
����������
�������

Citation: Khanal, Y.P.; Alsadoon, A.;

Shahzad, K.; Al-Khalil, A.B.; Prasad,

P.W.C.; Rehman, S.U.; Islam, R.

Utilizing Blockchain for IoT Privacy

through Enhanced ECIES with Secure

Hash Function. Future Internet 2022,

14, 77. https://doi.org/10.3390/

fi14030077

Academic Editors: Rattikorn Hewett

and Paolo Bellavista

Received: 10 January 2022

Accepted: 24 February 2022

Published: 28 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Article

Utilizing Blockchain for IoT Privacy through Enhanced ECIES
with Secure Hash Function
Yurika Pant Khanal 1, Abeer Alsadoon 1 , Khurram Shahzad 1,* , Ahmad B. Al-Khalil 2,
Penatiyana W. C. Prasad 1, Sabih Ur Rehman 1 and Rafiqul Islam 1

1 School of Computing, Mathematics and Engineering, Charles Sturt University, Melbourne 3062, Australia;
yurikapant@gmail.com (Y.P.K.); alsadoon.abeer@gmail.com (A.A.); cwithana@csu.edu.au (P.W.C.P.);
sarehman@csu.edu.au (S.U.R.); mislam@csu.edu.au (R.I.)

2 College of Science, Department of Computer Science, The University of Duhok, Duhok 42001, Iraq;
ahmad.al-khalil@uod.ac

* Correspondence: kshahzad@csu.edu.au

Abstract: Blockchain technology has been widely advocated for security and privacy in IoT systems.
However, a major impediment to its successful implementation is the lack of privacy protection
regarding user access policy while accessing personal data in the IoT system. This work aims
to preserve the privacy of user access policy by protecting the confidentiality and authenticity of
the transmitted message while obtaining the necessary consents for data access. We consider a
Modified Elliptic Curve Integrated Encryption Scheme (ECIES) to improve the security strength
of the transmitted message. A secure hash function is used in conjunction with a key derivation
function to modify the encryption procedure, which enhances the efficiency of the encryption and
decryption by generating multiple secure keys through one master key. The proposed solution
eliminates user-dependent variables by including transaction generation and verification in the
calculation of computation time, resulting in increased system reliability. In comparison to previously
established work, the security of the transmitted message is improved through a reduction of more
than 12% in the correlation coefficient between the constructed request transaction and encrypted
transaction, coupled with a decrease of up to 7% in computation time.

Keywords: Internet of Things; blockchain; ECIES; secure hash function; privacy; reliability

1. Introduction

With the recent advances in technology, several Internet of Things (IoT) devices are
being developed and implemented in our day to day life. These IoT devices collect personal
data from the user to carry out different processes across several applications. Given the
involvement of these devices in our daily life, the collected data are prone to a variety
of security and privacy threats [1,2], in particular the monitoring of user’s activities and
profile creation [3]. Moreover, users do not have control over their data and necessary
information regarding how it is being collected and how it is further processed. It thus
becomes essential to protect the privacy rights of the users and facilitate them with the
ability to control their transmitted data under the IoT landscape.

Data profiles can be utilised for individual identification purposes and therefore,
collecting data and creating user data profiles pose a severe threat towards privacy and
personal integrity. Even if the IoT data are not connected directly to an individual, it is
possible to collect IoT data and create profiles of individuals. These profiles can be used
to identify individuals or groups of individuals and pose a direct threat to user privacy.
If data from IoT devices are combined with data from other sources such as social media,
the identification of groups and/or individuals becomes much easier. One of the most
critical parts of data collection via IoT devices is that most of the time, consumers are
not aware of what data are being collected and how they are being used. Even in cases
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where consumers agree to the collection of data for a specific application, it is difficult
for them to perceive the number of ways that data may be used in the future. The work
of [4] investigates the possibilities to recognise a user based on when they communicate,
what kind of applications they use, the type of devices they are surrounded by and their
geographical location.

Traditionally, a user’s sensitive data are stored on centralized servers [5], which can
be easily tampered by the third party resulting in additional security and privacy threats,
since user data was accessible without obtaining consent from the user. To address this
issue, Blockchain-based solutions have been proposed in the IoT system, where several
approaches have been advocated to protect user privacy [6–10]. Blockchain technology
has dramatically enhanced user privacy and data access owing to its decentralized nature,
enabling all participating nodes in the Blockchain to provide services equally [11]. In case
of a node failure, other nodes keep providing the service, removing single point of failure
that is a major problem in the traditional methods. The immutability feature of blockchain
technology protects the data from being tampered and safely store the data in the form of
blocks [12]. These features of blockchain technology eliminate the limitations of traditional
centralized servers used in IoT applications. However, they still suffer from issues such
as privacy protection and behavior regulation of access policy. In order to trace the real
identity in an unusual transaction and preserve the privacy of the user in the data access
policy, it is necessary to protect authenticity and confidentiality of the transmitted message
while obtaining the consent needed for data access in the IoT system.

Our focus in this work is on protecting the confidentiality and authenticity of user
consents during data transmission in IoT systems. We aim to preserve user privacy by
maintaining the integrity of user consents before data transmission takes place in the
IoT network. To improve the security strength of the encryption and decryption keys of
the request transaction and response, we propose a two-pronged approach. Firstly, we
proposed the use of a Secure Hash Function (SHF) [13] to derive private and public keys
and secondly, we recommend the use of Key Derivation Function (KDF) to derive multiple
keys to prevent the attacker from detecting the actual key value. The improved security
strength decreases the correlation coefficient between constructed request transactions and
encrypted transactions, enhancing user privacy in IoT systems. The proposed solution
also improves the reliability of the system compared to a recent work of Lin et al. [14] by
eliminating user-dependent variables and reducing the computation time.

The rest of the paper is organized as follows: Section 2 discusses in detail the recent ad-
vances in blockchain security measures, with a focus on its application in the IoT landscape.
We detail the proposed scheme in Section 3, providing the major steps and associated
details. Section 4 discusses the benefits of the proposed scheme, providing comparison
to related works. In Section 5, we present analysis and detailed results of our scheme,
demonstrating the efficacy in terms of average correlation coefficient and computation time,
whereas the interim results on different datasets are also provided. Finally, the paper is
concluded in Section 6, provisioning some future research directions.

2. Related Works

Blockchains are tamper evident and tamper resistant digital ledgers implemented
in a distributed fashion, usually without a central authority. At their basic level, they
enable a community of users to record transactions in a shared ledger such that under
normal operation of the blockchain network, no transaction can be changed once pub-
lished [15]. Unlike traditional methods, blockchain enables peer-to-peer transfer of digital
assets without any intermediaries. Blockchain is often regarded as a public ledger in which
all committed transactions are stored in a chain of blocks, and this chain continuously
grows when new blocks are appended to it. The blockchain technology’s key characteristics
include decentralisation, persistency, anonymity and auditability.
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2.1. Ethereum Public Blockchain

Ethereum represents a blockchain providing an abstract layer that enables all users
to create their own rules for ownership, formats of transactions, and state transition func-
tions, which is achieved through the use of smart contracts [16]. The consensus in the
Ethereum network is based on modified GHOST protocol. Ethereum is created to tackle
the issue of stale blocks in the network since the GHOST protocol includes stale blocks into
calculations of the longest chain. The authors in [17] enhanced user privacy in a mobile
crowdsensing system with spatial location privacy-preserving and greedy algorithms to
improve data quality and preserve location privacy. They constructed a blockchain-based
location privacy-preserving mobile crowdsensing system where the decentralization and
immutability of Blockchain avoids security issues. However, the algorithm used in this
scheme is based on the estimated value, so any inaccurate estimate may lead to significant
problems and does not ensure data quality and reliability of the system.

In [18], the focus was on enhancing a smart healthcare system using a blockchain
to preserve the privacy of the health data and ensure that diagnoses are not tempered.
The proposed solution decreases the computation and communication cost comparing
to the traditional system when preserving privacy in smart healthcare. However, the
computation time is not fixed as the scheme requires users to update their key each
time the transaction is updated. The researchers in [19] designed and implemented a
decentralized reputation system to develop trust in the public fog nodes for enabling the
IoT devices to rely on them securely. It provides safety against security vulnerabilities
associated with IoT data and maintains the integrity of the data. The method uses the
opinions of multiple users regarding the performance of public fog nodes to calculate
reputation score for the future user to uses this system, which shows the unreliability of
the system performance since the change in users’ opinions changes the reputation score
and increases the computation cost. Several computing task offloading schemes in mobile
edge computing for IoT devices have been developed in [20]. The developed system uses
a Blockchain-enabled edge computing framework and non-dominated sorting genetic
algorithm to maintain data integrity while performing a task offloading process. Moreover,
it adopts simple additive weighting and multi-criteria decision making techniques to select
the most suitable offloading schemes. The task offloading system consumes 5% less energy
than compared methods and decreases offloading time and energy consumption with data
integrity and privacy protection. However, this work does not consider the security of VM
instances while moving from one edge computing device to another device for obtaining
load balance.

2.2. Consortium Blockchain

Consortium blockchain is a type of blockchain with authorized nodes to maintain dis-
tributed shared databases. Constructed by several organizations, the consortium blockchain
is partially decentralized as only a small portion of nodes would be selected to determine
the consensus. Among other advantages, recent works [21] have shown that it offers high
potential for the establishment of decentralized electricity trading system with moder-
ate cost. The authors of [22] propose a blockchain-based secure and privacy-preserving
personal health information sharing scheme for diagnosis improvements in e-Health sys-
tems, where private and consortium blockchain are constructed by devising their data
structures, and consensus mechanisms. In order to achieve data security, access control,
privacy preservation and secure search in this work, all the data including the health
information, keywords and the patients’ identities are public key encrypted with keyword
search. In [23], the authors construct a consortium blockchain framework for detecting
malicious codes in malware and extracting the corresponding evidences in mobile devices.
The work performs feature modelling by utilizing statistical analysis method, where the
framework is composed of a detecting consortium chain shared by test members and a
public chain shared by users. The authors also design a multi-feature detection method of
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Android-based system for detecting and classifying malware, and establish a fact-base of
distributed Android malicious codes by blockchain technology.

2.3. Hyperledger Fabric Blockchain

Hyperledger Fabric is an implementation of a distributed ledger platform for running
smart contracts, leveraging familiar and proven technologies, with a modular architecture
allowing pluggable implementations of various functions [24]. Designed as an extensible
general-purpose permissioned blockchain, Hyperledger Fabric is the first blockchain system
that supports the implementation of distributed applications written in standard program-
ming languages [25]. This essentially allows them to be executed consistently across many
nodes, giving impression of execution on a single globally-distributed blockchain computer,
making Fabric the first distributed operating system for permissioned blockchains. The
authors of [26] showed that the security can be enhanced by using proof of block and trade
consensus algorithms to validate trade and blocks before allocating them to the ledger.
Their solution uses a lightweight consensus algorithm, resulting in reduced computation
time. However, it is resource intensive as it requires each trade to be validated before and
at the time of block formation.

In [27], the authors proposed to improve privacy in industrial IoT with a Blockchain-
based secure data sharing model for distributed multiple parties. They used federated
learning algorithms to transform raw data generated in industrial IoT into the correspond-
ing data model and share it. This model helps prevent data leakage, and data owners can
assess before giving access to share their data in Industrial IoT. It provides high efficiency
and enhanced security over traditional solutions. However, stable accuracy is difficult to
achieve with the increase in the number of data providers. Also, an increase in the number
of data providers requires a system to scale data for performing the computation. The
consensus protocol is enhanced in [28] by checking the data loss before the data transmis-
sion to the blockchain network. This system uses a gossip-based diffusion function that
guarantees the data collected from the sensor device are transmitted to the honest node
of the blockchain network. However, this system does not consider the traffic that may
increase in the network when the nodes are busy in replicating the processing outcome. The
improvement of privacy with novel blockchain-based distributed key management scheme
was discussed in [29], which eliminates the potential threat caused by a trusted third party.
It uses multi-blockchain network that improves verification and saves storage space for
IoT devices. The results showed that the scalability of the system is suitable to resource
constrained IoT systems. However, a preshared key strategy in asymmetric cryptography
is used, resulting in increased computation and communication overhead.

2.4. Blockchain Mechanisms for IoT Security

Blockchain-based frameworks to preserve user privacy in IoT have been proposed
in a majority of works. The authors of [30] proposed a blockchain-based data acquisition
scheme for a secure collection of data from IoT devices using Unmanned Aerial Vehicles
(UAVs). This solution was researched by collecting data from IoT devices using UAV and
storing safely in blockchain through mobile edge computing. However, in this approach,
the required verification increases the latency. The researchers in [31] enhanced privacy in
IoT with the Hyperledger Fabric Blockchain framework and Attribute Based Access Control
(ABAC) to ensure efficient access control even under large number of requests in the IoT
environment. The performance of this approach is analysed using two terminals which
may increase the computational cost. The authors of [5] enhanced the publish/subscribe
model with a blockchain-based secure publish/subscribe system to protect the privacy
of publishers and subscribers. This model uses the Ethereum platform to ensure identity
protection of the publisher and subscriber, using public key encryption with an equality
test to guarantee the confidentiality of IoT data transmitted in the blockchain network.
Though the authors present a promising way to preserve privacy in IoT system, the use of
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Diffie–Hellman protocol for encryption procedure does not resist security attack, causing
the user to compromise the security of their personal data.

Based on consortium blockchain, the security and privacy in IoT were enhanced
in [32] with a novel attribute-based access control scheme. This scheme avoids the need to
maintain an access control list in the IoT system as compared to traditional access control
technologies. The access policies are made up of attributes and stored in the form of
transaction in the blockchain. The performance analysis of their system shows storage
overhead increases linearly with an increase in the number of attributes, whereas the
computation overhead is also linear in the number of attributes. The security analysis
shows that their scheme provides resistance to various security attacks in the IoT system.
However, the key pair developed for authentication of the transaction does not boost the
security strength of the encrypted transactions. In [14], the authors enhanced user privacy
preservation in the IoT system with a novel secure mutual authentication system to provide
traceability and privacy protection of access policy and user consent. The use of ECIES
protects the confidentiality and privacy of request transaction message and response data
that is transmitted to obtain necessary consents before data transmission in IoT. It gives a
correlation coefficient of 0.34499 between constructed request transactions and encrypted
transaction with a computation time of 102.733 ms. The ECIES is implemented to generate
the public/private keys for encrypting and decrypting the request transaction data and
response data. However, keys generated from the publicly exposed point on the elliptic
curve result in violating user privacy.

A major concern regarding the adoption of blockchain technology in IoT networks is
the enormous energy consumption associated with blockchains. This perception inevitably
raises concerns about the further adoption of this technology, a fact that inhibits rapid
uptake of what is widely considered to be a ground-breaking and disruptive innovation [33].
This fact, along with the significant increase in energy consumption caused by IoT networks
has created a new challenge and diverted the focus towards creating an eco-friendlier IoT
ecosystem, which provides energy efficient services and enables the production and use
of renewable energy [34]. The combination of blockchains and a green IoT is focused on
reducing energy consumption and adopting renewable resources rather than on energy
generated by fossil fuels. Furthermore, recent studies [33,35] have shown that blanket
statements about the energy consumption related to blockchains should be reviewed with
care. Although Bitcoin and other proof-of-work blockchains do indeed consume a lot of
power, alternative blockchain solutions with significantly lower power consumption are
already available today, and new promising concepts are being tested that could further
reduce the power consumption of large blockchain networks.

3. Modified ECIES with Secure Hash Function

The proposed scheme is intended to protect the integrity of transmitted messages
while obtaining necessary consents for data transmission in IoT. Moreover, it provides
resistance against different attacks and ensures reliable auditing of the user data access
policy. To provide confidentiality and authentication of the transmitted data, both the
request transaction and response data are authenticated once they are encrypted. We have
chosen the proposed method in Lin et al. [14] as the basis for our designed solution. The
mutual authentication system shows the access request transaction and response data while
obtaining necessary consents. It protects against any data leakage and data loss, ensures
reliable behavior auditing and protects the user access policy, preventing any malicious
attack and possibility of consents versioning. The request transaction data are encrypted
using ECIES and authenticated using message authentication code. The access request
transaction and response data are firmly secured and authenticated, providing enhanced
security while managing user data access policy and consents [18].

The use of an SHF to generate private and public keys prevents an attacker from
detecting the actual values of the keys from which it is derived, even in the case where the
hash function is known. This feature enhances the privacy preservation in IoT, providing
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resistance to detect the actual value of the key is used to encrypt the message. A detailed
flow diagram of the proposed scheme is shown in Figure 1. In the following, we detail the
major stages involved in our proposed scheme.

Figure 1. Flow Diagram of the Proposed Scheme—Modified ECIES with Secure Hash Function.

System Setup—The setup and enroll algorithm is invoked in this step to obtain keys
for signing and verifying the transaction. After taking in the security parameters, λn, to
obtain the public parameters, σn, we first generate a hash to ensure the security of the
derived key, since the generated hash function is used to compute the private and public
keys, denoted by δR and δP, respectively. The unique hash generation, corresponding to
message m, is denoted as:

h(m) = ψ(m) | ψ : {0, 1}∗ → {0, 1}256,

where ψ is the unique hash generation function [30,36], and we have used SHA-256. In some
works, for example, [14], the private and public key is calculated from publicly exposed
points on the elliptic curve that can be easily detected by the attacker, and user privacy
can be compromised. The security strength of the key ensures the confidentiality and
authenticity of the transmitted message for obtaining the user consents before processing
the user data.

The security strength of the key ensures the confidentiality and authenticity of the
transmitted message for obtaining the user consents before processing user data in IoT.
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Thus, if SHF is used to determine the value for the key rather than choosing publicly
exposed points on the elliptic curve, the transmitted message will be highly protected. The
secure hash value is used to generate the private key rather than randomly choosing a
publicly exposed point on the elliptic curve as a private key and computing public key
from the chosen private key. The private key δR is generated based on the hash function
using the key generator function Γ(·), given as:

δR = Γ(h) | Γ : {0, 1}∗ → {0, 1}κ ,

where κ is the designated key size [30,36]. After the generation of private key δR from the
hash h(m), corresponding to message m, the public key δP is calculated based on:

δP = δR ∗ (Ex, Ey),

where (Ex, Ey) corresponds to the x and y coordinates of the point P on the elliptic curve E
of finite field and P has the order of large prime number q [30]. Hence, the use of the hash
function protects the value of the key being detected even if the hash function is known.
As a result, private and public keys are secured and provide resistance to several security
attacks enhancing user privacy protection.

Request Control—Once access request is published, new public and private keys are
produced to avoid replay attack and profiling [14], where the uniquely generated hash
is used to compute the private key instead of a randomly chosen key. The transaction to
access the data is constructed and signed using the GSign algorithm. Request transaction
data are then encrypted and verified using different keys. Since the randomly generated
points on the elliptic curve can be detected by any attacker as multiple keys to encrypt the
transmitted message, the proposed solution uses a KDF algorithm [37] to derive multiple
keys from one secured master key. KDF follows an iterative process to derive multiple keys
and ensure that an attacker is not able to identify origin of the master key [32]. After keys
are generated, request transaction data are encrypted using the Enc. algorithm of ECIES
and is authenticated using the MAC algorithm, where the encryption process is given by:

CP = Encrypt(Tr, δP),

and CP represents the encrypted access request transaction data that is then uploaded to
the blockchain network.

State Delivery—In this phase, consensus nodes in the blockchain network monitor the
access request, checking the transaction verification using a signature verification algorithm.
If the transaction is verified, it is decrypted using the Dec algorithm of ECIES and private
key [14,30], which provides target device information and control orders, given by:

(Di, C) = Decrypt(CP, δR),

and Di and C represent the target device and control information, respectively. The con-
sensus node of the blockchain network formats the data request to ensure the data access
request is received from a valid requestor. The information access request to the user
and response from the user is encrypted and authenticated. The authentication tag is
recomputed to ensure the response is received from a valid user. If the authentication tag
matches, only then the response from the user is decrypted to obtain response information
about the request.

Chain Transaction—The transactions are retrieved in the smart contract of the block-
chain network, where signatures are verified to check the validity of the transaction. If the
transaction is valid, they are collected, and the block is formed. The consensus nodes use
the Practical Byzantine Fault Tolerance consensus mechanism to chain the blocks [38]. The
user access policy is then updated, which helps in managing consents set by the user.

Dispute Handling—The unusual transactions are traced by detecting abnormal and
unusual behavior, where GTrace algorithm is executed to reveal the real identity in the
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unusual transactions. It helps to prevent impersonation attacks by identifying unusual
behavior and showing the real identity of the attacker.

The flow of the modified ECIES is shown in Figure 2, whereas the steps of the proposed
scheme are shown in Algorithm 1.

Figure 2. Flowchart of the Proposed Elliptic Curve Integrated Encryption Scheme with SHF.

Algorithm 1 Proposed ECIES with Secure Hash Utilization.

Input: Security parameter λn and Transactional Request Data Tr
Output: Response Data

1: Generate σn ← λn

2: Compute h(m)← m
3: Compute δR ← h(m)
4: Compute δP ← δR ∗ (Ex, Ey)
5: Construct T← δP
6: Encryption CP ← Encrypt(Tr, δP)
7: Authentication Check

if Tags Match
(Di, C)← Decrypt(CP, δR)

else Reject CP
end
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Computation Time for Proposed Scheme

In this section, we calculate the computation time of the proposed scheme, which is
given as:

T = Tb + Tc,

where T is the final computation time, Tb is a computation time for transaction generation
and verification, and Tc is the initial computation time. Here, Tb is given as:

Tb =
Tr

∑
i=1

Ti
r(t) +

Ns
2 +1

∑
i=1

Ni
s(t),

where Ti
r(t) is a time for generation of one trade, and Ni

s(t) is a time for verification by
session node. Moreover, Tc is given by:

Tc = T1 + Th + T2,

where Th is the time for generation of hash function, and T1 and T2 correspond to the time
of public/private key calculation and public parameter generation.

4. Benefits of Modified ECIES with SHF

The proposed solution helps improve the confidentiality and authenticity of the
transferred message to obtain consents protected by using an SHF to generate private and
public keys. This improves the correlation coefficient between transmitted messages and
encrypted transactions. Along with this, it also ensures that the attacker is not able to
detect the value of the key even in case hash function is known to the attacker because
points on the elliptic curve are the order of a large prime number. In some of previous
woks, the computation time is affected by the number of users, thus with the increase in
the number of users, the computation time also increases, indicating the unreliability of
the system. In the proposed scheme, the computation time is calculated by eliminating the
user dependent variable, showing a higher system reliability.

SHF is utilized to generate private and public keys for improving the security strength
of the transmitted message. The private key is generated from the SHF based on SHA-256,
while the public key is calculated from the private key and points on the elliptic curve
of the finite field that is the order of a large prime number. Hence, if the attacker tries to
compute the point on the curve, they will not be able to detect the value of the key. In order
to improve the efficiency of the encryption and decryption, the KDF is used to generate
secured multiple keys from one master key. Some previous works [14] randomly select
the publicly exposed point on the curve as a value of the key resulting in several security
vulnerabilities that impact user privacy. Using publicly exposed points on the curve that
are vulnerable to several attacks as a private and public key, will exploit the user privacy
in IoT. Hence, the use of SHF will guarantee that the integrity of the key is protected, and
the attacker is not able to detect the actual value of the key. In the proposed scheme, we
have kept a regard for the authenticity and integrity protection of the transmitted message
while consent management for enhancing user privacy in IoT by using ECIES with an
SHF generation.

5. Results and Discussion

This section presents the analysis and results of the proposed scheme. Considering
the relevance of Lin et al. [14] to our work, we provide a detailed comparison of our work
with the results presented in Lin et al. [14]. MATLAB R2019a was used to implement
and evaluate the prototype of the proposed model on a personal computer (PC). For
the implementation, ‘secp256r1’ is used as the elliptic curve domain parameter [39] to
develop the public parameter of the elliptic curve, whereas SHA-256 is used to secure
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the hash function generation. Four groups of 50, 150, 250, 500 device information were
used as a dataset, where these datasets were taken from online resources [40]. Ten samples
of device information from each group are taken to construct the request transactions.
We considered attributes such as device_ID, device_Type, device_Model, and device_SN
(serial number) from the device information for creating the tansaction request. The
completed request transaction is encrypted and decrypted for both Lin et al. [14] and
the proposed scheme. The strength of the transmitted message is measured in terms
of the correlation coefficient between the constructed request transaction and encrypted
request transaction. The performance evaluation of the proposed scheme is based on the
comparison of correlation coefficient and computation time with that of Lin et al. [14].

We note that the correlation coefficient measures the closeness between the mapped
points on the elliptic curve for the constructed request transaction and encrypted request
transaction. The lower the value of the correlation coefficient, the more secure the encrypted
transaction. We compared samples taken from our result with the device ID attribute of the
50-device group set from the dataset. This result consisted of the encrypted transaction for
request transactions in the request control stage for both Lin et al. [14] and the proposed
scheme, where the comparison is based on the correlation coefficient between constructed
request transactions and encrypted request transactions.

Table 1 includes the device ID attribute of three samples; the constructed request
transaction for each device ID and encrypted request transaction in Lin et al. [14] and
our proposed scheme. The measured correlation coefficient here improves from 0.3451 to
0.3052 in the first sample of device ID attributes, which clearly demonstrates the improved
security strength of the encrypted transaction due to the lower correlation coefficient. Apart
from the device ID samples, we tested other attributes of the device information such as
device_Type, device_Model, and device_SN attributes. Ten samples were taken from each
of the datasets of 50-, 150-, 250-, and 500-device group set. The results are obtained during
the request control stages before uploading the request transaction into the smart contract
of the blockchain network, and are shown in Tables 2–5, respectively. It is evident from the
provided tables that the proposed solution improves the correlation coefficient between the
constructed request transaction and encrypted transaction, providing increased security
strength of the encrypted transaction.

We also calculate the average values of the correlation coefficient and computation
time for the proposed scheme and for Lin et al. [14], as shown in Table 6. The result shows
a noticeable improvement in both the correlation coefficient and the computation time
compared to Lin et al. [14]. Figure 3 shows the average correlation coefficient results for
the proposed scheme and for Lin et al. [14], which demonstrates the security strength
of the transmitted message. The results for Lin et al. [14] are shown in blue, while the
orange color indicates the result for the proposed solution. Every paired blue-orange
bar represents the correlation coefficient of the 50-, 150-, 250-, and 500- device group sets
with the attributes device_ID, device_Type, device_Model, and device_SN, respectively.
The average correlation coefficient for the proposed scheme for device_ID samples of the
50-device group dataset is reduced to 0.30122, whereas it is 0.34499 for Lin et al. [14].
Similarly, the average correlation coefficient for device_Model samples of 250-device group
dataset is also reduced to 0.30359, whereas it is 0.34853 for Lin et al. [14]. Finally, the
average correlation coefficient for device_SN samples of 500-device group dataset for the
proposed solution is reduced to 0.30089 comparing to the record of 0.34433 for Lin et al. [14].
We attribute the degree of improvement in the correlation coefficient to the modified
private and public keys for encryption in the proposed scheme. The proposed scheme
improves the correlation coefficient from 0.04344 to 0.04377 between constructed request
transactions and encrypted request transaction, which shows increased security strength of
the transmitted message.
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Table 1. Constructed Request Transaction and Encrypted Request Transaction in Lin et al. [14] and the Proposed Scheme.

Sample Encrypted Request Transaction Samples from Lin et al. [14] Encrypted Request Transaction Samples—Proposed Scheme

Device_ID Constructed Request Transaction Encrypted Transaction Constructed Request Transaction Encrypted Transaction

5c504f2863 01||pk1||5c504f2863||o nMgxrrzzltep 01||pk1||5c504f2863||o #M25*ˆgh%@sEj_N

7j533g3785 01||pk2||7j533g3785||r VzBsirblemqxj 01||pk2||7j533g3785||r &2bgh?+5f*63ˆ”bL+

2p488d4936 01||pk3||2p488d4936||c blskQohnerJk 01||pk3||2p488d4936||c Ox32?@><ghtSE21

Table 2. Correlation Coefficient and Computation Time Comparison of Lin et al. [14] and Proposed Scheme—Device ID Samples.

S.
No.

Device_ID
Samples

Constructed
Request
Transaction

Lin et al. [14] Proposed Scheme

Encrypted
Transaction

Correlation
Coefficient

Computation
Time (ms)

Encrypted
Transaction

Correlation
Coefficient

Computation
Time (ms)

1 5c504f2863 01||pk1||5c504f2863||o nMgxrrzzltep 0.3451 108.45 #M25*^gh%@sEj_N 0.3052 97.87

2 7j533g3785 01||pk2||7j533g3785||r VzBsirblemqxj 0.3287 102.67 &2bgh?+5f*63^”bL+ 0.2881 95.35

3 2p488d4936 01||pk3||2p488d4936||c blskQohnerJk 0.3695 110.88 Ox32?@><ghtSE21 0.3197 100.01

4 3r622h2678 01||pk4||3r622h2678||w kGniopHcqts 0.3586 105.5 &&4*^xo78?//@br 0.3074 97.36

5 8x923a0995 01||pk5||8x923a0995||r pxtrJvnerKlsgh 0.3218 100.3 Xx(+09%#<>P582j# 0.2821 90.8

6 5z307b2305 01||pk6||5z307b2305||o SzhioFnopsltr 0.3524 109.25 53>BJIO@+*29_ba 0.3117 99.3

7 1k408m7277 01||pk7||1k408m7277||r zcxvtDlfspqrv 0.3247 98.6 pM@0873##ghi++ 0.2851 97.2

8 4v978x0355 01||pk8||4v978x0355||r QlnioghTsrvbe 0.3618 96.33 ST<**3789#(j;st_bt 0.3125 91.78

9 6g388k5669 01||pk9||6g388k5669||o twchjkioAans 0.3499 99.24 C5!(^78#”gmRb+523 0.3071 93.68

10 9s028n6082 01||pk10||9s028n6082||c ifniodfXtcrnig 0.3374 96.11 +93x0”^&pSq*?84((+ 0.2933 91.45
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Table 3. Correlation Coefficient and Computation Time Comparison of Lin et al. [14] and Proposed Scheme—Device Type Samples.

S.
No.

Device_
Type
Samples

Constructed
Request
Transaction

Lin et al. [14] Proposed Scheme

Encrypted
Transaction

Correlation
Coefficient

Computation
Time (ms)

Encrypted
Transaction

Correlation
Coefficient

Computation
Time (ms)

1 Lamp 01||pk1||lamp||o hdlOxcjsmkbfaxb 0.3365 100.25 @2e78(^:xvyio# 0.2923 91.48

2 Fan 01||pk2||fan||c IDvislzxkrFthjcs 0.3518 96.46 vM*{14s<”QJixh%j 0.3091 90.01

3 Air-conditioner 01||pk3||ac||r lpCivzodalfioeLt 0.3624 109.84 ##hj89!kb(**vm%l 0.3147 101.21

4 Television 01||pk4||tv||r glaQivtsjiwecbmf 0.3267 104.3 F4!{9(&&Hjck”b_1 0.2865 96.45

5 Freezer 01||pk5||freezer||o iozxJstovhgmcIDf 0.3378 98.8 Ox5%zkLR++8**d” 0.2934 93.26

6 Camera 01||pk6||camera||c bchjShBixmveloz 0.3413 97.65 ++fg^*294(siX3!%K 0.2984 92.68

7 Doorbell 01||pk7||doorbell||c oxGjzbkdIvsohja 0.3649 95.38 &&59gX+jq6^^d! 0.3166 89.59

8 Door 01||pk8||door||r mrXbjiwedjlHaMb 0.3672 94.71 3!cAm#]za!_vD8** 0.3193 89.45

9 Clock 01||pk9||clock||r VbihKzrajioxbfk 0.3291 95.16 2!_xjdO(+”8fYios” 0.2891 89.78

10 Speaker 01||pk10||speaker||o aKleioshBzerjioc 0.3534 97.12 56@kWx”67!++^*8) 0.3112 90.56

Table 4. Correlation Coefficient and Computation Time Comparison of Lin et al. [14] and Proposed Solutions—Device Model Samples.

S.
No.

Device_
Model
Samples

Constructed
Request
Transaction

Lin et al. [14] Proposed Scheme

Encrypted
Transaction

Correlation
Coefficient

Computation
Time (ms)

Encrypted
Transaction

Correlation
Coefficient

Computation
Time (ms)

1 RX350 01||pk1||RX350||o VbxdjklopStpd 0.3587 106.23 P#5!hbn2e<k” 0.3138 98.45

2 HS720A 01||pk2||HS720A||c rbpMiosgtkbdji 0.3393 109.04 ++dfg*7D$%j{ 0.2954 99.34

3 ZT8808 01||pk3||ZT8808||r pbfKlacTrxkfdv 0.3718 113.96 J9_}ndb^&10f 0.3215 103.85

4 XY290P 01||pk4||XY290P||r Kgankobhmenx 0.3425 105.4 28g(7!kvy>?lb 0.2971 98.67

5 HDR6E 01||pk5||HDR6E||o AchjeoPvmftugy 0.3274 104.55 “fs9!45@kcql++ 0.2887 96.77

6 CBT26Z 01||pk6||CBT26Z||c ZxjdriobstJbci 0.3368 110.75 #46e%Jcmp8!(* 0.2932 101.48

7 PB485D 01||pk7||PB485D||o oxchksDLnfkwcy 0.3451 100.3 0x^{gno**57(% 0.2995 97.26

8 AVV56E 01||pk8||AVV56E||r GbjiochtgjFcodef 0.3596 104.78 rDk##99!hsi_4%! 0.3152 97.73

9 BM5060 01||pk9||BM5060||c abfdelUbjiotHny 0.3417 99.34 3!(gOx<@2dn+*> 0.2951 95.87

10 CR2030 01||pk10||CR2030||o rvpmRtzderighj 0.3624 102.45 +8cY{&269f##k! 0.3164 98.03
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Table 5. Correlation Coefficient and Computation Time Comparison of Lin et al. [14] and Proposed Solutions—Device Serial Number Samples.

S.
No.

Device_
SN
Samples

Constructed
Request
Transaction

Lin et al. [14] Proposed Scheme

Encrypted
Transaction

Correlation
Coefficient

Computation
Time (ms)

Encrypted
Transaction

Correlation
Coefficient

Computation
Time (ms)

1 72020190805001 01||pk1||72020190805001||r cwkzAldOxvionc 0.3472 103.75 oxK*3#”4z89!Ws<k# 0.3072 97.33

2 72020190805002 01||pk2||72020190805002||c rcksiKlwgnoxhtVm 0.3381 107.22 @hs53!jL;(“bKx>++ 0.2951 99.58

3 72020190805003 01||pk3||72020190805003||r MxjkdiyqosdGrdH 0.3564 109.55 ##gP34{*oX629_jb*D 0.3115 102.67

4 72020190805004 01||pk4||72020190805004||o ldfivrskTaovhxGc 0.3415 105.14 “lB*{@793!_jf+>VG 0.2973 98.97

5 72020190805005 01||pk5||72020190805005||o bJoxjdlqieczgeorl 0.3261 99.34 PW(+*51U_”vz#A9<h 0.2861 96.88

6 72020190805006 01||pk6||72020190805006||c xjloFaicehpbhowc 0.3347 109.15 9^qxc*{_fk@bi56! 0.2937 101.45

7 72020190805007 01||pk7||72020190805007||o Lpwvnjxzaioerm 0.3641 99.62 ++7Ox37”#bsT^y>* 0.3142 97.13

8 72020190805008 01||pk8||72020190805008||r mhykdgyerioskzt 0.3572 104.01 *fV%g_h!{“6do>&r 0.3116 98.35

9 72020190805009 01||pk9||72020190805009||c aQiocdjkguzpljXo 0.3487 98.15 Ix{&85+^dy@<>g# 0.3081 97.01

10 72020190805010 01||pk10||72020190805010||r PfsklchioxDgerzbj 0.3293 101.73 &jc*;31k4!+M_”*5%# 0.2841 96.78

Table 6. Average Correlation Coefficient and Average Computation Time Results of Lin et al. [14] and Proposed Scheme (from tested samples).

Dataset Samples No. of
Tests Taken

Lin et al. [14] Proposed Scheme
Average

Correlation
Coefficient

Average
Computation

Time (ms)

Average
Correlation
Coeffcient

Average
Computation

Time (ms)

50-Device Group Set Device_ID 10 0.34499 102.733 0.30122 95.48

150-Device Group Set Device_Type 10 0.34711 98.967 0.30306 92.447

250-Device Group Set Device_Model 10 0.34853 105.68 0.30359 98.745

500-Device Group Set Device_SN 10 0.34433 103.766 0.30089 98.615
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Figure 3. Average Correlation Coefficient results for Proposed Scheme and Lin et al. [14].

Figure 4 shows the average computation time results for both the proposed scheme
and for Lin et al. [14] by calculating the execution time for each sample. The blue color
indicates the results for Lin et al. [14], and the dark orange color indicates the result for the
proposed solution. The paired blue-orange bars represent the average computation time
for the 50-, 150-, 250-, and 500- device groupsets with the attributes device_ID, device_Type,
device_Model, and device_SN, respectively.

• The average computation time for the proposed scheme of the device_ID samples
of the 50-device group dataset is reduced to 95.48 ms, whereas it is 102.733 ms for
Lin et al. [14];

• The average computation time for device_Type samples of 150-device group dataset is
reduced to 92.447 ms compared to 98.967 ms of Lin et al. [14];

• The average computation time for device_Model samples of 250-device group dataset
is 98.745 ms, which is less than the recorded value of 105.68 ms for Lin et al. [14];

• The average computation time for device_SN samples of 500-device group dataset. for
the proposed solution is equal to 98.615 ms comparing to 103.766 ms for Lin et al. [14].

Figure 4. Average Computation Time results for Proposed Scheme and Lin et al. [14].

A comparison between our proposed scheme and Lin et al. [14] is presented in
Table 7. Both solutions are based on ECIES that protect the confidentiality and privacy of
request transaction messages and response data before data transmission in IoT. While
Lin et al. [14] is mutually authenticated with ECIES, our proposed model modified the
ECIES with an SHF. Using an SHF to derive private and public keys reduces the correlation
coefficient, which improves the security strength of the request transaction data. Our
contribution relies on the fact that SHF improves the strength of encryption/decryption of
the transmitted message by adding new features for calculating private and public keys
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from the safer elliptic curve point, as compared to the case of Lin et al. [14], which does
not use hash function generation in the process of calculating the private and public keys.
Moreover, in Lin et al. [14], the security strength of the key was compromised, resulting
in the violation of user privacy in IoT. However, to enhance the privacy and reliability of
the processed user data in IoT, the new features adopted in the proposed scheme greatly
enhance user privacy in the IoT system. The use of KDF during the encryption procedure
of the request control stage introduces key stretching capability in the proposed scheme,
which helps to derive multiple keys from a single master key. This feature decreases the
number of iterations while deriving keys for authentication. As a result, the proposed
scheme achieves a reduction in encryption and decryption time. The computation time
calculated in the proposed scheme eliminates user dependent variables by including time
for transaction generation and verification to calculate computation time. This feature
ensures the reliability of the proposed scheme with reduced computation time compared
to Lin et al. [14] by an average of 7 ms per number of transactions.

Table 7. Comparison between Proposed Scheme and Lin et al. [14].

Approach Proposed Scheme
Modified ECIES with a SHF

Approach of Lin et al. [14]
Mutual Authentication with ECIES

Encryption/
Decryption
Strength

The strength of the encryption/decryption is measured
in terms of the correlation coefficient.
The improvement in the correlation coefficient is
from 0.34499 to 0.30122

Provides an average correlation coefficient of 0.34499.

Computation
time

Computation time is measured in terms of execution time.
The computation time decreases from 102.733 ms to
95.48 ms, reducing the encryption/decryption time from
39.925 ms and 41.513 ms to 34.444 ms and 35.859 ms.

Provide an average computation time of 102.733 ms with
average encryption decryption time of 39.925 ms and
41.513 ms.

Contribution 1

The generation of an SHF increases the security strength
of the key by adding new features for calculating private
and public keys from the safer elliptic curve points. With
the generation of an SHF, the security strength of the
transmitted message is improved, which enhances the
user privacy in IoT.

Does not use hash function generation for computing private
and public keys for encrypting the transmitted message
in IoT, which results in the violation of user privacy.

Contribution 2

The KDF introduces key stretching capability and
decreases the number of iterations processes while
deriving keys for authentication. This reduces the time
for encryption and decryption.

The computation time is affected by the number of users
showing the system unreliability.

6. Conclusions and Future Work

Data security and user privacy have been the emerging needs in the IoT system. In
this work, we presented a Blockchain-based scheme to preserve user privacy in IoT. The
proposed scheme provides a secure platform that allows the access requester to send the
request transaction data and receive the response data for the corresponding request. We
propose to use ECIES with SHF, which is the new feature adapted from Lin et al. [14],
to protect the confidentiality and authenticity of the transmitted request transaction and
response data. The use of an SHF to derive private and public keys enhanced user privacy
in IoT. This enhancement could improve the security strength of the request transaction
data, which helps to derive multiple keys from the single master key; decreasing the
number of iterations while deriving keys for authentication and elimination. As a result, it
reduces the computation time in the proposed solution by an average of 7ms per number of
transactions compared to the work of Lin et al. [14]. In the future, we need to explore other
cryptographic approaches to provide a secure platform for users and data requester to
exchange their data in the IoT environment. Future research needs to focus on issues other
than protecting the confidentiality and authenticity of the request transaction data and
response data to enhance user privacy in IoT, such as investigating and utilizing different
techniques to integrate within the blockchain network for achieving enhanced privacy in
the IoT system.
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