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Abstract: Futures price-movement-direction forecasting has always been a significant and challenging
subject in the financial market. In this paper, we propose a combination approach that integrates
the XGBoost (eXtreme Gradient Boosting), SMOTE (Synthetic Minority Oversampling Technique),
and NSGA-II (Non-dominated Sorting Genetic Algorithm-II) methods. We applied the proposed
approach on the direction prediction and simulation trading of rebar futures, which are traded on
the Shanghai Futures Exchange. Firstly, the minority classes of the high-frequency rebar futures
price change magnitudes are oversampled using the SMOTE algorithm to overcome the imbalance
problem of the class data. Then, XGBoost is adopted to construct a multiclassification model for the
price-movement-direction prediction. Next, the proposed approach employs NSGA-II to optimize
the parameters of the pre-designed trading rule for trading simulation. Finally, the price-movement
direction is predicted, and we conducted the high-frequency trading based on the optimized XGBoost
model and the trading rule, with the classification and trading performances empirically evaluated
by four metrics over four testing periods. Meanwhile, the LIME (Local Interpretable Model-agnostic
Explanations) is applied as a model explanation approach to quantify the prediction contributions
of features to the forecasting samples. From the experimental results, we found that the proposed
approach performed best in terms of direction prediction accuracy, profitability, and return–risk ratio.
The proposed approach could be beneficial for decision-making of the rebar traders and related
companies engaged in rebar futures trading.

Keywords: rebar futures; multiclassification; multiobjective optimization; decision making; model ex-
planation

1. Introduction

As an exploration and innovation of the financial market, the futures market plays an
essential role in risk diversification, price discovery, and hedging that cannot be replaced
by the spot market [1]. In China, the steel industry has been an essential support for
various industries such as agriculture, transportation, and architecture. Currently, China
is the world’s largest steel producer and trader, and the launch of rebar futures is of great
significance to the progress of the Chinese futures market and steel industry. Since its listing
on the Shanghai Futures Exchange (SHFE) in 2009, rebar futures have become one of the
most active futures, with its trading volume ranking first among the steel-related futures
for many years. On the one hand, rebar futures provides market participants with an
effective tool for reducing market risk by establishing a profit and loss hedging mechanism
by employing the futures and spot markets. On the other hand, steel enterprises can have
access to corresponding market price information so they could rationally arrange their
steel production and operation activities. Therefore, the study of price-movement-direction
forecasting of the rebar futures market has become an essential issue for many scholars,
market investors, and steel-related companies.

Future Internet 2022, 14, 180. https://doi.org/10.3390/fi14060180 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi14060180
https://doi.org/10.3390/fi14060180
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://doi.org/10.3390/fi14060180
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi14060180?type=check_update&version=2


Future Internet 2022, 14, 180 2 of 21

In the last few decades, numerous scholars have developed practical approaches in
exploring financial forecasting, such as the traditional econometric methods and artificial
intelligence technologies. Among those approaches, Autoregressive Integrated Moving
Average (ARIMA) is one of the most commonly used traditional econometric models [2,3].
However, when referring to the nonlinear characteristics of time series data in financial
markets, traditional analysis methods might be unable to show favorable forecasting
ability [4,5]. With the development and successful application of artificial intelligence,
many machine learning methods, such as Artificial Neural Network (ANN) [6,7], Support
Vector Machines (SVM) [8,9], and Random Forest (RF) [10,11], have been evidenced to
be capable of producing excellent performances for financial time series forecasting. For
instance, an ANN-based model was proposed by Kara et al. for daily price-movement
prediction in the stock market, and it generated great forecasting accuracy [12]. Hao et al.
adopted a novel SVM-based method to predict stock price trends by extracting financial
news texts, and the results showed that their proposed model was more robust than the
benchmark methods [13]. Ballings et al. successfully predicted the stock price direction by
applying an RF-based method [14].

Recently, since Chen and Guestrin first proposed the eXtreme Gradient Boosting (XG-
Boost) algorithm in 2016 [15], an increasing number of researchers have implemented it
to solve the forecasting task, and great accuracies have been produced in many applica-
tions [16,17]. The most remarkable advantage of XGBoost is that the prediction accuracy
and computing speed are significantly enhanced compared to the traditional gradient
boosting algorithms [18–20]. In the field of financial markets, Huang et al. predicted
the intradaily market trends using an XGBoost-based method, and it successfully pro-
duced satisfactory forecasting performance [21–23]. Chen et al. built an XGBoost-based
portfolio construction method to forecast the price movement of stock market, and the
experiment results indicated that their proposed method outperformed all the benchmarks
by evaluating the trading returns and transaction risks [24]. However, there are a limited
number of studies in the literature that report on the futures market prediction by using
the XGBoost method. Hence, this paper fills the gap and applies XGBoost in the rebar
futures price prediction to investigate whether XGBoost could be employed as an efficient
method and whether it is superior to the machine learning algorithms that other researchers
have applied.

Nevertheless, when using the machine-learning-based methods, training and testing
data often have a problem of data imbalance in the model learning process, resulting in
unsatisfied classification performance of the minority class samples [25,26]. Therefore,
classification tasks with imbalanced data categories in machine learning have received
increasing attention in academic and practical applications. To solve this problem, the
Synthetic Minority Oversampling Technique (SMOTE) [27], which is an improved random
oversampling method, has been extensively adopted. For the class-imbalanced data, the
training dataset of minority categories could be oversampled by the SMOTE, which aims
to solve the unbalanced class distribution problem of the studied data [28]. In academics,
the efficiency of the SMOTE technique for enhancing classification accuracy of minority
categories has been successfully applied and proved by many scholars [29,30]. Therefore,
in this research, the SMOTE technique is integrated with the XGBoost model to predict the
price-movement direction of rebar futures.

For the simulation trading in financial markets, how to design trading strategies and
determine various trading parameters has drawn much attention from market participants.
However, because of the extraordinary high leverage and risk of futures trading, other
than a great return, trading risk should also be an essential indicator in the futures market,
while it is generally overlooked by researchers. Therefore, different from the literature
reports that considered only the return as the objective function, we propose to implement
a multiobjective optimization approach for optimizing the pre-designed trading rule by
considering both the trading return and the trading risk. Recent optimization studies have
shown that the application of the Nondominated Sorting Genetic Algorithm II (NSGA-II)
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algorithm [31], which is one of the well-known multiobjective optimization algorithms,
has been successfully expanded in many application fields. For example, Raad et al.
optimized the design of an urban water distribution system using an NSGA-II-based
method, intending to find a tradeoff between system cost and reliability [32]. Cao et al.
focused on optimizing spatial multiobjective land use, and they applied an NSGA-II-based
method to generate the best compromise solutions among minimum conversion costs,
maximum accessibility, and maximum compatibilities among land uses [33]. Feng et al.
developed a multiobjective optimization algorithm based on the NSGA-II algorithm to
find a reasonable allocation of medical resources [34]. To improve the trading performance
of the proposed approach, the objective functions, including the accumulated return and
maximum drawdown, are both optimized using NSGA-II to search for the best parameter
combination of the pre-designed trading rule.

Additionally, in recent years, hybrid methods have been extensively applied widely in
research, and their empirical results demonstrated that those hybrid algorithms generally
performed better than one part of the single model [35–38]. It provides us with an idea
to forecast the movement and to perform trading simulation by a hybrid approach that
integrates the XGBoost, SMOTE, and NSGA-II.

In summary, the main procedures of the method proposed in this research are as fol-
lows. First, the proposed approach collects and pre-processes the historical high-frequency
data of the Chinese rebar futures. Second, the whole dataset is divided into several consec-
utive in-sample and out-of-sample periods, with the predicted labels divided into multiple
categories of magnitude. Third, the training samples with smaller ratios are oversampled
using the SMOTE for producing the balanced training datasets. Next, an XGBoost-based
multiclass direction prediction model is trained for price direction change forecasting.
Meanwhile, NSGA-II is employed to optimize the simulation trading rule. At last, Local
Interpretable Model-agnostic Explanations (LIME) is employed for an explanation of the
proposed method by analyzing the contributions of each feature on the multiclass labels. To
validate the efficiency of the proposed approach, several performance evaluation indicators
and a group of benchmark methods are designed and used to investigate their classification
and trading results.

In short, this paper contains mainly the following three contributions: (1) A novel
multi-classification method is proposed to forecast the price-movement direction, and to
perform simulation trading of rebar futures in the Chinese futures market. (2) The SMOTE
technique is adopted to overcome the class imbalance problem in the original training
dataset, which further enhances the prediction performance of the classification model.
(3) A sophisticated trading rule for high-frequency trading of rebar futures is designed,
and the trading parameters are optimized using NSGA-II by considering trading profits
and trading risks. (4) The LIME method is adopted to explain how the proposed method
performed movement direction predictions for rebar futures prices quantitatively.

The rest of this paper is structured as follows. In Section 2, we introduce some basic
background about the relevant algorithms used in this research. Section 3 explains the
main structure of the proposed approach. The empirical data, design, and optimization
of trading rule, evaluation metrics, and benchmark models are provided in Section 4. The
experimental results are reported and discussed in Section 5. At last, Section 6 summarizes
the conclusion of this research.

2. Related Methodology
2.1. eXtreme Gradient Boosting (XGBoost)

As an effective ensemble learning algorithm, XGBoost was proposed by Chen and
Guestrin in 2016 [15]. XGboost is considered as an improved GBDT algorithm [39]. The
main operating principle of XGBoost is that it is composed of several base classifiers that
can be linearly superimposed into a more robust classifier to obtain the final optimization
algorithm. Unlike the GBDT algorithm, first, a second-order Taylor expansion is utilized
for the optimization process of the loss function in XGBoost instead of the first-order Taylor



Future Internet 2022, 14, 180 4 of 21

expansion in GBDT. Second, XGBoost adds a regularization term to the objective function
to effectively reduce the model complexity and prevent the overfitting problem [40,41].
The superiority of high accuracy, generalization ability, and fast running speed makes
it an efficient and excellent computing tool in the fields of machine learning and data
mining [42].

The prediction results ŷi summarize the leaf scores of the K weak learners produced
by a boosting method. The formula is given by Equation (1):

ŷi =
K

∑
k=1

fk(xi), fk ∈ F (1)

where fk(·) represents the score for the k-th weak learner and F is the set of all CART
decision trees. When establishing an XGBoost model, the main task is to search for the opti-
mal parameters by minimizing the objective function Obj. As shown in Equation (2), Obj
consists of two components, which are the loss function term l and the model regularization
term Ω:

Obj =
n

∑
i=1

l(yi, ŷi) +
K

∑
k=1

Ω( fk) (2)

In Equation (2), the former part is an item used to measure the differences between
the prediction ŷi and the target yi, and the latter part is employed to punish the complexity
of the tree structure. The regularization term Ω is defined as:

Ω( f ) = γT +
1
2

λ
T

∑
j=1

w2
j (3)

where γ denotes the complexity parameter, T represents the total number of leaf nodes, λ
is a regularization coefficient, and ω is the score of the leaf nodes.

Notably, the model is trained in an additive manner, that is, it adds a new ft(xi) to
develop the current model, and it establishes a new loss function. The objective function
can be expressed as:

Obj(t) =
n

∑
i=1

l
(

yi, ŷi
(t−1) + ft(xi)

)
+ Ω( ft) (4)

The loss function is extended by performing a second-order Taylor expansion during
the process of gradient boosting, and the constant term is then removed to simplify the
objective function. The final Obj is shown in Equation (5), while gi and hi are defined in
Equation (6), representing the gradient statistics of the loss function:

Obj(t) ∼=
n
∑

i=1

[
gi ft(xi) +

1
2 hi f 2

t (xi)
]
+ Ω( ft)

=
T
∑

j=1

[(
∑i∈Ij

gi

)
ωj +

1
2

(
∑i∈Ij

hi + λ
)

w2
j

]
+ γT

(5)

gi = ∂
ŷ(t−1)

i
l
(

yi, ŷ(t−1)
i

)
, hi = ∂2

ŷ(t−1)
i

l
(

yi, ŷ(t−1)
i

)
(6)

Assume that an instance set Ij in the leaf j is Ij = { i|q(xi) = j}. When the tree structure
is given, the formula for calculating the optimal leaf weight w∗j and the loss function at the
leaf node j can be evaluated by Equations (7) and (8), respectively:

w∗j = −
∑i∈Ij

gj

∑i∈Ij
hj + λ

(7)
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Obj(t)(q) = −1
2

T

∑
j=1

(
∑i∈Ij

gi

)2

∑i∈Ij
hi + λ

+ γT (8)

In XGBoost, the greedy search algorithm is used to evaluate the split candidates and
to find an optimal tree structure. Suppose that IL and IR represent the sample sets of the
left and right branches, respectively; the information gain of leaf nodes after splitting can
be scored by Equation (9):

Gain =
1
2

( (
∑i∈IL

gi
)2

∑i∈IL
hi + λ

+

(
∑i∈IR

gi
)2

∑i∈IR
hi + λ

− (∑i∈I gi)
2

∑i∈I hi + λ

)
− γ (9)

The criterion of maximizing the information gain ultimately determines the optimal
splitting in the learning process of XGBoost.

2.2. NSGA-II

A series of Multiobjective Evolutionary Algorithms (MOEAs) have been introduced by
scholars over the past decades. The primary task of MOEAs is to find the multiple Pareto
optimal solutions in one single simulation run. Nondominated Sorting Genetic Algorithm
(NSGA) is one of the first MOEAs, which has been widely applied since it was proposed
by Srinivas and Deb in 1994 [43]. As an improved version of NSGA, Nondominated
Sorting Genetic Algorithm II (NSGA-II) is considered to be superior to many contemporary
MOEAs for solving optimization problems. In NSGA-II, there are mainly three innovations,
including a fast nondominated sorting procedure, a fast crowded distance estimation
procedure, and a simple crowded comparison operator [31]. Meanwhile, the Pareto optimal
solutions could be identified by applying the nondominated sorting and crowding distance
sorting algorithms [44]. The following steps explain the main procedures of NSGA-II:

Step 1: Initialize a random parent population Pt of size N.
Step 2: The initialized population is sorted according to nondomination. Employ the
binary tournament selection, crossover, and mutation operators to generate an offspring
population Qt.
Step 3: Combine the parent population and child population to form a population Rt
of size 2N.
Step 4: The combined population is sorted based on the nondomination sorting. Then,
assign the crowding distance of all individuals in the population. Using this approach,
the individuals could be selected based on a crowded comparison operator of rank and
crowding distance [45]. Once the population is sorted with the crowding distance assigned,
the selection of individuals for the next generation is carried out. In this process, elitism is
guaranteed as all parent and offspring best population members are accommodated in the
combined population Rt.
Step 5: Form a new population Pt+1 of size N, which is utilized for the following selection,
crossover, and mutation to create a new offspring population Qt+1 with a size of N. The
sorting procedure can be stopped until there is a large enough number of fronts to have
size N in Pt+1.
Step 6: Repeat steps 2–5 until the maximum number of generations is satisfied and the
approximate nondominated resource allocation solutions are found.

Generally, the determination of trading parameters could have a significant impact on
forecasting performance. Thus, we adopt NSGA-II to search for the best combination of the
trading rule parameters during the model training step.

3. Proposed Approach

For direction prediction and simulation trading of the rebar futures, a multiclassifica-
tion method, which combines XGBoost, SMOTE, and NSGA-II, is proposed in this research.
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The main structure of the proposed approach is presented in Figure 1, with its specific
procedures summarized in the following steps:
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Step 1: Data collection and pre-processing

At first, 5 min historical trading data of the rebar futures are collected from databases.
After timeframe transformation, the 1-h interval trading data are generated and normalized.
Then, the entire dataset is divided into four consecutive experimental datasets. Each
subdataset consists of a training period and a testing period.

Step 2: Data oversampling and model training

In the second step, the proposed approach uses the SMOTE technique to generate the
class-balanced training datasets. Then, XGBoost is adopted to construct a multiclassification
forecasting model using the balanced datasets. Meanwhile, NSGA-II is incorporated for
parameters optimization of the pre-designed trading rule. The multiobjective optimization
is performed to achieve the Pareto optimal solution for two objectives, including the
maximization of accumulated return and minimization of the maximum drawdown.

Step 3: Model testing

In the third step, the optimized XGBoost model and trading rule are selected for price-
movement-direction prediction and trading simulation of rebar futures in four consecutive
testing periods.

Step 4: Model explanation

In the fourth step, LIME is adopted to explain how the XGBoost made multiclassifica-
tion predictions for rebar futures price direction.

Step 5: Performance evaluation

In the final step, evaluation measures are employed to judge the prediction and
trading performances of all methods from the perspective of direction prediction accuracy,
profitability, and trading risk.
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4. Experimental Design
4.1. Experimental Data

For direction forecasting and trading simulation, the 1-h frequency trading data of
rebar futures are chosen and prepared for the experiments. It should be noted that before
separating the whole dataset into the training and testing datasets, the 5 min frequency
data are transformed into 1-h frequency data, and they are normalized afterward. The
whole dataset includes five years data from 4 January 2016 and ending on 31 December
2020, which are derived from the Choice database (The formal website of Choice Database
is http://choice.eastmoney.com/, accessed on 1 May 2022). Specifically, the historical
transaction data consist of the opening, closing, high, and low prices. In addition, the
trading volume and open interest of rebar futures are also included. Finally, the hourly
returns (Return), trading volume change rates (TVCR), and open interest change rates
(OICR) from the (i− 9)-th period to the i-th period are utilized as the input features for
the classification model. The calculation formulas for the three input features at time t are
shown in Equations (10)–(12), respectively:

Returnt =
Closet −Opent−9

Opent−9
(10)

TVCRt =
TVt − TVt−9

TVt−9
(11)

OICRt =
OIt −OIt−9

OIt−9
(12)

where Close and Open refer to the closing price and opening price of rebar futures in
Equation (10). In Equations (11) and (12), TV and OI denote the trading volume and open
interest of rebar futures, respectively.

Figure 2 shows a slide window method for the dynamic arrangement of the train-
ing and testing periods. The primary purpose of dividing the whole dataset into four
consecutive subdatasets is to better test the effectiveness of the proposed method. The
training period is designed for XGBoost model training and trading rule optimization,
while the testing period is utilized to test the prediction and trading performance. After the
experiment of one subdataset is done, the slide window is moved forward by three months
to perform a new subdataset of model training and testing. The specific date ranges and
sample sizes of four training and testing datasets are reported in Table 1. Note that the
whole testing period lasts for one year.
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Table 1. The dataset design for the experiments.

Datasets
Training Dataset Testing Dataset

Period Sample Size Period Sample Size

Dataset 1 2016/Jan.–
2019/Dec. 5680 2020/Jan.–

2020/Mar. 243

Dataset 2 2016/Apr.–
2020/Mar. 5479 2020/Apr.–

2020/June 288

Dataset 3 2016/July–
2020/June 5389 2020/July–

2020/Sep. 372

Dataset 4 2016/Oct.–
2020/Sep. 5406 2020/Oct.–

2020/Dec. 338

4.2. Training Data Oversampling

In this research, for constructing a multiclassification model, the predicted labels are
divided into five categories (see Section 4.3). Through our pre-analysis of the dataset in
training period 1, we found that about 55% of the labels could be regarded as small fluc-
tuations, according to which the classifier would not provide correct direction prediction
and simulation trading for the large magnitude predictions. In addition, there is a minority
sample of only 8% of this training dataset in one of the other four classes. It has been
evidenced that the presence of the class imbalance in the raw training dataset might result
in poor classification performance of minority categories in some binary or multiclassifi-
cation classification tasks [46,47]. To solve this problem, a commonly used oversampling
technique, named Synthetic Minority Oversampling Technique (SMOTE) [27], is integrated
into the proposed approach. SMOTE is a heuristic oversampling technique that aims to
balance the class distribution of the dataset to improve the efficiency of the classifier, while
it can also alleviate the overfitting problem caused by random oversampling methods [47].
Rather than replicating existing observations, the SMOTE creates and inserts new synthetic
samples in the minority class [26]. Specifically, suppose that the sample of the minority
class in the training dataset is Smin, the steps of SMOTE is to generate a class-balanced
dataset follow:

Step 1: A random minority sample x is chosen from Smin. Then, calculate the Euclidean
distance of x from the other samples in Smin, and its k nearest neighbors are identified.

Step 2: A random sample xn is selected from k nearest neighbors, and a new sample
xnew is created by the following rule:

xnew = x + ω× |x− xn| (13)

where ω is a random weight chosen from the range [0, 1].
Step 3: Repeat steps 1–2 until the number of minority samples is satisfied.

4.3. Trading Rule Design and Optimization

Generally, it is necessary to optimize and select a set of optimal trading parameters
for investors to improve the profit-making ability in the process of simulation trading.
Instead of determining the parameters by experience of industry experts, the parameters
of the trading rule designed in this research would be optimized by NSGA-II. To define
the multiobjective optimization function, our proposed approach takes into account not
only the profits from the trading rules but also the trading risks of transactions in the rebar
futures market. Thus, two indicators, including the largest accumulated return and the
smallest maximum drawdown, are designed as the optimization objectives of NSGA-II.
Finally, through parameters optimization of the trading rule using NSGA-II, the XGBoost
model with the Pareto optimal solutions in terms of those two optimization objectives is
regarded as the optimal one for trading simulation in the corresponding testing period.

In the proposed approach, there are five categories of the price-movement magnitude
(see Table 2), and the trading signals are determined based on the predicted level thresholds.
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Details for the multiclassification are shown in Figure 3. As the points B shown in Figure 3,
when the predicted return (PR) is larger than T4, label = 5, and it will open a long position
with leverage l4; similar to point A, when the PR is greater than T3 and less than or equal
to T4, label = 4, and it will open a long position with leverage l3. As for point C, when
PR is greater than or equal to T2 and less than or equal to T3, label = 3, and there is no
transaction. As for point D, when the PR is greater than or equal to T1 and less than T2,
label = 2, and a short-selling transaction will be conducted at the opening price of the next
period with leverage l2. As for point E shown in Figure 3, when PR is less than T1, label = 1,
and a short-selling transaction will be executed at the opening price of the next period with
leverage l1. Note that the holding position will last for five hours. Then, the trading return
TRi for each transaction can be calculated.

Table 2. The parameters of the trading rule. Note that N/A means no parameters need to be
optimized since no simulation trading is executed.

Category(Label) Level Threshold Trading Signal
Profit-Taking Loss-Cutting Leverage

Threshold Search Range Threshold Search Range Value Search Range

Label = 1 <T1 Short PT1 [0.02, 0.06] LT1 [−0.06, −0.02] l1 [3, 6]
Label = 2 [T1, T2) Short PT2 [0.02, 0.06] LT2 [−0.06, −0.02] l2 [3, 6]
Label = 3 [T2, T3] No Trading N/A N/A N/A N/A N/A N/A
Label = 4 (T3, T4] Long PT3 [0.02, 0.06] LT3 [−0.06, −0.02] l3 [3, 6]
Label = 5 >T4 Long PT4 [0.02, 0.06] LT4 [−0.06, −0.02] l4 [3, 6]
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Figure 3. The multiclassification examples of the proposed method.

Additionally, the profit-taking thresholds (PT), loss-cutting thresholds (LT), and trad-
ing leverage (l) are comprehensively considered in the simulation trading of the rebar
futures market. The primary purpose for the design of the loss-cutting threshold is to
alleviate huge losses from potentially adverse market direction movements, while the
profit-taking threshold is designed to prevent traders from losing profit opportunities if the
market moves in the expected direction followed by a rapid retreat. When TRi is greater
than PT or less than LT, the proposed method will close the opened position automatically.
Hence, the NSGA-II algorithm is used to optimize the parameters of the trading rule,
including the profit-taking thresholds (PT1, PT2, PT3, and PT4), loss-cutting thresholds
(LT1, LT2, LT3, and LT4), and trading leverages (l1, l2, l3, and l4) for each transaction, which
are presented as detailed in Table 2. The parameters of the trading rule and their search
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ranges are described in Table 2, with the calculation rule for the real return Ri generated
from the i-th simulation transaction shown in Equation (14).

Returni =


li · LTi, if Trading Signal = short&LTi > TRi
li · TRi, if Trading Signal = short&LTi < TRi
0, if Trading Signal = No Trading
li · PTi, if Trading Signal = long&PTi < TRi
li · TRi, if Tranding Signal = long&PTi > TRi

(14)

4.4. Benchmark Models

To evaluate the forecasting and trading performance of our proposed approach on
rebar futures, we compared its experimental results with other well-known machine-
learning-based approaches and famous passive trading strategies, including XGBoost,
Random Forest (RF), Support Vector Machines (SVM), Artificial Neural Network (ANN),
Buy-and-Hold (BAH), and Short-and-Hold (SAH). Additionally, an integration method
called XGBoost-SMOTE is also constructed to compare with the proposed approach on
the rebar futures price prediction. A list including the proposed approach and benchmark
approaches in the experiments with their brief descriptions is displayed in Table 3. Method
1 is our proposed approach, which is designed as a multiclassification method based on the
XGBoost algorithm. Before direction prediction, as described in Section 4.2, the SMOTE
technique is employed for solving the imbalanced data problem. Next, NSGA-II is used
for optimizing the parameters of the trading rule as introduced in Section 4.3. In order
to validate the direction prediction accuracy and profitability of the proposed approach
with the application of the multiobjective optimization method, XGBoost and SMOTE
are integrated in Method 2 to forecast the movement direction and to execute simulation
trading. In particular, since there is an obvious category imbalance in the training data if
the SMOTE is not employed, Methods 3–6 are designed as binary classification models to
forecast the price-movement direction of rebar futures. If the predicted result is positive,
those methods will execute a long transaction at the next opening price. Otherwise, they
would execute a short-selling transaction if the classification result belongs to the negative
class. Method 3 is designed based on a binary XGBoost model to identify whether the
integration of SMOTE could successfully enhance the classification performance of the
classifier. Method 4 adopts a tree-based algorithm RF to construct the forecasting model.
Moreover, Methods 5 and 6 develop an SVM-based model and an ANN-based model,
respectively, which are utilized to compare the efficiency of XGBoost with those two classic
and commonly used machine learning methods for the financial time series prediction.
Note that the model hyperparameters of all methods (Methods 1–6) are optimized by the
grid search algorithm. Moreover, for the purpose of investigating whether the proposed
approach is superior to the classic passive trading strategies, BAH and SAH are also
involved (Methods 7 and 8). Furthermore, as recommended by Thomason [48], a forecasting
period of five periods could be a suitable time horizon. Thus, it is chosen in the simulation
trading for our proposed method and all benchmarks.

4.5. Evaluation Metrics

To assess the direction prediction accuracy and profitability of the proposed method,
four measures are employed in the experiments. The formulas to calculate those four
metrics are presented in Table 4.
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Table 3. A list of the proposed approach and benchmark approaches in the experiments.

No Method Description

1 XGBoost-SMOTE-NSGA-II
(Proposed method)

A multiclassification method based on an XGBoost classifier.
SMOTE is employed for balancing the samples of datasets,

while NSGA-II is integrated to optimize the parameters of the
trading rule.

2 XGBoost-SMOTE XGBoost is employed as a multiclass classifier, while SMOTE
is adopted for solving the imbalanced dataset problem.

3 XGBoost A classification method based on a binary (upward or
downward) XGBoost classifier.

4 RF A classification method based on a binary (upward or
downward) random forest classifier.

5 SVM A classification method based on a binary (upward or
downward) SVM classifier.

6 ANN A classification method based on a binary (upward or
downward) ANN classifier.

7 Buy and Hold (BAH) To execute a long transaction at the beginning, and close the
position at the end of each testing period.

8 Short and Hold (SAH) To execute a short-selling transaction at the beginning, and
close the position at the end of each testing period.

Table 4. Calculation formula of the four evaluation metrics.

Formula Evaluation Metrics Calculation Formula

1 Hit Ratio (HR ) HR = PN+NN
N

2 Accumulated Return (AR )
AR =

n
∑

i=1
l·
(
(cli+t−opi+1)

opi+1
− cost

)
× sgnϕ, sgnϕ =

 −1, ϕ ∈ [−∞, T2)
0, ϕ ∈ [T2, T3]
1, ϕ ∈ (T3,+∞]

3 Maximum Drawdown (MDD ) MDD = max
0≤i≤n

Di , Di =
max

0≤j≤i

((
ARj+1

)
−(ARi+1)

)
ARj+1

4 Sharpe Ratio (SR ) SR =
E
[

Ra−r f
]

σa

First, hit ratio (HR) calculates the correct direction prediction rate, which is generally
used to identify the classification accuracy of the proposed approach and benchmark
methods on rebar futures forecasting. Since our proposed model would not perform
direction prediction if the predicted trading signal belongs to the “No Trading” class, the
number of predictions in this range is not included in the formula. As shown in formula 1
of Table 4, N denotes the number of all prediction times, PN and NN respectively refers to
the number of correct “upward” predictions and correct “downward” predictions.

Second, accumulated return (AR) is defined and utilized to measure the profit-making
ability of simulation trading in each testing period. There are a total of three conditions for
simulating trading: (1) Suppose that if the predictor predicts that the rebar futures price is
in a rising trend, and the predicted return is larger than the level threshold for long, a “long”
position would be executed. (2) If the price movement is downward and the predicted
value is smaller than the level threshold for short, the proposed method would perform a
“short-selling” transaction in the rebar futures market. (3) The proposed method would not
execute trading simulation if the predicted return is in the range [T2, T3]. Additionally, the
profit-taking and loss-cutting thresholds are utilized in the proposed method, so that the
trading position will be automatically closed in the case that the floating return exceeds one
of those values during the position holding period. In formula 2 of Table 4, n represents
the number of periods that lasts for one quarter in each testing period; cl and op denote
the closing and opening prices of rebar futures, respectively, l means the trading leverage,
and t refers to the number of periods ahead for simulation trading. As recommended by
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Thomason [48], five-periods-ahead prediction is designed in this experiment. Additionally,
the transaction cost cost is required when the model executes a long or short transaction in
the futures market. The transaction cost includes the liquidity, execution, and slippage cost.
It is set to be 0.1% per round trip based upon an arbitrary assumption [49]. Furthermore,
sgn ϕ is a symbolic function, in which ϕ refers to the movement magnitude level.

Third, except for generating excellent prediction ability and profitability, trading risk
also exerts a fundamental influence in examining the performance of a portfolio that market
investors should pay attention to. As a commonly used risk indicator, maximum drawdown
(MDD) describes the maximum retracement magnitude of the expected return generated
by an investment portfolio over a selected period. This indicator could be used to help
the market investors understand the stability of the profits and the possibility of potential
losses of the model. As shown in formula 3 of Table 4, ARi represents the accumulated
return at the time i, ARj denotes the value of accumulated return at the time j before the
time i, and Di represents the maximum retracement magnitude of the accumulated return
at the time i.

Fourth, the Sharpe ratio (SR) was proposed by William F. Sharpe in 1994 [50], which is
also employed as one of the famous indicators for transaction risk evaluation. The Sharpe
ratio is implemented to evaluate the excess return per unit of return deviation in a portfolio,
which allows a combination of returns and risks to be comprehensively considered to
examine investment performance. The method for calculating the Sharpe ratio is described
in Table 4, in which Ra refers to the asset return, r f means the risk-free interest rate, and
σa represents the standard deviation of asset return. The one-year treasury bond interest
rates of China, which are provided by the China Bond Information website (China Bond
Information Website is https://www.chinabond.com.cn/, accessed on 1 May 2022), is
considered as the risk-free interest rate to calculate the Sharpe ratio results of each method.
Note that the period is from January 2020 to December 2020. Considering that the time
horizon of one testing period is three months, a quarter of the one-year treasury bond
interest rate is finally set to be 0.61% for calculation.

5. Results and Discussion
5.1. Results of Classifiers
5.1.1. Hit Ratio

To explore the forecasting performance of our proposed approach on the rebar futures
price, several methods described in Section 4.4, including XGBoost-SMOTE, XGBoost, SVM,
ANN, and RF, are used as the benchmark methods in the experiments. Firstly, we focus on
the hit ratio results to compare the forecasting accuracy of the proposed method and the
benchmark methods. The hit ratio results are provided in Table 5.

Table 5. Hit ratio results for rebar futures price direction forecasting.

Testing Period ANN SVM RF XGBoost XGBoost-SMOTE XGBoost-SMOTE-NSGA-II

Period 1 44.03% 44.86% 51.44% 51.03% 61.04% 61.04%
Period 2 46.53% 47.57% 50.69% 52.08% 51.03% 51.03%
Period 3 51.34% 48.92% 42.20% 45.16% 50.00% 50.00%
Period 4 50.30% 47.34% 51.48% 47.63% 53.85% 53.85%
Average 48.05% 47.17% 48.95% 48.98% 53.98% 53.98%

Among all the methods, XGBoost-SMOTE-NSGA-II achieved the best average hit
ratio result in predicting the direction movements of the rebar futures price. As shown
in Table 5, the average hit ratio of XGBoost-SMOTE-NSGA-II was about 53.98%, while
XGBoost, RF, SVM, and ANN yielded the values of 48.98%, 48.95%, 47.17%, and 48.05%,
respectively. Specifically, it was found that the average hit ratio result of XGBoost was a
slightly larger than that of RF, SVM and ANN, suggesting that the direction classification
performance of XGBoost is superior to other machine learning technologies. Compared to
that improvement, the proposed method XGBoost-SMOTE-NSGA-II obviously achieved

https://www.chinabond.com.cn/
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a superior result in terms of the average hit ratio, as well as generating the best hit ratio
results in testing periods 1 and 4. In particular, despite the better classification performance
achieved by XGBoost in testing period 2, the hit ratio results in the other three testing
periods were worse than our proposed approach. Similarly, ANN yielded a larger hit ratio
in testing period 3, while our proposed method still outperformed ANN in the other three
testing periods. It demonstrates that the integration of the SMOTE technology successfully
promoted the classifier’s prediction accuracy. In conclusion, our proposed approach has
a relatively superior forecasting ability to forecast the movement direction of the rebar
futures price.

5.1.2. Accumulated Return

As described in Section 4.5, whether the investment portfolio designed in simulation
trading could generate considerable profits is even more critical for market investors. In
Table 6, the trading return results of all methods in four quarters are reported. Note that
the two passive investment strategies, BAH and SAH, are also included in Table 6 to better
evaluate the profitability of the proposed method.

Table 6. Accumulated return results for rebar futures simulation trading.

Testing Period BAH SAH ANN SVM RF XGBoost XGBoost-SMOTE XGBoost-SMOTE-NSGA-II

Period 1 −0.087 0.085 −0.241 −0.489 −0.315 −0.091 −0.119 0.278
Period 2 0.075 −0.077 −0.290 −0.069 −0.305 0.257 −0.162 0.237
Period 3 0.002 −0.004 −0.156 −0.363 −0.817 −0.488 −0.023 0.462
Period 4 0.226 −0.228 −0.046 −0.148 0.022 0.068 −0.007 0.418
Average 0.054 −0.056 −0.183 −0.267 −0.354 −0.064 −0.078 0.349

Sum 0.216 −0.224 −0.733 −1.069 −1.415 −0.254 −0.311 1.395

From the return results shown in Table 6, the largest average return result was gen-
erated by XGBoost-SMOTE-NSGA-II, reaching approximately 0.349, which is superior to
that of other benchmark methods. Among the four single-algorithm-based models (ANN,
SVM, RF, and XGBoost), we find that although none were able to produce positive aver-
age returns, XGBoost yielded an average return of −0.064. It outperformed ANN, SVM,
and RF, which incurred losses of −0.183, −0.267, and −0.354 on rebar futures simulation
transaction, respectively. Specifically, the two traditional machine learning methods (ANN
and SVM) continuously suffered from huge losses, thus both generated negative returns
in the four testing periods. It demonstrates that it would be less effective to improve
return predictions on the rebar futures price movements by implementing a single machine
learning method. In addition, it can be observed that the method XGBoost-SMOTE still
failed to obtain a satisfactory result in terms of the average trading return, demonstrating
that solving the class imbalanced dataset problem could not lead to a significant improve-
ment on the profitability of the trading rule. Hence, to facilitate trading performance, the
optimization of the trading rule is employed in our proposed method.

By comparing the results of BAH and SAH with our proposed approach, it is found
that the SAH strategy produced negative returns in the last three testing periods, resulting
in an average loss of −0.056. For the BAH, despite yielding a positive average return, the
yield is significantly worse than that of our proposed method. Besides the best average
return, XGBoost-SMOTE-NSGA-II achieved return results of 0.278, 0.237, 0.462, and 0.418 in
the four testing periods, which are much better than other benchmark methods. According
to the return results and analysis mentioned above, it should be noted that the proposed
approach achieved optimal profitability among all benchmark methods after considering
the NSGA-II method. Therefore, the effectiveness of the proposed method in rebar futures
simulation trading has been further verified.

To verify whether the profitability of the proposed method XGBoost-SMOTE-NSGA-
II was significantly better than that of the benchmark methods, the Friedman test [51]
was employed to investigate whether the accumulated return results achieved by the
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proposed method and the benchmark methods were significantly different. Table 7 reports
the Friedman test results on the accumulated return results, from which we find that the
conclusion is significant at the 0.05 level for one-tailed test. It demonstrates that the method
proposed in this study significantly outperformed the benchmark methods in terms of
profit-making ability.

Table 7. Friedman test results on the accumulated return results for XGBoost-SMOTE-NSGA-II
against the benchmark methods.

Compared Models Significant Level α = 0.05

XGBoost-SMOTE-NSGA-II versus XGBoost-SMOTE H0: n1 = n2 = n3 = n4 = n5 = n6 = n7
XGBoost-SMOTE-NSGA-II versus XGBoost F = 17.17

XGBoost-SMOTE-NSGA-II versus RF p = 0.02 (reject H0)
XGBoost-SMOTE-NSGA-II versus SVM
XGBoost-SMOTE-NSGA-II versus ANN
XGBoost-SMOTE-NSGA-II versus SAH
XGBoost-SMOTE-NSGA-II versus BAH

Furthermore, Figure 4 shows the accumulated return curves generated by the proposed
method XGBoost-SMOTE-NSGA-II and other benchmarks and the closing price of rebar
futures in the whole testing period. The horizontal axis represents the experimental date
from January 2020 to December 2020. The left vertical axis of Figure 4 indicates the value
of accumulated returns, while the price movements of the rebar futures plotted by the
brown curve are displayed on the right vertical axis. According to the experimental results,
XGBoost-SMOTE-NSGA-II performed at 31, 47, 42, and 47 times the direction predictions
and transactions, respectively, and the black marks “L” and “S” above the red curve in
Figure 4 indicate that the proposed method executed a “long-selling” and “short-selling”
transaction at this period.
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As shown in Figure 4, it could be found that the proposed method yielded the largest
accumulated return over the whole testing period, with a one-year return of 1.395 at the end
of December 2020. For comparison, the accumulated returns of the benchmarks, including
BAH, SAH, ANN, SVM, RF, XGBoost, and XGBoost-SMOTE, were about 0.216, −0.224,
−0.733, −1.069, −1.415, −0.254, and −0.311, respectively. It is observed that there were no
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obvious returns produced by BAH and SAH during the entire testing period. Compared
to our proposed approach, the accumulated returns of these two passive strategies were
smaller by about 1.179 and 1.619 at the end of the testing period. In addition, for the
machine-learning-based benchmark methods ANN, SVM, RF, XGBoost, and XGBoost-
SMOTE, each suffered from several losses in the four testing periods, which ultimately led
to less satisfactory return results. In contrast, the process of positive return accumulated
by our proposed method was steadier than other benchmarks in rebar futures market
trading, with a relatively large retracement only occurring in March and April 2020. It
demonstrates that the proposed method has superior stability and profitability for achieving
an outstanding trading performance, which could be utilized as a reliable alternative for
rebar futures transactions.

5.1.3. Trading Result Results

In Table 8, we show the maximum drawdown results, while the Sharpe ratio results
of the proposed method and benchmarks are reported in Table 9. The primary objective
of adopting those two indicators is to measure the transaction risks of each method in
determining the investment portfolio.

Table 8. Maximum drawdown results of all methods for simulation trading.

Testing Period BAH SAH ANN SVM RF XGBoost XGBoost-SMOTE XGBoost-SMOTE-NSGA-II

Period 1 0.107 0.085 0.301 0.489 0.417 0.157 0.179 0.083
Period 2 0.044 0.147 0.328 0.199 0.367 0.121 0.257 0.175
Period 3 0.081 0.083 0.304 0.431 0.837 0.523 0.092 0.128
Period 4 0.086 0.286 0.274 0.351 0.201 0.224 0.225 0.154
Average 0.080 0.150 0.302 0.368 0.456 0.256 0.188 0.135
Overall 0.134 0.367 0.838 1.241 1.575 0.587 0.491 0.146

Table 9. Sharpe ratio results of all methods for simulation trading.

BAH SAH ANN SVM

Excess Return 0.0479 −0.0621 −0.1894 −0.2733
Standard
Deviation 0.1147 0.1147 0.0926 0.1672

Sharpe Ratio 0.4176 −0.5414 −2.0454 −1.6346

RF XGBoost XGBoost-SMOTE XGBoost-SMOTE-NSGA-II

−0.3599 −0.0696 −0.0839 0.3427
0.2999 0.2743 0.0648 0.0937
−1.2001 −0.2537 −1.2948 3.6574

The maximum drawdown results in Table 8 show that BAH yielded an average maxi-
mum drawdown result of 0.080 and an overall maximum drawdown result of 0.134 over
four testing periods, which outperformed our proposed approach and other benchmarks.
Nevertheless, as we discussed in Section 5.1.2, although BAH experienced no obvious re-
tracement, the profit-making ability that market traders give much attention to is markedly
worse than the proposed XGBoost-SMOTE-NSGA-II method. Similar conclusions can
be drawn from the maximum drawdown results of SAH. Except for BAH and SAH, the
proposed method generated an overall maximum drawdown result of 0.146 over the
one-year testing period, while other benchmark methods ANN, SVM, RF, XGBoost, and
XGBoost-SMOTE, respectively, generated values of about 0.838, 1.241, 1.575, 0.587, and
0.491, which were worse than the proposed method. Furthermore, although the proposed
method obtained a larger maximum drawdown result than the XGBoost-based benchmark
in testing period 2, it produced better results than the benchmarks in the other three testing
periods. Experimental results demonstrate that the proposed method yielded a relatively
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stable and excellent return successfully, and the proposed method was remarkably superior
to the other machine-learning-based methods, which suffered from large retracements.

Furthermore, as we mentioned in Section 4.5, the risk-free interest rate set at 0.61% is
used for the Sharpe ratio calculation. In Table 9, we report the excess returns and Sharpe
ratio results of the benchmark methods and proposed method.

In the trading simulation over the whole testing period of 2020, the proposed method
generated the best Sharpe ratio result (3.6574), which was obviously superior to all the other
benchmark methods. As for the trading strategy BAH, its excess return was about 0.0479,
ultimately leading to a very small positive Sharpe ratio value of 0.4176. Additionally, it
could be noticed that the Sharpe ratio of SAH, ANN, SVM, RF, XGBoost, and XGBoost-
SMOTE were all negative with the values of −0.5414, −2.0454, −1.6346, −1.2001, −0.2537,
and−1.2948, respectively, demonstrating that the integration of the parameter optimization
method NSGA-II successfully promoted the profitability as well as lowering the volatility
for the proposed method. The excellent performance indicates that the proposed method
could be adopted as an effective approach for movement direction prediction and high-
frequency trading of the rebar futures.

5.2. Feature Importance Results

To enhance the model interpretability, the influential indicators for the rebar futures
price direction prediction can be explored by the ranking of feature importance derived
from XGBoost [52]. Figure 5 shows the relative importance scores of the top ten most
essential features in four training periods. A larger importance score indicates that the
corresponding input variable is more important. We observe that among the top ten
features, the features with the largest relative importance scores in the first training period
primarily belong to the return and trading volume change rate. Additionally, in the next
three training periods, the importance of trading volume change rate in the top ten most
essential features was gradually increased, indicating that trading volume consistently
exerts a significant influence. It should be highlighted in the direction prediction of the
rebar futures price. In contrast, the decreasing proportion of the open interest change rate
showed a lower necessity for the forecasting model. In addition, trading volume change
rates with a five-period lag and an eight-period lag consistently ranked in the top ten
relative importance scores over the four training periods, which demonstrate that these
two features could be the most important elements in predicting the rebar futures price
movement. Thus, the results of feature importance ranking are of practical significance
for improving the interpretability of the model and identifying influential features for
market participants.

5.3. Results of LIME

In the proposed method, the LIME algorithm is applied to interpret how the XGBoost
made multiclassification of the rebar futures price direction. Since the proposed method
produced the largest accumulated return during the third period, the LIME results within
the third period are presented and discussed. The effects of each variable on the multiclas-
sification results for the sample in the third period are illustrated in Figure 6. The subplots
(a)/(b)/(c)/(d) represent the prediction results for label = 1/2/4/5, respectively. Note that
label = 3 indicates no trading. In addition, these labels correspond to four trading signals.
The horizontal axis of each subplot contains the ten cases we selected in the testing period,
while the vertical axis of each subplot displays the influence of features on the prediction
results. Additionally, a red square means that the feature has a negative influence, while a
blue one reflects a positive influence. A deeper color means that it is more influential of that
feature. Note that we focus on the top eight most important features out of all features. As
we explained in Section 4.1, Ri (Returni), Ti (TVCRi), and Ii (OICRi) respectively, denote
the return at time i, trading volume change rate at time i, and open interest change rate
with lag length i. For example, “I02” represents the open interest change rate with a lag of
two periods.
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In Figure 6a, it can be observed that for case 1, the top eight most influential features
for the prediction result “label = 1” are “I01”, “I03”, “R02”, “R07”, “R08”, “T02”, “T04”,
and “T09”. Among them, when feature R07 is larger than 0.558 and feature R08 exceeds
to 0.559, they both have a positive influence on the classification results. When feature
“I01” is larger than 0.737 and less than 0.777, feature “I03” is larger than 0.737 and less
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than 0.778, feature “R02” is larger than 0.491 and less than “0.563”, feature “T02” exceeds
0.01535, feature “T04” exceeds 0.00159, and feature “T09” exceeds 0.01508, then they all
have negative effects on the prediction results. Moreover, it is obvious that features “T02”
and “T09” exert greater influence on the results in the range compared to other features
with negative influence. Similar conclusions can be drawn from other cases. In general, for
the result “label = 1”, there is a great negative influence when feature “I04” is larger than
0.776 and “T02” is larger than 0.01535. Additionally, there is a significant positive effect as
feature “R07” exceeds 0.558 and “R08” exceeds 0.559; Similarly, for “label = 2”, there is a
significant negative effect as feature “T01” exceeds 0.01534 and a significant positive effect
when feature “T09” exceeds 0.01508; for “label = 4”, there is a significant positive effect as
feature “R05” exceeds 0.559; for “label = 5”, when feature “I03” exceeds 0.778 and features
“I04” and “I05” exceed 0.776, there is a significant positive effect on the classification results.
On the contrary, there is a significant negative effect when “R05” exceeds 0.559. The model
explanation using LIME effectively enhanced the interpretability of the proposed approach.
It provides market investors and regulators with a powerful tool to better understand how
the proposed method makes predictions and trading.

6. Conclusions

In this research, a novel integration approach based on a combination of XGBoost,
SMOTE, and NSGA-II is developed to predict and trade on rebar futures. In the proposed
model, the training datasets of minority classes are oversampled by the SMOTE technique
to overcome the problem of the class imbalance, and XGBoost is adopted for the rebar
futures price direction prediction using the oversampled training data. Then, NSGA-
II is employed to search for the Pareto optimal solution of the trading rule parameters
by efficiently allocating accumulated returns and maximum drawdown. The proposed
approach produced an average hit ratio of 53.98% and an average return of 34.9% over the
four testing periods. The proposed method also performed well in terms of the accumulated
return of the entire one-year simulation trading with the value of 1.395. Furthermore,
the maximum drawdown and Sharpe ratio of the proposed method reached 0.135 and
3.6574, respectively, which were superior to all the benchmark methods. Based on the
experimental results comparison of the proposed method and benchmarks, it demonstrates
that the proposed method XGBoost-SMOTE-NSGA-II successfully enhances the direction
prediction accuracy and profitability, and generates the best return–risk ratio results among
all the investigated methods. In summary, according to the outstanding direction prediction
and simulation trading performances, it demonstrates that the proposed XGBoost-SMOTE-
NSGA-II method can be utilized as an effective decision-making system for both investors
and regulators engaged in the rebar futures market.

In this paper, we propose a high-frequency direction prediction and simulation trading
model for rebar futures that combines the XGBoost, SMOTE and NSGA-II algorithms. The
LIME algorithm is adopted to explain the prediction results of the proposed method. There
are some research directions to be further expanded. For instance, in this research, historical
transaction data from ten periods are utilized for five periods-ahead movement prediction,
different time frames of historical data could be further considered as input features
for prediction performance comparison. Moreover, this research develops an integrated
approach based on the historical price data of rebar futures for direction forecasting.
However, the sentiment and behavior of investors in the futures market could have an
impact on the movement of futures prices. Therefore, other researchers may take into
account the influence of investors’ sentiment features to improve the model prediction and
trading accuracy. Moreover, scholars could employ other machine-learning algorithms
as the multiclassification models, such as Random Forest [53], CatBoost, and LightGBM.
Moreover, scholars can also try other methods to solve the imbalance sample problem,
such as the Generative Adversarial Networks (GAN) [54], LoRAS [55], or the improved
algorithms of SMOTE [56].
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