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Abstract: Satellite positioning lies within the very core of numerous Intelligent Transportation
Systems (ITS) and Future Internet applications. With the emergence of connected vehicles, the
performance requirements of Global Navigation Satellite Systems (GNSS) are constantly pushed
to their limits. To this end, Cooperative Positioning (CP) solutions have attracted attention in
order to enhance the accuracy and reliability of low-cost GNSS receivers, especially in complex
propagation environments. In this paper, the problem of efficient and robust CP employing low-cost
GNSS receivers is investigated over critical ITS scenarios. By adopting a Cooperative-Differential
GNSS (C-DGNSS) framework, the target’s vehicle receiver can obtain Position–Velocity–Time (PVT)
corrections from a neighboring vehicle and update its own position in real-time. A ranking module
based on multi-attribute decision-making (MADM) algorithms is proposed for the neighboring
vehicle rating and optimal selection. The considered MADM techniques are simulated with various
weightings, normalization techniques, and criteria associated with positioning accuracy and reliability.
The obtained criteria values are experimental GNSS measurements from several low-cost receivers.
A comparative and sensitivity analysis are provided by evaluating the MADM algorithms in terms
of ranking performance and robustness. The positioning data time series and the numerical results
are then presented, and comments are made. Scoring-based and distance-based MADM methods
perform better, while L1 RMS, HDOP, and Hz std are the most critical criteria. The multi-purpose
applicability of the proposed scheme, not only for land vehicles, is also discussed.

Keywords: Intelligent Transportation Systems; Cooperative Positioning; low-cost GNSS; connected
vehicles; multi-criteria decision making; ranking methods; sensitivity analysis

1. Introduction

The cornerstone of any positioning system design activity is the understanding of the
user and the specific application requirements. As Global Navigation Satellite Systems
(GNSS) are constantly improving, providing advanced signals and services, and GNSS
receivers utilized in road sectors adopt multi-frequency, multi-constellation schemes, GNSS
positioning will remain the dominant positioning service [1]. A variety of transport ap-
plications based on GNSS have been studied in practical scenarios, e.g., railways, air, and
maritime transport, and geodetic networks [2–6]. Under the Intelligent Transportation
Systems (ITS) umbrella lies a broad range of vehicular applications with different sets of
requirements that can be categorized foremost as non-safety critical and safety-critical [7–9].
Following up, these are classified as non-connected and connected ITS (C-ITS) applica-
tions [7–9]. The adaptation of C-ITS applications implies future internet connectivity, a
future road environment with minimum safety risks, maximum recourses benefits, and
greener eco-driving due to lower emissions and fuel consumption [9].
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Interruptions of satellite positioning regarding signal receptions in obstructed skies
and complex propagation environments will require coupling with communication tech-
nologies and other sensors for more demanding applications [10,11]. Fusion with other
onboard sensors, such as inertial sensors, lidars, ultra-wideband, and cameras, will be
inevitable for both categories in order to fulfill the requirements of the applications [10,11].
However, Inertial Navigation System (INS)/GNSS integration can come at a prohibitive
cost for mass deployment, has limited sensory coverage, and is unsuitable for small hand-
held devices. Similarly, Real-time Kinematic Positioning (RTK) constitutes a Differential
GNSS (D-GNSS) technique to improve the positioning accuracy of the receiver but does
not provide a stable solution in deep urban centers [12]. Communication technologies
empower vehicle-to-everything (V2X) information share, and as they are established in the
vehicle industry, a wide range of ITS applications emerge [13]. Hence, V2X and C-ITS are
paving the way for Cooperative Positioning (CP) among mobile terminals but demand the
highest performance levels for several metrics such as availability, accuracy, robustness,
and integrity [13].

In this work, the challenge of efficient, accurate, and reliable CP that incorporates
low-cost GNSS receivers in various critical ITS scenarios was addressed. The Cooperative
Differential GNSS (C-DGNSS) framework was employed, which is the classical D-GNSS
coupled with CP between a target vehicle and a number of surrounding candidate neigh-
bors. All of the cars are considered connected. That means that data can be exchanged
through all the vehicles and belong to a wireless network. By retaining the properties of
D-GNSS, the cooperating vehicles disseminate their Position-Velocity-Time (PVT) data
through radio links and GNSS corrections from the available satellites in view. The main
hypothesis is that the target vehicle’s low-cost receiver could improve both its relative and
absolute positioning accuracy. The GNSS PVT information is comprised of National Marine
Electronics Association (NMEA) messages, and the target vehicle parses the incoming
NMEA sentences in a serial manner [14]. With the aid of a multi-attribute decision-making
(MADM) module, the target vehicle optimally decides in real-time which neighbors to
select for retrieving the GNSS corrections for improving/updating its own PVT state.

The contributions of this work are summarized as follows:

• A CP solution stemming from the C-DGNSS concept is proposed to enhance the
performance of low-cost GNSS receivers in safety-critical ITS scenarios. The target’s
vehicle receiver can obtain GNSS corrections from a neighboring vehicle and update
its own position in real-time;

• The proposed C-DGNSS methodology is aided by a MADM module that, given a
variety of position-related criteria and alternative neighboring vehicles, ranks them
and optimally decides which neighbor to select to retrieve PVT corrections.

• Real experimental measurements from several low-cost GNSS receivers and trajectories
(experimental sessions) are provided to simulate various operating environments (i.e.,
deep urban, suburban, and rural areas);

• The experimental data are easily processed NMEA sentences which are manufactured
universally regardless of GNSS receiver producer. The globally available NMEA data
formats are fed as input (i.e., criteria values) to the considered MADM algorithms;

• Thirteen MADM algorithms are simulated with various weightings, normalization
techniques, and criteria associated with positioning accuracy and reliability, such as
horizontal accuracy, dilution of precision (DOP), integer ambiguity status, etc.;

• A comparative analysis is provided through an evaluation of the MADM algorithms
in terms of ranking performance and robustness. An investigation of the importance
and criticality of the criteria is also presented (sensitivity analysis) together with the
necessary simulations’ ranking results and MADM algorithms’ performance tables;

• The proposed C-DGNSS algorithm will be beneficial for critical applications such
as anti-collision, lane-keeping, and intersection crossing, which require high relative
positioning accuracy. Moreover, it aims to improve the positioning accuracy of low-
cost receivers in complex propagation environments by minimizing the operational
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overheads but does not guarantee the effective minimization and elimination of user-
related errors;

• The multi-purpose, generic applicability of the proposed scheme is not only for land
vehicles but extends to drone positioning, swarm-of-entities guidance, drone-to-car
communication, etc.

The remainder of the paper is structured as follows: in Section 2, a brief review of the
ITS definitions and usages is reported, and a summary of the C-DGNSS framework on the
enhancement of low-cost GNSS receivers is presented, along with the specifications for ITS
positioning quality. In Section 3, the MADM theory is developed, and the employed MADM
algorithms, normalization techniques, and weightings are elaborated. In Section 4, the
simulation environment (trajectory, alternative vehicles, and input parameters) is described,
and the MADM simulations using the experimental data take place. The ranking and
numerical results are exhibited, and comments are made. Finally, Section 5 concludes
the paper.

2. ITS Applications and Communication Technologies, Critical Design Requirements,
and Related Works
2.1. Review of Intelligent Transportation Systems (ITS)

Next-generation mobility and transportation services demand the development of a
smart, highly automated, and responsive transportation system. Such systems are known as
Intelligent Transportation Systems (ITS) [7–9] and are based on Future Internet Connectivity.
Their role is to facilitate the safe but efficient transportation of commodities and/or humans.
This is accomplished through embedding location-based and communication information
leveraged with the adoption of suitable transportation models [9]. Specifically, urban ITS
aim to relieve the heavily congested and crowded city environments related to the rapid
growth of automobile users in recent decades. The rapid increase in city transportation
volumes drastically affects user behavior and driving style leading to an increased risk of
traffic accidents [7–9].

A vehicular network constitutes a C-ITS-based network that supports interactions
between the highly mobile and dynamic nodes-vehicles. In a Vehicle Ad Hoc Network
(VANET), vehicles connect with each other through wireless short-range radio and with
road infrastructures through either short-range radio or 3G, LTE-4G, and 5G [8,13,15]. In
VANETs, by definition, vehicles act as the network nodes that are capable of transmitting
(source) or receiving (destination) data, or they can even function as network routers.
However, VANETs exhibit some unique features that distinguish them from other types of
networks: Self-organization, high mobility (but with geographical or trajectory limitations),
high transmission speed due to variable node densities, and a dynamic topology [8,13].

The vehicular networking applications are divided into (1) active road safety applica-
tions, (2) traffic efficiency and management applications, and (3) infotainment (information
and entertainment) applications [15,16]. The first category is intended to decrease the
probability of traffic accidents through the provision of various ITS services such as lane
departure, forward collision warnings, and emergency vehicle warnings. The second
category aims to improve vehicle traffic flow and coordination conditions (e.g., speed
management operations) and the provision of local information and maps (e.g., cooperative
navigation) [15,16]. Finally, the last category includes local cooperative services (e.g., media
download and voice assistance) and global internet services [15,16].

Today, the evolution of communication technologies drives the ITS industry to connect
vehicles and infrastructure, leading to Cooperative ITS (C-ITS) [8,9]. These systems offer
advanced synchronized driving modalities (e.g., cooperative cruising, cooperative aware-
ness, cooperative positioning/navigation, speed management, and cooperative sensing
capabilities) [8,9]. In this case, system standardization dictates the use of interoperable
protocols to enable communication among stations with various architectures. Additionally,
the deployment of C-ITS demands cooperation among competing stakeholders [13,16].
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The available ITS technologies come with various definitions and classifications de-
pending on the type of nodes contributing to the communication network. Moreover, they
can be classified into vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), vehicle-to-nomadic
(V2N), vehicle-to-pedestrian (V2P), vehicle-to-everything (V2X), in-vehicle network (IVN), vehicu-
lar ad hoc networks (VANET), and other schemes [7,8]. In Figure 1, various ITS scenarios and
connected-vehicle services are illustrated.

Figure 1. ITS scenarios and connected vehicle services.

Table 1 summarizes the various ITS wireless communication standards in terms of
class and type of wireless protocol [9,17].

Table 1. Taxonomy of ITS communication technologies.

Communication Technology Class Wireless Standard

Dedicated short-range communications (DSRC) Legacy IEEE 802.11p
Vehicle Information and Communication System (VICS) Legacy Infrared/Microwaves
Electronic Fee Collection (EFC) Legacy Infrared/Microwaves
Transport and Traffic Telematics (TTT) Legacy Infrared/Microwaves
ITS G5 Advanced IEEE 802.11p
Wireless Access in Vehicular Environments (WAVE) Advanced IEEE 802.11p
Communication Access for Land Mobiles (CALM) Advanced ISO 21218:2018
LTE—V2X Advanced LTE/4G
NR—V2X Advanced NR/5G

Advanced safety-critical ITS systems should fulfill a variety of operational and radio-
communication requirements. From a systemic point of view, all vehicles must be uniquely
identifiable, warning messages must be deliverable, and vehicle location and kinematics
information (known as PVT) should be available [16]. Authentication procedures should
also be evident to support links for individual and group communication [16].

In [17], an exclusive review of V2V, V2I, and V2X communications is introduced,
and the role of DSRC and WAVE technologies in road safety services is mentioned. The
advanced WAVE protocol based on 802.11p is designed to optimize the coordination and
cooperation among vehicles and infrastructures. Similarly, the bidirectional V2I links
between RFID sensors, traffic lights, cameras, lane markers, signages, and parking meters
utilize DSRC frequencies to transact data. Concretely, the authors present the benefits and
the challenges of the commercial employment of connected vehicle implementations, such
as the financial costs and the lack of universal standardization [17].

The technical radio requirements for the three major ITS applications are included
in Table 2 [12,15]. Specifically, safety-critical vehicular CP is the most demanding in
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terms of the sampling rate, latency, and reliability, but the transmission rate is of less
importance [12,15]. The latency requirement incorporates the propagation delay as well
as the processing delay. The reliability, which is defined as the percentage of time when
packets are delivered in the correct order and without losses, is very critical because the
rapidly changing network topology could result in outdated/invalid position solutions.

Table 2. Taxonomy of ITS applications’ technical radio requirements.

ITS Application Sampling Rate (Hz) Latency (ms) Data Rate
(Mbps)

Reliability
(%)

Safety-critical vehicular CP 10–20 1–50 10–50 ≥99.999
Traffic efficiency 1–5 50–100 50–65 ≥99.9
Infotainment On Demand ≥100 10–1000 90–99.9

2.2. Low-Cost GNSS Receivers

The Location-based Services (LBS) market is constantly growing, predicted to reach
hundreds of billions of USD by 2025, while tens of billion LBS-based devices will be
operating by 2025. Although high-end GNSS receivers are currently sitting on top of the
positioning and navigation industry due to their high precision, accuracy, and reliability,
a significant demand for low-cost and ultra-low-cost GNSS receivers will soon emerge to
satisfy ITS deployment [18,19]. For instance, ITS applications, such as vehicle platooning,
data transactions, and the remote control of Unmanned Aerial Vehicles (UAVs), employ
low-cost LBS devices, e.g., smartphones, trackers, and wearables [9,12]. The expansion
of GPS, the addition of new satellite navigation systems, and the attainment of higher
sampling rates (>10 Hz) have greatly benefited low-cost GNSS receivers. They typically
support a single- or dual-band functionality, have small size and mass, can operate with
low-drain batteries, can form wireless networks, and are not dependent on temperature
conditions while a patch-antenna is attached to them [10,18,19].

On the other hand, the commercial single-band low-cost GNSS stations are lack-
ing in accuracy, reliability, and robustness compared to dual-band ones with geode-
tic antennas [18,19]. The design discrepancies between them lead to a greater radio
noise/interference level, more severe multipath effects, and a decreased integer ambiguity
fixing of the low-cost GNSS station. Moreover, their low availability in city environments
has restricted their use, especially for vehicular, safety-critical applications. As a result,
low-cost GNSS receivers alone cannot reach the full potential of satellite positioning, and,
therefore, they are used complementary to other sensor types to increase redundancy and
reliability in position fixing [20,21]. Many researchers have studied and proposed solutions
to enhance the performance of low-cost GNSS receivers.

In [18], the authors propose a positioning apparatus comprised of two low-cost GNSS
receivers placed in close proximity (up to a few cms) to model the noise and multipath
errors between them. Assuming that the two GNSS stations experience identical error
sources, the dual low-cost GNSS system solely evaluates the noise characteristics and
mitigates the noise effects in the GNSS coordinate time series.

In [19], a real-time, continuous, low-cost positioning solution for autonomous vehicles
is proposed. A single-frequency, low-cost Precise Point Positioning (PPP) GNSS receiver
is integrated with an equally low-cost INS. The considered PPP/INS scheme reaches sub-
meter root mean square (rms) accuracy in benign clear-sky environments and circumvents
the navigation issues during GNSS blockages.

In [20], the authors performed kinematic experiments in rural, interurban, urban,
and freeway environments to evaluate the positioning performance of a low-cost receiver
using network RTK (NRTK) positioning. They achieved a centimeter-level accuracy with
correction data provided from SmartNet.

Collaborative or Cooperative Positioning (CP) solutions to empower the performance
of low-cost GNSS receivers in C-ITS scenarios have also been proposed. In [21], a lane–level
localization tool is proposed based on infrastructure lacking CP. The participating vehicles
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form vehicular sensor networks (VSNs) by equipping image sensors and are able to share
lane position information through DSRC. The feasibility and successful implementation of
the proposed solution met the accuracy specifications of critical ITS services.

2.3. Critical Design Requirements for C-DGNSS Applications

Safety-critical C-DGNSS applications have specific technical requirements regarding
latency, reliability, and sampling rate, as exhibited in Table 2, but the networking design
parameters such as the minimal and maximal Inter-Vehicle Ranges (IVRs) between the
assisted vehicles, the minimum number of participating vehicles, and the interval of GNSS
corrections are yet to be standardized. They strongly depend on wireless network con-
nectivity, the mobility of the vehicles, and the local environment. In order to estimate the
aforementioned requirements, further deployment, implementation, and several experi-
mental sessions of the proposed MADM algorithm are needed, which are out of this work’s
scope. In deep urban areas, the streets are narrower, and so the vehicles’ distances are much
smaller as opposed to suburban and rural areas. Likewise, there is a greater number of
candidate neighbors in deep urban environments that require more frequent corrections
due to many obstructions. Therefore, the specification of the C-DGNSS is challenging
and varies a lot with the local surroundings. Assuming perfect vehicle connectivity, the
maximal IVRs must guarantee different multipath conditions and common satellites in
view, while at least two vehicles are needed for the MADM module to be useful. Finally,
the low-cost onboard receivers and the radio-link equipment must be compatible with the
requirements in Table 2.

3. MADM Methodologies

In the C-DGNSS framework, the target vehicle’s low-cost GNSS receiver strives to
acquire GNSS corrections from the neighbor vehicles in the vicinity. Each neighbor vehicle
transmits both PVT data (NMEA sentences) and corrections (Radio Technical Commission
for Maritime (RTCM) Services messages). For latency-sensitive applications and critical
ITS in general, it is best to rank the moving vehicles in the neighborhood and select the
optimal one with which to cooperate. The ranking of moving neighbor vehicles will be
estimated using only PVT data that is transmitted, while the PVT solution status of each
vehicle will vary; it may be RTK-fixed or a standalone solution. After selecting the best
neighbor vehicle, the target car selects to receive the corrections only from this particular
neighbor vehicle and tries to estimate the integer phase ambiguities in order to improve
the standard deviation of its solution. A MADM module is proposed to aid the neighbor
selection using a variety of criteria, weights, and alternatives and finally rank higher a
neighbor vehicle with RTK fixed solution than another standalone. MADM algorithms are
computational decision-making methods that decide upon the optimal alternative or rank
a specified set of alternatives [22,23].

The performance of each alternative to a specific criterion/attribute is called criterion
value, and it is stored in the decision matrix of size (P × Q), where P is the number of
alternatives and Q is the number of criteria [22]. The derivation of the criteria weights
vector is a complicated task; hence a variety of objective (e.g., entropy method) and subjec-
tive (e.g., direct rating) weighting techniques are available [22]. Additionally, the MADM
algorithms are founded on linear aggregation and causality, which implies that strong
inter-dependencies between criteria may disrupt the ranking outcomes. Finally, the nor-
malization of the criteria values is a pre-processing conversion to derive a common scale
and comparable input data. It is necessary to apply the right normalization techniques
to facilitate the decision-making process. Given certain weighted criteria, normalized
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criteria values are fed as input to the MADM module, and the sorting of the alternatives is
outputted. The arrangement of the decision matrix (D.M.) is illustrated in (1):

C1 C2 C3 . . . CQ

D.M. =



a1,1 a1,2 a1,3 . . . a1,Q

a2,1 a2,2
...

... a2,Q

a3,1
...

. . .
... a3,Q

...
...

...
. . .

...
aP,1 aP,2 aP,3 . . . aP,Q



A1
A2
A3 ,

...
AP

(1)

where A1, A2, A3, . . . , AP are the alternatives to be employed for decision making, C1, C2,
C3, . . . , CQ are the decision criteria, and αi,j is the performance value of the ith alternative
with respect to the jth criterion.

Currently, a wide variety of MADM methodologies and normalization techniques are
available [22,23]. They can be divided according to the decision process and their common
characteristics. The MADM algorithms typically employ score functions, outranking
relations, hierarchy structures, and others for optimal selection. Table 3 exhibits some
well-accepted and employed MADM methodologies [22,23].

Table 3. Taxonomy of main normalization techniques (P is the number of alternatives).

Normalization
Technique Benefit Expense

Linear: Sum nij =
ai,j

P
∑

i=1
ai,j

nij =
1/ai,j

P
∑

i=1
1/ai,j

Linear: Max nij =
ai,j

ajmax
nij =

ajmin
ai,j

Linear: Max−Min nij =
ai,j−ajmin

ajmax−ajmin
nij =

ajmax−ai,j
ajmax−ajmin

Vector nij =
ai,j√

∑P
i=1 a2

i,j

nij =
1/ai,j√

∑P
i=1(1/ai,j)

2

Data Envelopment Analysis (DEA) nij = 1 − ajmax−ai,j

∑P
i=1(ajmax−ai,j)

nij = 1 − ai,j−ajmin
ajmax

The Simple Additive Weighting (SAW), Complex Proportional Assessment (COPRAS),
Multi-Objective Optimization on the Basis of Ratio Analysis (MOORA), and Grey Relational
Analysis (GRA) belong to the scoring-based MADM family. The scoring class is regarded
to have the minimum complexity, cost, and latency and is quite readable and interpretable
by the decision-makers. Moreover, the intake criteria values from the formulated decision
matrix are generated, and then a scoring function is employed to output a single value
for each alternative. They are most suited for the evaluation of a specific alternative than
for a complete ranking. Their disadvantages are many, i.e., the idealistic assumption of
linear attribute aggregation, the decision matrix normalization, the acceptance of only
positive criteria values, and ranking instability in cases where the input attribute values
vary greatly [22,23].

The Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS), Visekri-
terijumsko Kompromisno Rangiranje (VIKOR), Combinative Distance-based Assessment
(CODAS), Multi-Attributive Border Approximation Area Comparison (MABAC), Displaced
Ideal Method (D’IDEAL), and Organization, Rangement Et. Syn-these De Donnes Rela-
tionnelles (ORESTE) belong to the distance-based MADM family. The distance-based class
is regarded to have a moderate complexity, cost, and latency but high stability even at
large fluctuations of the input data. This group of MADM methods calculates a pair of
ideal geometric points and considers that the optimal alternative is the one that has the
smallest distance from the best point and the greatest distance from the worst point; their
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disadvantages are few, i.e., the decision matrix normalization and Euclidean distance are
inefficient for high correlations between the criteria [22,23].

The Analytic Hierarchy Process (AHP) and Analytic Network Process (ANP) belong to
the pairwise comparisons MADM family and are regarded as having significant latency, ex-
ponential complexity, computational cost, and flexibility. They demand the formulation of
a three-level hierarchic structure, and the solution requires good knowledge of eigenvalues
and eigenvectors. These methods mix both qualitative and quantitative data types without
normalizations. However, they assume largely independent criteria, they are very biased
from the subjective opinions of the decision-makers, and modifications are necessary to
overcome inconsistency problems [22,23].

The Preference Ranking Organization Method for Enrichment Evaluations (PROMETHEE)
and Elimination and Choice Expressing Reality (ELECTRE) belong to the outranking
MADM family and are regarded as having high flexibility, rationality, and no need for any
data transformations or normalizations, but they express a quadratic time complexity and
are unfit for more than five criteria. They employ a preference function, e.g., Gaussian, and
a number of veto thresholds to perform pairwise comparisons between a set of alternatives
and derive preference flows. They can produce partial and complete rankings or select the
best action based on outranking relationships [22,23].

Finally, the Multi Attribution Utility Theory (MAUT) and Multi Attribution Value
Theory (MAVT) belong to the utility/valuate MADM family. They are also biased by
decision-maker judgment, but they can deal with uncertainties in the data. On the other
hand, they demand an immense amount of input data, and the derived results exhibit
strong subjectivity [22,23].

In general, the sensitivity analysis investigates the impact of weighting, the number of
alternatives, and the measurement scale on the ranking stability and hence the method’s
robustness [24,25]. The importance of a criterion reflects its weight’s magnitude on that
criterion, while the criticality is the degree of ranking variation for a small shift in the
criterion’s weight. Those methods that statistically retain the priorities and ranking of alter-
natives when altering the input data deem them to be the more robust, and consequently,
they suit real-time applications. Another problem is the rank-reversal phenomenon that
occurs in all classes and methods. It occurs when a duplicate alternative or a worse-scoring
alternative is added, removed, or replaced, then the top ranks might reverse, which is
inconsistent [22,23].

In [26], the challenge of energy-efficient network selection in wired, wireless, and
public transport networks is formulated as a decision-making problem. The authors
propose a MADM strategy based on users’ requirements and different services (e.g., QoS,
bandwidth, delay, data volume, and cost, etc.). Specifically, the AHP is applied for a
heterogeneous vehicular-assisted network in the context of smart cities. Unarguably, the
method’s consistency constitutes a key parameter in vehicular network selections so as to
achieve efficient handovers.

Due to their complex architecture, a vast quantity of input data, and strong subjectivity,
the pairwise comparison techniques and utility algorithms are rejected for cooperative
positioning systems operating in dynamic environments with demanding latency, reliability,
and continuity requirements [23].

4. Simulation Results
4.1. Simulation Criteria and Environment Description

By means of the C-DGNSS positioning framework, the participating vehicles in the
neighborhood share PVT-related data with the target vehicles employing low-cost receivers.
The NMEA 0183 messaging protocol is an international data format intended for commu-
nication between electronic devices similar to the ASCII character standard for computer
programming [1,14]. The NMEA messages are plain sentences with specific serial data
fields that can be read by a common digital notepad and are composed of ASCII strings
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that convey useful location-based information. A summary of the basic positioning metrics
along with the corresponding NMEA messages is reported below [1,14]:

• Geographic latitude, longitude, and altitude ($GNGNS);
• Number of GNSS satellites in view ($GNGNS);
• Horizontal and vertical dilution of precision ($GNGNS);
• Horizontal and vertical accuracy standard deviations ($GNGST);
• Quality of the location (integrity, validity, and integer ambiguity status) ($GNGFA).

Especially, the $GNGST message is considered a significant requirement for high-
precision GNSS positioning because of the role of GNSS metadata in evaluating the quality
of GNSS coordinates. The low-cost GNSS receivers may transmit these NMEA messages
through various short-range radio-communication interfaces such as the ITS technologies
described in Table 1 as well as Wi-Fi, 3G, LTE-4G, 5G, and Bluetooth. The benefits of the
NMEA protocol are numerous since it enables the communication between heterogeneous
hardware and software while the users are not submitted to develop custom implemen-
tations for each GNSS receiver. In Figure 2, the operation of the proposed C-DGNSS
framework is depicted.

Figure 2. Diagram of the Cooperative-Differential GNSS (C-DGNSS) positioning configuration.

The aiding MADM module assists the target vehicle in selecting the best neighboring
vehicle with which to cooperate and hence improves/updates its position in a realistic
manner. It parses the incoming NMEA messages that constitute the criteria values of
the decision matrix, and then the appropriate MADM algorithm takes over, providing
rankings of the neighboring moving vehicles. The MADM module assumes a set of criteria
or attributes that collectively define the GNSS position quality of the engaged cars. For the
purpose of efficient C-DGNSS and achieving improved position accuracy with the lowest
latency and cost, it is advisable that these attributes should be highly uncorrelated and up
to 5 or 6.

From the reported NMEA messages described earlier, in our contribution, only certain
fields are employed as input criteria for the proposed MADM module. Table 4 exhibits
the list of criteria investigated per NMEA sentence: (1) The number of GNSS satellites
in view (NS), (2) the root mean square of the double-difference phase residuals in the
L1 band (Range RMS), (3) the standard deviation of the horizontal coordinates point fix
(Hz std), (4) the standard deviation of the vertical coordinates point fix (V std), (5) the
ambiguity status of the position solution (Amb Stat), and (6) the horizontal dilution of
precision (HDOP). In greater detail, the Range RMS is measured in meters, the Hz std and
V std are measured in meters and express the horizontal and vertical accuracy error in the
position, and the Amb Stat denotes the GNSS receiver’s integer ambiguity status. Thus,
Amb Stat may yield an autonomous solution, a differential GNSS, a float solution, and
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a high-resolution fixed solution. Finally, the HDOP reveals the effect of the DOP on the
horizontal position value. The more satellites that are visible and low in the sky, the better
the HDOP and the horizontal position (latitude and longitude). Finally, the criteria are of
type “Expenses” or “Benefits”. The first type implies that the lower the criterion value, the
better (minimum), while the second type implies that the higher the criterion value, the
better (maximum).

Table 4. Criteria used for implementing MADM technique in C-DGNSS positioning.

a/a Criteria Name NMEA Sentence NMEA Field No Type

1 Number of satellites (NS) GNS 7 Benefit
2 Range RMS (L1 RMS) GST 2 Benefit
3 Horizontal std (Hz std) GST 6,7 Expense
4 Vertical std (V std) GST 6,7 Expense
5 Integer ambiguity status (Amb Stat) GNS 6 Benefit
6 Horizontal dilution of precision (HDOP) GNS 8 Expense

The experimental NMEA PVT data used for the simulation and evaluation of our
contribution were recorded from six land vehicles that drove concurrently over nonidentical
trajectories that endured approximately 2000 epochs at a 1 Hz sampling rate (33.3 min in
total) [27]. The collected trajectories’ data are GNSS observations from various outdoor
areas, including: (i) unobstructed, open space conditions, (ii) urban settings with narrow
lanes and tall buildings, and (iii) semi-urban sections with grown trees and thick vegetation,
causing a large-scale signal degradation and restricted view of the GNSS satellites [27].
Evidently, all vehicles carry a single low-cost GNSS receiver aboard able to compute the
position solution and produce NMEA GNS and GST sentences. The first vehicle (veh. #1)
is notated as the target vehicle, and the other five (veh. #2, veh. #3, veh. #4, veh. #5,
and veh. #6) are considered the aiding vehicles. The MATLAB® toolbox was employed to
import the data and establish a simulation environment for the MADM algorithms.

4.2. Comparative Analysis

In this section, thirteen MADM algorithms are simulated with various weightings,
normalization techniques, and criteria associated with positioning accuracy employing
experimental NMEA data time series. A comparative analysis is provided through an
evaluation of the MADM algorithms in terms of ranking performance and robustness. An
investigation of the importance and criticality of the criteria is also presented (sensitivity
analysis), accompanied by the necessary ranking diagrams and simulation results.

The investigated methods are the SAW, CODAS, COPRAS, GRA, MABAC, D’IDEAL,
TOPL1, TOPL2, TOPL3, VIKOR, ORESTE, PROMETHEE, and ELECTRE, where TOPL1 is
the TOPSIS using the L1 norm or taxicab/Manhattan distance metric, TOPL2 employs the
L2 norm, which is the Euclidean distance of each alternative from the best and worst ideal
points, TOPL3 employs the infinite norm distance metric, while four distinct preference
functions were employed for PROMETHEE.

The five alternative vehicles move in simultaneous but separate trajectories that
span 2000 epochs. For each trajectory epoch, a decision matrix is formed with criteria
values extracted from the NMEA sentences of the five aiding vehicles. Hence, a decision
matrix associated with a specific timestamp (epoch) yields as many ranking results as the
number of MADM algorithms and normalization techniques. In summary, in our MADM
simulations, a trajectory of T = 2000 timestamps subject to Q = 6 criteria is examined
employing P = 5 alternative vehicles (veh. #02–veh. #06) while the ranking results of
13 different MADM algorithms and five normalization techniques are reported. Table 5
exhibits the decision matrix with a of size (5 × 6) of a random timestamp filled with the
required criteria values. The Amb Stat takes values of 1.0 for a fixed solution and 0.5 for a
float solution.
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Table 5. Decision matrix and criteria values of one timestamp.

a/a NS L1 RMS (m) Hz std (m) V std (m) Amb Stat HDOP

veh. #02 11 0.0030 0.0520 0.0320 0.5 0.66
veh. #03 10 0.0130 0.0160 0.0290 1.0 1.05
veh. #04 6 0.0040 2.9600 6.2380 0.5 1.77
veh. #05 8 0.0060 1.6930 2.2210 0.5 1.07
veh. #06 11 0.0040 0.0730 0.0420 0.5 0.66

Tables 6–9 present the simulations’ ranking results after applying the MADM methods
SAW, TOPL1, CODAS, and PROMETHEE, indicatively, with the criteria input data of
Table 5. The index Pi represents the performance score of the ith alternative, and Ai
expresses the ID of the ith alternative with i = 2, 3, 4, 5, and 6. It is observed that SAW,
TOPL1, and CODAS produce identical rankings while PROMETHEE yields a slightly
different top-three ranking. Moreover, the five normalization techniques are in good
agreement with each other and with their corresponding ranking results.

Table 6. SAW.

Rank MAX SUM VEC MAX-MIN DEA

a/a Pi Ai Pi Ai Pi Ai Pi Ai Pi Ai
I 0.948 3 0.432 3 0.728 3 0.908 3 0.947 3
II 0.797 6 0.368 6 0.605 6 0.679 6 0.913 6
III 0.786 2 0.363 2 0.595 2 0.664 2 0.909 2
IV 0.589 5 0.257 5 0.441 5 0.401 5 0.731 5
V 0.289 4 0.094 4 0.194 4 0.016 4 0.499 4

Table 7. TOPL1.

Rank MAX SUM VEC MAX-MIN DEA

a/a Pi Ai Pi Ai Pi Ai Pi Ai Pi Ai
I 0.928 3 0.955 3 0.941 3 0.9081 3 0.8889 3
II 0.720 6 0.777 6 0.727 6 0.6798 6 0.7387 6
III 0.704 2 0.765 2 0.711 2 0.6645 2 0.7255 2
IV 0.433 5 0.468 5 0.444 5 0.4013 5 0.4094 5
V 0.017 4 0.015 4 0.018 4 0.0167 4 0.0145 4

Table 8. CODAS.

Rank MAX SUM VEC MAX-MIN DEA

a/a Pi Ai Pi Ai Pi Ai Pi Ai Pi Ai
I 0.948 3 0.432 3 0.728 3 0.908 3 0.947 3
II 0.797 6 0.368 6 0.605 6 0.679 6 0.913 6
III 0.786 2 0.363 2 0.595 2 0.664 2 0.909 2
IV 0.589 5 0.257 5 0.441 5 0.401 5 0.731 5
V 0.289 4 0.094 4 0.194 4 0.016 4 0.499 4

Table 9. PROMETHEE.

Rank V-SHAPE LINEAR GAUSSIAN LIN-GAUS

a/a Pi Ai Pi Ai Pi Ai Pi Ai
I 1.378 2 1.166 2 0.953 2 1.009 2
II 1.366 6 1.166 6 0.951 6 1.008 6
III 1.016 3 1.000 3 0.816 3 0.920 3
IV −1.106 5 −1.000 5 −0.657 5 −0.737 5
V −2.655 4 −2.3333 4 −2.065 4 −2.201 4
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Table 10 depicts the rank distribution (I-II-III-IV-V) among the alternative vehicles
from all of the simulations incorporating all of the MADM methods and normalization
techniques. Each column and each row add up to 100%. It is observed that veh. #03 is
placed 85.7% in rank I; therefore, it is considered the optimal neighboring vehicle to receive
the GNSS corrections for the specific epoch.

Table 10. All MADM simulations.

% Simulations I II III IV V

veh. #02 14.3 3.2 82.5 0 0
veh. #03 85.7 1.6 12.7 0 0
veh. #04 0 0 0 0 100
veh. #05 0 0 0 100 0
veh. #06 0 95.2 4.8 0 0

The results derived from the total trajectory data using all of the MADM methods and
normalization techniques are presented in Figure 3. The upper plot of Figure 3 assumes equal
weights, whilst the bottom plot adopts a weight matrix w =

[
0.1 0.2 0.2 0.2 0.2 0.1

]
.

Obviously, the rankings of vehicles #02 and #04 remain almost the same, while the rankings of
vehicles #03, #05, and #06 change slightly. Furthermore, vehicle #02 remains in rank I compared
to other vehicles, and vehicle #04 remains in rank III along the trajectory.

Figure 3. Mean ranking of I/II/III positions of alternative vehicles for the entire trajectory using all
normalizations and 13 MADM methods. (Top) Equal weights; (Bottom) Unequal weights.

4.3. Sensitivity Analysis

In this sub-section, a sensitivity analysis is carried out to determine the most critical
position-related criteria and to evaluate the robustness of the investigated MADM algo-
rithms [24,25]. A sensitivity analysis can be performed for all the available methods, but
in our case, only n = 3 MADM methods are compared: SAW, CODAS, and TOPL1, while
m = 6 alternative vehicles are examined for a trajectory of k = 2000 epochs. Each epoch con-
sists of data from i = 6 criteria, respectively: Number of satellites, L1 RMS double-difference
phase residual, Hz std, V std, Amb Status, and HDOP indicator. Seven weight matrices are
constructed: at first, a matrix with 1/6 equal weight for every criterion is formulated, and
then six different weight matrices where each criterion weight is set to have a weight of 2/6
and the remaining criteria have equal weights. Thus, the weight matrices are presented
analytically in Table 11.
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Table 11. Weight matrices examined.

Case Weight Vectors

Uniform Weighting w0 = [1/6 1/6 1/6 1/6 1/6 1/6 ]
Importance on NS w1 = [2/6 4/30 4/30 4/30 4/30 4/30]
Importance on L1 RMS w2 = [4/30 2/6 4/30 4/30 4/30 4/30]
Importance on Hz std w3 = [4/30 4/30 2/6 4/30 4/30 4/30]
Importance on V std w4 = [4/30 4/30 4/30 2/6 4/30 4/30]
Importance on Amb Stat w5 = [4/30 4/30 4/30 4/30 2/6 4/30]
Importance on HDOP w6 = [4/30 4/30 4/30 4/30 4/30 2/6]

Every timestamp corresponds to a column that includes the ranking of alternative
vehicles for each MADM method (rankm/n), and thus the dimensions of the ranking matrix
for every timestamp are (mxn). The subsequent step is the correlation coefficient matrix
calculation using Spearman’s correlation method between the ranking matrix obtained
from the equal weight matrix w0 with the results of the rest weight matrices (w1, w2, w3,
w4, w5, and w6), where the result is a (nxi) matrix at every timestamp. In order to calculate
the total correlation coefficient matrix from the complete trajectory, a sum along the third
dimension is performed, and then it is divided by the total number of timestamps; this
is the total correlation index (TCI). Conclusively, the criterion with the smaller TCI is the
most sensitive one per each MADM method.

The Spearman’s correlation coefficient rho between the two ranking vectors X, Y is
given by:

rho(X, Y) = 1 −
6

n
∑

i=1
d2

i

n(n2 − 1)
(2)

where, di is the difference in the ith rank between two ranking vectors (i.e., two MADM
methods) and n is the length of each vector (number of alternatives). If the input is a
ranking matrix X with multiple columns, rho(X) returns a matrix with the correlations
between each pair of its columns.

The Pearson’s correlation coefficient ρ is a metric of the linear correlation between
two random variables, X and Y, and it can be alternatively employed using the real-valued
performance scores of the MADM methods instead of the integer-valued ranking vectors.
It is defined as follows:

ρ(X, Y) = 1 −

n
∑

i=1

(
Xi − X

)(
Yi − Y

)
{

n
∑

i=1

(
Xi − X

)2 n
∑

j=1

(
Yj − Y

)2
}1/2 (3)

where X, Y are the mean values and n is the length of each vector.
Table 12 summarizes Spearman’s correlation results along the complete trajectory,

where clearly, the smaller TCI values are observed in criteria L1 RMS double-difference
phase residuals, HDOP, and Hz std, while the other criteria are less sensitive. Table 13
includes the Pearson’s correlation results where the smaller TCI values are also spotted
in criteria L1 RMS, HDOP, and V std, whereas the other criteria are slightly less sensitive.
Concretely, Spearman’s correlation coefficient is a more suitable tool to use for sensitivity
analysis because the obtained TCIs differ a lot more, giving a definite ranking as compared
to Pearson’s TCIs, which mainly differ on the second and third decimal.
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Table 12. Total Correlation Index (TCI) results using Spearman’s correlation method.

Criterion 1 2 3 4 5 6

Number of Satellites L1 RMS Double-Difference Phase Residuals Hz std V std Amb Status HDOP
SAW 0.937 0.731 0.869 0.920 0.971 0.811

CODAS 0.894 0.613 0.761 0.821 0.944 0.723
TOPL1 0.937 0.731 0.869 0.920 0.971 0.811

Table 13. Total Correlation Index (TCI) results using Pearson’s correlation method.

Criterion 1 2 3 4 5 6

Number of Satellites L1 RMS Double-Difference Phase Residuals Hz std V std Amb Status HDOP
SAW 0.996 0.969 0.995 0.994 0.995 0.988

CODAS 0.993 0.944 0.992 0.989 0.993 0.978
TOPL1 0.996 0.969 0.995 0.994 0.995 0.988

In Tables 14 and 15, the criteria from the most to least sensitive are sorted where the
numbers 1–6 are the criteria IDs. L1 RMS (no. 2) is the most sensitive, followed by HDOP
(no. 6).

Table 14. Criteria ranking from most to least sensitive using Spearman’s correlation method.

Criteria Ranking I II III IV V VI

SAW 2 6 3 4 1 5
CODAS 2 6 3 4 1 5
TOPL1 2 6 3 4 1 5

Table 15. Criteria ranking from most to least sensitive using Pearson’s correlation method.

Criteria Ranking I II III IV V VI

SAW 2 6 4 3 5 1
CODAS 2 6 4 3 1 5
TOPL1 2 6 4 3 5 1

5. Challenges and Future Research Trends

In this Section, the extension of the C-DGNSS concept beyond land-based vehicles is
discussed, along with emerging challenges and future trends. Moreover, the “moving base
station” technique can be fairly applied to drone positioning, drone-to-drone, drone-to-car
communications, internet of drones (IoD), multi-UAV systems, UAV swarms, coordinated
drones, and to improve their relative position accuracy further [28–30].

Considering a swarm of UAVs or a multi-UAV system, in order to maintain a coor-
dinated and planned formation, a very accurate and efficient relative positioning method
must be employed. Similar to land vehicles, open-sky conditions are favorable for GNSS-
only positioning and navigation. On the other hand, in urban centers, the likelihood of an
inner-system collision is high.

Future work will include low-cost C-DGNSS aided with a MADM module for drone ve-
hicles in deep urban, suburban, and rural regions, simulations with experimental drone-to-
car positioning measurements, and GNSS/INS integration in coordinated drone formations.

6. Conclusions

In this work, the challenge of efficient, accurate, and reliable CP, incorporating low-
cost GNSS receivers in various critical ITS scenarios, was addressed. The C-DGNSS
framework was employed, which is the classical D-GNSS coupled with CP between a target
vehicle and a number of surrounding candidate neighbors. By retaining the properties
of D-GNSS, the cooperating vehicles disseminate their PVT data and GNSS corrections
from the available satellites in view through radio links. The main hypothesis is that the
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target vehicle’s low-cost receiver could improve both its relative and absolute positioning
accuracy. The GNSS PVT information is comprised of NMEA messages, and the target
vehicle parses the incoming NMEA sentences in a serial manner. With the aid of a MADM
module, the target vehicle ranks and optimally decides in real-time which neighbors to
select for retrieving GNSS corrections (RTCM data) to update its own PVT state. A set of
thirteen MADM algorithms and several different normalization techniques were adopted
for the simulation of scenarios involving various weightings and the criteria associated
with positioning accuracy and ambiguities residual status. Real experimental criteria
values derived from several low-cost GNSS receivers in complex driving environments
were employed. A comparative analysis was then provided through an evaluation of the
MADM algorithms in terms of ranking performance. A sensitivity analysis to determine the
methods’ robustness and the criticality of the criteria is also presented. It is concluded that
L1 RMS, HDOP, and Hz std are the most critical, while the other criteria are less sensitive.
Multi-purpose, generic applicability of the proposed scheme is suggested, not only for
land vehicles, as it can be extended to drone positioning, swarm-of-entities guidance,
drone-to-car communication, etc.
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