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Abstract: Dynamic resource provisioning is made more accessible with cloud computing. Monitoring
a running service is critical, and modifications are performed when specific criteria are exceeded. It
is a standard practice to add or delete resources in such situations. We investigate the method to
ensure the Quality of Service (QoS), estimate the required resources, and modify allotted resources
depending on workload, serialization, and parallelism due to resources. This article focuses on cloud
QoS violation remediation using resource planning and scaling. A Resource Quantified Scaling for
QoS Violation (ReSQoV) model is proposed based on the Universal Scalability Law (USL), which
provides cloud service capacity for specific workloads and generates a capacity model. ReSQoV
considers the system overheads while allocating resources to maintain the agreed QoS. As the QoS
violation detection decision is Probably Violation and Definitely Violation, the remedial action is
triggered, and required resources are added to the virtual machine as vertical scaling. The scenarios
emulate QoS parameters and their respective resource utilization for ReSQoV compared to policy-
based resource allocation. The results show that after USLbased Quantified resource allocation, QoS
is regained, and validation of the ReSQoV is performed through the statistical test ANOVA that
shows the significant difference before and after implementation.

Keywords: cloud computing; SaaS; resource allocation; QoS; scalability; USL

1. Introduction

In cloud computing, the issue of Quality of Service (QoS) is significant. Cloud service
providers supply infrastructure for cloud applications to be hosted and accessed online via
a subscription rather than being purchased and installed on individual computers. These
hosted applications on the infrastructure are called Software as a Service (SaaS). In practice,
it is challenging to ascertain the offered QoS as specified in Service Level Agreements
(SLA). Cloud infrastructure contains resources that include storage, memory, processor,
and bandwidth allocated to virtual machines (VM). In resource allocations to VM, there
are many factors that influence optimum resource allocation. Service providers emphasize
energy utility, profit generation, SLA, load balancing, and resource utilization. Cloud
consumers focus on QoS, availability, service cost, and many other factors. Examination of
the dynamics that influence the appropriate allocation of cloud resources from both the
service provider and user viewpoints is challenging [1,2].

It is observed that the quantities of different resources in VMs are predefined, and
the varieties of VMs are limited. However, consumer tasks and workloads vary, which
necessitate various resource allocations. VMs cannot fulfill all types of customer demand,
and consumers cannot wholly utilize all resources in a balanced manner [1,3]. A study by [4]
presented an autonomous resource management approach that works to configure cloud-
based applications and required cloud resources themselves. The presented professional
approach to QoS management has the potential to self-heal through unexpected setbacks
and performance issues. It focuses on QoS parameters in SLA, and resource management is
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conducted based on workload management. The QoS sensor detects a violation of QoS as a
performance control, and the autonomous service manager works for scheduling tasks and
managing resources. Typically, cloud auto-scaling solutions are built on reactive policy-
based rules that scale-up or scale-down the resources when a particular metric changes.
A fundamental challenge for cloud service providers is efficiently provisioning a diverse
range of services on their physical infrastructure. They often provide quality of service
assurances by enabling the number of VM instances to scale up or down to ensure that QoS
requirements are satisfied. Numerous predictive and reactive techniques for dynamically
distributing VMs to various services have been proposed [5–8].

Many approaches have been proposed for scalability and resource allocation using
replication without considering the system’s performance overheads that include seri-
alization (contention) and resource sharing delay (coherence). Such overheads cause a
non-linear relationship between the resources and cloud QoS. It is an important aspect to
consider these overheads while adapting the scalability mechanism to maintain QoS in
the cloud environment. In this work, we have considered non-linearity, scalability, and
performance overheads in our approach. An adaptive framework is proposed to monitor
QoS parameters response time, throughput, and availability to verify compliance with the
associated SLA and QoS agreed values. This paper presents a model that includes remedial
action against possible violations of the QoS metrics. The proposed Resource Quantified
Scaling for QoS Violation (ReSQoV) model is based on the Universal Scalability Law (USL),
which considers scalability overheads and provides cloud service capacity for specific
synthetic workloads and generates a capacity model as output. Contention and coherence
are measured, and resource allocation in auto-scaling is triggered accordingly. ReSQoV has
been validated using response time and availability scenarios that demonstrate remedial
action in QoS violation scenarios. As the QoS violation detection decision is Probably
Violation and Definitely Violation, the remedial action is initiated, and required resources
are added to the virtual machine as vertical scaling.

Our contribution can be summarized as follows.

• A QoS remediation model (ReSQoV) using response time and throughput parameters.
• Cloud Service capacity model generation using Universal Scalability Law.
• Demonstrate the better performance of the model through simulation and comparison

with other policy-based resource allocations.
• Validation of the Significance difference through the statistical test ANOVA.

The following sections comprise the paper: Section 2 discusses relevant works; in
Section 3 the proposed approach is explained; Section 4 presents the experimental setup
and scenarios for evaluating the proposed model, while Section 5 presents the performance
results and evaluations.

2. Related Work

Platform scalability is characterized as a cloud platform’s capability to provision as
many additional resources as an application desires or specific requests [9]. Application
scalability implies that the platform maintains its performance as stipulated in the SLAs,
even when its workload exceeds. The universal scalability law may be exploited to organize
and measure the output of a system for a concurrent workload. The association concerning
workload and cloud resources is non-linear due to resource requests and data access delays
queuing. To maximize scalability, these variables should be measured and addressed.
Therefore, scalability is the ability of the cloud service provider systems to handle requests,
operations, or transactions from more users within a specified recurrent period. The
scalability should be aligned with the cloud ‘resources’ provision time and performance. A
significant aspect of cloud computing is able to forecast potential consumer requests and
associated cloud resource provision requirements.

Furthermore, it is necessary to have a dynamic and fluctuating user load mechanism
that ensures the accepted QoS and efficiency. Researchers showed how vital resource
prediction is in maintaining QoS [9]. An adaptive structure for the workload prediction
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is provided in another study [10]. The resource usage prediction work combines machine
learning clustering with stochastic theory. The research in [11] provides a workload predic-
tion model for automated resource provision centered on the ‘server’s prior use history and
the ‘study’s central goal is to reduce power usage in virtualized environments and allied
networks. A study by Ref. [12] examines an online auction-based system for a cloud-based
virtual machine, CPU, and storage resource allocation. The proposed prediction technique
emphasizes service availability, placement, and resource updates according to cloud con-
sumer requirements. The system calculates costs for users and resource usage based on the
services needed. In [13], the researchers devised an algorithm for reserving cloud resources
that takes the SLA into account. Firstly, it tests the availability of required resources to
assign to the user locally. It examines the allocation of the projected reserved resource if
the workload increases or if the resource is unavailable. Dynamic resource allocation is an
essential feature of cloud computing that matches cloud resource distribution based on
cloud ‘customers’ desire for QoS maintenance, including service availability, fault tolerance,
reaction time, service dependability, and throughput [14].

MQLB-RAM [15], which stands for Multi-QoS Load Balance Resource Allocation
Method, is presented to allocate resources and load balancing. The MQLB-RAM operates
as follows: step (1) it selects and finds outs the multiple dimension QoS, in which the
customer utilized the pay-per-use services and QoS parameters containing the memory size,
processing speed of CPU, and storage size, and; (2) it deals with the resource scheduling
problems as well as reduce the cost in terms of both CPU and operations cost. The use of
resources is focused on historical data from VMs on resource allocation and utilization,
power use, and workload effects in [16]. Algorithms that account for operational expenses
to decrease SLA breaches are also mentioned. The presented algorithms also demonstrate a
trade-off between service performance and energy usage. The proposed resource allocation
approach is tested on the first-come first-serve basis on the CloudSim [17] simulator, and
the results of the experiments satisfied the utilized resource and cost ratio [16].

Related Work comparison on cloud scalability and resource provisioning techniques
is shown in Table 1. A MAPE-k control loop-based autonomous resource provisioning
solution for fog-based IoT applications was presented. It uses a mix of time series prediction
models and Bayesian learning-based techniques to analyze and design the MAPE-k control
loop. Researchers created a three-tier resource provisioning strategy for a fog environment.
The solution’s efficiency was tested on two simulated and real-world workloads. Cost,
resource usage, and delay violation measures were significantly improved over alternative
techniques [18]. In another study [19], in a cloud environment, a framework autonomously
manages the data center resources. Using the ANFIS workload prediction model, FA can
reliably forecast future game demands. It adjusts a prediction model’s parameter based on
the latest measured workloads. Then, utilizing a fuzzy decision tree approach as a decision
maker, improved the planner component’s performance. The performance of the analyzer
component and the overall performance of the autonomic resource provisioning approach
are evaluated and compared. The experiment used both real and synthetic workloads to
validate the evaluations. The ANFIS prediction model’s findings and the experimental
data demonstrate a strong correlation. ANFIS’s developed model has a high coefficient of
determination and a low coefficient for other criteria, indicating an excellent fit to the data
and excellent prediction ability. The proposed approach reduces resource rental costs for
the MMOG provider while meeting player QoS requirements, especially response time.

The authors [20] offer an autonomous resource provisioning strategy. Using an RBF
neural network to forecast user behavior generated a technique that is aware of past,
present, and future fluctuations. While ensuring QoS, the suggested approach leveraged
providence to minimize resource provisioning costs (50%) and prevent hasty judgments
(70%) while increasing load resistance (42%). The authors also covered how to choose
excess VM. As such, the cost-aware algorithm alone saved 1%. The suggested technique
is also flexible and customizable. The ASP may utilize the flexibility feature to adjust
the mechanism’s performance for his gain or to boost end-user satisfaction. Its capability
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allows ASPs without a resource management specialization to apply their policy risk
Lesley on resource capacity. Unlike other mechanisms, the mechanism tended to the
ASP and eventual user’s demands efficiently and equitably. The researchers presented
a model [21] that predicts the cloud resource bundle using real workload and resource
demand data; a maximum probability probabilistic model that predicts resource selection.
The suggested OKNB model outperformed the GMP-SVM model by 3.15–8.04% on res,
cpu, and mem model, respectively. The suggested model reduces waiting time by 16.83–
58.5 s when applied to the cloud selection technique simulated on CloudSim. It also
addressed the weighted probabilistic cloud service selection approach that uses resource
bundle weights. As the cloud is elastic, it can manage changing workloads and their
consumption. The researchers [22] presented resource provisioning for cloud applications
using workload clustering. Their method combined BBO with K-means clustering to split
cloud workloads based on QoS requirements. The Bayesian learning approach was used to
identify resource provisioning activities that fulfill user QoS criteria. The suggested method
decreases time, SLA violation ratio, cost, and energy use compared to current resource
provisioning systems.

Autonomous and smart systems are desired with high precision and accuracy in cloud
capacity management resource allocation and provision domains. As a result, study [23]
presented a resource strategy based on cloud service ‘providers’ smart agents and cloud user
services. With a minimum commitment to VMs, the strategy stresses low-cost maximum
resource usage and QoS guarantee. The classic Best Fit algorithm gives service providers
and users the best cost and VM-placement ratio. The suggested approach also specifies the
optimal VM resource allocation, flexibility, scalability, and dependability in data centers
regarding performance and energy consumption. A neural network is employed in a
study [24] to find the optimal and proper platform for hosting virtual machines. The
primary information for the predictor is resource information and recipient load. The
neural network predicts potential workload and resource requirements from past data and
system resource details. It lets the VM allocator correctly select the appropriate virtual
machine. Using Ant Colony Optimization, the resource-efficient distribution, use, and
management are described [24]. It meets the criteria of employing a suggested algorithm
that predicts existing resources and forecasts future resource requirements.

Table 1. Survey of studies related to Cloud Scalability and resource provisioning techniques.

Reference Technique Used Evaluation Metrics Workload
Dataset Virtualization Environment Auto-Scaling

Strategy

M. Etemadi [18] Bayesian learning CPU utilization, cost
rea

world IoT
workload trace

VM Fog Proactive

M. Ghobaei [19] ANFIS Response Time, Cost synthetic
workloads VMs Cloud Proactive

M.S.
Aslanpour [20]

Radial basis function
neural network

(RBFNN)

Response Time, SLA
Violations Cost

Web server
workload HP VM Cloud Reactive

N. Chauhan [21] Naive bayes
CPU utilization,

response time, and
memory utilization

real-time
workload VM Cloud Reactive

M. Ghobaei [22]

biogeography-based
optimization (BBO),
K-means, Bayesian

learning

SLA violation ratio,
cost, energy

consumption

Clustering
workload VM Cloud Proactive

S. Agarwal [25] Naïve Bayes (NB) and
Random Forest (RF) Memory, CPU usage Google’s cluster

trace dataset VM SOA Reactive

M. Hani [26] Support Vector
Regression model

Availability,
response time, and

throughput

Private Cloud
dataset VM Cloud Reactive

R. Hemmet [27]
Naive Bayes and

Random
Forest Models

availability,
throughput, response

time
Google cluster VM Cloud Reactive
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The work in Reference [28] showed resource management and scalability as possible
remedial measures for QoS violations. One of the most essential modern cloud computing
research objectives is managing and allocating resources effectively to prevent Quality of
Service (QoS) violations. Consequently, several researchers have suggested strategies in
the cloud setting that discuss the question of QoS breach. Many of these studies describe
scalability in terms of workload and machine resource allocation.

Scalability is critically relevant to the system’s increased workload and cloud resource
allocation. Scalability may be defined by available resources and how applications or
services handle data flow, according to Ref. [28]. Improper data flow management can
result in resources under-provisioning, leading to long response times or low throughput,
or resource over-provisioning, resulting in high expenses and low resource utilization.
There are two types of scalability. Horizontal scaling controls computational nodes to the
system that includes replication of virtual machines. In contrast, vertical scaling manages to
add more computing resources to an existing virtual machine. Several studies have focused
on resource management based on user load or instruction workload estimates. The relation
between both workload and resource is non-linear, however, if several concurrent users use
cloud services, the serialization issue and the delay in accessing data will occur. The system
then predicts the actual resource requirements for various operations and transactions. As
a result, research focuses on the required resources while considering factors that influence
the workload ratio of the resources.

3. Proposed Approach
3.1. Scalable Resource Allocation

Cloud resources are expensive, and identifying QoS violations is essential to assist
the cloud administrator in monitoring the virtualized environment cloud application’s
potential violations. QoS violation detection can be performed using the “Adaptive Neuro-
Fuzzy Inference System” (ANFIS) using fuzzy-if-then rules Ref. [29]. If the decision for
QoS violation detection is “Normal” (N) or “Definitely No Violation” (DNV), then resource
scaling is not essential. The “Probably Violation” (PV) decision is a warning to signal the
system that it would need system check and resource modification to return the system
to normal condition. The “Definitely Violation” (DV) decision triggers the allocation of
resources to VM. The amount of resource allocation depends on the framework configu-
ration, and the metrics being tracked are decided at SLA. Further resource allocation is
based on resource monitored logs, VM and Software status, and monitoring parameters.
For example, a continuous decision stream that indicates ‘normal’ response time but ‘low’
throughput will indicate the need for increased cloud resources to maintain QoS in the
normal state.

ReSQoV emphasizes VM vertical scalability for cloud application QoS violation using
the “Universal Scalability Law (USL),” which offers a formal definition of scalability as well
as a conceptual framework for comprehending, assessing, comparing, and improving it. It
accomplishes this by simulating the effects of crosstalk-induced linear speedup, contention
delay, and coherency delay reference [30]. Equation (1) presents the USL with variables.

C(csw) =
U

1 + σ(U − 1) + λU(U − 1)
(1)

where C(csw) denotes cloud computing scalability, U denotes system resource load, and σ is
the contention-delay parameter characterizing the waiting and queuing of shared resources.
The coherence-delay parameter λ represents the penalty for keeping shared writable data
consistent. As a result, the scalability efficiency is affected by the values of σ and λ.

The parameter values are 0 < σ, λ < 1. Yet if λ = 0, then (1) is transformed as follows

C(csw) =
U

1 + σ(U − 1)
(2)
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Coherence is equal to or near zero, as indicated in (2), which excites enhanced scalabil-
ity, the primary purpose of a scalable architecture design. When the QoS decision is PV or
DV, our proposed approach seeks to scale-up resources to VM to maintain the QoS metrics
for all process nodes. The system or application has a greater demand for process nodes in
these phases, necessitating the provision of extra resources to the virtual machine. It is in
line with Equation (1), where machine resources are proportionate, and with the number
of processes. Furthermore, Equation (2) indicates that when contention and coherence are
null in an ideal scenario, the process node is optimized to its best QoS, resulting in linear
scalability. As consistency is defined as the exchange of data across non-local resources, it
is most likely to decrease coherence (λ) to zero, where each process node only works with a
single resource.

There is nearly always some efficiency loss in the real world, and if the reason for
this loss can be figured out, remediation is possible. The real-world systems lag behind
linear scalability a little and display retrograde scalability at some point. When we calculate
this overhead, we discover a significant efficiency loss. Linearity is best thought of as
a ratio of the system’s performance at a size of one. Neil Gunther [31] refers to this as
efficiency. If a single node produces 1800 transactions per second, then four nodes should
yield 7200 transactions per second. That would be completely efficient. If the system loses
a little efficiency with each node and four nodes producing 6500 transactions per second,
then the system is around 90% efficient. Figure 1a demonstrates that both λ and σ are zero
so as to achieve linear scalability or maximum efficiency. Figure 1b indicates λ is zero, while
σ is more significant than zero, which leads to non-linear scalability or some efficiency loss.
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Cloud applications transactions are relatively small and independent, ideally working
in parallelism on multi-core cloud infrastructure. The capacity function C(p) is throughput
achieved using p-cores Xp, relative to throughput on a single-core X1. Ideally, the scale-up
capacity is given by the ratio

C(p) =
Xp

X1
(3)

Suppose single-core performs operations at 100% utilization (i.e., no Contention and
coherence-delay) and completes N1 transactions with response time T1. The single-core
throughput is as follows

X1 =
N1

T1
(4)
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The effect of scale-up on response time means that, while double the size of the
workload and twice the number of Pes, the dual-cores capacity is expected to be twice
the value.

C2 = 2C1 (5)

However, from the contention σ and coherence-delay (λ), and from the measurements
on real multi-core systems, it can be seen that the dual-core processor performs transactions
slightly less than 2N1 in time T1. I suppose that the increase in response time alpha (α) for
the multi-core is some fraction σT1 of the single-core response time: following Figure 2
shows that in multi-core processors additional time added for coherence delay, contention
and serialization that doesn’t exist in single-core processor.

T2 = T1 + αT1 (6)Future Internet 2022, 14, x FOR PEER REVIEW 8 of 21 
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Since the dual-core time T2 is longer than T1, it will impact throughput and be less
than expected. The following equations derive the explicit dual-processor throughput.

X1 =
N2

T2
(7)

X2 =
2C1

T1 + αT1
(8)

X2 =
2C1

T1 + αT1
(9)

X2 =
C1

T1

(
2

1 + α

)
(10)

Which is simplified as

X2 =
2 X1

1 + α
(11)
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It proves that for any nonzero value of α, the dual-core throughput capacity is less
than twice that of the single-core system. Assuming that α is only 4% of T1, then the
dual-core processor scale-up capacity C (2) = X2/X′1 is only 1.92 of the capacity of the
single-core. Consequently, if a single-core is capable of 100 transactions/sec, the dual-core
will accomplish 192 transactions/sec instead of 200 transactions/sec as the expected result
of naive parallelism. By expending the argument analogy with (11), the four-core response
time increases each time for every core increment αT1

T4 = T1 + αT1 + αT1 + αT1 = T1 + 3 αT1 (12)

So the corresponding throughput for X4 would be

X4 =
4 X1

1 + 3 α
(13)

By generalizing Equation (13), the throughput for a p-core system would be as follows

Xp =
pC1

T1 + (p− 1) αT1
(14)

Xp =
pX1

1 + α(p− 1)
(15)

And the p-core scale-up is derived as

C(p) =
p

1 + α(p− 1)
(16)

It is, therefore, possible to evaluate the optimum scalability by using Equation (2) by
adjusting the values of contention and coherence presented in Equation (16). However, the
viability of the USL method are detailed in section three onwards, after the identification
and resource allocation processes.

3.2. Elaboration and Flow of Proposed Approach

This section uses a flow diagram to demonstrate the intricacies of the QoS violation
detection process using ANFIS fuzzy-if-then rules. The evaluation focuses on erroneous
system behavior against threshold values and in the end, optimal scalable resource allocation.

Details of the ReSQoV are explained in reference [28]. There are three primary pro-
cesses, as indicated in Figure 3 (sequenced from left to right from numbers 1.1, 1.2, and
so on): (1) “violation detection and prediction;” (2) “resource evaluation;” and (3) “re-
source allocation.” Sub-processes exist under each major process; for example, process
(1) has sub-processes 1.1 to 1.6. Process (2) has sub-processes 2.1 to 2.7, and process (3) has
sub-processes 3.1 to 3.6. These steps are summarized below.

1. Violation Detection and Prediction: the initialization of the environment, which
includes keeping a log of the present status of the available resources. QoS monitored
values of each process node are then compared to the fuzzy-if-then rules. If there is
definitely no violation (DNV) or if the state is normal (N), then normally perform
execute; otherwise, if there is a probably violation (PV) or a definitely violation (DV),
then perform resource evaluation.

2. Resource Evaluation: to find the corresponding defects, a resource evaluation is
conducted. It searches for newly added cloud resource nodes and any other changes.
A resource check is necessary to avoid performance deterioration, maximize resource
use, and eliminate defects. To find flaws in the application, it runs software checks. It
looks through the logs for any application-related events. The type of event (error,
critical), the event id, and the time stamp are all stored. Check the following settings
for resource thresholds: The program tracks memory and CPU consumption. The
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system generates notifications when the memory and CPU consumption values exceed
the threshold.
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Resource Allocation: the resource requirement is determined by the value of the
contention and coherence parameters. As more workload is assigned, it fluctuates (se-
rialization or queuing). The serialization and queuing occur when more workloads are
executed on certain resources and the required resources are less than available. Dur-
ing the resource scheduling process, resource contention is measured using USL. In-
creasing the number of resources (CPU cores, RAM) boosts throughput while lowering
response time. The base for the additional resource allocation is the ideal contention
value. The USL model and its prediction outputs will calculate resource requirements,
and when the required resources are available, resources are assigned to VM. The follow-
ing Algorithm 1 presents the intents of the proposed mechanism for resource allocation.

Algorithm 1. Resource Allocation after modelling Universal Scalability Law

(1) USL_Model_Generation with current Resources
(2) For (All Process_ node)
(3) Resource_Repository == USL_model_desired_resource
(4) if Violation_Decision != Normal && Definitely_No_Violation
(5) { if process_nodecurrent != Active Then
(6) process_nodecurrent == dead, log_data}
(7) elseif (process_nodecurrent == Active)
(8) { process_nodecurrent = assign_resources
(9) End if
(10) End If
(11) End for
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4. Experimental Setup and Scenario-Based Simulation

This section describes the experimental setups and simulations used to evaluate the
proposed mechanism. Algorithms are implemented, and scenarios are simulated using
CloudSim Plus [32], a toolkit for modeling and simulating infrastructures and facilities in
cloud computing. The proposed algorithms are analyzed from users’ and SaaS providers’
viewpoints. It assesses how many requests are accepted while maintaining the QoS and
how many user requests are handled effectively in a unit of time (it calls average response
time). From the viewpoint of the SaaS vendors, it shows how fewer resources can be used
to operate the workload version. Consequently, three performance assessment metrics,
namely the average response time for requests, the throughput, and the PE cores, are used
during vertical scalability.

4.1. Dataset Generation

There are a few publicly available traces on measuring QoS of cloud services due to
protecting business confidentiality and consumers’ privacy in commercial clouds. Therefore,
to simulate a real cloud computing environment, there is a need to have different workloads
to achieve more realistic behaviors reflecting real-world cloud services. A synthetic dataset
is generated by deploying an open-source e-commerce SaaS application Magneto on a
virtualized private cloud environment. The “Windows Server 2012R2” and “System Center
2012 Virtual Machine Manager” serve as IaaS, as synthetic workload real-time transactions
are emulated on the e-commerce client website. QoS metric response time and throughput
are monitored and recorded using Apache Jmeter, an open-source monitoring tool. The
PlanetLab and Google cluster data consist of the traces of CPU, memory, disk, and network
utilization, which are low-level metrics and do not address user load and performance
metrics. The WS-DREAM dataset, which is available to the public, contains traces of
performance measure response times and throughput, which are also analyzed. Sub-
datasets are derived from the primary dataset to generate workloads corresponding to
response time and throughput under different decision rules, as discussed in our previous
work Reference [33] for simulation. Table 2 shows the gradually increasing workload
parameters that include workload length (Columns 2), generated response time, and
Throughput (Columns 3–4) for the corresponding workload distribution percentile (Column
5). Table 2 lists the workload percentage distribution of workload defined by the decision
rules (Column 6) and the percentage distribution of each decision rule (Column 7).

Table 2. QoS Metrics, Workload with Decision Rules.

1. Serial #
2. Workload

length
(MIPS)

3. Response
Time (sec)

4. Throughput
(kbps)

5. Workload
Distribution

(%age)

6. ANFIS
Decision Rules

7. Decision Rule
Distribution

Percentile (%age)

1 28,000 0.209 61.261 15%
Definitely No

Violation
(DNV)

5%
2 32,000 0.216 55.278 40%
3 35,200 0.220 51.136 35%
4 36,000 0.221 50.227 10%
5 64,800 0.240 31.612 20%

Normal
(N) 80%

6 123,600 0.267 18.043 30%
7 205,600 0.322 12.960 40%
8 264,000 0.374 11.607 10%
9 278,800 0.407 10.843 15%

Probably
Violation

(PV)
14%

10 296,800 0.534 7.962 35%
11 302,400 0.571 7.166 30%
12 312,400 0.663 6.235 20%
13 317,200 0.782 5.808 15%

Definitely
Violation

(DV)
1%

14 318,400 0.916 5.412 30%
15 319,200 1.004 5.185 35%
16 320,000 1.115 4.958 20%
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The workload length is specified as the number of million instructions (MI) to be
executed by the CPUs. The size of the workload to be processed is selected as the input size.
For example, items 9–12 represent the different lengths of workload (278,800~312,400 MI)
with a workload size of 0.8 kb to produce the corresponding ranges of response time
(0.407~0.663 s) and throughput (10.843~6.235 kbps) for the Probably Violation decision rule.
Likewise, items 13–16 reflect the specific workload duration (313,200~320,000 MI) with a
workload size of 0.8 kb to produce the corresponding response time ranges (0.782~1.115 s)
and throughput (5.808~4.958 kbps) for the Definitely Violate (DV) decision rule.

A sub-dataset is used for analysis to further explain the percentage distribution of
the workload according to each decision rule. For example, item five of Table 2 (column
six) accounted for 20% of the workload frequency distribution under the Normal (N)
decision rule, and (item thirteen, column six) accounted for 15% of the workload frequency
distribution under the Definitely Violation (DV) decision rule. Overall, the Definitely No
Violation decision rule (DNV) accounted for 5%, Normal (N) 80%, 14% Probably Violation
and Definitely violation includes 1%. These clusters closely approximate real-world Cloud
services QoS values.

4.2. USL Model Generation Based on Concurrency and Throughput/Response Time

Making big, quick, and robust systems is one of the most interesting and rewarding
things. Eliminating a bottleneck is crucial and amazing, especially when one realizes how
inefficient operations were before the change and can observe a substantial improvement
in scale efficiency. It is preferable to solve scalability problems than to design systems
that scale first. Although linear scalability is desirable, systems that scale linearly are
uncommon, despite the promises. Knowledge of non-linearity is critical since a thorough
understanding of scalability and the causes, and sources of sub-linear scaling, are essential
for building more scalable systems.

This section determines the appropriate dimensions for a formal scalability model
that seems to behave as existing systems do, and uses Neil Gunther’s USL Refs. [30,31],
which closely fits the structure and yields a scaling equation. The Universal Scalability
Law is beneficial and may be used almost anywhere. The equation is straightforward,
and the variables listed are usually specific to get. By working backward from observable
system behavior and calculating likely coefficients, USL is used to predict the system’s
scalability. It requires a set of workload or size metrics for the design (typically concurrency
or node count) and the associated throughput. Then non-linear least squares regression
is used to fit the USL model to the dataset. It is a mathematical method for determining
the optimum coefficient values to produce the best fit line across the data. The data is
cleaned and filtered, and maintained as a consistent collection by being displayed in both
scatterplot and time series forms. It also removes specific points or changes the period
required to experiment with data, averaging across time to obtain adequate findings. It
determines the suitable dimensions for a formal scalability model that appears to behave as
real-world systems do and then applies the USL of Reference [30], which closely matches
the structure and yields a scalability equation. The equation is not complicated, and the
variables described are generally simple to obtain. The USL is used to model the system’s
scalability by operating backward from the observed system behavior and estimating prob-
able coefficients. To accomplish this, it needs a collection of workload or size measurements
(usually concurrency or node count) of the system and the corresponding throughput.
Then the USL model is fitted to the dataset, using non-linear least squares regression. A
mathematical technique determines the optimal coefficient values to determine the best
fit line across the measurements. The product is the values of λ, σ, and κ. By visualizing
the data in scatterplot and time series formats, it has cleaned and curated the data and
maintained a reasonably consistent data collection. Individual points are eliminated or
modified within the timeframe needed to experiment with data and averaged over time to
achieve satisfactory results.
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4.3. Scenario-Based Simulation

The simulator CloudSim Plus [7,21] is used to present and simulate the scenarios
to assess the proposed algorithm and methodology. For the simulation, a virtual host
with a Virtual Machine setup matching the instances of Amazon T2.medium is used. The
processor used in EC2 T2 is a 2nd Gen Intel Xeon Scalable processor Ref. [33]. Table 3
displays the reference setup for the VM as used in the simulation.

Table 3. Base Configuration of Virtual Machine.

Virtual Machine Configuration

CPU 1 Unit, Scalable Processor up to 56 Core
CPU Processing Power 93,000 MI
RAM 8 GB
Network Bandwidth 100 Mbps

One VM is used as a baseline at the beginning of the simulation that is kept constant
for all experiments. The power unit for processing the CPU is calculated in Million per
second instruction (MIPS). The Geekbench-5 Ref. [34] calculates the MIPS of Amazon EC2
T2. medium instances based on the Moravec guidelines Ref. [35]. The provisioning policy
is a time-shared policy for both VMs and workloads. The approach equally shares the
computing power into workloads simultaneously in a VM.

The first scenario is to submit a workload (Table 2, Rows 1–4, and Rows 5–8) for ten
instances handled by the VM every 15 s. For the first and second case, where “Definitely
No Violation” and “Normal” were the QoS criteria, the calculated decisions rule. In this
case, no scalability algorithms were triggered. The experiment is replicated 20 times, with
random workload submissions reaching 200.

The second scenario is to submit a workload (Table 2, Rows 9–12) for ten occurrences,
processed by the VM every 15 s. The experiment is replicated 20 times with the submission
of variant workloads at random reaching 350. The third option is to apply a workload
(Table 2, Rows 13–16) for ten occurrences handled by the VM every 15 s. For this third case,
the role of prevention is assigned by the scalable resource allocation followed by the USL
model generation for handling the workload resulting in QoS “Definitely Violated” due
to the under-provisioning. The experiment is replicated 20 times with a minimum of 500
instances of the random workload resulting in a “Definitely Violation” decision rule.

4.4. USL Model Generation

The system is an artifact using the USL package Ref. [36] in R. The data shows the
throughput for variant workload and concurrency for future resource estimation. The
effect of the continuous increase in workload on the throughput for switching can be easily
seen. A simple scatterplot visualizes the raw data in Figure 4: Throughput to concurrency,
showing the system’s throughput for consistent concurrency increases. The diagram reflects
a typical example of the diminishing return effects. At the same time, Figure 5: response
time to concurrency represents the system’s response time concerning concurrency.

The next step is to build the Universal Scalability Law (USL) model based on the
generated dataset. For model generation the usl() function is used, which creates an object
that encapsulates the computation. One argument is a symbolic description of a formula,
i.e., “throughput” changes concerning the concurrency or users in the system. The second
argument is with regard to the dataset containing the measured values. For the dataset, the
USL model is generated for its concurrency, and the response time is shown in Figure 5.

4.5. Experiment Scenarios

The first scenario is to submit a workload (Table 2, Rows 1–4, and Rows 5–8) for ten
instances handled by the VM every 15 s. The calculated decision rule was the first and
second case, where “Definitely No Violation” and “Natural” were the QoS criteria and no
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scalability algorithms were triggered. The experiment is replicated 20 times, with random
workload submissions reaching 200.
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The second scenario is to submit a workload (Table 1, Rows 9–12) for ten occurrences,
processed by the VM every 15 s. The self-checking and healing may be triggered during
the simulation runtime due to “probably violation” of QoS. In the second scenario, the
preventive USL based resource allocation algorithm will assign the task of rectifying cloud
QoS violation by applying self-checking and healing techniques through task re-submission
for handling faulty VM task calculation.

The third scenario is to apply a workload (Table 1, Rows 13–16) for ten occurrences
handled by the VM every 15 s. For the third case, the role of prevention is assigned for
handling workload resulting in QoS “Definitely Violated”, due to the under-provisioning.
The experiment is replicated 20 times with a minimum of 500 random workload instances
resulting in the “Definitely Violation” decision rule.

5. Experiment Results

Universal Scalability Law (USL) Model Is Generated Based on Dataset. It Provides the
following Efficiency Output for the System under Evaluation.

5.1. USL Model Efficiency

Efficiency is the ratio of useful work performed in a unit Pe. Calculating the ratio
of the workload handled by one unit of resources should usually be less or equal to one.
However, the maximum distribution is not always one, which is caused by the regression
model when the anticipated value differs slightly from the measured value. The minimum
calculated efficiency is 0.00002, and the maximum is 1.00000 for the USL model.

To calculate the coefficients, regression is run on the data. The residuals for the fitted
values are calculated as a result. The residuals’ distribution is shown in Table 4.

Table 4. Residual Values for the USL Model.

Min 1Q Median 3Q Max

−5.8866 −1.1396 0.1346 2.0116 4.3765

Contention σ and Coherence λ are the magnitudes of the contention and coherency
effects within the system. The third coefficient γ calculates the throughput of a workload.
The regression also causes the difference between the value of γ and the measurement.
As a result, a single unit of resource measurement is available. The disparity between
the value of and the measurement is also attributable to regression. The change should
be modest if the regression yields a good model. Table 5 shows the values of contention
and coherence calculate the non-linear relationship and help to compute the additional
resources required for the enhanced concurrent user load. All three coefficients marked
with starts are significant. All three coefficients’ p-value is <0.05, marked with stars are
statistically significant.

Table 5. USL Coefficients; Contention, Coherence modeled values.

Estimate Std. Error t-Value Pr (>|t|)

Contention σ 1 0.053249 18.78 <2 × 10−16 ***
Coherence λ 0.025887 0.001111 23.29 <2 × 10−16 ***
coefficient γ 61.159017 2.588041 23.63 <2 × 10−16 ***

Sig: Significance codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1.

5.2. Scenarios Experiment Results

This section first compares ReSQoV with the policy-based, time-sharing scheduling
by vertical scalability defined by the varying number of users in the CloudSim Plus simu-
lator [17]. It also measures the effect of QoS parameters on efficiency metrics. Finally, an
analysis of our algorithm’s robustness is presented. All the findings reflect the average of
the five experiment runs that were collected. One workload parameter is randomized in
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each experiment on varying processing elements (PE, CPU cores), where other resources
RAM, Bandwidth, and memory, are given constant values.

Four metrics are considered for each scenario to assess the efficiency of ReSQoV for
QoS parameters (response time, throughput, number of PE used). The response time
is calculated based on a Virtual Machine’s length of workload (MI) and the Millions of
Instructions Per Second (MIPS). Throughput is calculated based on working load size and
response time. To obtain a statistically representative calculation, results are based on the
50 repeated experiments, average readings are determined based on the output metrics of
response time, throughput, and number of PE (Processing Elements, CPU cores) for each
stage during simulation runtime.

Referring to Figure 6; the red dotted line represents the CloudSim policy-based scaling
where it is observed that the response time of higher workload increases. At the same time,
the other three color lines depict the workload and system behavior with ReSQoV. The
model triggers to allocate required resources to VM and maintains the agreed or expected
response time. As shown in Figure 6, ReSQoV waits for 15 s before inserting new PEs
usable in scalable processors. The Response Time in Definitely No Violation or Normal
decision rule in a particular concurrent user load, no resource allocation was triggered and
after Probably Violation (PV) and Definitely Violation (DV) more resources were allocated.
Results are similar for all repeated experiments. These results show that policy-based
scaling response time increased after a certain load (red dotted lines); on the contrary, after
adding resources, the response time decreased in the limits as agreed.
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Figure 7 presents the QoS agreed throughput using USL based ReSQoV compared
to policy-based resource allocation. The red dotted line represents the CloudSim policy-
based scaling where after a certain workload, throughput decreases. At the same time, the
other three lines depict the workload and system behavior with ReSQoV. That adds the
required resources and increases and maintains the throughput in defined and expected
limits. As shown in Figure 7, ReSQoV waits 15 s before inserting new PEs usable in
scalable processors. The throughput in the Definitely No Violation or Normal decision
rule in a particular concurrent user load is similar, and no resource allocation is triggered.
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However, as the user load increases and for Probably Violation and Definitely Violation,
more resources are needed to allocate.
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Figure 8 shows the behavior of the resource allocation to VM. In the policy-based
scaling, resources are allocated gradually (red dotted lines) without considering the QoS
values. At the same time, ReSQoV allocates resources more rigorously and appropriately.
The VM works with the new assigned PEs when needed. It is observed that QoS parame-
ters are not considered in policy-based resource allocation. A maximum of four PEs are
allocated even though twelve scalable PEs were allocated to the VM. The results show that
ReSQoV focuses on the QoS, and after allocating the required resources by considering the
parallelism and serialization overheads, it ensures QoS is maintained.
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5.3. Analysis of Variance (ANOVA)

The ANOVA Reference [37] is used to validate the simulation findings, which is a
statistical test. It analyzes if a particular set of conclusions statistically differs from another
data set in a meaningful manner. The null hypothesis (H0) and the alternative hypothesis
(H1) are tested, and are defined as

H0 := U1 = U2 = U3 . . . . . . = Un (17)

H1 : 6= U1 6= U2 6= U3 . . . . . . 6= Un (Means are not equal) (18)

As a result of the test, it fails to reject the null hypothesis since F statistical is more
diminutive than F critical, p-value is less than 5% (0.05) and accepts the alternative hypoth-
esis if, on the other hand, F statistical is greater than F critical. In this study, a three-factor
ANOVA was undertaken to examine the system, response time, and throughput effects
on resources (Pes). The difference in true mean responses for a given category of QoS
parameters and the system is the use of resources. The ANOVA test indicates the interaction
between the different QoS factors of the cloud by the resources.

The ANOVA test was employed to examine any significant differences in the system
with policy-based resource allocation. It quantified resource allocation attributed to the
system, response time, throughput, and Processing Elements (PEs). Results of the T-test,
shown in Table 6, indicated a significant difference in the Systems and throughputs (1, 3)
where p-value is less than 5%. The interactions of the system with the throughput and
interaction among the system, response time, and throughput (5, 7) are significant. The
results show that the system behavior has been changed after assigning the Quantified
resources, as shown in the table. The F statistical is more diminutive than the F critical (p-
value) of System, Throughput, System: Throughput, and System: Res_Time: Throughput,
which shows a significant difference and rejects the null hypothesis. It indicates that
ReSQoV performs better to satisfy QoS than the policy-based resource allocation.

Table 6. Result of Statistical Analysis of Variance.

S # Df Sum Sq Mean Sq F value Pr (>F)

1 System 1 61.6 61.6 1236.281 <2 × 10−16 ***
2 Response Time 1 0.1 0.1 2.396 0.123
3 Throughput 1 515.5 515.5 10,345.388 <2 × 10−16 ***
4 System:Response Time 1 0 0 0.076 0.783
5 System:Throughput 1 1.7 1.7 34.05 2.252 × 10−8 ***
6 Response Time:Thtoughput 1 0.1 0.1 1.135 0.288
7 System:Res_Time:Throughput 1 0.8 0.8 16.572 6.84 × 10−5 ***

Residuals 192 9.6 0

SD: Sources of Deviation, DF: Degree of Freedom, SS: Sum of Squares; Sig: Significance codes: 0 ’***’ 0.001 ’**’ 0.01
’*’ 0.05 ’.’ 0.1 ’ ’ 1.

5.4. Threats to Validity

Experiments are conducted in the virtualized environment and simulator. Although
appropriate model assumptions are made based on experiment design and prior literature,
we can only offer conjecture on the causes of any variability that we detect. We considered
only medium instance types in this study. A follow-up study is needed to determine
whether the outcomes of variability and detectability improve with bigger instance size
and more resourceful cloud infrastructure. Another threat to our study’s internal validity
is that we chose to execute all experiments in 20 iterations, which may be regarded as a low
number of iterations. As the public clouds act as a black box whereby we have no control
over resource orchestration, we cannot generalize the results to the public cloud. Other
QoS measures, such as memory use, power consumption, or cost, should be investigated
in the future. Furthermore, any performance research conducted on cloud infrastructure
is essentially aimed at a moving target. We believe the fundamental conclusions and
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consequences of our work will stay steady as long as virtualization and resource allocation
in the private environment are handled.

6. Conclusions

This paper focuses on the cloud QoS violation rectification process incorporated with
scalable resource utilization. The ReSQoV aims to prevent or rectify cloud QoS violations
caused by under or over-provisioning events, maintaining resources at a certain level to
avoid certain or probable violation conditions. We focused on the estimation of resource
utilization to ensure QoS. The ReSQoV is proposed based on the Universal Scalability
Law (USL), which helps to predict the service capacity for a specific load. The model
coefficients show the contention and coherence quantified values, while the p-values show
the model fitting. As the QoS violation detection decision is Probably Violation and
Definitely Violation, the remedial action is triggered, and required resources are added to
the virtual machine as vertical scaling. Experiments show that the ReSQoV was able to
present the calculation and modeling of serialization and parallelism overheads, which help
allocating ample resources to VM so that QoS is not compromised, which is an important
aspect of cloud services. The statistical test ANOVA shows the difference between the
policy-based and quantified scaling systems due to the generated QoS parameter values
and their interactions.
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