o~
L]

a .
— “‘J future internet

Article

Unsupervised Anomaly Detection and Segmentation
on Dirty Datasets

Jiahao Guo, Xiaohuo Yu and Lu Wang *

check for
updates

Citation: Guo, J.; Yu, X.; Wang, L.
Unsupervised Anomaly Detection
and Segmentation on Dirty Datasets.
Future Internet 2022, 14, 86. https://
doi.org/10.3390/£i14030086

Academic Editor: Paolo Bellavista

Received: 28 February 2022
Accepted: 10 March 2022
Published: 13 March 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China;
g747173965@shu.edu.cn (J.G.); xiaohuoyu@shu.edu.cn (X.Y.)
* Correspondence: luwang@shu.edu.cn

Abstract: Industrial quality control is an important task. Most of the existing vision-based unsu-
pervised industrial anomaly detection and segmentation methods require that the training set only
consists of normal samples, which is difficult to ensure in practice. This paper proposes an unsu-
pervised framework to solve the industrial anomaly detection and segmentation problem when
the training set contains anomaly samples. Our framework uses a model pretrained on ImageNet
as a feature extractor to extract patch-level features. After that, we propose a trimming method
to estimate a robust Gaussian distribution based on the patch features at each position. Then, with
an iterative filtering process, we can iteratively filter out the anomaly samples in the training set and
re-estimate the Gaussian distribution at each position. In the prediction phase, the Mahalanobis dis-
tance between a patch feature vector and the center of the Gaussian distribution at the corresponding
position is used as the anomaly score of this patch. The subsequent anomaly region segmentation
is performed based on the patch anomaly score. We tested the proposed method on three datasets
containing the anomaly samples and obtained state-of-the-art performance.

Keywords: anomaly detection and segmentation; unsupervised method; noise resistance

1. Introduction

In the manufacturing production process, quality control is one of the most important
aspects. Finding and locating surface defects in industrial products using machine vision
is much more efficient than manual quality inspection [1]. Thus, vision-based detection
and segmentation of surface defects in industrial products have become a key research
topic [2,3]. As a rule, products without surface defects are defined as normal samples, and
products with surface defects are defined as anomaly samples. The anomaly detection task
is to determine whether a sample contains defects or not. The anomaly segmentation task
is to locate the defective region.

Anomaly detection and segmentation have the following challenges. Firstly, anomalies
present in various ways, such as irregular, inconsistent, faulty, unnatural, atypical, etc. [4].
Secondly, the camera rarely captures anomaly products in practice leading to data imbal-
ance, i.e., there are many normal samples and a few anomaly samples. Thirdly, anomaly
samples are rare entities, hence it is inefficient to manually label them [5].

Due to the abovementioned points, unsupervised methods are used for anomaly detec-
tion, and these methods assume that all samples in the training set are normal samples [4].
This assumption is hard to satisfy in practice. The performance of most of the existing
unsupervised anomaly detection methods degrades severely in the case of “dirty” datasets,
i.e., the training set contains anomaly samples [2,4,5].

We propose a framework to address anomaly detection and segmentation in the case
of dirty datasets. We consider samples in the low-density region of the probability model
as anomaly samples. Firstly, inspired by the trimming method in robust statistics [6], we
fit a Gaussian distribution using patch-level features for each position where the patch is
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located and exclude the samples that contain patches in low-density regions, as shown
in Figure 1. Secondly, we obtain the final selected normal samples through the iteration
module. Lastly, we fit patch-level Gaussian distributions based on the final selected normal
samples. In the testing phase, the Mahalanobis distance between each patch of the test
sample and the center of the corresponding Gaussian distribution is used as the anomaly
score to perform anomaly detection and segmentation. This paper calls this the framework
PalRE (Patch Iterative Robust Estimation) method. The main contributions of our work are
as follows:

¢  Unsupervised anomaly detection methods degrade in performance due to noise.
We propose a framework PalRE to address unsupervised anomaly detection when
the training set contains noise;

*  Aslopesliding window method is designed to reduce the effect of noise for improving
the noise resistance of the proposed model;

*  Aniterative module is proposed to make the model estimate the distribution of normal
samples more accurately from the dirty dataset;

® Anomaly
Normal

Anomaly Sample Gauss map

Figure 1. The feature vector corresponding to the image patch can be obtained from the feature map
extracted from the pre-trained network. In the feature space, the normal patches are in the high-
density region and the anomaly patches are in the low-density region.

2. Related Works

Unsupervised industrial anomaly detection and segmentation methods can be clas-
sified into classification methods, probabilistic methods, and reconstruction methods. In
addition to this, a few unsupervised anomaly detection methods are based on dirty datasets.
The above methods will be reviewed below.

Most of the unsupervised classification anomaly-detection methods are based on nor-
mal samples. OC-SVM [7] treats the coordinate origin as anomaly samples and trains a clas-
sifier with the coordinate origin and the normal samples. SVDD [8,9] finds the minimum
volume of hypersphere that can enclose most of the samples and considers an anomaly
sample outside the hypersphere. Recently, self-supervised classification has been used
for anomaly detection. Geometric transformations [10] (rotation, flip, translation, etc.)
train the classifier by predicting which transformation the image has performed. Anomaly
scores are obtained from the softmax activation of the classifier. RotNet [11] uses rotation
for data augmentation. After that, a one-class classifier is obtained by contrast learning [12]
for anomaly detection. NSA [13] uses seamless cloning to create anomaly samples and
trains a binary classifier to distinguish artificial anomaly samples from normal samples.
CutPaste [14] performs anomaly detection by training a classifier with normal samples and
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anomaly samples constructed by special data augmentation. Anomaly detection using un-
supervised classification methods is sensitive to noise in the training set. When the training
set contains noise, both one-class classification methods [7,9] and self-supervised classifi-
cation methods [10,11,13,14] produce incorrect labels, which seriously affect the detection
performance of the model.

In the probabilistic model, anomalies are defined as low probability samples. Gaussian-
AD [15] fits a Gaussian distribution at each feature hierarchy of the pretrained network, and
the sum of the Mahalanobis distances between the test samples and the center of the cor-
responding Gaussian distribution at each hierarchy is calculated as the anomaly score.
PaDim [16] uses a pre-trained network to extract features, fits a Gaussian distribution at
patch-level, and uses Mahalanobis distances as anomaly scores. FYD [17] uses an auxiliary
alignment network to align the objects in the images and uses a Patch-level Gaussian classi-
fier for anomaly detection. SPADE [18] also uses a pretraining network to extract features.
It uses a memory module to store the features of all training samples, and the Euclidean dis-
tance sum of the test sample and the K-NN samples in the memory module as the anomaly
score. STPM [19] uses knowledge distillation for anomaly detection: the student network
learns the pretrained teacher network based on normal samples. It utilizes the difference
between student and teacher extracted features of the anomaly samples for anomaly detec-
tion. For parametric probabilistic models, noisy samples affect the estimation of parameters.
For nonparametric models, noisy samples are stored in the memory module and mistaken
for normal samples, affecting the model performance.

Reconstruction is one of the mainstream anomaly-detection methods based on normal
samples. The reconstruction model is trained only on normal samples, which leads to low
reconstruction error for normal samples and high reconstruction error for anomaly samples.
Generative adversarial networks (GAN) [20-25], autoencoders (AE) [26-30], and variants
are the most commonly used reconstruction models. InTra [31] uses a transformer to inpaint
the artificial missing image patches. The patches containing anomalies will have high
reconstruction errors. The reconstruction error of the test sample is used as the anomaly
score. The drawback of the reconstruction method is that when the training set contains
anomaly samples, it leads to low reconstruction error for the anomaly samples.

There are few studies on industrial anomaly detection and segmentation in the case
of dirty datasets. TrustMAE [32] filters anomaly samples in the autoencoder latent space
based on the distance of the sample from the center of the batch samples. Samples with
a distance greater than a threshold from the centroid are considered anomaly samples.
The disadvantage of TrustMAE is that at the early stage of model training, there are no labels
to guide the encoder to extract distinguishing features, which can lead to the possibility that
samples close to the center of the batch sample also be anomaly samples. Li et al. [33] use
the feature vector of the latent space of autoencoder as a proxy to perform clustering and
select clusters with low variance as normal samples. This process is cycled in the training
process of the autoencoder. These two methods have a drawback: early in the autoencoder
training process, the extracted feature vectors may not satisfy their assumptions. DFR [34]
extracts the ImageNet pretrained network features, determines the optimal latent space
dimension of AE by PCA, and then uses AE to reconstruct the extracted features. DFR is
robust to noise because of the noise-reduction effect of PCA.

3. Proposed Method

As shown in Figure 2, our proposed PalRE (Patch Iterative Robust Estimation) method
consists of the following parts: feature extractor, trimming patch-level gaussian distribution
(Trimming Module), iterative filtering(Iteration Module), anomaly detection and segmenta-
tion (Inference) based on anomaly scores. Each part will be described in the following.
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Figure 2. The structure of our proposed method PalRE.

3.1. Patch Feature Extraction

For industrial anomaly-detection tasks, a good feature extractor should distinguish
the difference between normal and anomaly samples. When the dataset contains anomaly
samples without any labels, it is hard to train a good feature extractor. Some recent work
uses networks that are pretrained on ImageNet for anomaly detection [15,16,18,34], and
these works illustrate the ability of pre-trained networks to extract discriminative features
for anomaly detection. We use a network pretrained on ImageNet to generate the patch-
embedding vector.

Different blocks produce feature maps containing different hierarchical semantic infor-
mation in the ResNet-like architecture. Since anomalies may occur at different scales, and
to avoid features being too biased towards ImageNet classification, we choose the feature
map of blocks 1,2,3 outputs of WideResnet-50 to extract the patched-level features as shown
in Figure 3. We use ¢, q € {1,2,3} to denote the output of block 4.

Concatenate

Up-sample
Up-sample

w
C
Down-sample /
— / ;
f— W

Block 1 Block 2 Block 3 Block 4 Concatenated feature Feature map

Figure 3. Extracting feature map from WideResnet-50 pretrained on ImageNet.

To fuse the information from different hierarchies and align feature maps spatially,
we use bilinear interpolation to resize ¢, and ¢3 to the same resolution on / and w as ¢4,
as shown in Equation (1). Here, ¢, € RE*/*is a three-dimensional tensor of channel c,
height h, width w.

Pg = resize(¢y),q € {2,3} 1)

Then we concatenate ¢1, ¢, ¢3 on the channel, as shown in Equation (2).

${1:3} = Cut(¢1/ @2/ 953) 2)

We fuse the feature vectors with the neighborhoods to reduce the resolution while
retaining information. avg is the average pooling with kernel size k and striding s, as shown
in Equation (3).

¢ = avg(¢i13),k s) ®)

Each c-dimensional feature slice at positions i € {1,..,h'} and j € {1,..,w'} is
the patch feature vector of the corresponding image-patch at the spatial position. ¢, I’, w’
are the channel, height, width of ¢.
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3.2. Trimming Patch-Level Gaussian Distribution

For all samples in the training set, we obtain the patch feature vectors x; ; at patch
position (i,) € [1,h'] x [1,w'], and the set of feature vectors X;; = {x;ln € [1,N]}, N
is the number of samples in the training set. We can estimate a Gaussian distribution
with parameters y; ; and %; ; based on X; j, where ; j is the sample mean in X; ; and %,  is
the covariance matrix shown in Equations (4) and (5). In order to ensure that the covariance
matrix is invertible for the subsequent Mahalanobis distance calculation, we added the term
Al. 1 is an identity matrix, A =1 X 10-°.

1y,
Fij =N ) i )
n=1
1 N
Xij = N_1 Zl(x;f]- — i) (xf; = i)'+ AL ®)
n—=

After estimating a Gaussian distribution at each patch position(, j), we obtain a Gaus-
sian map. As shown in Figure 1, in the patch-level distribution, the patches containing
anomalies are in the low-density region. In robust statistics, trimming methods [6] remove
part of the maximum-minimum samples to obtain a statistical model with better robustness.
Inspired by [15], we use the Mahalanobis distance in Equation (6) to measure the distance
of a patch feature x;; to the center of the Gaussian distribution as the anomaly score.
A high anomaly score indicates that the patch is in a low-density region, and a low anomaly
score indicates that the patch is in a high-density region. Inspired by the trimming method
in robust statistics, we exclude the samples that contain patches in low-density regions.

M(x;j) = \/(xi,j - Vi,j)TZ{jl(xi,j — Hij) (6)

.. \min
R R
L] max __ pqmin
Mi, f M i

@)

As shown in Figure 4, sorting the obtained Mahalanobis distance from smallest
to largest, a line segment with a sudden increase in slope can be found. We can cal-
culate a distance threshold from this line segment. All patches with Mahalanobis distance
greater than this threshold are considered anomaly patches.

‘7’ 14.90
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14.86

14.84

HapZan

Mahalanobis distance

14.82

""" HanwZ )

Dirty Dataset

14.80
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Gauss map Sample index

Figure 4. At position (7, ), a Gaussian distribution is fitted with the patch feature vector of all samples.
The dashed box represents the sliding window and the red dashed box represents the target window.

It is important to choose an appropriate threshold of the Mahalanobis distance to per-
form trimming operations. If the threshold is too low, too many normal samples will be
excluded, and anomaly samples will not be effectively excluded if the threshold is too high.
To make the distances on a similar scale, we use Min-Max scaling in Equation (7) for each
group of Mahalanobis distances.



Future Internet 2022, 14, 86

60of 17

This paper uses the sliding-window method to implement an adaptive threshold.
A window slides from left to right, and the slope of the line connecting the two endpoints
of the window is considered the slope of the line segment inside the window. As the win-
dow slides to the right, we save the slope of each line segment in the window and calculate
the mean value of the saved slope Slope;ean. We define the window with a slope larger
than v x Slopeyean as the target window. The value of v will be described in Section 3.3.2.

In order to find the threshold of the Mahalanobis distance more accurately, the target
window occurs U times consecutively, and these target windows are saved as sequence
SEQ. We use the mean Mahalanobis distance of all samples within the first window of SEQ
as the threshold.

L=aN 8)

L
S==- ©)

p

L

U=<+1 (10)

L
T~:12W-l- (11)

voLm Y

As shown in Equations (8)-(11), L is the length of the sliding window, N is the number
of samples in the dataset, S is the sliding window step. U is the number of consecutive
occurrences of the target window, which can be used to ensure that the sliding window can
pass the jump points in the scatter plot. « and  are hyperparameters, T; ; is the Mahalanobis
distance threshold at patch position(i, j). W;; is the first window in the target window
sequence SEQ at patch position (i, f).

Label" — {0’ EM) <Typielnljelw] oy N (12)

1, else
D¢ jean = {x""|Label™ = 0,n € [1,N]} (13)

After determining distance thresholds, we can select normal samples from the dirty
dataset. In Equation (12), Label” is the label of sample 7 in the dataset, 0 indicates normal
sample, 1 indicates anomaly sample. Considering that anomaly regions have different
scales, fixed-scale patch regions do not apply to all anomaly region scales. If an anomaly
region is slightly larger than the patch scale, it is difficult to ensure that adjacent patches
containing subtle anomalies are filtered out. It is insurance that we exclude this sample
once a sample contains an anomaly patch. When the Mahalanobis distance of all patches
of the sample x" is less than the corresponding threshold, we consider sample x" as a normal
sample. Otherwise, we consider sample x" as an anomaly sample. According to this
criterion, we can select some samples from the dirty dataset, and these selected samples are
considered normal samples which constitute the clean set D ,,,, shown in Equation (13).

3.3. Iterative Filtering
3.3.1. Iterative Processing

As shown in Figure 5, the Gaussian map is estimated based on the dirty dataset.
After filtering, we can obtain a clean sample set D,j,,,. The new Gaussian map is estimated
based on Dj,,, and used to refilter the dirty dataset. The above iteration is executed until
the set of clean samples Dj;, no longer changes or the number of D, is more than half
of the total number of the dirty dataset.
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Figure 5. After estimating Gaussian distribution for each position on the dirty dataset, the iterative
process is started.

The above iterative filtering process shown in Figure 2 can select normal sample set
D, jeqn from the dirty dataset. The new Gaussian map estimated based on D, is used
for anomaly segmentation.

3.3.2. Different Strategy for Sliding Window

In the first and other iterations, we used slightly different strategies to determine
the slope threshold of the target window.

As mentioned before, we define the window with a slope greater than a multiplier
of the historical mean of the slope as the target window. The value of this multiplier
directly affects the determination of the target window. In order to determine this mul-
tiplier reasonably, we need to know the trend of the slope in the scatter plot. As shown
in Figure 6, the scatter plot at the first iteration is not the same as the scatter plot at a certain
iteration. For the first iteration, the starting point is the point with the index at N x 1/3.
For a certain iteration, the starting point is the point with a small offset from the jump point.
The points between the start point and the endpoint are divided into three segments.
We define Equation (14) to measure the trend in the slope of the scatter plot. In Section 3.2,
the parameter v concerning the slope threshold v x Slopeeqn is defined as Equation (15).

(Slopelinel + SlopelineZ) X3
v=RZT ¢ (15)

In Equation (14), we use the ratio of the slope of line3 to the mean of the slopes
of linel and line2 to judge the slope trend. If the slope ratio R is close to 1, the line between
the starting point and endpoint can be considered a straight line, and we can directly choose
the endpoint as the Mahalanobis distance threshold. If the slope ratio R is much greater
than 1, it means that the slope of the line between the starting point and the endpoint grows
large. It indicates the existence of some patches far away from the Gaussian distribution.
In Equation (15), T is the hyperparameter. If the slope ratio R is less than 7, the slope ratio R
can be considered close to 1. Otherwise, a value between T and R is taken as the slope thresh-
old v to search for the target window. The hyperparameter 7 is greater than 1, ensuring
that v is between T and R. We tested the effect of different values of # on the performance
in Section 5.2.
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Figure 6. (a) The sorted Mahalanobis distance plot for a certain patch in the first iteration.
(b) The sorted Mahalanobis distance plot of a certain patch at a certain iteration.

3.4. Anomaly Detection and Segmentation

For a test sample x5, the Mahalanobis distance between its patch feature vec-
tor x;,; at position (i,j) and the center of the Gaussian distribution at the position (i, j)
is used as the anomaly score of the image patch corresponding to the position (i, ).
A two-dimensional matrix anomaly map is obtained.

We select the maximum value of the anomaly map as the image-level anomaly score.
The anomaly score of each pixel is obtained by restoring the anomaly map to the size
of the original image using bilinear interpolation, as shown in Figure 7.

’

w
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=3
=3

Score;, ;)
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S
8
Anomaly score

o
o

=)

Feature anomaly map

Anomaly map

Figure 7. Using Mahalanobis distance as the anomaly score yields the feature anomaly map.
The anomaly map is obtained by upsampling the feature anomaly map.

3.5. Flowchart of PaIRE

In Figure 8, all training samples are samples in the dirty dataset. The patch-level
Gaussian distributions are estimated based on all samples. For the first iteration, we use
the sliding window for the first iteration to compute the Mahalanobis distance threshold.
We can obtain clean samples from the dirty dataset based on the Mahalanobis distance
threshold. We re-estimate the patch-level Gaussian distribution based on clean samples,
and we use the sliding window for other iterations to compute the Mahalanobis distance
threshold. After that, we can select clean samples from the dirty dataset. The above iterative
process stops when the number of selected clean samples is unchanged, or the number
of clean samples is more than half of the number of samples in the dirty dataset. The
patch-level Gaussian distributions estimated based on the final clean samples are used for
anomaly detection.
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Figure 8. Flowchart of PalRE.

4. Experiment

experiments, and discussion. Each section will be described below.

Re-estimation Gaussian
distribution based on clean
samples

No

This part is divided into three sections: construction of the dirty datasets, comparison

4.1. Construction of the Dirty Datasets

In order to construct dirty datasets, we modified the three datasets. These datasets are
MVTec, BTAD, and KolektorSDD2. The way to modify each dataset into a dirty dataset
will be described below.

MVTec [35]: An industrial anomaly detection dataset containing 10 object categories
and 5 texture categories. Each category has a test set with multiple real anomaly
samples and a training set with only normal samples.
To simulate the dirty dataset, we randomly selected a certain number of anomaly
samples from the test set to be added to the training set and removed an equal number
of normal samples from the training set. The test set remained unchanged. The
number of randomly selected anomaly samples occupy 5%, 10%, 15%, 20%, 25%, and
30% ratio of the training set. We use the data augmentation by rotation and flip if
there are insufficient anomaly samples in the test set. The details of the composition
of the dirty MVTec dataset are shown in Table 1.
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e  BTAD [36]: BeanTech Anomaly Detection Dataset. The dataset contains a total of
2830 real-world images of three industrial products, which showcased body and
surface defects with the size of 600 x 600. The training set only contains normal
samples. The same approach simulates the dirty dataset as MVTec was used. If
the real anomaly samples are insufficient, the same rotation and flip data augmentation
are used.

e KolektorSDD2 [37]: A surface-defect detection dataset with over 3000 images contain-
ing several types of defects obtained while addressing a real-world industrial problem.
In the original KSDD2 dataset, the training set contains 10% of the anomaly samples.
On the KSDD2 dataset, we use the same strategy as before to simulate the dirty dataset
with noise ratios of 15%, 20%, 25%, and 30%.

Table 1. Components of the dirty MVTec dataset. The upper row is the number of normal samples
and the lower row is the number of anomaly samples. The bolded font means that the number
of the anomaly samples in the test set were insufficient and we used data augmentation for them.

Category 5% 10% 15% 20% 25% 30%
bottl 198 188 178 167 157 146
ottle 11 21 31 4 52 63
cable 213 201 190 179 168 157
11 23 34 45 56 67

copsule 208 197 186 175 164 153
p 11 122 33 44 55 66
caroet 266 252 238 204 210 196
P 14 28 4 56 70 84

d 250 238 224 211 198 185

& 14 26 40 53 66 79
haelut 371 352 332 313 293 274
azeinu 20 39 59 78 98 117
leath 233 21 208 196 184 172
cather 12 24 37 49 61 73
metal nut 209 198 187 176 165 154
11 2 33 44 55 66

" 254 240 227 214 200 187

p 13 27 40 53 67 80
e 304 288 272 256 240 224
scre 16 32 48 64 80 9%
il 219 207 196 184 173 161
ne 11 23 34 46 57 69
toothbrush 537 5: 591 ﬁ Aig 41%
rransict 202 192 181 170 160 149
ransistor 11 21 32 43 53 64
wood 235 222 210 198 185 173
12 25 37 49 62 74

228 216 204 192 180 168

Z1pper 12 24 36 48 60 72
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4.2. Comparison Experiments
4.2.1. Experiments on Dirty MVTec Dataset

We compared our method with three others: CutPaste, PaDim, DFR. The image was
resized to 256 x 256 for training and inference. In formula (3), we set k = 10, s = 4. In
Equations (8) and (9), we set & = 0.05, § = 3. In Equation (15), we set T = 1.15 and 5 = 2.3.

We tested the Image-level detection performance of the compared methods at noise
ratios of 5%, 10%, 15%, 20%, 25%, and 30%, respectively. As shown in Figure 9, the y-axis
is the mean image-level AUROC value for all categories, and the x-axis is the different
noise ratios. Our proposed PalRE method outperforms all comparison methods when
the dataset contains noise. PaDim and CutPaste are sensitive to noise and suffered from
severe performance degradation. Detailed comparison data with different noise ratios are
shown in Table 2. At each noise ratio, the bold format indicates the best performance.

100 - -
o 90 L= -
2 80
2 70
& 60
£ 50
g 40
@
¢y 30
g 20
£
=~ 10

0

0% 5% 10% 15% 20% 25% 30%
Noise ratio

—o— PalRE DFR PaDim CutPaste(3-way)

Figure 9. Comparison on MVTec dataset.

Table 2. Comparison with SOTA methods at different noise ratios.

Noise Ratio PalRE PaDim DFR CutPaste

0% 92.19 95.06 94.90 95.2

5% 93.86 82.11 92.51 80.48
10% 93.50 69.95 91.49 61.06
15% 93.79 59.27 90.25 50.58
20% 92.94 42.75 89.30 34.71
25% 92.05 33.31 88.70 22.94
30% 91.36 30.5 88.26 19.26

The anomaly segmentation performance of PaIRE at different noise ratios is shown
in Figure 10. As shown in Table 2 and Figure 10a, it can be seen that both image-level
detection and pixel-level detection have only a slight performance degradation when
the noise ratio is larger than 15%. As shown in Figure 10b, PaIRE can precisely locate
the anomaly area in the image.



Future Internet 2022, 14, 86 12 0f 17

Label Heat map
250
95
94.5 200
Q9
o] <
<3(93.5 o
o
c 93 150 @
I =
925 ©
: :
QL 9
3 1 S
- 915 00 <
[}
x
& 91
90.5 50
90
0% 5% 10% 15% 20% 25% 30%
Noise ratio 0

(a) (b)

Figure 10. (a) Pixel-level mean AUROC at different noise ratios. (b) Segmentation result at a noise
ratio of 15%.
4.2.2. Experiments on Dirty BTAD Dataset

For the comparison on the BTAD dataset, all hyperparameters are the same as for
the MVTec dataset. The image is resized to 256 x 256 for training and inference.
The comparison results are shown in Figure 11.

90=‘=°_‘—==<

70
60
50

[EE
o
o

Image-level mean AUROC

0% 5% 10% 15% 20% 25% 30%

Noise ratio
—o— PalRE —*— DFR PaDim CutPaste(3-way)

Figure 11. Comparison on BTAD dataset.

As shown in Figure 11, PalIRE achieved state-of-the-art results except at a 30% noise
ratio. Both PaIRE and DFR show good noise resistance on the BTAD dataset. PaDim and
CutPaste are heavily affected by noise, the same as for the performance on the MVTec
dataset.

4.2.3. Experiments on Dirty KSDD2 Dataset

For the comparison on the KSDD2 dataset, we used the same hyperparameters as be-
fore, except for the image size. The image is resized to 224 x 224 for training and inference.

The original KSDD2 dataset contains 10% anomaly samples, so we started our compar-
ison from a 10% noise ratio. As shown in Figure 12, PaIRE also achieved a state-of-the-art
performance on the KSDD2 dataset. The hyperparameters of PalRE based on MVTec tuning
achieved a state-of-the-art performance on both BTAD and KSDD2 datasets, indicating
the generality of the hyperparameters.
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Figure 12. Comparison on KSDD2 dataset.

4.3. Discussion

We will discuss the results of the comparison experiments on MVTec, BTAD, and
KSDD2 datasets.

PaDim is a parametric probabilistic model, and it needs to estimate the Gaussian
distribution of normal samples. However, PaDim does not consider the noisy samples
in the dataset when estimating the parameters of the Gaussian distribution, and the esti-
mated Gaussian distribution deviates severely from the distribution of normal samples,
resulting in a degradation of the model performance.

The self-supervised method CutPaste is sensitive to noisy samples because it consid-
ers all samples in the dataset as normal samples, creates artificial anomaly samples by
applying special data augmentation to the samples in the dataset, and trains a classifier
to discriminate normal samples from artificial anomaly samples. When the dataset con-
tains noise, the noisy samples will generate false labels to mislead the classifier resulting
in a degradation of the model performance.

The reconstruction method DFR uses a pretrained network to extract the feature map
and reconstruct it using an autoencoder. DFR uses PCA to determine the size of the latent
space of the autoencoder. Benefiting from the noise reduction effect of PCA, DFR has better
noise resistance than PaDim and CutPaste.

Our proposed PalRE belongs to the probabilistic model, which can estimate the Gaus-
sian distribution of normal samples from the dirty dataset by filtering the noisy samples
and increasing the number of clean samples. PaIRE achieves advanced results in all three
datasets.

5. Ablation Study
5.1. Trimming Method and Iterative Filtering

Our proposed framework PaIRE has two modules for anomaly samples in the training
set: trimming method in robust statistics and iterative filtering. We add the trimming
module and the iterative filtering module one by one to explore the contribution of these
modules. We gradually tested on MVTec to explore the impact of the module on the average
AUROC of all categories at all noisy ratios.

As shown in Figure 13, When no module is added, the anomaly samples severely
affect the model performance. After adding the trimming module, the model performance
is improved tremendously. This shows that the trimming module can effectively exclude
noisy samples so that the estimated Gaussian distribution is closer to the distribution
of normal samples. After adding the iteration module, more clean samples are selected so
that the estimated distribution is further closer to the distribution of normal samples.

As shown in Figure 14, The x-axis indicates the different noise ratios, and the y-axis
indicates the mean of the number of clean samples of all categories. After adding the iteration
module, more clean samples were selected from the dirty dataset, but the model performance
increased only slightly, as shown in Figure 13. This is because most of the normal samples are
similar, and more similar samples do not increase the model performance significantly.
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Figure 14. Comparison of the number of clean samples with and without the iteration module.

5.2. Effect of Mahalanobis Distance Threshold on Performance

We performed experiments to investigate the effect of hyperparameter 7 in Equation
(15), which relates to the slope threshold v * Slope;ean. The v * Slopeean is used to deter-
mine the target window. With k = 10, s = 4 in Equation (3), we tested the performance
of image-level detection for different 77. The experiments are based on the MVTec dataset.

As shown in Figure 15, The x-axis represents the different hyperparameter 7, and
the y-axis represents the mean value of image-level AUROC at 5%, 15%, and 25% noise
ratio. In Equation (15), when # is small, the Mahalanobis distance threshold is large.
It leads to anomaly samples not being effectively excluded, and the estimated Gaussian
distribution deviates from the distribution of normal samples. When 7 is large, the Maha-
lanobis distance threshold is small, leading to a small number of selected clean samples,
and the estimated Gaussian distribution cannot accurately match the distribution of normal
samples. The ablation experiment shows that the average performance is highest when
n=23.
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6. Conclusions

We propose an unsupervised anomaly detection and segmentation framework, PaIRE,
in the case of training datasets containing noise samples. PaIRE reduces the effect of noisy
samples on the estimation of Gaussian distribution parameters by filtering them from
the dirty dataset. Compared to the state-of-the-art methods, PaIRE has better noise resis-
tance and anomaly-detection performance.

The methods based on image patches have a limitation. These methods assume that
patches at the same position should be independently identically distributed. The texture
category and aligned category satisfy this assumption, but the nonalignment category may
not satisfy it. Aligning targets in image space or feature space to improve anomaly-detection
performance will be our next work.
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