
Citation: leech, S.; Dunne, J.; Malone,

D. A Framework to Model Bursty

Electronic Data Interchange

Messages for Queueing Systems.

Future Internet 2022, 14, 149. https://

doi.org/10.3390/fi14050149

Academic Editors: Dmitry Korzun,

Sergey Balandin and Anatoly

Voronin

Received: 7 April 2022

Accepted: 5 May 2022

Published: 12 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Article

A Framework to Model Bursty Electronic Data Interchange
Messages for Queueing Systems †

Sonya Leech 1,∗,‡ , Jonathan Dunne 2,‡ and David Malone 1

1 Department of Mathematics and Statistics and the Hamilton Institute, Maynooth University,
R51 A021 Co. Kildare, Ireland; david.malone@mu.ie

2 AI Applications, IBM Dublin Technology Campus, Damastown Industrial Estate,
Mulhuddart Dublin 15, Ireland; Jonathan_Dunne@ie.ibm.com

* Correspondence: sonya.leech.2021@mumail.ie
† This paper is an extended version of our paper published in 2021 30th Conference of Open Innovations

Association FRUCT.
‡ These authors contributed equally to this work.

Abstract: Within a supply chain organisation, where millions of messages are processed, reliability
and performance of message throughput are important. Problems can occur with the ingestion
of messages; if they arrive more quickly than they can be processed, they can cause queue con-
gestion. This paper models data interchange (EDI) messages. We sought to understand how best
DevOps should model these messages for performance testing and how best to apply smart EDI
content awareness that enhance the realms of Ambient Intelligence (Aml) with a Business-to busi-
ness (B2B) supply chain organisation. We considered key performance indicators (KPI) for over- or
under-utilisation of these queueing systems. We modelled message service and inter-arrival times,
partitioned data along various axes to facilitate statistical modelling and used continuous parametric
and non-parametric techniques. Our results include the best fit for parametric and non-parametric
techniques. We noted that a one-size-fits-all model is inappropriate for this heavy-tailed enterprise
dataset. Our results showed that parametric distribution models were suitable for modelling the
distribution’s tail, whilst non-parametric kernel density estimation models were better suited for
modelling the head of a distribution. Depending on how we partitioned our data along the axes, our
data suffer from quantisation noise.

Keywords: EDI; performance; parametric; distribution modelling; KDE; supply chain; quantization;
transaction modelling; B2B

1. Introduction

As new businesses emerge and existing businesses expand, there is a heavy reliance
on the need to keep costs low and maximise profits. Queueing systems play a fundamental
role that helps businesses within the supply chain domain reduce cost by supporting
high availability, resilient connectivity and operational efficiency. Further costs can be
achieved by adopting smartness to these existing queueing applications and Supply Chain
environments that will advance the Intelligence Age of these systems [1].

When demand exceeds supply, queueing systems provide a more streamlined expe-
rience by preventing job loss and supporting queue and job prioritisation. However, like
all computing systems, queues are not immune to performance and reliability problems,
including latency, bottlenecks, scalability, and the challenges faced with the unpredictable
arrival of incoming messages [2]. Real-word queueing systems also have challenges not
encountered by abstract models, such as re-processing failed jobs and malformed messages.

Queueing systems can support the effective passing of business-to-business (B2B)
transactions through a supply chain network. With the demand for digital having gone

Future Internet 2022, 14, 149. https://doi.org/10.3390/fi14050149 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi14050149
https://doi.org/10.3390/fi14050149
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0003-1728-4567
https://doi.org/10.3390/fi14050149
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi14050149?type=check_update&version=2

Future Internet 2022, 14, 149 2 of 32

global, there is an increased need for digitised environments that can support these B2B
transactions alongside their associated paperless contracts and traceability of goods.

Millions of B2B messages can be ingested by a queueing application. When modelling
these messages, it is imperative that we can capture the real-time aspects, including the
temporal ordering of message arrivals, which was first studied by Lampart [3]. Rounding
or truncating an event’s timestamp at the time of writing to a systems log file or software
application can obfuscate the exact ordering of events, cause quantisation noise and lead to
challenges fitting particular distributions [4].

Stress testing queueing systems is crucial to uncovering functional and performance
problems in large-scale systems. The messages order, volume, pace, and dependencies are
critical for distribution modelling. Understanding these features is important before apply-
ing queueing models, such as the GI/GI/1 model, which assumes message independence
of the inter-arrival and service times [5]. If messages are dependent whereby the service
times are dependent on the messages’ inter-arrival times, then a G/G/1, in its most general
sense, might be more appropriate.

For any queueing system, different products are always looking for ways to make
product improvements. IBM has developed “Uniform Clusters”. It can automatically create
connection channels and support horizontal scaling across multiple matching queues [6].
It does, however, have some limitations. Load balancing problems may occur if there are
more queue managers than applications [7].

Another application that IBM has developed for MQ is “Streaming Queues,” which
allows copying every message to a second queue. If the customer wants a carbon copy of
their data for later retrieval, it can be used [8].

In Apache Kafka, a broker may be alive but unable to establish a new connection
due to a failed DNS resolution which may be hard to detect. In the latest 3.1 release, new
functionality has been implemented to help identify this type of problem by including
KIP-748 [9].

“Pre-staging messages at a remote location” is an innovative patent that, if applied,
supports remotely storing a vast number of messages in a data storage system that will
form a message queue. Many queue managers can then access these messages [10].

1.1. Background and Previous Work

This paper extends the results from our conference paper [11]. In this subsection, we
give the background on queueing systems used for EDI-type messages, and review some
related literature.

1.1.1. Performance of Message Queueing Systems

LinkedIn wanted to move away from batch-oriented systems towards real-time
publish–subscribe systems. Their requirement was a system capable of processing 10 billion
messages per day, with demand peaking at 172,000 messages per second. Initially, they
considered ActiveMQ, but decided to develop Kafka [12], which was subsequently made
open source.

The performance of Kafka was studied, and the impact of tuning specific parameters
was considered [13]. The study found that performance was variable, depending on both
system infrastructure and messages processed. A correlation between packet sizes and
sending intervals was also observed.

The performance of the IBM MQ JMS Server was also undertaken [14]. This study
considered the study of the capacity of the system, considering filters, message sizes and
number of publishers, subscribers and topics. Message size influenced server performance,
in terms of both message and data throughput. Likewise, message replication grade and
the number of filters used also influenced server capacity. On the other hand, the number
of topics had limited impact on capacity.

Future Internet 2022, 14, 149 3 of 32

1.1.2. EDI Messaging

EDI consists of five critical components:

1. Message specification;
2. Syntax and format;
3. Partner agreements;
4. Timing;
5. Addressing.

We make use of some subsidiary components under the message specification, syntax
and format components, including a message’s file size, source file size, bytes, maps, etc.,
from the attached XML documents. We also take into account a message’s action and
category. We use these as a novel approach to identify bursty and non-bursty messages.
We also use these to partition the dataset to facilitate modelling of our queueing system.

1.1.3. EDI Deployments

When looking at a supply chain organisation, we pay particular attention to B2B
messages, also known as EDI messages. We note that EDI messages electronically support
the trading of transactions between a customer and its trading partner. EDI messaging
allows customers and trading partners to trade electronically using digital signatures. Some
of the beneficial features of EDI include message integrity, confidentiality, interoperability,
non-repudiation of a contract and traceability of a transaction [15]. Deploying EDI in B2B
organisations can save up to 15 min per invoice transaction query between a supplier
and its trading partner [16]. EDI was born in the UK, and its expected growth in 1991
was perceived to grow at a sigmoidal rate [17]. EDI is deployed in many organisations,
with some examples shown in Table 1 [17].

Our research focuses on modelling EDI messages through queueing systems. EDI
messages are bursty. One incoming message may result in many messages being sent to a
queue at once. These bursty messages may cause bottlenecks in a queueing system, and so
understanding them is useful for stress testing and simulating queue environments. When
modelling these messages, it is important to identify what characteristics determine whether
an EDI message will be bursty. For example, when a customer sends in 100 transactions,
are you stress testing a queueing system for 100 individual transactions or a burst of
those transactions? The system may need to be ready for a single transaction resulting in
hundreds of messages ingested by a queue.

Table 1. Industries using EDI.

Standard Industry

ANA Food, Retail, distribution
TF2 Health Service

FLEETNET Fleet Car Industry
EDISHIP Shipping/Forwarding

PHARMEDI Pharmaceutical
EDICON Construction
EDICUG Components

BEDIS Book Publishing Libraries
PIPE Paper/Printing
EDIA Banking, Transport

ODETTE Automotive

We found that the Department of Defence developed and advanced system architec-
ture to support EDI messages based on different modelling and simulation techniques.
This was motivated by ever-growing transaction sizes and the inter-twining of many appli-
cations. They used modelling and simulation techniques to support the decision making of
their advanced system architecture [15].

Future Internet 2022, 14, 149 4 of 32

EDI implementations have also been studied. For example, one study investigated
if the adoption of EDI improves customer service [18]. The main factors that influence a
companies decision to implement EDI were also considered [19]. Their findings indicate
that companies will adopt EDI depending on whether their business partners are doing so.
A study of EDI and the motor trade industry aimed to partly examine the extent to which
EDI was used in the motor carrier industry and potential problems that might hinder the
use of EDI for these motor carriers [20].

We note that although EDI has been researched in different areas, none of these studies
addresses EDI implementation regarding simulation and performance testing, specifically
around queueing systems and modelling service and inter-arrival times. We note that these
EDI messages suffer from burstiness. We found little evidence of research around the field
of being able to identify using different elements of an EDI message of a bursty versus a
non-bursty message. We believe this is a gap in the research that should be addressed.

1.1.4. Industry 4.0

Intelligent advances within the IT domain can benefit a Supply Chain network. In-
dustry 4.0 is driven by IT advances like smart factories using smart technologies [21]. In
the field of B2B transactions, the concept of Industry 4.0 plays a vital role in the automatic
exchange of information between different business entities. Offering full traceability and
transparency between suppliers, manufacturers, and customers is essential for streamlined
autonomous services within a Supply Chain. The Supply Chain Industry plays a pivotal
role in the transportation and traceability of goods. Adopting Industry 4.0 can have many
additional benefits, like a 53% chance of order fulfilment opportunities and a 71% of oppor-
tunities in procurement [22]. Other benefits include the flexibility and scalability of Supply
Chain operating models that extend upon Supply Chain productivity [23]. Operational
Research algorithm’s using the Supply Chain Information System via the cloud can ad-
dress problems relating to the routing of transport and the scheduling of deliveries within
cities [24]. A lack of standards around IT security can sway a company from adopting
the 4.0 concept. A taxonomy of advantages and disadvantages of Industry 4.0 and the
Supply Chain network has been researched [25]. Frameworks have been developed to help
companies assess if they are ready to adopt Industry 4.0 supply chains [26].

1.1.5. AmI, IoT and Supply Chains

Advances can be made to the Supply Chain organisation by adopting it into a smart
space. Smart spaces allow for a connection of devices to share resources and access to
all information on a distributed system [27]. Smart spaces are deployed in an Internet
of Things (IoT) environment. Implementing sensors in the development of smart spaces
allows for the continuous monitoring of the characteristics of the smart space. Once the
sensors have collected enough data from the smart space, different actions can be taken
which can automate the services, like automating the scaling of containers based on over or
under-provision of resources from the analysis of the smart space [28]. Smart spaces deliver
a value-added service, which can only further improve the efficiency and effectiveness of a
Supply Chain [1].

AmI is a set of interconnecting devices sharing information about users and their
environments using intelligence. AmI applies reasoning to the collected data and makes
decisions that will benefit users in the environment [29]. AmI services can be developed in
a smart space [1]. By applying context awareness to the data, AmI is responsive, sensitive
and adaptive to the user. Applying context awareness to these EDI messages can build an
intelligent reasoning model that supports queueing systems in a Supply Chain organisation.
The reasoning model can act as a decision point when stress testing an environment.

Different AmI services are being developed in smart space environments. Smart-M3 is
one such service. Smart-M3 is an information-sharing open-source platform which was
developed in 2006 by NOKIA and is being further advanced by different universities [1].
The Smart-M3 platform provides a shared view of dynamic knowledge and services in

Future Internet 2022, 14, 149 5 of 32

a ubiquitous computing environment within distributed applications. Two components
of M-3 are a semantic information broker (SIB) and knowledge processor (KP) [30]. Fog
computing was developed to support smart space applications. It integrates resources at
edge devices and cloud platforms. Where low latency is required in a distributed smart
space application, Fog Computing is important. Fog computing uses the sense-process-
actuate model. Once streaming data is generated from the sensing device, the fog device
subscribes to and processes the data. The processed data is then translated into actions and
sent to actuators [31]. In B2B systems where customers need near-real-time information
about their transactions, latency is an important metric. A Supply Chain organisation
would benefit from Fog Computing.

With smart spaces being an important factor for AmI in an IoT environment, one
needs to be able to describe all the sensors and devices connected to a smart space. Peer-
to-Peer (P2P) network models are one such solution. Every sensor or device needs to be
represented in some way. Ref. [32] proposes a P2P model that can virtualise physical objects
by representing them as a network of interacting information objects in the smart space.

1.2. Paper Summary

This paper proposes a framework that DevOps can leverage, allowing simulation for
performance testing by modelling inter-arrival and service times. We specifically apply
different methodologies to the various attributes of an EDI message.

1. We look to uncover whether our queueing system suffers from malformed messages.
2. We attempt to identify if a message has interdependencies.
3. We seek to establish different ways of partitioning our heavy-tailed dataset (e.g., into a

head and tail) to support distribution modelling.
4. We look for evidence of quantisation noise in the events timestamp.

We believe that this low-level modelling of EDI messages has not been investigated
before and will strengthen performance testing for supply chain organisations. Our research
can also influence the adoption of Industry 4.0 within the supply chain organisation for
prediction modelling. DevOps could use the G/G/1 queue to model EDI heterogeneous
messages inter-arrival and service times. This study consists of EDI event data from a
large enterprise dataset. The efficient use of AmI and IoT within the Supply Chain will be
contingent on the prompt processing of EDI messaging, which we consider in this paper.

2. Materials and Methods

Within a supply chain network, many inter-twined applications support EDI message traversal
within a B2B network. Figure 1 is a representation of the B2B architecture that we investigated.

From the figure, an inbound message can come in from multiple inbound protocols,
such as FTP, HTTP, and SAP. Once the messages arrive via the inbound protocol, the mes-
sage has the potential to pass through six B2B queueing entities (shown in blue) via the
B2B rules engine and the B2B dispatcher. The rule engine lists associate rules related to
each map associated with a message. The rule indicates steps that a message needs to take
along its path. The dispatcher then routes the message based on the rule. Given the many
possible protocols, we chose a select few for demonstration purposes. Our research focuses
on the “Translation Service”, coloured green.

Future Internet 2022, 14, 149 6 of 32

FTP

HTTP

SAP

Trading
Partners

B2B Rules Engine

B2B Dispatcher

Customer UI Reporting Database

Outbound
Service B

Outbound
Service A

Translation
Service

Service A

B2B Configuration Customer Tracking UI

B2B
Queue

B2B
Queue

B2B
Queue

B2B
Queue

B2B
Queue

B2B
Queue

Supply Chain Architecture
Inbound Protocols

Figure 1. Supply chain network architecture.

The “Translation Service” transforms a message. For example, an electronic data
interchange for administration, commerce and transport (EDIFACT) message could be
converted to XML format [33]. Figure 2 is an example of an EDIFACT message that would
be transformed into XML. Once transformed, the outbound service then routes the message
out of the network.

Figure 2. EDIFACT message.

We briefly explore the content of the message, showing some of the fields used in the
lines of the EDIFACT message.

1. UNB Segment: Contains the message header. It forms the envelope of the message.
2. UNH Segment: the message header where the actual message is located. INVOIC

indicates that the message is an invoice. The letter “D” stands for draft. “97” is the
year in which a change was made to this message, and ”A” means that the message is
in the first half of the year 1997.

Future Internet 2022, 14, 149 7 of 32

3. BGM Segment: Contains the document message’s name, number, and code. Code 9
relates to the initial transmission related to a transaction.

4. DTM Segment: DTM is the date, time and period. Code 137 is when the message was
issued. Code 102 is the calendar period: CCYYMMDD.

5. NAD Segment: Contains a name and address.
6. PRI Segment: Price details. The code AAA is the net price, including allowances

and charges.

As our research is centred around the transactional modelling of queueing systems, it
is important to understand the life journey of a message and how frequently it is serviced
by queueing entities. As an example, we identified the path that a message takes from start
to finish (see Figure 3). We observed that the message first comes into the system from an
inbound protocol called SAP (denoted by the green coloured entity). The “B2B Dispatcher”,
coloured purple, picks the message up and passes it through three different queues to be
received by the “Translation Service”, coloured blue. The message splits into several child
messages. The “Translation Service” transforms the message, passing the message through
the relevant queues, whilst a copy of the message is sent to the B2B reporting queue, where
the customer can see near real-time the status of their message. The “B2B Dispatcher” will
then pick the message from the queue and pass it to the outgoing mailbox, coloured orange.

Figure 3. Message traversal through the supply chain network.

Observe that the queueing entities serviced this single message 19 times. When a
message is being serviced by the “Translation Service”, the “Translation Service” sends a
command message to the CMD Queue (“Queue 7”) and the data of the message to the Data
Queue (“Queue 8”). Every message is associated with a CMD and data queue entry. Our
research focuses on “Queue 7”, which is coloured black. When initially analysed, “Queue 8”
displayed similar results to that of “Queue 7”, leading us to focus on one of the two queues.

Future Internet 2022, 14, 149 8 of 32

We can observe from the image the timestamp of when the message traversed along each
path of its life journey.

Our enterprise dataset consisted of log files that were both structured and unstructured.
The supply chain organization processes, on average, around two million messages per
day, and we have around 830 customers within our dataset. In an initial inspection of the
data, we observed an extended time when the number of messages queued was always
bigger than zero and growing. We termed this period as a busy period. Anything outside
of this condition was classified as a normal period. We analysed a 12.5 h normal period.
We wanted to focus our efforts on how a system behaves under normal conditions before
investigating a busy period. Table 2 shows a brief summary of both our busy and normal
periods and the number of messages per period.

The supply chain organisation processed just over one million messages between busy
and normal periods. When we analysed the service and inter-arrival times, we noted that
the average processing time was 0.04 s, which means that, on average, the messages were
arriving at the same rate at which they were being processed.

Table 2. Translation data different time periods.

Period Start Time End Time Messages Mean ST (s) Mean IAT (s)

Normal 12 AM 12 PM 984,183 0.04 0.04
Busy 12:50 PM 1:29 PM 52,755 0.04 0.04

From the log dataset, we need to establish how we retrieve the relevant information
for transactional modelling. Section 2.1 gives an overview of how we will accomplish this
via our proposed framework.

2.1. Framework

When modelling EDI messages, the modeller is faced with identifying the best features
to support their model requirements. When trawling through both structured and unstruc-
tured log data, millions of lines of text can become quite daunting—one message alone can
have thousands of lines written to the many log files spread over different servers.

Here, we propose our framework that includes feature identification and feature
classification that will support the modelling of EDI messages. Our framework can be used
as a guide for the following:

1. Identifying data that are useful to understand queueing systems. In particular, we
analysed file sizes, source file sizes, mode, reference IDs, map names, service and
inter-arrival times. We also used categorical data from a queueing systems ticketing
system to identify current queueing problem areas.

2. In addition, identifying attributes that may be useful for partitioning data, either indi-
vidually or in combination, even if these attributes may not have a direct influence on
system performance.

3. Also consider partitioning based on ranges of data values (e.g., splitting the data into a
head/tail, where application-specific values might be confined to a particular region).

4. Model the data against a range of distributions, using different transformations.
5. If the modelling step is unsuccessful, partitioning the data may give insight into the

challenges for parametric modelling or offer successes in terms of modelling. Similar
partitioning can be applied to understand the correlation.

2.1.1. Feature: Identification–Selection

We attempt to identify potential features in two ways. Firstly, through the identification
of keywords within logging sentences, and secondly, through the traversal of the XML
schemas of the EDI messages.

Future Internet 2022, 14, 149 9 of 32

2.1.2. Feature Classification

As a message can have many associated attributes, we will build out a classification
model built from a taxonomy of message attributes. The purpose of the model is to
understand the different layers of message attributes. These attributes and layers can
support model requirements. The classification and taxonomy facilitate the following:

1. The taxonomy helps uncover if any message attributes influence a queueing system’s
service times or inter-arrival times.

2. We can identify whether these attributes contribute to message dependence or mes-
sage interdependence.

3. It seeks to establish whether different layerings uncover or remove correlation.
4. We attempt to identify the best ways to fit a heavy-tailed dataset to a parametric or

non-parametric distribution.

Once we have parsed and classified the data, we can use these to simulate message
behaviour for stress testing. The classification model helps identify the shape of the data for
parametric and non-parametric modelling. It allows us to partition the data to investigate
correlation and recognise message interdependence within the dataset. In Section 2.2,
modelling describes the methods of the different techniques we applied.

2.2. Modelling

Using the features selected and the classification model defined, we seek to fit our data
to parametric and non-parametric distributions using both the whole data set and subsets
of it. We also seek to understand correlation in the data, which would be a requirement for
full modelling of the queueing system. We also look to identify message interdependence.

We now explore the methods for parametric modelling in Section 2.2.1.

2.2.1. Parametric Modelling

We consider modelling service and inter-arrival times, using the different possible
combinations of the classification model. Service and inter-arrival times are useful for
modelling queueing systems. We note that the majority of our focus was on service times.
We identified a range of possible continuous distributions and used Tukey’s ladder of
power transformations on the data. Table 3 shows the list of transformations that we will
apply to our dataset. Transforming the data can help adjust the shape of the data to
make them more closely match a distribution (e.g., transforming a skew distribution into
something close to a normal). Per the later rows in Table 3, we applied multiple combined
log and square root transformations. When applying log transformations, we noted that
we had to apply a constant value to our dataset due to the small values in our service and
inter-arrival times, which could become negative when log transformed.

When modelling data, different distribution types exist, which are broadly categorised
into continuous and discrete distributions. Continuous distributions are suitable for time-
series data where they can take a range of values within a time frame. Discrete distributions
are suitable for count data and can only take integer values. Table 4 lists a list of contin-
uous distributions that we hope may prove suitable for modelling our interarrival and
service time data. In the past, distributions have proven suitable for different datasets.
An Anderson–Darling (AD) goodness-of-fit test (GoF) is used on each of the parametric
distributions defined in Table 4.

If our dataset does not fit a parametric distribution model, we apply a non-parametric
distribution model to our data as per Section 2.2.2.

Table 3. Data transformations.

Transformation-Log Transformation-Sqrt Transformation-Exp Transformation-Cube

Log() Sqrt() Exp() Cube()
Log(Log) Sqrt(Exp)
Sqrt(Log)

Future Internet 2022, 14, 149 10 of 32

Table 4. Parametric distributions.

Normal Log Log–Logistic Logistic
Cauchy Gamma Burr Inverse Burr

Exponential Beta Weibull Pareto
Uniform

2.2.2. Non-Parametric Modelling

Kernel density estimation (KDE) is a non-parametric approach that can sometimes be
useful when modelling heavy-tailed data. We use Silvermans rule of thumb, Sheather and
Jones, biased cross-validation, unbiased cross-validation, and direct plug-in methods for
the bandwidths.

2.2.3. Message Interdependence

Interdependence is the mutual relationship between two variables. It is when both
variables rely on each other. We seek to identify message interdependence from the
classification model. It is essential to understand this from a queueing perspective, as one
would need to know the order of messages and which, if any, messages are dependent
on other messages. For example, if two messages come into the system, where the first
message is a parent message, and the subsequent message is a child message, unravelling
this information is key for stress testing a system. The service times may depend on
the arrival times of the subsequent message or messages. When applying simulation
techniques, a deciding factor would be how to handle these parent and child messages
and what queueing model would be the best approach, such as a G/G/1 queue model.
We attempt to understand if this parent–child relationship exists within the dataset using
the classification model.

2.3. Queueing Problems

It is important to understand where problems exist within queueing systems. We ac-
cessed a database of support tickets relating to the queueing system to understand this.
Many of these tickets had been classified by the DevOps team, and we used these to get a
sense of the team’s concerns.

Message re-processing can have an impact on the queueing system. Messages can
be re-processed if the content within the message is bad or if the message has formatting
errors. We attempt to identify whether messages are re-processed in the system by looking
at the unique ids of each message.

We note from Figure 3 the complex traversal of a message through the supply chain
network. We attempt to establish if messages suffer from EDI malformation and understand
whether particular EDI transformations are more susceptible to errors than others. We try
to address this via specific attributes of an EDI message.

2.4. Quantisation Noise

We note that the timestamp within our log file was to 3 decimal places (i.e., millisec-
onds). We seek to understand if this type of truncation or rounding may have any influence
on the ordering or modelling of our data. For example, if the logged timestamp of a
message indicates that it arrived at 8:00:10:435, we assume that this is the first time the
message has arrived in the system. Any messages arriving after this time would be next,
sequentially. If the logged time is truncated, this may cause issues, as the message may
have arrived at some slightly later time, for example, 8:00:10:435010.

Problems can arise when modelling events that appear to have occurred at the same
time, and the distribution of times may look discrete when, in fact, it is continuous. Quanti-
sation noise is one way to model the effect of representing a continuous signal as a discrete
number. We investigate our dataset for evidence of quantisation noise by applying different
modelling techniques via our classification model.

Future Internet 2022, 14, 149 11 of 32

3. Results
3.1. Framework

When researching and modelling EDI messages, it is important to build a framework
that will have the potential to answer defined business questions. The first part of the frame-
work is to identify where the features are and which ones should be selected. Section 2.1.1
addresses feature identification and feature selection.

3.1.1. Feature: Identification–Selection

Within the log files, there was a lot of structured and unstructured text. We had
access to XML elements of a message. We analysed the attributes to understand potential
features associated with an EDI message. We hoped to glean if attributes have a relationship
with other attributes and identify a structure of the attributes. A hierarchical structure
emerged; using this, we built a taxonomy identifying the source of the attributes. Figure 4
displays the results for the different attributes we identified from the log files.

Figure 4. Message attribute taxonomy.

We note two entities in blue that show where in the logs we found the attributes. The “Log
String Parsing” entity is where we glean keywords from the structured text sentences, and the
“XML Attributes” entity is where all the attributes were identified from the XML documents.

Within the log string parsing entity, only the “Category” attribute has a hierarchical
dependency on the “Action” attribute. When analysing the XML Attributes, we note that
every message has an attribute of “Mode”. “EventLinked” and “DocumentLinked” are
two child attributes of “Mode”. We found inconsistencies between the child attributes
of “EventLinked” and “DocumentLinked”. We observe this in Figure 4. For example,
an attribute of “Ack Status” is only associated with a “Documentlinked” attribute. It is
not associated with an “EventLinked” attribute. After investigating the different attributes
and looking at their content, we deemed some attributes as being potentially more useful
to analyse than others. In the colour grey, we denote the attributes we removed from
our initial analysis. We retained 13 attributes. Table 5 is a data dictionary to understand

Future Internet 2022, 14, 149 12 of 32

the information behind each selected attribute from the message attribute taxonomy in
Figure 4.

Table 5. Message attribute data dictionary.

Name Description

ID Two IDs merged. One is the Company ID. The other is a Message ID
Queue ID The queue the message is being sent to

Timestamp The time the message arrived.
Reference ID The sender of the message

Action A translation service will be done on the message, for example, “Doc
Extract” which splits the file based on the associated map.

Category How the message will be translated, for example, “Flat Translation” takes
a flat format file as input and outputs an EDI format.

Mode The type of message

EventLinked A pre-processed step that generates its own event code or may be a status
message that is short-running

Document Linked Prone to be long-running messages. A message can be both an
EventLinked and a DocumentLinked message.

Ack Status An electronic receipt that confirms the delivery of a message

Bytes The Bytes in the document. If the message is EventLinked, the bytes will
be zero or nan.

File Size Size of the file after it has been split into smaller sizes

Map Name The map or maps associated with an event. There can be many maps
associated with a message

To explain further, some of the important attributes we chose were as follows: the ID
attribute, as it was an important attribute that defined the unique id of a message; the queue
id allowed us to understand when the message was sent to the queue; and the reference id
allowed us to understand which customer was sending the message. We paid particular
attention to the action and category attributes, as these were the attributes that defined
what type of translation the message was foregoing. Different translations may suffer from
longer processing times. We briefly describe the reasons we chose to remove some of the
attributes that we denoted in the colour grey:

• “Reference ID” and the “Sender Alias” both display the message sender. We chose the
“Reference ID” over the “Sender Alias”, as the “Sender Alias” is sometimes null and
is optional.

• Source file size gives the size of the document before any splitting is done. We noted
that this was an optional value and was only enabled on a few inbound protocols.

• The direction of a message was either inbound or outbound. In a previous analysis,
the direction had no impact on modelling.

• The “EventDetails1” and “EventDetails2” are IDs associated with a message. In most
cases, using the “ID” gave the relevant information required.

• The “System” attribute was not used, as the “System” always displayed the same
“System” name for all messages.

• Due to the number of envelopes associated with a message, we did not use the
“Envelope Name”.

Now that we identified the features for modelling, we now attempt to build out a
classification model that may influence the modelling capabilities in Section 3.1.2.

3.1.2. Feature Classification

Initial investigations indicated that our dataset was heavy-tailed and might require a
range of techniques to be applied for the dataset to fit a parametric distribution. Using the
features, we built a classification model based on our preliminary investigations and by
talking with DevOps. We used this as a guide for distribution model fitting, paying partic-
ular attention to partitioning the data in meaningful ways. For example, we considered
identifying whether a message was a single message or a batch-type message. We define
a single message as a message where a single message comes in and one message is sent

Future Internet 2022, 14, 149 13 of 32

to the queue. A batch type message is a single incoming message that splits into multiple
messages, and all these messages are sent to the queue in a batch. We also sought to
establish the categorical difference between data in the head versus data in the tail, i.e., if
small values and large values should be partitioned and modelled separately. Figure 5 is a
tree node diagram of our classification model. Using these classifiers and applying Tukey’s
ladder of powers techniques, we used this to model our data.

Figure 5. Message classification.

We define a data dictionary as per Table 6 of the classification model that helps
understand the end classifiers of the model denoted by the light beige coloured entities.

We re-emphasise the difference between batch and non-batch:

• Non-batch: A single message in, and one message is sent to the queue.
• Batch: A single message is split into multiple messages, and all these messages are

sent to the queue in a batch.

Future Internet 2022, 14, 149 14 of 32

Table 6. Message classification data dictionary.

Name Description

Time
Hour Model by each hour in the dataset

Busy Period The number of messages queued was always bigger than zero and growing.

Scheduled Different times where we observed a higher volume of messages, like a range
of minutes around midnight, the 15 min, 30 min and 45-min mark.

Normal Period Opposite of the busy period

Data Partition
Tail We partition the data and retain its tail (values > than some limit)

Head We partition the data and retain its head (values < than some limit)
Remove Zeros Remove all zero values from the dataset

Batch

Batch By Category We filter where “Category” contains “Flat Translation” and “Batch
XML Translation”

Batch By Bundle

We count the number of times a message arrives. If the message only arrives
once, we take this message. We then take any messages that arrive where the
count is greater than one. If the count is greater than 1, we then take the first
and last message and ignore all messages in between.

Batch By Split Count Count the number of times a message arrives, and we count the number of
XML documents. The count of XML Documents should be greater than 1.

Non-Batch

Non-Batch By Split Count Count the number of times a message arrives, and we count the number of
XML documents. The count of XML Documents should be equal to 1.

Non-Batch By Category We filter where “Category” does not contain “Flat Translation” and “Batch
XML Translation”

3.2. Modelling

When modelling our data, Figure 6 shows a histogram of both the service and inter-
arrival times of a normal period. We use this histogram to discern different partitioning and
transformation techniques to support parametric and non-parametric modelling. We also
model by file size. We do this to understand the range of files to be ingested into the queue-
ing system, and we also use it to understand the required storage needed for simulation
testing of these messages.

Figure 6. Histogram: Normal Period: Service And Inter-arrival Times.

Future Internet 2022, 14, 149 15 of 32

3.2.1. Parametric Modelling

For queue modelling, correlation is a feature that needs to be identified to see if it
exists, as queueing models assume no correlation. We have applied extensive studies on
these EDI messages around correlation. Please refer to our paper for further reading [11].

When modelling EDI messages, we found many challenges. From these challenges,
the classification model was born. The different elements of the classification model
helped us answer a challenge we faced. For example, we could not tell what happened
to a message as it was being translated. We did not know if a message was dependent
on another message. We were challenged with modelling the data with a continuous
distribution. We faced many challenges around the removal of correlation and trying to
break the head and tail of the data at a suitable point to help parametric fitting.

The classification model helped us iterate through the different techniques to help us
address the challenges we faced. Our next set of sections will help bring the reader through
our techniques based on these challenges.

Model By File Size

When testing a system, it is important to understand each message’s file size, as it
gives an indication as to whether the message needs to be split for queue ingestion and the
amount of disk space required. File size may influence service times. DevOps informed us
that one of the inbound connectors does not allow a file size greater than 100 MB, and most
file sizes are approximately 20 kilobytes in size.

When modelling by file size, we applied the classification model to our data as per
Figure 5. Figure 7 displays the model chosen that allowed us to successfully fit a parametric
distribution to our data. We picked data from the “Normal Period” and partitioned the
data into its head and tail using a size of 10,000,000 B as the boundary. We then took a
random sample from the dataset. Table 7 gives the count of data per partition before we
implemented a random sample on the model. We note that we captured the majority of the
data in the head.

Table 7. File size count.

Status Count

Head 984,070
Tail 109

Figure 7. File size classification.

Figure 8 shows a histogram of our data both before and after the partition. The plot to
the top left shows the data before partitioning. The plot to the top right shows the results
of a random sample from the head. We can see that the shape of the histogram shows signs
of fitting into a uniform distribution. The plot to the bottom left shows the tail of the data.

We use a Chi-square GoF test for the head of the data (see Table 8). This indicates that
with α < p-value 0.05, it appears that a uniform distribution may be a reasonable model for
the head of the distribution.

Future Internet 2022, 14, 149 16 of 32

Table 8. File size, head, Chi-square uniform distribution test.

Test Statistic DF a p-Value

18 19 0 0.05

CMD Normal Day,
 File Size Bytes

File Size Bytes

D
en

si
ty

0 20000000 60000000 1000000000.
00

00
00

0
0.

00
00

00
2

0.
00

00
00

4

CMD Normal Day, Sample DF,
 N=100,000, Head, File Size Bytes <10,000,000

File Size Bytes

D
en

si
ty

0 200000 400000 600000 800000 10000000.
00

00
00

0
0.

00
00

00
4

0.
00

00
00

8

CMD Normal Day, Tail,
 File Size Bytes >10,000,000

File Size Bytes

D
en

si
ty

20000000 40000000 60000000 80000000 1200000000.
00

00
00

00
0.

00
00

00
03

0.
00

00
00

06

Figure 8. File size histogram.

Model Batch By Category

Service Time Modelling

When simulating service and inter-arrival times, it is important to know if the queue
will ingest a message as a single message or as a batch of messages. This is because a
batch arrival would be a clear type of interdependence between messages that would be
relevant for queue modelling. DevOps informed us that certain messages (“Flat Translation”
or “Batch Translation”) should be considered batch messages based on their “Category”
attribute. These messages should be split into smaller files and sent into the system as
a batch. All other messages should be considered non-batch type messages. When we
inspected the data, we found evidence that the messages for flat translation and batch
translation were both single messages and batch-type messages. Based on these initial
comments from DevOps, we went ahead and modelled the service times of these messages.

Before attempting to model the service times of the dataset, we analysed measures of
dispersion. From Table 9, we note that of the total batch messages, half of the messages
were removed when we removed messages of zero duration. We also observe that these
data are heavy-tailed with a skewness greater than 20 and high kurtosis. There is a 0.10 s
difference in the 95th percentile between the service times of both batch messages and
batch messages where zeros are removed. Messages greater than zero seconds in service
times are likely to take less than 0.26 s to process.

Future Internet 2022, 14, 149 17 of 32

Table 9. Service times, batch by category statistics.

Service
Duration
Second

Total Min Mean Max 95th
Percentile

99th
Percentile Var Skewness Kurtosis

Batch 126,742 0 0.03 14.04 0.16 0.44 0.01 26.17 2716
Batch zero
removed 65,878 0.001 0.05 14.04 0.26 0.61 0.01 20.84 1658

We applied the model from Figure 9 without partitioning the data by head or tail.
Table 10 shows the top two models with the lowest AD score. We note that these data are
close to a log-normal distribution but significantly fail the AD test.

Figure 9. Batch by category, classification model.

Table 10. Batch by category AD result.

Test Transformation Sqrt Transformation Cube Root

Burr 362 362
Log-normal 281 281

To further understand our results, in Figure 10, we compare the data after a square root
transform to the modelled log-normal distribution. The Q-Q plot shows that the data tail off at
the start of the quantile line. We observe from the P-P plot that while the data appear continuous
on the right-hand side of the plot, there are many discrete values on the lower probabilities.

Figure 10. Batch by category, log-normal, ST.

If we partition these data into a head and tail, we find clear evidence of discrete values
in the P-P plot shown in Figure 11. From these values, we were able to draw four discrete
Gaussian distributions. These four Gaussian distributions result from KDE estimation
applied to the discrete data and are not a feature of our data but a feature of the underlying
system in the way that the mantissa is set on the message timestamp. We expect our data
to be continuous, and this figure and data are not a true representation. We discuss this
further in Section 4.4.

Future Internet 2022, 14, 149 18 of 32

0.0010 0.0015 0.0020 0.0025 0.0030 0.0035 0.0040

0
50

0
10

00
15

00

No Transformation ST,Non−Batch By Category,
 No Zero,Head<0.005

N = 158795 Bandwidth = 9.021e−05

D
en

si
ty

Figure 11. Batch by category discrete values, ST, head.

Model Batch By Bundle

Service Time Modelling

In this section, we consider messages that correspond to a bundle of XML documents,
which we call “Batch By Bundle”. Our aim is to investigate the fitting of a parametric
distribution to the service times accounting for these “Batch by Bundle” messages.

To recap on modelling ”Batch By Bundle”, we take all messages and count the number
of XML documents associated with a message. If a message has only one XML document,
we take the service times for these messages for modelling. For any messages where the
XML document count associated with a message is greater than one, we take the first and
last message of this bundle and discard all messages in between. We note that all messages
in between are all zero seconds in duration.

Using the model in Figure 12, we applied data from the ”normal period” using the
tail of the data and removing zeros from the model. Our model came close to fitting a
log-normal parametric distribution but failed the AD GoF test.

Figure 12. Batch by bundle classification model.

We partitioned the data into a head and tail, using a boundary of 1 s. The model results
of fitting the log-normal distribution to the tail of the data are shown in the chart to the left
of Figure 13. The histogram represents a shape close to a log-normal distribution but again
fails the AD test. The chart to the right shows the results of the Q-Q plot for log-normal
distribution fitting. We observe from the Q-Q plot that the lower quantile regions are more
fitting to the line than the upper quantile regions, but there are clear systematic mismatches.

Future Internet 2022, 14, 149 19 of 32

Figure 13. Batch by bundle, ST, tail.

Table 11 shows our best AD test result. We applied a constant of 1 to the tail of the
service times and applied a log transform on the data to improve the fit.

Table 11. Tail: AD GoF test—batch by bundle.

Tail Test AD p-Value Transformation Constant

log-normal 61 0.0000003 Log 1

To model the head of the data, Figure 14 shows a histogram with a probability density
drawn on the service times. We note several peaks at the left of the estimated density
that again suggests quantisation. Consequently, it is unlikely that these data would fit a
parametric distribution. Possibly, it could be further partitioned, KDE could be applied, or
adjustments could be made for quantisation.

ST, Batch By Bundle, no zero,
 head < 1 Second Log Transformation

ST Milliseconds

De
ns

ity

−7 −6 −5 −4 −3 −2 −1 0

0.
00

0.
05

0.
10

0.
15

0.
20

Figure 14. Batch by bundle, message head, log(ST).

We now attempt to model our data using ”Batch By Split Count”.

Model Batch By Split Count

We classify messages using a ”Batch By Split Count”. As mentioned previously, one
single message may be split into multiple smaller messages and sent to the queue as a
batch. A ”Batch By Split Count” is one where the XML document count is > 1. Again, we
attempt to fit a parametric distribution to the service times of these messages. We then
model the messages using three different partitioning techniques. We model messages
where the XML count is > 1, where the XML count > 2 and where the XML count = 2 as
per Figure 15.

Future Internet 2022, 14, 149 20 of 32

Figure 15. Batch by split count, classification model.

Regardless of the transformation and partitioning technique applied, we could not fit
our data to a parametric distribution to the service times of these batch messages. Table 12
shows the top two distributions with the lowest AD score. If we model the head of the
service times, where the split count is >2, the service times is ≤1 s, no transformation is
applied, and zeros are removed, our model comes close to fitting a log-normal distribution
with an AD score of 39 and also comes close to fitting a Burr distribution with an AD score
of 41.

Table 12. Batch by split count, ST ≤ 1 second, filter >2, zero removed.

AD Test Normal Log(n+1) Sqrt(n) Exp(n) Exp(log(n+1)) Sqrt(log(n+1)) Log(log(n+1)+1) Sqrt(exp(n))

log-normal 39 51 39 1500 1300 51 63 1500
Burr 41 45 41 640 470 45 49 640

In the interests of space, only AD scores are shown. The majority of p-values are rounded to 0.00.

Based on the observations in Table 12, and looking at the results of the applied model
for a log-normal distribution in Figure 16, our data do not fit a parametric distribution for
the head of the data.

We note that we were also not able to fit the tail of the data to a parametric distribution.

Figure 16. Batch by split count, log-normal model results.

We now focus our efforts on modelling by ”Non-Batch By Split Count”.

Model Non-Batch By Split Count

Service Time And Inter-Arrival Time Modelling

”Non-Batch By Split Count” is the complement of ”Batch By Split Count”; it con-
siders the messages where exactly one XML document is associated with the message.
We modelled the service and the inter-arrival times by applying different techniques of

Future Internet 2022, 14, 149 21 of 32

the classification model. The results of our analysis indicate that we could only fit a Burr
distribution to the tail of the data, as per Figure 17.

Figure 17. Non-batch by split count classification.

The results of the Anderson–Darling test in Table 13 confirm that we can fit the tail
of the service times to a Burr distribution. Note that we applied a constant offset of 1 to
the dataset when it passed the AD GoF test. The CDF plot in Figure 18 shows both the
empirical distribution and the fitted Burr distribution. From the P-P plot, we note that no
observations appear to deviate significantly from the line.

Table 13. AD test normal period, ST, tail of data.

AD Score p-Value Test

1.2 0.3 Pass

Figure 18. Normal Period, Split = ’1’, Burr Fitting, Service Times - > 1 s.

For the head of the service times data (service times ≤ 1 s), we could not parametrically
fit the data to a parametric distribution, irrespective of transformation or implementing
partitioning methods.

Now we consider inter-arrival times partitioned into the head and a tail with a bound-
ary of 1 s. For the tail (>1 s), the results of the AD tests conclude (Table 14) that these
filtered data do not fit a parametric distribution. However, we observe that a no-transform
and a square root transform (highlighted in bold) are a relatively close fit to a Burr distribu-
tion but do not pass the AD test. Table 14 shows only the closest model to a parametric
distribution. When modelling the head of the inter-arrival times, we found evidence of
correlation, which is included in our conference paper [11].

Future Internet 2022, 14, 149 22 of 32

Table 14. IAT > 1 s, Split Count = 1: AD Test.

AD Test Data Log
(data+1) Sqrt (data) Exp (data) Sqrt (log

(data+1))
Log (log

(data+1) +1)
Sqrt (exp

(data))

AD Score

Burr 3.9 6.6 4 Inf 6.6 8.5 Inf

In the interest of space, only AD scores are shown in the table. The majority of p-values round to 0.00.

Model Non-Batch By Category

Service Time Modelling

To recap on the importance of modelling by ”Non-Batch By Category”, we refer the
reader back to Section 3.2.1. We now try and fit a parametric distribution to our data
using different techniques from the classification model. First, we analyse the measures
of dispersion using the ”Non-Batch By Category” model. We note from Table 15 that for
the service times, one-third of the messages are removed when we remove messages of
zero duration. We also note a slight difference in the service times in the 95th percentile
between non-batch messages and when zeros are removed from the dataset. Our dataset is
highly skewed, with a reporting skewness greater than 20. With the zeros removed from
the dataset, the lowest service time is 0.001 s.

Table 15. Non-batch by category measures of dispersion.

Service
Duration
Second

Total Min Mean Max 95th
Percentile

99th
Percentile Median Var Skewness Kurtosis

Non-Batch 857,437 0 0.04 22.81 0.23 0.60 0.004 0.01 24.24 2550
Non-Batch

zero
removed

570,020 0.001 0.06 22.81 0.31 0.73 0.01 0.02 21.06 1880

Our closest model to fit a parametric distribution is in Figure 19. We apply the model
to the ”Normal Period” using the ”Tail” of the data and removing messages that are zero
seconds in duration.

Figure 19. Non-batch by category classification model.

Table 16 shows the top two best models for parametric fitting. We note a large AD
score and ascertain that even the best fitting model is not particularly good, and so we have
not identified a suitable parametric model.

Table 16. Non-batch by category, tail of ST, AD results.

Test No Transform Log Transform +1 Square Root Cube Root

log-normal 3942 3966 3942 3942

Future Internet 2022, 14, 149 23 of 32

When modelling the head of our data, we again found evidence of discrete values
leading to quantisation noise. We refer to Section 4.4 for a discussion around the effects
of quantisation.

Using the classification model, we attempt to fit our data to a parametric distribution.
We now focus our efforts on non-parametric modelling.

3.2.2. Non-Parametric Modelling

Where we could not fit a parametric distribution, even after partitioning the data using
our classification model, we explored modelling the data with KDE. We know that KDE
usually provides a good fit to the observed data, based on the different algorithms and
kernels drawn to support each point’s area under the curve. For example, Figure 20 shows
an example of fitting the tail of service time data by the hour with KDE. The histogram to
the left uses a bandwidth selector of the Sheather–Jones “plug-in” estimator with a method
of “dpi” and an Epanechnikov kernel. The histogram to the right has a bandwidth selector
of unbiased cross-validation using a rectangular kernel.

Figure 20. Tail of data, by hour, ST.

3.2.3. Message Interdependence

Message interdependence is critical when simulating a queueing system. Modelling
single message behaviour through a queueing system is less complicated than modelling
messages where there is a parent–child relationship, and the relationship may be one too
many. The service times of a batch message may not be determined until the last child
message arrives and is processed in the queueing system. Using the classification model, we
attempted to understand if we could easily identify a parent–child relationship within our
dataset. Applying the models from Figure 21, we observe that we were able to determine
if a message was dependent on previous messages based on the ”Batch By Split Count”
model and the ”Non-Batch By Split Count” model.

Figure 21. Interdependence by classification.

Future Internet 2022, 14, 149 24 of 32

We now explore the text in Figure 22 to give some context on how we came to
this conclusion.

At a high-level view, a message first arrives in line 2. The message is set to an associated
state defined by a map associated with the message as per line 3, and the customer name
is associated in line 4 using a Reference ID. The message is then sent for translation in
line 5, and the XML for the message is produced in line 6. The message is then completed
processing in line 7. A subset of this message is then processed again starting from line 15
and is finished at line 20. This means that this message is split into two messages and is
fully complete at line 20.

In more detail, we took the ID of the message and split the string in two (id1:id2).
The first string was the Company ID (id1), and the second string was the Message-ID (id2).
Consider the hypothetical example in Figure 22. Using the second part of the ID in the
second delimited column (id2), we counted the number of times the message had a string
tag of <XML>. We note that the message first enters the system on line 2. It then has an
<XML> tag on line 6. We count this as 1 XML document. We then note the message arrives
in the system again at line 15, and at line 19, it has another <XML> tag. We count this
as 2 XML documents for id2. We iterate through all the log data until the last part of the
message comes into the system, and we aggregate the count of <XML> tags.

It is important to note that if there were 2 <XML> tags, i.e., if we had one on lines 26
and 27, we would only take the first <XML> tag as a count. Although we never saw this
behaviour in the wild, we note this in case it happens on other systems.

Figure 22. Log message.

Using the signature, we can now determine if a single arrival will send an influx of
messages into the queueing system.

We also seek to understand if there is a dependence between the service times of these
independent and non-independent messages. To explore this, we split the messages into
messages where the service time exceeds 1 s or 2 s (see Table 17). We chose these values, as
they reflect the tail of our data, and it would be useful to know if these messages are more
likely to be in the tail.

Table 17. ST exceeds 1:2 s.

Classification ST ≤ 1 s ST > 1 s ST ≤ 2 s ST > 2 s

Independent 126,585 157 126,731 11
Non-Independent 854,722 2714 857,160 276

We perform a Fisher’s exact test on our data to check for independence. Table 18 of the
Fisher’s exact test indicates that there is no significant association [p < 0.05] between independent
and non-independent messages, where the service times exceed 1 or 2 s in duration.

Future Internet 2022, 14, 149 25 of 32

Table 18. Dependence check: ST exceeds N seconds.

Test Odds Ratio p-Value

Exceeds 1 s 2.56 0.0000000000000002
Exceeds 2 s 3.71 0.0000003

3.3. Queueing Problems

From an enterprise dataset, we were able to study the different problems documented
in the queue ticketing system. Table 19 shows several categories of issues observed within
a period of a queueing system’s operation. We observe from the table that 27% of the
problems are ”Unclassified”. ”Communication Channel” related issues are the second
biggest hitter at 11% and ”Performance” is the lowest at 2%. In this context, the ”Commu-
nication Channel” is a link between the client and server systems or between two servers.
Interestingly 7% of the problems relate to ”Queue Managers”.

Table 19. Queueing system problems.

Type Count Percent

Unclassified 1900 27
Communication Channels 806 11

Installation 620 9
Security 619 9

Transport Layer Security 566 8
Queue Managers 477 7

Authorized Program Analysis
Records (APARs) 458 6

Migration 431 6
Product Documentation 334 5

Replicated Data Queue Manager
(RDQM) 256 4

Logging, Recovery 234 3
Connectivity 177 3
Performance 171 2

To determine the extent to which messages are re-processed, we used two message at-
tributes to investigate this. Using the ”Company ID” and the ”Message ID”, we determined
how many distinct messages were re-processed. A message is re-processed by the system if
the message processing time exceeds 20 min. In this case, the message processing is killed,
and the message is re-sent into the system. Of just over 1 million (1,237,370) messages, we
uncovered that only a small minority of messages were re-processed. Table 20 shows the
results of our analysis. We note from the table that one message was re-processed 51 times,
and most messages are only re-processed once.

Table 20. Re-processed messages.

Reprocessed Times Messages

1 281
2 6

11 1
51 1

When EDI messages traverse through different features of a supply chain network, they
go through various transformations. A feature of EDI is a functional acknowledgement (FA).
An FA sends back a status message, which serves as an electronic receipt to confirm the
delivery of a message. It is sent as a response to other EDI messages received [34]. We sought
to investigate which types of status messages are most prevalent. This would allow us to,
for example, establish the frequency of malformed messages. Table 21 gives a breakdown of
the results. Interestingly, most of these messages do not suffer from malformation during the
EDI process, with only 0.12 percent of messages having a return acknowledgement receipt of
”Rejected” and 0.20 percent of messages being ”Accepted with Errors”.

Future Internet 2022, 14, 149 26 of 32

Table 21. Queueing system messages by ack status.

Status Message Count Percentage

Accepted 194,255 40.59
Waiting 184,632 38.58

None 97,797 20.44
Accepted With Errors 970 0.20

Rejected 563 0.12
Received 303 0.06

Partially Accepted 32 0.01

Table 22 allows us to investigate the status message and the associated types of EDI
transformations. We can use this to ascertain if certain transformations are more susceptible to
errors than others. Messages of the type ”Rejected” and ”Accepted with Errors” perform the
same transformation. The transformation identified is a ”DeEnvelope” service. The ”DeEnve-
lope” service identifies the interchange type contained within a message and extracts them to
separate messages handled by the business process. A list of the interchanges can be found
here [35]. We observe that only a subset of messages returns an acknowledgement receipt.
DevOps informed us that only messages classified as outbound from the ”Direction” attribute
of a message will return an acknowledgement status.

We note that most message transformations have a status of accepted whilst applying
the DeEnvelope service. Interestingly, no other types of messages transformations have an
“accepted” status. All other types of message transformation do showcase multiple types of
statuses, most of them being either “Waiting” or “None”.

Every message is associated with some form of EDI transformation, which is defined
by the associated “Action” and “Category”. Table 23 shows a data dictionary of some of
the “Category”-type transformations.

We note from the table that there are eight different types of translations. Two of the
most common translations are DeEnvelope translation and flat translation. The DeEnvelope
translation locates the envelope type, for example, an ACH inbound envelope and calls the
DeEnvelope business process. It then uses a data extraction tool to write out the data. The
flat translation may take a flat file and reformat the transaction according to some standard
format, such as X12 or EDIFACT.

Table 22. Messages by ack status and transformation.

Message by Status Transformation Count

Accepted DeEnvelope 194,255
Waiting Flat Translation 80,819
Waiting XML Translation 61,013
Waiting Batch XML Translation 41,154

None XML Translation 41,198
None Flat Translation 38,097
None Batch XML Translation 14,279
None Send 1570
None Extraction Translation 1534

Accepted With Errors DeEnvelope 970
Waiting Flat Potential Translation 856

None XML Potential Translation 632
Rejected DeEnvelope 563
Waiting XML Potential Translation 463

None Flat Translation 460
Received DeEnvelope 303
Waiting Send 269
Waiting Flat Translation 47
Waiting Null 11

Partially Accepted DeEnvelope 32
None Flat Potential Translation 25
None Null 2

Future Internet 2022, 14, 149 27 of 32

Table 23. Message category data dictionary.

Name Description

DeEnvelope Translation
Identifies the interchange type contained within a message
and extracts them to separate messages to be handled by
the business process

Flat Translation One flat file in, many flat files out
XML Translation Transforms XML to an EDI format

Batch XML Translation One XML contains many documents which are then split
into individual documents

Send Send a message that has been previously deferred
Extraction Translation Extraction of a document

Null Translation Dependent on the “Action”

Flat Potential Translation Run a preprocessing step on the data to see if it is bad
before doing any transformations

3.4. Quantisation Noise

In our enterprise dataset, we noted that the timestamps are given to 3 decimal places
and saw evidence that this quantisation is a significant factor in our data. For example,
consider when we partitioned the data into “Batch By Category” and “Non-Batch By
Category”. As the data were heavy-tailed and the majority of the data fell in the first bin of
the histogram (Figure 23), we applied Tukey’s ladder of power and transformed the data.
The transformed data (Figure 23) shows several peaks. Naively redrawing the density plot
for the head of the service time, we note four distinct Gaussian distributions in Figure 24.

ST, Batch By Category,
 Hurdle Model = True, No Transformation

ST Milliseconds

De
ns

ity

0 5 10 15

0.0
0.2

0.4
0.6

0.8
1.0

ST, Batch By Category,
 Hurdle Model = True, Log Transformation

ST Milliseconds

De
ns

ity

−6 −4 −2 0 2

0.0
0

0.0
5

0.1
0

0.1
5

0.2
0

Figure 23. Histogram batch by category—milliseconds.

0.001 0.002 0.003 0.004

0
20

0
40

0
60

0
80

0
10

00

No Trans ST, Batch By Category,
 No Zero,Head<0.005

N = 16427 Bandwidth = 0.000144

De
ns

ity

0.0010 0.0020 0.0030 0.0040

0
50

0
10

00
15

00

No Trans ST,Non−Batch By Category,
 No Zero,Head<0.005

N = 158795 Bandwidth = 9.021e−05

De
ns

ity

Figure 24. Probability density batch and non-batch by category.

Future Internet 2022, 14, 149 28 of 32

Of course, our data contain four distinct values, quantised to 1 ms. However, the smoothed
density plot, which works well for the larger values, represents these values as Gaussian
distribution around these discrete values. Because a significant amount of our data is spread
between values separated by 1 ms, quantisation noise is an important factor for our data.

4. Discussion

Based on the methods we discussed in Section 2, we discuss the results from our
methods from Section 3.

4.1. Framework

We put in place a framework to aid the modelling of our queueing data in order to
provide structure for the investigation. The framework helped us clarify the requirements
of our analysis and allowed us to manage the information gathering and model selection
phase. In general, we believe such a framework will support accountability and reasoning
behind the outcomes. Other researchers can use this framework and further refine it.

We now explore the results of our investigations around our framework components
via Section 4.1.1—feature: identification–selection.

4.1.1. Feature: Identification–Selection

When modelling EDI messages, we found that different XML schemas were dependent
on the “Mode” attribute of the message. We identified 78 elements and selected 23 for
analysis. From those 23 elements, we further reduced the elements down to 8.

Further to this, we identified six keywords that we used as part of our modelling
decisions based on the structured text of the log files.

Combining both the structured text and the XML documents, our final selection was
14 elements out of 29. We believe we captured the important elements for modelling service
times and inter-arrival times of EDI messages. These elements may be useful to other
researchers and DevOps when modelling their EDI messages.

We now explore the results of the next component of our framework via Section 4.1.2,
feature classification.

4.1.2. Feature Classification

The classification or labelling of combined attributes facilitates more detailed consider-
ation messages, and we chose to do this in a way that we hoped would be relevant to the
modelling of the queueing system. For example, from the classification model, we were
able to identify a single or a batch-type message.

4.2. Modelling
4.2.1. Parametric Modelling

Model By File Size
We wanted to understand the range of file sizes within the dataset. This could allow

the construction of a test suite based on real data and allow us to understand how the
different sizes might impact queue behaviour. This would also facilitate the provisioning
of disk space for the queueing system. We were able to fit the head of the data to a uniform
distribution, which will support the requirements around disk space. The tail of the data
seems to contain specific file sizes, suggesting that KDE fitting or some model based on
knowledge of customer behaviour might be useful.

We considered that if we could identify batch messages via file size, then possibly
batch messages would all be large files that are split into smaller pieces. However, we could
not determine from the file size whether messages were split. In particular, as the source
file size was an optional parameter, we used other fields to determine this.

Model Batch By Category
We modelled our messages based on the associated “Category” on the advice from

DevOps; however, we found that the messages identified by the suggested categories could

Future Internet 2022, 14, 149 29 of 32

either be single messages or messages that are split into several messages. Further work is
required to try and identify the unique features that support this Classification.

We also investigated fitting a parametric distribution to the message service times
when modelling messages matching the “Batch by Category”. The final model that we
selected indicated that the data were close to a log-normal distribution but failed the AD
GoF test. We noted from the P-P plot evidence of a significant number of discrete values,
suggesting that our data’s quantisation may be an issue.

Model Batch By Bundle
In an alternative approach to understanding batches of messages, we chose to model

all messages that were part of a bundle by considering runs of messages where only the
last message had a service time greater than 0 s in Section 3.2.1. We felt that this might help
merge batches into a single arrival. Again, we partitioned the data by head and tail and
observed that the tail of the data was close to a log-normal distribution. The head of the
data was not suitable for parametric modelling.

Model Batch By Split Count
When we analysed the messages by a count of associated XML documents from a

queueing perspective, we ascertained that these messages were indeed batch-type messages,
even if they were not all batch-type messages from an EDI perspective. We could not get the
data to fit a parametric distribution to the partitions of the data we tried. However, some
transformations of the head of the data were close to log-normal and Burr distributions.

Model Non-Batch By Split Count
Here, we considered the messages where the XML count of the documents was one.

We were able to fit the tail of the service times to a Burr distribution. The head of the service
times may be suitable for modelling by KDE. We also attempted to model the inter-arrival
times. If we refer back to our previous paper [11], interestingly, the inter-arrival times
showed correlation, and we left modelling these correlations as future work.

Model Non-Batch By Category
Using the “Non-Batch By Category” approach, we could not fit this classification

model to a parametric distribution. However, it provided clear evidence of the impact of
the quantisation of our dataset on modelling.

4.2.2. Non-Parametric Modelling

While we were unable to model all aspects of our data set with parametric distributions,
the partitions of our dataset contain many points and make it amenable to modelling via
KDE, at least where quantisation is not a significant problem.

4.2.3. Message Interdependence

We explored some aspects of interdependence via our classification model. For ex-
ample, we found useful relationships between the ID and the XML document count.
We checked for independence between the dependant messages and independent messages
to see if they have a relationship with the tail of our service times. We used service times
greater than 1 s as a starting cut off point. Our Fisher’s exact test concluded that there is no
dependence between these types of messages and the tail of the service times.

We note that we observed correlations when modelling inter-arrival times from our
paper [11]. This suggests that care might be required if applying a G/G/1 queueing model.

4.3. Queueing Problems

The classification of our ticketing system gives context as to where the identified prob-
lems lie within our enterprise queueing application. The 27% unclassified and another 25%
made up of non-queue issues, such as installation, migration, APARs and documentation,
equate to over 50% of the total problem tickets. The bulk of these problems may have easy
fixes. Communication channels, security and transport layer security make up another 28%.
Further investigations may be warranted in the detailed classification of communication
channels, security issues and unclassified messages.

Future Internet 2022, 14, 149 30 of 32

We investigated our dataset for evidence of throttling. Within the logs analysed,
throttling was always set to zero, meaning that throttling did not occur during the period
analysed. We also saw that the frequency of bad messages which cause re-tries was less than
1%. Similarly, when looking at the malformation of messages during the EDI transformation
stage, we found less than 1% had issues.

Overall, we saw few problems with EDI transformations and bad message formats in
the enterprise dataset analysed.

4.4. Quantisation Noise

Truncation or rounding of timestamps has several implications. Firstly, even if the pro-
cessing times of the system followed, say, a Burr distribution, then rounding or truncation
is applied, the result will no longer follow this distribution. As we have a large number of
data points, and a significant number of data points lie around the resolution of 1 ms, this
can easily be identified by our statistical tests. Secondly, this might have knock-on effects
on the temporal ordering of the events.

We were not initially aware that this quantisation noise would be a significant feature
of this dataset. In particular, our technique of partitioning the data by head/tail helped us
identify where this modelling challenge was significant in the data. As it is not uncommon
for data to be rounded in log files to a resolution, such as 1 ms, we highlight the issue of
performing a simple fit of a parametric distribution to such data. Similar challenges are
likely to face teams with modelling truncated/rounded data.

On investigating other application log files, we found that many applications either
already display 6+ decimal places in timestamps or are moving to do so. We would
recommend that DevOps teams consider enabling these higher resolution timestamps on
their systems and track typical time intervals that must be measured. For example, suppose
our timestamp was displayed up to the nano-second. In that case, our dataset from today
might not suffer from quantisation noise; however, if typical job times shorten in the future
and approach 1 ns, then finer timestamps would be required to fully track the performance
of the system.

5. Conclusions

Our study aimed to build a framework to support queue simulation and performance
testing of systems processing EDI messages within a supply chain organisation. Our
framework allows for a methodical approach to model queueing systems. Developers
and performance engineers can use our framework to identify message elements that
contribute to bursty and non-bursty messages by looking at different EDI parameters,
which will help determine the impact of such burst on a queueing system. Implementors
deploying an AmI service within smart spaces can use our framework to determine under
or over-provisioning of resources based on the results of the applied model selection tests.
Data scientists and researchers can apply our framework to model parametric and non-
parametric distributions. Companies can use our research to help inter-twine existing
technology with smart modelling. Our framework provides a helping hand when starting
to model these EDI messages. Applying context awareness to our EDI feature selection
improves knowledge sharing between Supply Chain processes and their impact on the
network and within a Supply Chain organisation. We note, in particular, that our data
suffered from quantisation noise, which we believe may be a common challenge in the
modelling of queueing data with short-lived jobs.

A number of areas remain open for further study. Further exploration of correlation
between messages could be investigated. This might be advanced by looking at other
elements of EDI message attributes. This might also improve the modelling of the head of
the distributions, though resolving issues around quantised data may also help significantly.
In subsequent work, we will investigate the effects of quantisation and correlation that
were observed in some parts of this dataset.

Future Internet 2022, 14, 149 31 of 32

Author Contributions: Investigation, Analysis and Writing, S.L.; Supervision, Analysis and Writing,
J.D. and D.M. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare on conflict of interest.

References
1. Korzun, D.; Balandina, E.; Kashevnik, A.; Balandin, S.; Viola, F. (Eds.) Ambient Intelligence Services in IoT Environments: Emerging

Research and Opportunities: Emerging Research and Opportunities; IGI Global: Hershey, PA, USA, 2019.
2. Ross, S.M. Introduction to Probability Models; Academic Press: Cambridge, MA, USA, 2014.
3. Lamport, L. Time, clocks, and the ordering of events in a distributed system. In Concurrency: The Works of Leslie Lamport; ACM:

New York, NY, USA, 2019; pp. 179–196.
4. Gray, R.M.; Neuhoff, D.L. Quantisation. IEEE Trans. Inf. Theory 1998, 44, 2325–2383. [CrossRef]
5. Kendall, D.G. Stochastic processes occurring in the theory of queues and their analysis by the method of the imbedded Markov

chain. Ann. Math. Stat. 1953, 24, 338–354. [CrossRef]
6. About Uniform Clusters. Available online: https://ibm.co/3x5SXwW (accessed on 6 March 2022).
7. Limitations and Considerations for Uniform Clusters. Available online: https://ibm.co/3uhsDyh (accessed on 6 March 2022).
8. Streaming Queues. Available online: https://ibm.co/3DHMidr (accessed on 6 March 2022).
9. KIP-748: Add Broker Count Metrics. Available online: https://bit.ly/3x4mAPi (accessed on 7 March 2022).
10. Pre-Staging Messages at a Remote Location. Available online: https://bit.ly/3J81bam (accessed on 7 March 2022).
11. Leech, S.; Malone, D.; Dunne, J. Heads or tails: A framework to model supply chain heterogeneous messages. In Proceedings of

the 2021 30th Conference of Open Innovations Association FRUCT, Oulu, Finland, 27–29 October 2021; pp. 129–140.
12. Goodhope, K.; Koshy, J.; Kreps, J.; Narkhede, N.; Park, R.; Rao, J.; Ye, V.Y. Building LinkedIn’s real-time activity data pipeline.

IEEE Data Eng. Bull. 2012, 35, 33–45.
13. Wu, H.; Shang, Z.; Wolter, K. Performance prediction for the Apache Kafka messaging system. In Proceedings of the 2019 IEEE

21st International Conference on High Performance Computing and Communications; IEEE 17th International Conference on
Smart City; IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS), Yanuca Island, Fiji, 10–12
August 2019; pp. 154–161.

14. Henjes, R.; Menth, M.; Zepfel, C. Throughput performance of java messaging services using websphereMQ. In Proceedings of the
26th IEEE International Conference on Distributed Computing Systems Workshops (ICDCSW’06), Lisboa, Portugal, 4–7 July 2006;
p. 26.

15. Jo, K.Y.; Pottmyer, J.J.; Fetzner, E.A. Dod electronic commerce/electronic data interchange (ec/edi) systems Modelling and
simulation. In Proceedings of the MILCOM’95, San Diego, CA, USA, 5–8 November 1995; pp. 479–483.

16. Ellis, S.; Bond, S.; Marden, M.; Singh, H. Driving Strategic Value with IBM Sterling Supply Chain Business Network. Available
online: https://ibm.co/39hjJZz (accessed on 19 April 2022)

17. Wells, J. Making edi work in a multinational company. In IEE Colloquium on Standards and Practices in Electronic Data Interchange;
IET: London, UK, 1991; pp. 1–6.

18. Lim, D.; Palvia, P.C. EDI in strategic supply chain: Impact on customer service. Int. J. Inf. Manag. 2001, 21, 193–211. [CrossRef]
19. Iacovou, C.L.; Benbasat, I.; Dexter, A.S. Electronic data interchange and small organizations: Adoption and impact of technology.

Mis Q. 1995, 19, 465–485. [CrossRef]
20. Johnson, D.A.; Allen, B.J.; Crum, M.R. The state of EDI usage in the motor carrier industry. J. Bus. Logist. 1992, 13, 43.
21. Lasi, H.; Fettke, P.; Kemper, H.G.; Feld, T.; Hoffmann, M. Industry 4.0. Bus. Inf. Syst. Eng. 2014, 6, 239–242. [CrossRef]
22. Tjahjono, B.; Esplugues, C.; Ares, E.; Pelaez, G. What does industry 4.0 mean to supply chain? Procedia Manuf. 2017, 13, 1175–1182.

[CrossRef]
23. Hahn, G.J. Industry 4.0: A supply chain innovation perspective. Int. J. Prod. Res. 2020, 58, 1425–1441. [CrossRef]
24. Gayialis, S.P.; Kechagias, E.P.; Konstantakopoulos, G.D. A city logistics system for freight transportation: Integrating information

technology and operational research. Oper. Res. 2022, 1–30. [CrossRef]
25. Caiado, R.G.G.; Scavarda, L.F.; Azevedo, B.D.; Nascimento, D.L.D.M.; Quelhas, O.L.G. Challenges and Benefits of Sustainable

Industry 4.0 for Operations and Supply Chain Management—A Framework Headed toward the 2030 Agenda. Sustainability 2022,
14, 830. [CrossRef]

26. Manavalan, E.; Jayakrishna, K. A Review of Internet of Things (IoT) Embedded Sustainable Supply Chain for Industry 4.0
Requirements. Comput. Ind. Eng. 2019, 127, 925–953. [CrossRef]

27. Korzun, D.G.; Balandin, S.I.; Luukkala, V.; Liuha, P.; Gurtov, A.V. Overview of Smart-M3 Principles for Application Development.
Available online: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.459.4574&rep=rep1&type=pdf (accessed on 15
March 2022).

28. Balandin, S.; Waris, H. Key Properties in the Development of Smart Spaces. In International Conference on Universal Access in
Human-Computer Interaction; Springer: Berlin/Heidelberg, Germany, 2009; pp. 3–12.

http://doi.org/10.1109/18.720541
http://dx.doi.org/10.1214/aoms/1177728975
https://ibm.co/3x5SXwW
https://ibm.co/3uhsDyh
https://ibm.co/3DHMidr
https://bit.ly/3x4mAPi
https://bit.ly/3J81bam
https://ibm.co/39hjJZz
http://dx.doi.org/10.1016/S0268-4012(01)00010-X
http://dx.doi.org/10.2307/249629
http://dx.doi.org/10.1007/s12599-014-0334-4
http://dx.doi.org/10.1016/j.promfg.2017.09.191
http://dx.doi.org/10.1080/00207543.2019.1641642
http://dx.doi.org/10.1007/s12351-022-00695-0
http://dx.doi.org/10.3390/su14020830
http://dx.doi.org/10.1016/j.cie.2018.11.030
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.459.4574&rep=rep1&type=pdf

Future Internet 2022, 14, 149 32 of 32

29. Cook, D.J.; Augusto, J.C.; Jakkula, V.R. Ambient intelligence: Technologies, applications, and opportunities. Pervasive Mob.
Comput. 2009, 5, 277–298. [CrossRef]

30. Morandi, F.; Roffia, L.; D’Elia, A.; Vergari, F.; Cinotti, T.S. RedSib: A Smart-M3 semantic information broker implementation. In
Proceedings of the 2012 12th Conference of Open Innovations Association (FRUCT), Oulu, Finland, 5–9 November 2012; pp. 1–13.

31. Korzun, D.; Varfolomeyev, A.; Shabaev, A.; Kuznetsov, V. On Dependability of Smart Applications within Edge-centric and Fog
Computing Paradigms. In Proceedings of the 2018 IEEE 9th International Conference on Dependable Systems, Services and
Technologies (DESSERT), Kyiv, Ukraine, 24–27 May 2018; pp. 502–507.

32. Korzun, D.; Balandin, S. A Peer-to-peer Model for Virtualization and Knowledge Sharing in Smart Spaces. In Proceedings of the
8th International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies (UBICOMM 2014), Rome,
Italy, 24–28 August 2014; pp. 87–92.

33. EDIFACT: The Universal Message Standard. Available online: https://bit.ly/3NP6yi0 (accessed on 18 March 2022).
34. EDI 997 Functional Acknowledgement Specifications. Available online: https://bit.ly/3x0gb7L (accessed on 24 March 2022).
35. What Are EDI Document Standards? Available online: https://bit.ly/3qYlJvy (accessed on 22 March 2022).

http://dx.doi.org/10.1016/j.pmcj.2009.04.001
https://bit.ly/3NP6yi0
https://bit.ly/3x0gb7L
https://bit.ly/3qYlJvy

	Introduction
	Background and Previous Work
	Performance of Message Queueing Systems
	EDI Messaging
	EDI Deployments
	Industry 4.0
	AmI, IoT and Supply Chains

	Paper Summary

	Materials and Methods
	Framework
	Feature: Identification–Selection
	Feature Classification

	Modelling
	Parametric Modelling
	Non-Parametric Modelling
	Message Interdependence

	Queueing Problems
	Quantisation Noise

	Results
	Framework
	Feature: Identification–Selection
	Feature Classification

	Modelling
	Parametric Modelling
	Non-Parametric Modelling
	Message Interdependence

	Queueing Problems
	Quantisation Noise

	Discussion
	Framework
	Feature: Identification–Selection
	Feature Classification

	Modelling
	Parametric Modelling
	Non-Parametric Modelling
	Message Interdependence

	Queueing Problems
	Quantisation Noise

	Conclusions
	References

