modifies the function pointer to point to a different system call. In the threat model
they proposed, the memory corruption vulnerabilities can lead to two possible misuses,
arbitrary code execution and information leakage.

The authors in [76] presented a threat model for modifying non-control data in a cloud
environment. Their attack model was similar to what we showed earlier; they assume that
the attacker exploits a vulnerability in the kernel and runs a malicious application in the VM
to execute arbitrary code. As a result, the attacker will be able to take control of the VM and
launch several attacks such as kernel-level data modifications and information leakage. Other
works describe the threat of modifying non-control data in many systems [29,57,86,87].

However, based on the previously mentioned papers and readings of more works,
none of the other works have used patterns as a precise way to analyze the threat of non-
control data in a virtualized system. In fact, the abovementioned papers have explained
different approaches to the modifying non-control data threats, but here we model the
generic attack using patterns, which gives a global view and a more precise description of
the threat.

Patterns have been proved as a convenient way to describe the threats in several
environments. The authors in [16] used the misuse pattern to describe the threat of a
distributed denial of service (DDoS) attack on Internet-of-Things (IoT) by constructing a
botnet of infected IoT devices that could be used to attack a server. The authors in [15]
used misuse patterns to describe the possible threats in the cloud environment. Misuse
patterns have also been used to describe several possible threats in the NFV environment,
including [81], VM escape [84], and DDoS [85].

6. Conclusions and Future Work

NFV is a network concept that leverages virtualization technologies obtained from
cloud computing to provide reliable, flexible, and cost-efficient network services. However,
these advantages come at the price of some security concerns. The hypervisor plays an
important role in the virtualization environment, as it is responsible for emulating and shar-
ing resources and creating and managing the VMs used to deliver network services [32].
In past work, we enumerated the possible threats that could jeopardize the virtualiza-
tion environment in NFV [9]. We presented one of these threats here in the form of a
misuse pattern.
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Misuse patterns have been found to be useful in understanding threats and system
vulnerabilities and designing secure systems, as well as performing forensics [10]. The
idea of a misuse pattern has been used in [15,16,84,85], and we used it here to study the
threat of modifying non-control data in the NFV environment. We showed how an attacker
can exploit a vulnerability to modify the weight and cap values of a vCPU [45], which
could lead to several misuses; we described three of them: gaining unauthorized access to
hypervisor files by executing a malicious hypercall, degrading the performance of a victim’s
network service, and upgrade the performance of the attacker’s network service. Other
authors have shown different and complex approaches to describe the possible threats of
modification of non-control data in the virtualized environment. We use Unified Modeling
Language (UML) to build our misuse pattern, which gives a global view and a more precise
description of the threat than block diagrams or word descriptions.

We are building a catalog of misuse patterns for NFV, and this pattern is part of it.
Representing threats using misuse patterns can help us to identify the possible countermea-
sures for them in the form of security patterns. These security patterns can be used to build
a security reference architecture (SRA) for NFV. We have started building the SRA [18],
and currently, it includes the security patterns that could mitigate the previously identified
misuses [81,84,85]. The description of the modifying non-control threat pattern that we
presented here will be part of our SRA.

Further studies are needed to understand the other threats that may compromise
non-control data. We think non-control data related to the policies of network services
and service level agreements (SLAs) need to be investigated because compromising the
integrity of these types of data will have a major effect on the network service lifecycle.
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Appendix A. A Template for Misuse Patterns

• Name: Indicates the name of the misuse pattern, and it should correspond to a generic
name that is given to a specific type of threat in standard attack repositories.

• Intent: Describes the problem it solves for an attacker.
• Context: Describes the environment, including the conditions, in which the attack

may occur.
• Problem: Shows, from the attacker’s perspective, how to find a way to attack a system;

the forces indicate what vulnerabilities can be exploited to accomplish the attack.
• Solution: Shows the solution to the attacker’s problem; it shows how the attack

reaches its objectives and its expected results. The solution section includes structure
and dynamics.

# Structure: Shows in a UML class diagram all the components involved in
the attack.

# Dynamics: Shows in UML sequence or collaboration diagrams the exchange of
messages needed between system components to accomplish the attack.

• Consequences: Discusses the advantages and drawbacks of the attack from the at-
tacker’s perspective.
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• Forensics: Describes what information can be obtained to improve forensic analysis by
tracing the attack to its source.

• Countermeasures: Describes the security measures necessary to prevent, mitigate, or
trace the attack.

• Known uses: Lists the security incidents where the attack has already occurred.
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