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Abstract: The Internet of Things (IoT) has had a tremendous impact on the evolution and adoption of
information and communication technology. In the modern world, data are generated by individuals
and collected automatically by physical objects that are fitted with electronics, sensors, and network
connectivity. IoT sensor networks have become integral aspects of environmental monitoring systems.
However, data collected from IoT sensor devices are usually incomplete due to various reasons
such as sensor failures, drifts, network faults and various other operational issues. The presence
of incomplete or missing values can substantially affect the calibration of on-field environmental
sensors. The aim of this study is to identify efficient missing data imputation techniques that will
ensure accurate calibration of sensors. To achieve this, we propose an efficient and robust imputation
technique based on k-means clustering that is capable of selecting the best imputation technique
for missing data imputation. We then evaluate the accuracy of our proposed technique against
other techniques and test their effect on various calibration processes for data collected from on-field
low-cost environmental sensors in urban air pollution monitoring stations. To test the efficiency of the
imputation techniques, we simulated missing data rates at 10–40% and also considered missing values
occurring over consecutive periods of time (1 day, 1 week and 1 month). Overall, our proposed BFMVI
model recorded the best imputation accuracy (0.011758 RMSE for 10% missing data and 0.169418
RMSE at 40% missing data) compared to the other techniques (kNearest-Neighbour (kNN), Regression
Imputation (RI), Expectation Maximization (EM) and MissForest techniques) when evaluated using
different performance indicators. Moreover, the results show a trade-off between imputation accuracy
and computational complexity with benchmark techniques showing a low computational complexity
at the expense of accuracy when compared with our proposed technique.

Keywords: IoT; low cost sensor; missing data; imputation

1. Introduction

The rapid increase in the use of IoT technology has resulted in a vast amount of data
being collected, mostly from sensor devices. The IoT relies on data collected by various
end devices, and data is collected instantly by physical objects that incorporate sensors
and network connectivity [1,2]. As a result, there has been a huge surge in the amount of
data being generated and sent over the internet. When handling large amounts of data,
it has become rather usual to come across large amounts of missing values in the data.
Sensor data frequently contains missing values due to data collection and transmission
errors [3]. Due to common-mode failures, data with missing values continues to emerge as
a long-standing difficulty in the IoT architecture, potentially resulting in bias and loss of
precision. These systems rely on data analytics applications that make decisions based on
end device data.

It is apparent that educating industrial users about the importance of owning intellec-
tual property (IP) and identifying the merits of continuous development is the best way to
increase their interest [4]. There has also been a constant threat of security breaches which
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could breach the ownership of IP, increasing the risk to established business models. This
is especially true when considering IoT-enabled healthcare systems, and that is an excellent
demonstration when designing distributed IT systems with comparable complicated needs
and stakeholder requirements [4].

Atmospheric pollutants in urban areas are considered as a main factor that has led
to the increase in respiratory sicknesses among citizens. Some of these pollutants, e.g.,
benzene have previously induced cancers when citizens are exposed for prolonged period
of time [5]. Hence, it is important to accurately estimate the distribution of these pollutants
as it is relevant for traffic management and assists in the design and mobilization of plans
to tackle these problems.

Currently, air pollution monitoring in urban areas is essentially carried out using
networks of fixed stations that are spatially distributed. These stations can accurately and
selectively estimate the concentration of various atmospheric pollutants using Low Cost
Sensor (LCS) devices. However, it is sometimes challenging to adequately deploy these
networks due to their size and cost [5,6].

It has become possible to acquire spatio-temporal data variables for urban atmospheric
pollutants by making use of LCS that are strategically placed in polluted areas. However,
the data collected by these sensors are exposed to numerous issues such as drifts, bias and
loss of data due to equipment failures [7]. The issue of missing data is a prevalent problem
that affects most sensor network domains and other real-life datasets such as traffic [8],
medical/health record systems, geo-informatics [9,10], and industrial applications [11].

If missing data is not handled correctly, it can have a significant impact on the veracity
of data-based insights. By minimising the sample size and thereby introducing bias, it may
limit the study’s final results [12].

Complete Case Analysis (CCA) and missing data imputation are two popular ap-
proaches for handling the issue of missing data in research. The goal of the CCA method is
to discard instances of a given variable that has missing values. Although, this method is
quite straight forward and easy to implement, it leads to loss of data which may hold some
useful information. According to [13,14], applying the CCA method will only be useful on
a dataset with a large number samples and significantly low percentage of missing data.
Imputation on the other hand involves filling in missing values with estimated values.

There are two categories of missing data imputation: (i) single imputation and (ii)
multiple imputation. The single imputation approach simply fills in missing values us-
ing a single and unique value, e.g., zero value, mean or mode of a given distribution.
Multiple imputation however is a model- based technique that is further classified into
two: Discriminative (such as Multiple Imputation by Chain Equations (MICE) [15], matrix
completion [16] and random forest imputation (missforest) [17]) and Generative multiple
imputation method consists of Deep Learning (DL) techniques such as Neural Networks
(NN) [18], Generative Adversarial Networks (GAN) [19], and Variational Auto Encoders
(VAE) [20]. In this study, we evaluate the consequence of incomplete/missing values
on data generated from Low-cost environmental sensors and propose a Best Fit Missing
Value Imputation (BFMVI) model based on data clustering for the missing value imputa-
tion process. We compare the effects of our suggested technique on sensor calibration to
state-of-the-art techniques.

The rest of the paper is laid out as follows: In Section 2, we present our motivation
and the contribution of this paper. Section 3 identifies recent research that has been carried
out with regards to missing data imputation for sensor calibration. Section 4 presents
our experiments and results, clearly describing the dataset used for simulations and our
proposed approach. Imputation techniques and their effects on sensor calibration are
discussed in Section 5. Lastly, Section 6 concludes the paper and suggests some areas for
further research.
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2. Motivation and Contribution

The presence of missing values in datasets is a pervasive issue that has drawn attention
from various research domains such as medical research [10], data compression [21] and
sentence generation [22]. These collaborative efforts have led to the development of
state-of-the-art machine learning techniques for solving this issue in datasets with unique
characteristics. Our work follows the imputation paradigm presented in [23]. However,
this study showcases various improvements to the work done by the previous authors. To
further improve the accuracy of the final imputation result, we use stronger predictors and
consider the covariates in our imputation model to generate and replace missing values
with multiple imputed values rather than single imputed values in each group in order to
preserve the variability of the data as opposed to the work in [23]. This study also improves
on previous works by testing higher rates and different mechanisms of missing data and
presents the efficiency of imputation techniques on machine learning tasks.

In this study, we investigate the performance of various missing data imputation tech-
niques for sensor networks in environmental monitoring stations. During data collection,
sensor devices may fail or run into errors which results in the issue of missing data. Conse-
quently, this will have an impact on the advanced analysis of the data collected by these
sensor devices [24]. Traditional methods for handling this issue involves deleting instances
of a dataset with missing values before proceeding to further analysis. This method is
impractical because it totally disregards scenarios with missing values and fails to account
for the complex distribution of environmental data, resulting in bias and imprecision [24].
It is possible to impute missing data by learning from the observed data and filling-in
missing instances with single or multiple plausible values.

The authors present a novel clustering based approach to missing value imputation
for univariate missing data with varying missing patterns. This paper’s main contributions
are summarised below:

• As various imputation techniques exist in the literature, when faced with real-life
missing instances where there is no ground truth data, it is important to have impu-
tation approaches that will embed the capability of selecting optimal algorithms for
imputing missing values. We propose an imputation algorithm called BFMVI that is
capable of choosing appropriate techniques for filling-in missing instances based on
the nature and characteristics of the missing data.

• We also propose a reverse error score function RES(r) that is based on double Root
Mean Squared Error (RMSE) calculations on two final imputation estimates to obtain
the final imputation result for filling in missing instances.

• We experimentally demonstrate that considering highly correlated auxiliary variables
in the imputation model will impute efficient predictors which will significantly
improve the RMSE and MAE scores.

• Our proposed BFMVI algorithm shows a better performance as opposed to alternative
benchmark techniques when missing values occur at different rates and consecutive
periods of time.

In order to exploit the merits of low latency, high energy efficiency, lower bandwidth
consumption and improved data privacy, we suggest the application of the proposed
method on the network edge. Bringing imputation algorithms to the edge makes it possible
learn more about the dynamics of the urban systems and explore the potential of the
generated data.

3. Related Works

The classification of missing data mechanisms is important as it assists in the selection
of suitable strategies for handling different missing data problems. According to [25],
three important mechanisms of missing data exists namely; Missing at Random (MAR),
Missing Completely at Random (MCAR) and Not Missing at Random (NMAR). In the
MAR mechanism, the probability of a missing value on an attribute Y depends on the
value of another attribute X but not on the value of Y itself [26]. The MCAR mechanism
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can be noticed when the value of an attribute with missing data neither depends on the
missing data nor observed data. MCAR is a mechanism that is considered in most fields to
be “totally and randomly” missing. Here, the probability of an attribute Y to have missing
values is not directly associated with the output of the variable X or the output value of Y
itself [25]. Contrary to previous missing data mechanisms described, assuming we have an
organised data matrix, when the chances of missing values on a given attribute Y depends
on Y itself, and not the value of another attribute X, data is said to be not missing at random
(NMAR) [27].

The Expectation Maximization (EM) algorithm for missing data imputation was pro-
posed by [28]. This is a well known missing data imputation strategy identified in the
literature. When imputing missing continuous data, the EM algorithm first evaluates the
mean and covariance matrix from the values that are present in the dataset. The algorithm
then iterates until there is no significant change to the mean value and covariance matrix
as the algorithm moves from one iteration to another. Research has shown that the EM
algorithm only works best when data is missing at random. A disadvantage however, is
that the EM technique largely depends on information obtained from other variables in a
dataset. Therefore, more reliable missing data estimates can only be obtained from highly
correlated data using the EM algorithm [23].

In [29], Zhang et al. approached missing data imputation by splitting a dataset into
k distinct clusters in the first step. This method results in the generation of membership
values for all the points that fall within a specific cluster or centroid. After that, all the
missing instances are assessed using the membership measure of other points that fall
within the boundary of the same cluster centroid. This technique constitutes an advantage
due to its simplicity. However, the predictive accuracy of imputation results from FCM
may be influenced by unusual clustering circumstances where the selection of an optimal
number of k clusters is a challenge for data miners. An iterative imputation method
was also developed by [17], based on the random forest (missForest) method. The idea
behind this method involved averaging several regression and classification trees that were
unpruned. Their Analyses were conducted on multiple datasets obtained from biological
fields, and artificial missing values were simulated on their datasets in order to test the
accuracy of their imputation method against different rates of missing values. Their work
showed the ability of the missForest method to handle continuous and categorical missing
data. Comparatively, after analysing the performance of missForest against some other
methods such as KNN, their results showed that missForest outperformed other imputation
methods, especially in settings where non-linear relationships and complex interactions
were suspected in the dataset.

Gupta et al. [30] approached missing data imputation using Neural Networks (NN) to
solve classification problems. The researchers proposed a solution to rebuild missing values
using a backpropagation algorithm. Results showed that reconstructing missing values
using NN yielded better results than statistical methods. Further analysis also showed
that reconstructing missing values using NN improved classification accuracy. Ref. [31]
also investigated the performance of missing data techniques on various tasks includ-
ing regression, classification and bankruptcy prediction using Auto Associative Neural
Networks (AANN).

Ref. [32] developed a novel methodology for missing data imputation during the data
acquisition phase. In their approach, the authors distributed computation among a range
of stationary and mobile devices based on the edge computing paradigm, allowing the
network to efficiently scale horizontally, thereby increasing the number of sensing devises
and reducing the effect of missing values caused sensing errors.

Various other methods have been proposed in previous research for sensor calibration.
De-Vito et al. [5] developed a sensor calibration method based on Neural Networks (NN)
using on-site data for CO, Benzene, NOx and NO2 pollutants in a municipal air quality
monitoring station with the use of solid state LCS collected over a 13 months period. Their
research showed the viability of achieving neural calibration, which will allow sensor
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devices to successfully estimate environmental pollutants with optimal results over a
bounded amount of training sessions.

Spinnelle et al. made use of Artificial Neural Network (ANN), Simple Linear Regres-
sion (SLR) and Multivariate Linear Regression (MLR) to calibrate a group of LCS (O3, NO2,
NO, CO and CO2) over a calibration period of two weeks [33]. Uncertainty measurements
estimated by the regression of sensor and ground truth data showed that ANN was a
suitable model for calibrating sensor clusters. On the contrary, SLR and MLR yielded
measurements with high levels of uncertainty.

4. Experiments
4.1. Dataset Description

For the purpose of our simulation, we made use of a dataset presented by De-Vito
et al. [5], which is publicly available on the University of California Irvine (UCI) reposi-
tory [34]. The dataset contains the concentration measures of target pollutants collected
from a measurement site. These concentration values were used as a benchmark to tune a
regression system that was designed to calibrate the response of the multi-sensor device.
This device was configured to accommodate five metal oxide sensors and two solid state
sensors to capture data on the temperature and relative humidity in the environment.
The specified station provided concentration estimation values for CO (mg/m3), C6H6
(µg/m3), non-metalic hydrocarbons (NMHC) (µg/m3), NO2 (µg/m3), NOx (ppb). The
data was sampled, showing hourly averages of the concentration results. However, the
NMHC analyser went offline after 8 days causing a series of missing data. Hourly average
values of the multi-sensor device was sampled, showing concentration levels indicated by
NOx, CO, O3, and NO2 metal oxide (MOX) chemiresistors in addition to relative humidity
and temperature sensors. More information on the MOX chemiresistor is presented in a
research by [5].

The original dataset contains real missing values on all columns ranging from as
low as 3.91% to a high of 91%, with the highest rate recorded from the GT sensor which
we disregarded in our analysis. Assessing the accuracy of imputation methods would
be impossible if the dataset is analysed with real missing values present. Therefore, we
employed CCA to generate another dataset with fully observed values and created artificial
missing values to assess the strength of the imputation techniques on different rates of
missing data. An outline of the methodology is clearly described in the following section.

4.2. Methodology

We created different rates of artificial missing data on the variable containing the con-
centration of C6H6 (see Figure 1) and employed single and multiple imputation techniques
to replace the uni-variate missing data.

The techniques we considered in this research include EMI, KNN, MissForest, Re-
gression and BFMVI. In order to assess the performance of the algorithms, we follow the
approach that was proposed in [35], outlined as follows:

(i) We evaluated the correlation between each feature as seen in Figure 2; features
that exhibited strong correlation with the variable (C6H6) that required imputation
were used in the imputation model.

(ii) We created missingness at arbitrary points on the target variable.
(iii) We imputed missing values using the different imputation techniques.
(iv) The accuracy off all the imputation techniques were assessed and compared using

their Root Mean Squared Error (RMSE) indicator.
(v) We analysed the effect of each imputation technique on the sensor calibration and

compared the results to the calibration result of each imputation method.
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Figure 1. Pattern of missing value occurrence.

Figure 2. Correlation coefficients of air quality sensors.

Specifically, we introduced missing values based on the patterns listed below and
evaluated the accuracy of the imputation methods based on the different scenarios:

(a) We simulated missingness on a single variable at random, where missing ratio r =
(10%, 20%, 30% and 40%).

(b) We simulated missing values on one variable, occurring over p consecutive time
periods where p = (1 day, 1 week and 1 month).

A detailed description of the imputation algorithms used in our experiments can be
seen in the following sections below.
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4.2.1. Expectation Maximization Imputation (EMI)

This technique was proposed by [28] to handle the missing data problem. The general
idea behind the EM algorithm is to iteratively estimate parameters required to predict
the missing values in a given distribution by calculating the mean and variance between
parameters [26]. The application of the EM algorithm usually aims at solving missing data
problems. However, research has also shown the use of this algorithm in solving complex
problems for complete data sets. For example, multilevel linear models, structural equation
model and finite mixture [36–39].

The EM algorithm constitutes iterative processes built on two steps: the expectation
step (“E-step”) and maximization step (“M-step”). The initial values available in a system
are required to initiate the estimation process. The E-step begins with the construction of a
linear regression model, using the co-variance matrix and initial mean vector to produce
estimates for missing values based on the values from the observed data. The M-step
follows after the E-step and produces new parameter values for the data that have been
estimated. The algorithm saves the last co-variance matrix and mean vector to determine
the next E-step and builds a new regression model from the results which is then used to
determine new estimates for missing values. The M-step will subsequently run again to
determine new parameters from the updated estimates. The EM algorithm will iterate these
two steps until the values of the co-variance matrix and mean vector no longer changes or
converges, where the converged value corresponds to that of the value of the maximum
likelihood estimates. The number of iterations in the EM algorithm is dependent on the
number of missing values in the dataset [40,41]. Research conducted by [28] shows a
detailed description of the EMI algorithm.

4.2.2. K-Nearest Neighbour (KNN) Imputation

We also employed the KNN algorithm in this study. The KNN method is a machine
learning algorithm which approaches imputation by classifying the k closest observed
values to missing values and using the average of these k nearest neighbours to impute
missing values going by the distance measure between points [42]. Various distance factors
have been applied to the KNN algorithm in research but for the purpose of this study, we
used the Euclidean distance factor which is the most widely used measure that maximizes
efficiency and productivity of the algorithm [43,44]. The nearest neighbours to the missing
data points were determined by calculating the distance factor between the missing data
point (x) as well as the observed neighbour (y), as shown in Equation (1) below.

Distxy =

√
m

∑
k=1

(Xi −Yi)2 (1)

4.2.3. MissForest

MissForest is another iterative technique based on the Random Forest (RF) algorithm.
Previous research has shown the efficiency of this algorithm in handling multivariate
missing values in high dimensional datasets in a computationally efficient manner [17].
To impute missing values, the algorithm first trained the RF on the observed data using
an iterative imputation scheme, after which the missing values were imputed iteratively.
Section 4.3.2 provides a detailed description of the missForest technique, which is the
foundation of our proposed approach.

4.2.4. Regression Imputation

Inspired by the research in [44], we also performed missing data imputation based on
the traditional simple linear regression model. Generally, we generated a regression model
using the variables that presented high correlation results with the imputation variable
based on Equation (2) below. These variables were used to predict and replace the missing
values on the target variable.
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Ŷ = a + b1x1 + · · ·+ bqxq,i (2)

where Ŷ is the dependent variable with missing values, x1 is the independent variable and
b1 represents unknown parameters.

4.3. Our Approach

We propose an imputation model based on k-Means algorithm that is capable of choos-
ing the most optimal imputation method. Three stages are considered in our imputation
model; firstly, we partition the incomplete data into different groups based on the k-means
algorithm. Secondly, missing values in each independent cluster is estimated based on the
the observed values within each group. In the third stage, the algorithm selects the most
suitable imputation technique for each group based on predefined imputation techniques
fitted in the model.

In the next sections, we present the stages involved in the proposed imputation
approach, but we first introduce some relevant notations and definitions related to the
univariate missing data:

Definition 1. A univariate data series X shows a sequence of real numbers X = x1, x2, ..., xn where
N represents the length of the series.

Definition 2. A missing sequence Vi,l ∈ X is a set of continuous missing data NA where the length
l ranges from i to i + l.

4.3.1. Stage 1: Partitioning the Dataset

Before grouping the data, we first of all pre-imputed missing values using distinct
values, after which the dataset was split into k = 3 distinct groups. According to [45], more
accurate imputation estimates could be derived when similar records are used to estimate
missing instances. However, [46] argued that current clustering algorithms do not perform
optimally in the presence of missing data as missing values constitute major uncertainties
in a dataset, therefore affecting the usability and accuracy of existing clustering algorithms.
The strategy for clustering the dataset is integrated in Algorithm 1.

4.3.2. Stage 2: Defining the Imputation Strategy

The second stage is initiated after the dataset has been group into clusters with similar
records. We trained a random forest model on each group before aggregating the data. This
ensured that strong predictors Xs = 1, ..., p were used in the training process.

In our approach, we assume an n × p-dimensional matrix where X = (X1, ..., Xn). We
first of all use the RF algorithm to fill in missing observations in each partition created
by the k-Means algorithm. A built-in routine is added to the RF algorithm for handling
missing values by considering the frequency of values in the recorded variables with their
RF proximities after initially training the model on the dataset pre-imputed with mean
values [47]. This approach mostly requires a fully observed response variable before the
RF model can be trained. However, we directly estimated the missing values by using the
RF model on a training set containing only the observed data, with X, being the matrix
with complete data and Xs representing the sample with missing vales i(s)miss ⊆ {1, ..., n}. To
better understand the training process, we separate the data into four parts as described
below:

1. y(s)obs → representing the values that are present in the variable Xs

2. y(s)miss → representing the values that are missing in the variable Xs

3. x(s)obs → representing the observations, i(s)obs = {1,...,n}\i(s)miss of the predictor variable in
Xs

4. x(s)miss → representing the observations, i(s)miss of the predictor variable in Xs
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It is important to note that i(s)obs points only to the observed values in Xs. Therefore,

x(s)obs is not completely observed and likewise, x(s)miss is not completely missing.
Similar to the work in [17], the process is initiated by pre-imputing the missing

values in X with the mean of the distribution or any imputation method, after which the
predictors Xs = 1, ..., p are stacked in ascending order considering the amount of values
that are missing. Each missing value in Xs is then imputed by first of all fitting the RF
on the response y(s)obs and predictor variable x(s)obs. Next, the trained RF model is applied to

x(s)miss to predict the missing values of y(s)miss. The imputation process is repeated until the set
stopping criterion (γ) has been met. This is achieved when the difference between the most
recent imputed data matrix and the old matrix has an increase for the first time, considering
the variable types present. In our approach, we take the n× p matrix to be a set of set of
continuous variables. Therefore, the difference in the new and previous imputed matrix N
is defined as:

∆N =
∑j∈N(Ximp

new − Ximp
old )2

∑j∈N(Ximp
new)2

(3)

This step is followed by two additional imputation phases where missing values in
each cluster is also estimated using a kNN and linear regression model.

Still considering an n × p matrix Xs, the procedure for next imputation phase is
described as follows;

1. The missing values in each cluster matrix Ci are located.
2. The kNN vectors are defined by; xD

(1), ..., xD
n with d(xi,x(1)) ≤, ...,≤ d(xi,x(k)), where

xD
(1) represents the rows of the matrix XD, and d(xi,x(k)) is the distance given by

Equation (1).
3. For each point (y) in Ci, the distance (x, y) between the missing point and nearest

imputed value is stored in a similarity array (S).
4. The array (S) is sorted in descending order and the top K data for (y) in Ci is selected

for imputation.

The linear regression imputation process follows, as described below;

1. For each matrix Ci the data was split into four parts similar to the RF method where a

regression model was trained on the response y(s)obs and predictor variable x(s)obs.
2. The trained regression model is then used to predict the missing values in Xs.

4.3.3. Step 3: Selecting the Best Fit Estimation

After computing the missing values, the next stage is the selection of the most suitable
imputation method within each group. For each data matrix Ci, we make our selection by
estimating the error between the previous imputation ypre,i and current imputation ycur,i
based on the equation below;

err =

√
1
n

n

∑
i=1

ypre,i − ycur,i (4)

we set the result of the RF imputation as our threshold γ and place ypre,i ≡ γ as the initial
value of the previous estimate as described in Algorithm 1.

Lastly, we use a reverse error score function RES(r) to obtain the final imputation se-
quence. This is based on two RMSE calculations between the previous imputation estimate
with the lowest error and our given threshold γ . A sequence that gives the lowest error
score is chosen as the optimal imputation estimate for the given distribution.
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Definition 3. A reverse error score function RES(r) representing the error between γ and the final
sequence βCi in each group Ci is expressed as:

Mγ =
∂(γ)

∂n
=

√
∑N

i=1(Xγ − ŷβci )
2

n
(5)

Mβci =
∂(βci)

∂n
=

√
∑N

i=1(ŷβci − Xγ)2

n
(6)

RES(r) = M(γ, βci) =

[
∂(γ)

∂n

∂(βci)

∂n

]
(7)

where γ is the imputation threshold for Ci and βCi is the best estimate from the previously chosen
imputation techniques.

Algorithm 1 k-Best Fit Estimation Model.
Input: Incomplete matrix X (n x p). Parameter: γ, missing value: vs.
Output: Dataset with Imputed values Xs.

1: Pre-impute missing values in matrix X (n x p) with distinct single imputation values
2: Select initial centers k at random C = {c1,...,ck}
3: while convergence criteria is not met do
4: assignment step:
5: for i = 1,...,N do
6: locate nearest centroid ck ∈ C to points {pi, ..., pn}
7: append points {pi, ..., pn} to the set Ck centroid
8: Update:
9: for i = 1,...,k do

10: ci → center of all points in Ci
11: end for
12: end for
13: end while
14: Assign cluster label (Cik) to points {p1, ..., pn} ∈ X
15: while 1 do
16: for each v ∈ Ci do
17: RF1

i = missForest (pi ∈ Ci)
18: RI1

i = regression (pi ∈ Ci)
19: kNN1

i = k-Nearest Neighbour (pi ∈ Ci)
20: end for
21: errci =

√
1
n ∑n

i=1 γpre,i − αcur,i

22: if RIerr ≤ kNNerr then
23: RI1

i → βCi
24: else kNN1

i → βCi // Store imputed value in a temporary array
25: end if
26: Get the imputation sequence (M

′
) and compute a reverse error score function RES(r):

27: for v = 1 : k do
28: Get the reverse error score RES(r) using Equation (7)
29: if βCi,err ≤ γerr then
30: βCi 7→ Ci
31: else γ 7→ Ci
32: end if
33: end for
34: end while
35: Return imputed dataset Xs;
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4.4. Model Evaluation

In this section, the accuracy of the imputation and calibration models was first eval-
uated and compared with the estimated values and calibrated sensor responses to the
measurements derived from the original sensor data using the following error metrics:
Root Mean Squared Error (RMSE), Mean Absolute Error (MAE) and Coefficient of Determi-
nation (R2).

RMSE =

√
1
N

N

∑
i=1

(Yi − ŷi)
2 (8)

MAE =
1
N

N

∑
i=1

(|Yi − ŷi|) (9)

where N represents the sample size, Yi is the original data matrix and ŷi is the imputed data.
A low RMSE and MAE shows better model performance and the closer the R2 value

is to 1, the better the model performance. The performance of each imputation method was
evaluated and used to build the calibration models.

5. Results

We present the results of our analysis in the following subsections. Evaluated the
performance of each imputation technique and their effect on sensor calibration.

5.1. Imputation

We compared the accuracy of the different imputation techniques. First, we simulated
artificial missing values on the C6H6 sensor variable at different rates {10%, 20%, 30%, 40%}.
The different techniques (kNN, RI, missForest, EM and BFMVI) were used to impute the
missing values and the accuracy of these techniques at the different missing data rates were
calculated. Table 1 shows the performance of the different techniques. From the results,
our approach recorded the best imputation accuracy across the different rates of missing
data. This could be explained by the use of strong predictors through clustering the data
before imputation was carried out. The results of the RF and RI imputation methods also
showed similar imputation performance, owing to the effect of the auxiliary variables (i.e.,
CO, NMHC, NOx and O3) that showed strong correlation with the missing sensor variable
and were added to the imputation model.

Table 1. Performance and computational complexity of imputation techniques.

Imputation Method Avg. Computational Complexity (s) Missing Rate RMSE R2 MAE

KNN 0.82 10% 0.941595 0.984187 0.216405
20% 1.410407 0.964461 0.452831
30% 1.831899 0.964461 0.694035
40% 1.930442 0.933555 0.861461

RI 0.85 10% 0.802989 0.98831 0.193356
20% 1.206893 0.97327 0.392866
30% 1.630087 0.949827 0.61114
40% 1.722670 0.943538 0.771931

EM 2.28 10% 3.083324 0.824947 0.719108
20% 4.507154 0.608994 1.435791
30% 5.445520 0.405416 2.189204
40% 6.398958 0.152979 2.914241

missForest 1.71 10% 0.835237 0.987369 0.197484
20% 1.231309 0.972118 0.392628
30% 1.631028 0.949937 0.60595
40% 1.746202 0.941935 0.77397

BFMVI 3.39 10% 0.011758 0.999998 0.000599
20% 0.029012 0.999985 0.001917
30% 0.215160 0.999165 0.006739
40% 0.169418 0.999483 0.006136
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We also assessed the performance of the imputation techniques on missing data
occurring over a consecutive period of time {1 day, 1 week and 1 month} as seen in Table 2
and Figure 3. In general, across all imputation tasks examined in this paper, BFMVI
illustrates a reliable performance in handling the different rates and characteristics of
missing data considered in this study as opposed to the other imputation techniques.

The average computational complexity Tavg(n) of the imputation techniques were also
computed based on the function T(n) = cn where T represents the time, n represents the
input size and c represents some constant [48]. We computed the complexity of the imputa-
tion techniques on each missing data rate (10–40%) and obtained the average complexity
based on Tavg(n) = T(n)/m, where m = 4 simulations. Overall, KNN imputation showed
the best computational performance among all other imputation techniques considered
with an averege of 0.82. Our proposed BFMVI technique however showed a trade-off
between accuracy and complexity with a higher average computational complexity of
3.39 owing to the imputation process which computes multiple imputation options for the
final process.

Table 2. Comparison of Imputation Techniques on C6H6 Missing Values occurring over Consecutive
Periods.

Missing Period KNN RI EM missForest BFMVI

1 Day 0.0872 0.115932 0.526072 0.11624 0.001016
1 Week 0.225566 0.341941 1.185411 0.328895 0.002169

1 Month 0.770596 0.763162 2.785029 0.750043 0.005263

Figure 3. Comparison of Imputation Techniques on C6H6 Missing Values occurring over Consecutive
Periods.

5.2. Sensor Calibration

After missing values were imputed using different techniques, we investigated the
effect of each imputation technique for the purpose of sensor calibration. Sensor calibra-
tion commonly require complete observations of the reference and sensor measurement.
Therefore, the use of efficient imputation strategies is paramount.

Different supervised machine learning techniques were employed to calibrate the
sensor data (MLR, DT and RF). To assess the effect of the imputation techniques on the
calibration process, we conducted our analysis using the results of the imputed data at 30%
missing rate. Calibrating sensor data using the BFMVI data showed stronger results when
contrasted with the original data. The results in Table 3 shows the calibration results of the
different imputation methods on the C6H6 sensor. Figure 4 also shows the response of some
meteorological factors on the imputation techniques. On each calibration method, the result
of the BFMVI imputed data showed more accurate results. The RI, missForest and kNN
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methods also showed good performance with R2 score > 0.9 for all calibration processes.
Calibrating the the sensor with the MLR model trained on the BFMVI imputed data showed
the best performance with an RMSE score of 0.031. Overall, calibrating the sensor on the
filtered CCA data showed promising results. However, there was a noticeable reduction in
error from the calibration on the imputed data compared to the original CCA data.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)
Figure 4. Scatter plot showing the effect of various imputation techniques on the sensor data color-
coded with Temperature (T) and Relative Humidity (RH) meteorological factors: (a,b) Original data,
(c,d) kNN Imputation, (e,f) Regression Imputation, (g,h) EM Imputation, (i,j) missForest Imputation
and (k,l) BFMVI.
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Table 3. Comparison of Imputation Techniques on C6H6 Sensor Calibration.

Imputation Method Performance Measure MLR DT RF

Original Data RMSE 1.105198 2.675627 1.307132
R2 0.977588 0.852582 0.967482

MAE 0.782843 1.924280 0.941910

KNN RMSE 0.921755 1.831899 1.443856
R2 0.983985 0.939847 0.961877

MAE 0.711107 0.694035 0.703279

RI RMSE 0.85446 1.630087 1.28414
R2 0.985646 0.949827 0.968328

MAE 0.656718 0.61114 0.622812

EM RMSE 2.529208 5.450468 4.118277
R2 0.757888 0.403799 0.530481

MAE 1.928332 2.196589 2.132884

MissForest RMSE 0.823423 1.631028 1.287602
R2 0.986708 0.949937 0.968244

MAE 0.634978 0.60595 0.61483

BFMVI RMSE 0.031015 0.201528 0.195777
R2 0.999982 0.999268 0.999308

MAE 0.023258 0.006227 0.010485

6. Conclusion and Future Work

In this work, we explored various missing value imputation strategies for LCS de-
ployed to generate data for air quality monitoring stations. We investigated imputation
techniques such as kNN, RI, EM, missForest and proposed the BFMVI technique for han-
dling missing data. In this study, the BFMVI technique shows the most promising per-
formance for estimating univariate missing data when compared with other imputation
techniques. From our analysis, the concentrations of other auxiliary sensor variables such
as CO, NMHC, NOx and O3 exhibiting strong correlation with the target variable C6H6
were added to the imputation model, which had strong effects on the predictions, while it is
unfeasible to evaluate the accuracy of imputation techniques when the true values are not
known, the authors took the fully observed dataset and introduced artificial missing values
using two patterns to test the accuracy of the imputation methods. Overall, our proposed
BFMVI method showed promising results when compared to the other competing algo-
rithms when applied to a real world Air Quality monitoring dataset. Furthermore, we took
the dataset imputed at 30% for all the imputation techniques and evaluated their effect on
the sensor calibration process. The authors evaluated the efficiency of various calibration
models (DT, MLR, and RF) when trained on various imputed datasets. Results showed
improvements when the MLR model was trained on our proposed BFMVI approach with
an RMSE of 0.0310 as opposed to other techniques.

Due to time constraint, this study could not consider other gas/electrochemical sensor
data with multivariate missing values. Future research could concentrate on other types of
gas sensor data, including Non-Dispersive Infrared (NDIR) sensor data.
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