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Abstract: The pandemic caused by COVID-19 has shed light on the urgency of bridging the digital
divide to guarantee equity in the fruition of different services by all citizens. The inability to access
the digital world may be due to a lack of network infrastructure, which we refer to as service-delivery
divide, or to the physical conditions, handicaps, age, or digital illiteracy of the citizens, that is
mentioned as service-fruition divide. In this paper, we discuss the way how future sixth-generation
(6G) systems can remedy actual limitations in the realization of a truly digital world. Hence, we
introduce the key technologies for bridging the digital gap and show how they can work in two
use cases of particular importance, namely eHealth and education, where digital inequalities have
been dramatically augmented by the pandemic. Finally, considerations about the socio-economical
impacts of future 6G solutions are drawn.
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1. Introduction

The digital divide has existed since access to the Internet began to spread among the
worldwide population. This phenomenon consists of the gap between people who have
access to the digital world and those who have not, for various reasons, such as geographical
location, economic status, level of education, and general interests. Nonetheless, the
health emergency triggered by the COVID-19 propagation has opened our eyes to the
difficulties related to a life far from the digital world. Among others, Nokia collects some
statistics relating to the inclusivity in distance teaching activities, undertaken during the
lockdowns caused by the pandemic, pointing out that, according to UNICEF, 31% of the
school children in the world were unable to access remote learning [1]. From a different
perspective, Ericsson provided some data on the impact of the pandemic in the U.S. wireless
communications industry, reporting a 19.6% increase in data traffic, 24.3% in voice traffic,
and 25% in texting; moreover, the authors state that the COVID-19 spread has highlighted
the true face of the digital gap, which is not only an access problem but, more generally,
it is caused by lacks in affordability, quality of coverage, and technical skills [2]. This
thesis is supported even by Huawei which emphasizes the fact that 50% of our planet
has no Internet access and, thus, presents the TECH4ALL project, aimed at expanding
the granting of digital rights by acting on three core fronts: technologies, applications,
and skills [3]. The Cisco Annual Internet Report claims that about 2/3 of the worldwide
population will have access to the Internet by 2023, with an estimate of almost four devices
per capita [4]. Bridging the gap must not be considered only a cost: the forecasts from
Vodafone in [5] mention that the cumulative additional contribution to the GDP of new
digital technologies could amount to 2.2 trillion euros in the EU by 2030. Furthermore,
this report highlights the benefits obtainable through the application of a digital-by-design
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approach in the recovery plan for Europe following the COVID-19 crisis: enhanced quality
of life for citizens, long-term economic growth, lower resource consumption, increased
resilience and fairness of society.

Statistics and forecasts are shown in Figure 1 prove that the digital divide problem is
very striking and multi-dimensional. Indeed, the likelihood that people have access to the
Internet is influenced by the level of economic and cultural development of the country in
which they live; besides, the generation gap impacts the digital divide; even the gender is a
factor of diversity when looking at the number of people open to digitization. Whatever the
reason that causes the impossibility or unwillingness of some people to live connected, today,
the digital divide represents a real obstacle to the recovery that the world needs following
the COVID-19 pandemic, which has befallen the global population some time ago and
which is still conditioning our lives. Although some countries were more digitized than
others, similar disparities in Internet access for households with a higher level of poverty
and rural areas were reported worldwide and even before the pandemic began [6]. This
led us to consider the reassessment of numerous aspects concerning the enforcement of
information and communications technologies (ICT) in various areas of society, including
work, education, and health. Unfortunately, none of the existing solutions has been proved
to be an effective response to the digital divide problem, being too focused on specific
demand or introducing high costs for its development. For this reason, in this paper, we
investigate how the problem of the digital divide can be mitigated by looking to the future,
specifically to the sixth generation (6G) and rising technologies, being the latter not just a
mere exploration of more spectrum at high-frequency bands [7] rather a new paradigm
for ubiquitous, pervasive and high-speed Internet connectivity. Furthermore, 6G could
represent the turning point as it will allow the achievement of a high level of automation
in the execution of various services and the extension of coverage of cellular networks.
This is the reason why this work refers to 6G technologies, classified as evolutionary and
revolutionary, wherein the former has already emerged with the fifth generation (5G), but is
not yet widespread on the market [8]. In more detail, we provide three main contributions
to this study. First, in Section 2 we discuss the evolution of the digital divide concept and
the challenges that can be addressed by the technological development; differently from
[9], which focuses on the specific issue of coverage of remote areas, our study proposes
a multi-dimensional discussion, by further distinguishing between service-delivery divide,
from a network-oriented perspective, and service-fruition divide, from an individual-oriented
perspective. Second, in Sections 3 and 4, we discuss how the future 6G network is expected
to overcome both the issues, by identifying trending technologies that should be further
developed and be part of the upcoming specifications. The role of Artificial Intelligence (AI)
and big-data collection and analytics via Machine Learning (ML) techniques is transversal
to service delivery and fruition and for this reason is discussed apart in Section 5. Third,
in Section 6, we describe selected use cases (e.g., eHealth and education) where digital
inequalities have been dramatically augmented by the COVID-19 pandemic, and how the
aforementioned 6G technologies could be effective in bridging the gaps. Considerations
about the socio-economical impacts of future 6G solutions are drawn in Section 7.
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50% 
of our planet has not Internet access2/3 

of the worldwide population will have
access to the Internet by 2023

Impact of COVID-19 in the U.S. wireless communications industry:

+19.6% in data traffic

+24.3% in voice traffic

+25% in texting

+€2.2 trillion
is the cumulative additional contribution
of new digital technologies to the GDP by 203031% 

of the world's school children were
unable to access to remote learning
during lockdowns

Figure 1. Some numbers on the Digital Divide.

2. The Evolution of the Digital Divide

The origin of the digital divide dates back to the mid-nineties when, in the U.S.,
through the publication of some reports, the differences between people with access to the
Internet (“haves”) and those without (“have-nots”) began to be analyzed. The phenomenon
of the digital divide has evolved over time, passing from the first-level, related to the
problems of access and connectivity, to the second-level, consisting in the lack of the necessary
skills to properly exploit ICT, and finally to the third-level, concerning the differences in the
outcomes and consequences obtained by using the Internet [10].

According to this, we classify the different types of digital divide into two major
categories: the service-delivery divide and the service-fruition divide. The former concerns the
digital exclusion caused by the absence of network infrastructures necessary for Internet
access and digital services delivery; the latter can be considered related to a person-specific
divide, since an insufficient level of digital literacy or a set of physical inabilities could
prevent people from enjoying the benefits deriving from the fruition of digital services.

The existence of these conditions not only affects the origin and the past of the digital
divide phenomenon, but also concerns the current time. As a matter of fact, the state
of health emergency we are still experiencing has exacerbated the digital gap. In the
enterprise context, the resilience of companies has been enabled only for those that invested
in technological innovation. This has represented a lifeline for the operational continuity of
the businesses that had the readiness to carry out the digital metamorphosis path, necessary
for survival in the period of COVID-19. Similarly, receiving the provision of numerous
services in telematic and innovative modalities has proved to be straightforward only
for the part of the population inclined to use ICT; all the others encountered not a few
difficulties in adapting to the new set-up imposed by the measures implemented to limit
the pandemic. Even in light of the reports cited in Section 1, we can state that the digital
exclusion corresponds to exclusion from access to services. Indeed, going through the
pandemic caused by COVID-19, we have realized how important technology is as a means
of keeping people in contact with the outside world by digitally receiving different types of
services. This is the reason why we define a service-based classification to group the causes
of the digital divide.

Regarding the future evolution of the digital gap phenomenon, normalization and strat-
ification are the two contradictory predictions that have been defined in the literature [11].
According to the first, over time the differences that cause the gap will gradually disappear
until they reach saturation; it relies on the belief that government institutions will suc-
ceed in promoting and facilitating Internet access in the long run. Conversely, the second
promotes the idea that the digital divide will unavoidably grow, owing to a continuing
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tightening of disparities within societies. This perspective appears to be more realistic,
since some opinions exist according to which the evolution of mobile wireless networks
could worsen the digital divide. For example, the very fact that, in this first phase of release,
the 5G standard has been unevenly distributed in different countries of the world, led to the
establishment of a further gap between areas that receive state-of-the-art network coverage
and those that don’t. Again in [11], it is stated that connectivity does not end the digital divide,
skills do to emphasize that, anyway, increasing network coverage alone may not suffice to
bridge the digital divide, instead, technology ought to be exploited to bring people closer
to the digital world.

The described evolution path is represented in Figure 2.

Some people cannot access the Internet due to
absence of adequate network infrastructures

Even an insufficient level of digital literacy

prevents people from enjoying the benefits
deriving from the fruition of digital services

The state of health emergency we are still
experiencing has exacerbated the digital gap

Normalization and stratification are the two
contradictory predictions that have been
defined in the literature

Figure 2. The evolution of the Digital Divide.

3. The Technologies for Bridging the Service-Delivery Divide

In this section, we examine the possible implementations of technologies that can be
considered powerful tools to face and govern the problem of the service-delivery divide, as
they would be able to offer Internet access even where traditional network infrastructures
fall short. Some of the technologies that will be mentioned belong to the evolutionary
category (see Section 1) as they have been already considered promising for the deployment
of 5G but they are not yet suitably widespread.

3.1. Non-Terrestrial Networks

Service continuity and scalability are two prerogatives of ubiquitous connectivity
that can be fostered, in 5G and beyond systems, with the integration of terrestrial and
non-terrestrial networks (NTN) [12]. NTNs encompass spaceborne and airborne systems.
Satellites may be either geostationary (i.e., GEO) or orbit around the Earth at low or medium
orbits (i.e., LEO and MEO). Among LEO satellites, a growing interest has risen towards
CubeSats, a new class of miniaturized satellites known for their very small dimension
and low cost, hence enabling their deployment in mega-constellations to provide global
connectivity and large throughput. Equally interesting are Unmanned Aerial Vehicles
(UAVs) that may be deployed in swarms to provide an on-demand aerial infrastructure
where needed [13]. Based on these features, NTNs can come into play to mitigate the
digital gap, by ensuring connectivity to a massive number of Internet of Everything (IoE)
devices where terrestrial networks can fail, therefore in disadvantaged areas, in emergency
scenarios, and highly crowded environments.
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3.2. Exploiting Higher Frequencies

To truly bridge the digital divide, ultra-high-speed communications required to deliver
6G services need to be enabled. A very promising solution in this direction is to exploit
new portions of the spectrum [14]. While the millimeter-wave band has been already
considered in 5G mobile networks, now the interest is moving towards TeraHertz and even
optical bands, motivated by the very recent advances in electronics and photonics that
enabled the manufacturing of portable equipment operating at such frequencies. However,
signal propagation becomes critical due to severe path loss, high molecular absorption, and
the requirement for very precise antenna pointing. Coverage extension may be achieved
by means of Intelligent Reflecting Surfaces (IRS) [15] that allow us to realize a virtual
line-of-sight (LoS) link by smartly reconfiguring the wireless propagation environment
[16]. Mainly, IRSs exploit massive low-cost passive reflecting elements integrated on a
planar surface that independently reflect the incident signal by controlling its amplitude
and/or phase and thus collaboratively achieve fine-grained three-dimensional (3D) passive
beamforming for directional signal enhancement. The service-delivery divide could benefit
from the use of higher frequencies in application scenarios that span from indoor coverage
to Earth-to-ground communications.

3.3. Device-to-Device

Although technologies such as Software-Defined Networking (SDN) have emerged
as enablers in the evolution process of 5G networks [17], the trend to evaluate distributed
networking approaches to extend the network coverage and scalability has gained great
momentum. On the eve of 6G, this still represents a key solution to boost the access to
connectivity, therefore, also bridging the digital divide. Particularly, Device-to-Device
(D2D) communications could be harnessed to master the problem of the limited distance
that the higher frequency waves exploited in future 6G networks can cover [18]. Actually,
relay nodes could be exploited to forward the signal through the establishment of direct
communications, thus extending network coverage and facilitating access to services even
to devices outside the antenna’s LoS. D2D communications are characterized by high speed
and low latency thanks to the proximity between end-devices [19], hence they are entirely
in line with the requirements of the upcoming 6G networks.

3.4. Multi-Access Edge Computing

In the vein of the previous discussion on the shifting to distributed networking
paradigm, also the Multi-access Edge Computing (MEC) is increasingly catching the eye,
since it allows to improve the delivery of services in several respects. First of all, the
resources of MEC servers can be provided, through virtualization, to limited-resources
consumers based on the most appropriate service model (Infrastructure as a Service - IaaS,
Platform as a Service—PaaS, Software as a Service—SaaS) [20]. Then, the proximity of
the MEC to users enables various benefits, including low latency and context-awareness,
which allows us to customize the service delivery to the needs of the consumers. The
authors of [21] cite the efficacy of MEC in providing support to communication, computing,
and storage, thus improving the Quality of Service (QoS) provided to users. This can be
considered a plus in bridging the digital gap as poor QoS is seen as an impediment to the
effective delivery of bandwidth-intensive services.

4. The Technologies for Bridging the Service-Fruition Divide

Over the past couple of years, the presence of a pandemic has accentuated the problem
of the service-fruition divide, affecting those who have inabilities to access digital services,
not because of infrastructural issues, but rather of their physical conditions, handicaps,
age, or digital illiteracy. Applications revolving around 6G are proposing to support a set
of digital interfaces at a large scale, not only in localized and specialized environments.
This is possible for the first time in history, as these interfaces, while promoting ease of use
and human centrality, have requirements in terms of latency and reliability that are too
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stringent to overcome with legacy technologies. The most debated solutions are presented
in this section.

4.1. Extended Reality

Extended Reality (XR), which encompasses key terms such as Virtual Reality (VR),
Mixed Reality (MR), and Augmented Reality (AR), is believed to drive several killer
applications in the 6G era. 5G requirements fall short in supporting such applications, which
need ultra-reliable low latency communications and cannot rely on mobile broadband [7]. In
particular, XR pervasive applications will depend not only on the networking constraints,
but also on the perceptual and sensory ones, which should be aligned with the above
(i.e., tolerate delays that are imperceptible to human senses). The data rate is one of the
major obstacles as, even now, many of the existing XR applications struggle in moving
from wired to wireless, in particular for WAVAR (Wide Area VR, AR, MR) which aims
to provide ubiquitous wireless services for XR [22]. WAVAR demand 6G technologies for
ultimate application—as opposed to their local counterpart, LAVAR—in terms of data rate
requirements (1Tbps peak rate), which cannot be satisfied by current 5G deployments [23].
If requirements are met, even digital illiterates would be able to interact with a controlled
digital world through actions and perceptions that leverage all five senses (haptic, gestures,
sound and speech, virtual sight, etc.). Over the past years, XR has been proposed in a variety
of use cases connected to teaching activities [24] and aiding people with disorders [25],
however, these use cases are typically experimental or extremely localized. It is evident
how the potential of overcoming the service-fruition divide may dramatically increase if
these technologies become pervasive. Challenges rise now in designing unique metrics
capable of capturing both network requirements and the physical experience of users.

4.2. Brain-Computer Interfaces

Brain-Computer Interfaces (BCI) have been used extensively in assisting elderly or
disabled people. While wired BCIs have been active for years, wireless BCIs are less
supported due to their stringent QoS and Quality of Experience (QoE) requirements [26].
Over the last years, we can observe a handful of wireless BCIs implemented through
short-range communication technologies in LANs, for use cases like home automation
and digital healthcare [27]. However, these technologies are far from bridging the service-
fruition divide, as their pervasiveness is limited to localized areas and hardcoded functions
(e.g., switching on and off smart bulbs, etc.). With the perspective of 6G, requirements for
deploying BCIs at large could be met and the deployment of a set of compelling applications
in, for instance, urban environments could become a reality. Just like (and probably more
than) XR, BCIs may be the new frontier of Human-Computer Interaction, involving Internet
of Things (IoT) devices that will pervade our urban realities and will enable 6G ultra-low-
latency connections. This also involves applications in healthcare that have, so far, only
been conducted in controlled environments [28]. Such a giant leap in overcoming the
service-fruition divide is envisioned to mark the end of the smartphone era, in a decade
from now. Using wireless Brain-Computer Interaction technologies instead of smartphones,
people will interact with their environment and other people using discrete devices, some
worn, some implanted, and some embedded in the world around them.

4.3. Affective Computing

Affective computing encompasses a set of use cases that will be particularly enhanced
by 6G technologies. It refers primarily to devices that can adapt their service provisioning
schemes according to the mood and the emotions of the final user [29]. The first studies
on the concept were presented a couple of decades ago, while recently it experienced
a revamp due to its natural applicability on smartphones [30]. Now, 6G brings a set of
concepts to the table that will change the way in which service provisioning takes place.
One such is Human-Centric Services (HCS), a set of services that put the final user in
the foreground and match her or his requirements to network performances, making
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affective computing potentially more pervasive than ever [7]. This is specially tailored
to the educational use case, for instance in enhancing the relationship between teacher
and student in online classes through online automatic learning processes fed by physical
parameters (e.g., posture, speech, and expression) [31]. This results in involving more
individuals who would instead be cut out due to e.g., lack of attention.

Table 1 shows a classification based on the possible employment of each technology
described in Sections 3 and 4 for the resolution of the major categories of digital divide (i.e.,
service-delivery and service-fruition).

Table 1. Classification of technologies based on the mastered type of Digital Divide.

Technology Service-Delivery Service-Fruition

Affective Computing 7 3

Artificial Intelligence (AI) 3 3

Brain-Computer Interface (BCI) 7 3

Device-to-Device (D2D) 3 7

Exploiting Higher Frequencies 3 7

Extended Reality (XR) 7 3

Multi-access Edge Computing (MEC) 3 7

Non-Terrestrial Networks (NTN) 3 7

5. Artificial Intelligence: The Ultimate Breakthrough?

AI plays a role of paramount importance in the evolution process that wireless net-
works are experiencing. Its use can enhance the performance of many applications by
providing a wide range of beneficial properties. In particular, ML is a branch of AI that is
considered a top solution in many tricky 6G applications [32]. The ML technology allows
us to train systems that, by the processing of collected data, can learn patterns by experi-
ence and, consequently, improve the performance and quality of the offered services. In
particular, following the recent progress in deep learning as well as the advent of smart
devices that are capable of processing ML algorithms on the edge, the wireless community
has gained a renewed and huge interest in such technologies, which can now be leveraged
in use cases that were unable to support them before. Now, with edge AI and ML we can
envision networks of heterogeneous objects that are self-organizing and can meet high
KPIs even in harsh scenarios via, e.g., reinforcement learning [7]. In this context, we are
witnessing the shift of AI and ML components closer and closer to the edge, to the point that
ML is projected to be an actual part of 6G technologies, rather than something that builds
on top of them as it was with previous generations. Another remark is that this transition
is expected to take place transversely, which means that potentially all 6G technologies will
be affected at once.

This section aims to bring forth the potential achievable by applying AI to the purpose
of lowering the gap brought by the digital divide. Current trends suggest that both the
service-delivery gap and the service-fruition gap would greatly benefit from embedding
AI into shared resources. In such a context, any single node of the network will produce
data about connectivity, environment, and such, and the collection of big data from IoT
scenarios is a key enabler to better understand the challenges of various nature in Internet
access. Specifically, data is then analyzed through ML to create more inclusive and scalable
networks. For example, data could be gathered and investigated to comprehend which
categories of people make better use of the benefits provided by ICT and which ones find
difficulties in doing so. In [10], a predictive ML technique is implemented to analyze
the primary socioeconomic factors that cause the digital gap in Spain. According to [33],
ML can improve the network performance through the undertaking of adaptive network
optimization actions, enabled by the ability to learn from the wireless environment that ML
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provides to the network infrastructure. In such a sense, there are a lot of potential usages
that meet the purpose of bridging the digital divide. Certain types of network traffic, if
their nature is well understood by an AI engine, could be privileged (e.g., remote health
diagnosis, online lectures) in contrast to others (e.g., entertaining). Historical network
parameters observed by edge nodes can also feed a fog/edge ML model so that the distri-
bution of network resources could be locally automated. Moreover, planning capabilities
could be introduced to lower the risks of shortages under normal resource usage. This
is also crucial to coordinate with mobile and on-demand network resources, as in NTNs,
forming a real “collective network intelligence” [7] to overcome the service-delivery gap
and bring resources where and when they are most needed. On the other hand, AI is also a
powerful tool for improving the accessibility of innovative digital services for people with
a low level of digital literacy, notably the elderly, people with disabilities, and people living
in underdeveloped areas. Usages in this direction are often mentioned in the literature,
for example, in [34], where authors survey some works concerning the application of tech-
nology to the provision of accessible cultural heritage sites experiences, also highlighting
the importance of the role of AI in adapting the offered experiences to the target audience.
Moreover, most of the technologies that we presented for bridging the service-fruition gap
rely on AI and ML as their core enablers. This entails that AI could be a powerful tool for
overcoming the digital cultural and cognitive gap, as it could be used to support those who
would otherwise remain “digitally excluded”.

In Table 2 we match the major AI trends to the 6G driving technologies to show that
AI is by now an orthogonal trend that embraces all of them in different guises.

Table 2. AI candidates for the 6G technologies.

6G Technology AI Candidates

Sensor Networks and Edge Systems Reinforcement Learning, Unimodal & Multi-
modal Classification, Autoregressive Models

SDN & D2D (Deep) Reinforcement Learning, Multimodal
Classification, Deep Neural Networks

Drone Swarms Reinforcement Learning, Unsupervised Learn-
ing, Agent-based models

Extended Reality Computer Vision, Autoregressive models

Brain-Computer Interfaces Recurrent Neural Networks, Autoregressive
Models, Continual Learning

Affective Computing Convolutional Neural Networks, Multimodal
Classification, Natural Language Processing

6. The 6G Services to “Connect” People

In this section, we describe two use cases for which leaps and bounds need to be made
in the area of digitization: eHealth and education. The main weaknesses of the current
digitization status of these services are highlighted, to demonstrate that, in these fields,
existing access difficulties for some categories may be overcome by the aforementioned
6G technologies.

6.1. The eHealth Case

6G will mark a turning point in the digitization process of the healthcare sector and the
application of new paradigms can help in achieving a fully digital and connected world [35].
This represents an important step forward in overcoming the problem of the digital divide.
Thanks to the provision of telemedicine services, the physical barriers of separation between
patients and health professionals can be surpassed and the delivery of health services can be
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remotely guaranteed to many people, wherever they are whatever their condition. Indeed,
to integrate telemedicine into the health systems of the different countries of the world,
training courses should be taught to medical personnel and inclusive solutions should be
designed to allow access to digital services even for people culturally far away from the
technological world.

Figure 3 depicts the eHealth scenario consisting of the caring @home of a patient
residing in a rural/critical area. Internet access to the patient premises may be provided
by means of either spaceborne or airborne vehicles to enable its health monitoring by
means of Medical Things (IoMT) devices, possibly exploiting D2D communications among
them to extend indoor coverage. Due to the likely impossibility/inability of the patient
to interact with the eHealth devices, AI and BCI can come to the rescue for contriving the
fittest remedies. For example, IoMT devices that can obey voice commands and execute
precise instructions can be delivered to the patients to allow them to remotely manage
simple monitoring operations of health parameters. Furthermore, MEC servers can be
installed close to the IoMT devices clusters (i.e., on the UAVs) to lighten their workload
through computation offloading and reduce the data-gathering delay.

Figure 3. The analyzed use cases where 6G can bridge the digital divide: caring and education
@home in rural areas.

Remote monitoring and assistance of patients are just some of the eHealth services
that can be efficiently managed thanks to mobile wireless networks and that could benefit a
lot from the advantages offered by 6G technologies. For example, specialist teleconsultation
between doctors operating in different parts of the world is a very important application
that would allow to break down the geographical boundaries of knowledge, making the
experience and skills of medical luminaries available everywhere. Remote surgery, which
can be defined as the telehealthcare service thanks to which a doctor can perform surgery at
long distances from the patient [36], is an example of an application that asks for stringent
requirements in terms of latency, security, and reliability in order to be widely diffused and
that, therefore, would greatly enjoy the support of future 6G networks. A different use of
technology in support of healthcare is shown in [37], where the benefits of applying VR
for motor rehabilitation are deeply described. There are also numerous research proposals
that introduce the use of potentially key technologies of 6G for eHealth services related to
COVID-19, such as [38–40].

6.2. Education

The COVID-19 pandemic has demonstrated the crucial role played by ICT in the
education sector, specifically in the support of remote learning. Recent studies like [6]
revealed that during school closures, teachers faced challenges related to student engage-
ment and students’ lack of Internet access, and that the challenges were more prominent in
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high-poverty schools and rural areas. Approximately 43% of teachers reported concerns
related to communication with students and student participation, while teachers in higher-
poverty schools were more likely to indicate that their students did not have Internet access
at home. It is not difficult to imagine how the technologies presented in Sections 3 and 4
could help bridge such gaps. In Figure 3, NTN solutions, such as GEO/LEO satellites or
UAVs, may serve as space/aerial access points providing internet access to schools as well
as to students’ houses located in remote or critical areas. As a matter of fact, UAVs and other
aerial appliances have always played the role of Internet carriers in poorly connected areas,
such as for disaster recovery. However, many studies also consider them as a means for
bridging the digital divide in education [41]. A pilot experiment was conducted by Google
through its Project Loon [42] , which aims to bring connectivity to millions of people that
are offline in rural New Zealand, or Facebook Aquila (https://engineering.fb.com/2018/0
6/27/connectivity/high-altitude-connectivity-the-next-chapter/). Moreover, within each
school building, smart antennas and intelligent surfaces can enable dynamic resource allo-
cation policies, so that the bandwidth is allocated to different indoor locations/rooms in a
fine-grained way based on the activities being performed. In the same way, service-fruition
6G technologies can result in increased effectiveness of remote/in-presence teaching, higher
student engagement, and customized experiences based on the students’ needs. Affective
computing constitutes one of the most active research topics in education via the integration
of visual and textual channels according to the survey in [31]. It can also help in detecting
abnormal situations with the scholars at early stages, such as Attention Deficit and Hy-
peractivity Disorder [43] that otherwise would cause students to easily detach from the
learning environment. Educational scenarios could also take advantage of XR. In particular,
seminal XR-based solutions have been implied in education, mostly for medical purposes
[44] , with successful outcomes. However, it is in pedagogical use that XR technologies
arguably unleash their most significant outcome: their ability to enhance active and experi-
ential learning [45] . With such technology at hand, even scholars that are not physically
collocated can share experiences and collaboration. This can transform the way educational
content is delivered to students, encouraging creativity and bringing abstract concepts to
life.

Figure 4 shows a comparison of the two analyzed use cases in terms of importance
level of the technologies discussed in Sections 3 and 4 for their realization.
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management of the new expected use cases, including those that arose during the health
emergency caused by COVID-19. Due to the lockdowns imposed by the pandemic, work
organization, education, and other daily-life habits have been contaminated by technology in
ways that cannot be defined as temporary. We could state that the acceleration experienced
by the digitization process, in the last year, represents the silver lining of COVID-19.
Indeed, the pandemic has shifted the attention of worldwide researchers and government
institutions to the importance of technological progress and, consequently, even to the
problem of the digital divide, which affects people who have been excluded from the
progress achieved thanks to the stimulus for improvement favored by the health emergency
and investments in the ICT sector. At the same time, although digital transformation
may represent a lifeline in many cases, opinions exist for which it could represent an
additional cause of exclusion for the so-called have-nots. Considering the evolution of
wireless mobile networks, 6G could exacerbate the digital divide, given that already the
5G standard has been unevenly distributed in different countries of the world in the first
phase of release, thus leading to the creation of a further gap between the areas that receive
state-of-the-art network coverage and those that do not. As we also stated in Section 2,
there are contradictory opinions according to which technological evolution could solve
or, on the contrary, aggravate the phenomenon of the digital divide; however, COVID-19
has put the spotlight on the problems relating to the profound inequalities in access to
information and communication technologies, thus triggering various world institutions to
conduct studies on the impact of the pandemic also on the economic field. For example,
the report released by United Nations University (UNU) and United Nations Institute for
Training and Research (UNITAR) highlights the exacerbation of the digital divide caused
by COVID-19, reporting a 30% fall in sales of electronic and electrical equipment in the low-
and middle-income countries, and only 5% in high-income countries [46]. This argues that
the pandemic has hurt the worldwide economy but the poorest countries harder, testifying
to the fact that at the root of the problem of the digital divide there are also significant
economic disparities, the solution of which is outside the scope of this paper. In fact, this
work aims to illustrate the evolution of the digital divide phenomenon and place it in
the context of the future 6G, providing an overview of technologies and applications that
telecommunications companies could exploit to help in bridging this gap, which has existed
since technology began to spread among the people. In the vein of the decentralization
trend described in Section 3, also 6G business models are expected to be decentralized
to support the new use cases. The birth of the telecom virtual operators (MVNO) or the
network sharing business model are concrete examples of how business dynamics are
increasingly moving away from the classic model of centralization of resources at the
mobile network operator (MNO) [47]. This can bring benefits in terms of extension of
network coverage and enhancement of the provided services. For example, the newly-
introduced micro operators can manage the requests of specific target users by offering
higher-quality localized connectivity customized to the consumer’s needs.

Author Contributions: Conceptualization, C.S. and S.P.; writing—original draft preparation, C.S.,
S.P., F.M., and M.D.F.; writing—review and editing, C.S., S.P., F.M., M.D.F., and G.A. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding

Informed Consent Statement: Not applicable

Data Availability Statement: Not applicable

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Nokia. How Do We Create Inclusivity in a Digital Future? Building a Better World with Broadband Technologies; Technical report, White

Paper; Nokia: Espoo, Finland, 2020.
2. Ericsson. Bridging the Digital Divide for an Inclusive Digital Economy; Technical report, White Paper; Ericsson: Stockholm, Sweden, 2021.



Future Internet 2022, 14, 189 12 of 13

3. Huawei. TECH4ALL: Leaving No One Behind in the Digital World; Technical report; Huawei: Shenzhen, China, 2021.
4. Cisco. Annual Internet Report (2018–2023); Technical report, White Paper; Cisco: San Jose, CA, USA, 2020.
5. Vodafone. Digital for Europe: Collaboration, Innovation, Transformation; Technical report, White Paper; Vodafone: Berkshire, UK, 2021.
6. Stelitano, L.; Doan, S.; Woo, A.; Diliberti, M.K.; Kaufman, J.H.; Henry, D. The Digital Divide and COVID-19: Teachers’ Perceptions

of Inequities in Students’ Internet Access and Participation in Remote Learning; RAND Corporation: Santa Monica, CA, USA, 2020.
https://doi.org/10.7249/RRA134-3.

7. Saad, W.; Bennis, M.; Chen, M. A vision of 6G wireless systems: Applications, trends, technologies, and open research problems.
IEEE Netw. 2019, 34, 134–142.

8. Suraci, C.; Pizzi, S.; Molinaro, A.; Araniti, G. MEC and D2D as Enabling Technologies for a Secure and Lightweight 6G eHealth
System. IEEE Internet Things J. 2022, 9(13), 11524–11532.

9. Chaoub, A.; Giordani, M.; Lall, B.; Bhatia, V.; Kliks, A.; Mendes, L.; Rabie, K.; Saarnisaari, H.; Singhal, A.; Zhang, N.; et al. 6G for
Bridging the Digital Divide: Wireless Connectivity to Remote Areas. IEEE Wirel. Commun. 2022, 69, 160–168.

10. Hidalgo, A.; Gabaly, S.; Morales-Alonso, G.; Urueña, A. The digital divide in light of sustainable development: An approach
through advanced machine learning techniques. Technol. Forecast. Soc. Chang. 2020, 150, 119754.

11. Van Dijk, J.A. Digital divide: Impact of access. In The International Encyclopedia of Media Effects, Wiley 2017; pp. 1–11.
12. Rinaldi, F.; Maattanen, H.L.; Torsner, J.; Pizzi, S.; Andreev, S.; Iera, A.; Koucheryavy, Y.; Araniti, G. Non-Terrestrial Networks in

5G & Beyond: A Survey. IEEE Access 2020, 8, 165178–165200.
13. Dao, N.N.; Pham, Q.V.; Tu, N.H.; Thanh, T.T.; Bao, V.N.Q.; Lakew, D.S.; Cho, S. Survey on aerial radio access networks: Toward a

comprehensive 6G access infrastructure. IEEE Commun. Surv. Tutor. 2021, 23, 1193–1225.
14. Polese, M.; Jornet, J.M.; Melodia, T.; Zorzi, M. Toward end-to-end, full-stack 6G terahertz networks. IEEE Commun. Mag. 2020,

58, 48–54.
15. Wu, Q.; Zhang, R. Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network. IEEE

Commun. Mag. 2019, 58, 106–112.
16. Mu, X.; Liu, Y.; Guo, L.; Lin, J.; Poor, H.V. Intelligent reflecting surface enhanced multi-UAV NOMA networks. IEEE J. Sel. Areas

Commun. 2021, 39, 3051–3066.
17. Zaidi, Z.; Friderikos, V.; Yousaf, Z.; Fletcher, S.; Dohler, M.; Aghvami, H. Will SDN be part of 5G? IEEE Commun. Surv. Tutor.

2018, 20, 3220–3258.
18. Zhang, S.; Liu, J.; Guo, H.; Qi, M.; Kato, N. Envisioning device-to-device communications in 6G. IEEE Netw. 2020, 34, 86–91.
19. Jameel, F.; Hamid, Z.; Jabeen, F.; Zeadally, S.; Javed, M.A. A survey of device-to-device communications: Research issues and

challenges. IEEE Commun. Surv. Tutor. 2018, 20, 2133–2168.
20. Taleb, T.; Samdanis, K.; Mada, B.; Flinck, H.; Dutta, S.; Sabella, D. On multi-access edge computing: A survey of the emerging 5G

network edge cloud architecture and orchestration. IEEE Commun. Surv. Tutor. 2017, 19, 1657–1681.
21. Saarnisaari, H.; Dixit, S.; Alouini, M.S.; Chaoub, A.; Giordani, M.; Kliks, A.; Matinmikko-Blue, M.; Zhang, N.; Agrawal, A.;

Andersson, M.; et al. A 6G white paper on connectivity for remote areas. arXiv 2020, arXiv:2004.14699.
22. Akyildiz, I.F.; Guo, H. Wireless Extended Reality (XR): Challenges and New Research Directions. ITU J. Future Evol. Technol. 2022,

3.
23. Narayanan, A.; Ramadan, E.; Carpenter, J.; Liu, Q.; Liu, Y.; Qian, F.; Zhang, Z.L. A first look at commercial 5G performance on

smartphones. In Proceedings of the Web Conference 2020, New York, NY, USA, 20–24 April 2020; pp. 894–905.
24. Oleksiuk, V.P.; Oleksiuk, O.R. Exploring the Potential of Augmented Reality for Teaching School Computer Science In Proceedings of the

3rd International Workshop on Augmented Reality in Education, 2020.
25. Chen, Y.; Zhou, Z.; Cao, M.; Liu, M.; Lin, Z.; Yang, W.; Yang, X.; Dhaidhai, D.; Xiong, P. Extended Reality (XR) and Telehealth

Interventions for Children or Adolescents with Autism Spectrum Disorder: Systematic Review of Qualitative and Quantitative
Studies. Neurosci. Biobehav. Rev. 2022, 138, 104683.

26. Mahmoud, H.H.H.; Amer, A.A.; Ismail, T. 6G: A comprehensive survey on technologies, applications, challenges, and research
problems. Trans. Emerg. Telecommun. Technol. 2021, 32, e4233.

27. Jafri, S.R.A.; Hamid, T.; Mahmood, R.; Alam, M.A.; Rafi, T.; Haque, M.Z.U.; Munir, M.W. Wireless brain computer interface for
smart home and medical system. Wirel. Pers. Commun. 2019, 106, 2163–2177.

28. Anitha, T.; Shanthi, N.; Sathiyasheelan, R.; Emayavaramban, G.; Rajendran, T. Brain-computer interface for persons with motor
disabilities-A review. Open Biomed. Eng. J. 2019, 13, 127–133.

29. Picard, R.W. Affective Computing; MIT Press: Cambridge, MA, USA, 2000.
30. Politou, E.; Alepis, E.; Patsakis, C. A survey on mobile affective computing. Comput. Sci. Rev. 2017, 25, 79–100.
31. Yadegaridehkordi, E.; Noor, N.F.B.M.; Ayub, M.N.B.; Affal, H.B.; Hussin, N.B. Affective computing in education: A systematic

review and future research. Comput. Educ. 2019, 142, 103649.
32. Kato, N.; Mao, B.; Tang, F.; Kawamoto, Y.; Liu, J. Ten challenges in advancing machine learning technologies toward 6G. IEEE

Wirel. Commun. 2020, 27, 96–103.
33. Chen, M.; Challita, U.; Saad, W.; Yin, C.; Debbah, M. Artificial neural networks-based machine learning for wireless networks: A

tutorial. IEEE Com. Surv. Tutor. 2019, 21, 3039–3071.
34. Pisoni, G.; Díaz-Rodríguez, N.; Gijlers, H.; Tonolli, L. Human-centred artificial intelligence for designing accessible cultural

heritage. Appl. Sci. 2021, 11, 870.



Future Internet 2022, 14, 189 13 of 13

35. Giordani, M.; Polese, M.; Mezzavilla, M.; Rangan, S.; Zorzi, M. Toward 6G networks: Use cases and technologies. IEEE Commun.
Mag. 2020, 58, 55–61.

36. Senk, S.; Ulbricht, M.; Tsokalo, I.; Rischke, J.; Li, S.C.; Speidel, S.; Nguyen, G.T.; Seeling, P.; Fitzek, F.H. Healing Hands: The Tactile
Internet in Future Tele-Healthcare. Sensors 2022, 22, 1404.

37. Wang, L.; Huang, M.; Yang, R.; Liang, H.N.; Han, J.; Sun, Y. Survey of Movement Reproduction in Immersive Virtual Rehabilitation.
IEEE Trans. Vis. Comput. Graph. 2022, doi: 10.1109/TVCG.2022.3142198.

38. El-Sherif, D.M.; Abouzid, M.; Elzarif, M.T.; Ahmed, A.A.; Albakri, A.; Alshehri, M.M. Telehealth and Artificial Intelligence
insights into healthcare during the COVID-19 pandemic. Healthcare 2022, 10, 385.

39. Alrubei, S.M.; Ball, E.; Rigelsford, J.M. A Secure Blockchain Platform for Supporting AI-Enabled IoT Applications at the Edge
Layer. IEEE Access 2022, 10, 18583–18595.

40. Nasser, N.; Fadlullah, Z.M.; Fouda, M.M.; Ali, A.; Imran, M. A lightweight federated learning based privacy preserving B5G
pandemic response network using unmanned aerial vehicles: A proof-of-concept. Comput. Netw. 2022, 205, 108672.

41. West, D.M. Digital divide: Improving Internet access in the developing world through affordable services and diverse content.
Cent. Technol. Innov. Brookings 2015, 1–30.

42. Nagpal, L.; Samdani, K. Project Loon: Innovating the connectivity worldwide. In Proceedings of the 2017 2nd IEEE International
Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), Bangalore, India, 19–20 May
2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1778–1784.

43. Martínez, F.; Barraza, C.; González, N.; González, J. KAPEAN: understanding affective states of children with ADHD. J. Educ.
Technol. Soc. 2016, 19, 18–28.

44. Zweifach, S.M.; Triola, M.M. Extended reality in medical education: driving adoption through provider-centered design. Digit.
Biomarkers 2019, 3, 14–21.

45. Pomerantz, J. Teaching and learning with extended reality technology. In Information and Technology Transforming Lives: Connection,
Interaction, Innovation; 2019; pp. 137–157.

46. Baldé, C.; Kuehr, R. The Impact of the COVID-19 Pandemic on One-Waste in the First Three Quarters of 2020; Technical report; United
Nations University (UNU)/United Nations Institute for Training and Research (UNITAR): Bonn, Germany.

47. Yrjölä, S. Decentralized 6G Business Models. In Proceedings of the 6G Wireless Summit, Levi, Finland, April 2019.


	Introduction
	The Evolution of the Digital Divide
	The Technologies for Bridging the Service-Delivery Divide
	Non-Terrestrial Networks
	Exploiting Higher Frequencies
	Device-to-Device
	Multi-Access Edge Computing

	The Technologies for Bridging the Service-Fruition Divide
	Extended Reality
	Brain-Computer Interfaces
	Affective Computing

	Artificial Intelligence: The Ultimate Breakthrough?
	The 6G Services to “Connect” People
	The eHealth Case
	Education

	Discussion and Conclusions
	References

