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Abstract: In Portugal, the dropout rate of university courses is around 29%. Understanding the
reasons behind such a high desertion rate can drastically improve the success of students and
universities. This work applies existing data mining techniques to predict the academic dropout
mainly using the academic grades. Four different machine learning techniques are presented and
analyzed. The dataset consists of 331 students who were previously enrolled in the Computer
Engineering degree at the Universidade de Trás-os-Montes e Alto Douro (UTAD). The study aims
to detect students who may prematurely drop out using existing methods. The most relevant data
features were identified using the Permutation Feature Importance technique. In the second phase,
several methods to predict the dropouts were applied. Then, each machine learning technique’s
results were displayed and compared to select the best approach to predict academic dropout. The
methods used achieved good results, reaching an F1-Score of 81% in the final test set, concluding that
students’ marks somehow incorporate their living conditions.

Keywords: students dropout; Random Forest; XGBoost; CatBoost; artificial neural network; permu-
tation feature importance

1. Introduction

According to statistics reported by Direção-Geral de Estatística da Educação e Ciência
(DGEEC) [1] the dropout rate in Portuguese universities is around 29%, and 14% of the
remaining students do not complete the course in the stipulated time. These high rates
are a matter of immense concern for educational institutions, not only in Portugal, but
worldwide. In the case of university education, different traditional actions can be taken
by educational institutions to reduce academic dropout rates. These include personalized
monitoring of students at risk, requiring an enormous designation of human resources
and time, or restructuring the course syllabus. Nonetheless, early identification of and
understanding the reasons for university dropout become essential for any methodology
used to decrease failure rates. Therefore, the correct prediction of school dropout has
become a priority [2].

Recent policies in Portugal towards improving academic success conduct educational
institutions to monitor students’ progress and prevent students from dropping out of
university. In this sense, educational institutions have been developing efforts to analyze
and predict these situations to deploy preventive actions. For many years, institutions
collected only the data necessary for the registration and functioning of the student’s
academic data. Thus, the lack of socioeconomic data creates constraints for institutions to
carry out reliable studies on this matter. In this sense, some institutions are limited to make
this type of analysis.
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The advent of artificial intelligence (AI), new areas such as data science, combined
with the current deluge of data, tools for its fast analysis, and the ability to store them
in large quantities, has allowed an accurate prediction of academic success to become
increasingly feasible.

In this work, several machine learning models were studied and applied to a dataset
containing students’ information provided by UTAD university. This study considers only
academic data due to the lack of students’ social-economic data. Therefore, the papers’
goal is to build analytical models that can accurately predict school dropouts using only
academic marks and the age of students. Some of the models will integrate UTAD’s
educational support infrastructure.

The rest of this paper is organized as follows: background theory and literature review
(Section 2); data and methods (Section 3); results and discussion (Section 4); conclusion and
future work (Section 5).

2. Background Theory and Literature Review

Some publications regarding data mining (DM) on predicting academic success fo-
cus on distance learning platforms and tutoring systems driven by AI [3–5]. Queiroga
et al. [3] developed a solution using only students’ interactions with the virtual learning
environment and its derivative features for early prediction of at-risk students in a Brazilian
distance technical high school course. They use an elitist genetic algorithm (GA) for tuning
the hyperparameters of machine learning algorithms. The population is formed by several
classifiers: decision tree (DT), random forest (RF), multilayer perceptron (MLP), logistic
regression (LG), and the meta-algorithm AdaBoost (ADA) with different hyperparameters.
The approach obtains an AUC medium value of 0.845. Other work, proposed by Mubarak
et al. [4] used a Convolutional Neural Networks (CNN) and Long Short-Term Memory
(LSTM), called CONV-LSTM, to automatically extract features from Massive Open Online
Courses raw data and predict whether students will drop out. They used a cost-sensitive
technique in the loss function, which considers the various misclassification costs for false
negatives and false positives. They claim that the proposed model is better when compared
to baseline methods. The dataset stores activity students’ records about which course they
are enrolled in. Dass et al. [5] presented a model to predict the student dropout in online
courses considering features of daily learning progress. They used a Random Forest Model,
obtaining 87.5% as the F1-score.

In the traditional educational system, several approaches were found using many
classifier systems. The use of Artificial Neural Networks (ANNs) was demonstrated and
considered promising by Alban and Mauricio [6]. Their study was carried out with data
obtained from 2670 students, from the Public University of Ecuador, over three years
(2014–2017). Two types of algorithms were used: multilayer neural networks and radial
basis function network (ANN that uses radial basis functions as activation functions, RNN),
with both presenting very high dropout forecast rates of 96.3% and 96.8%, respectively.
In another study, Plagge [7] concluded that, with the use of ANNs, the forecast rate was
relatively high when using two semesters of data, decreasing dramatically when using
only one.

Chung and Lee [8] used an RF to predict students at risk of dropping out. They used
165,715 high school students’ data from Korea’s National Education Information System of
the year 2014. They obtained an accuracy of 95% binary classification.

Pereira and Zambrano [9] used decision trees (DT) to identify patterns of student
dropout from socioeconomic, academic, disciplinary, and institutional data of students
from undergraduate programs at the University of Nariño. They used three datasets and
obtained a confidence threshold greater than 80%.
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Fernádez-García et al. [10] defined several models from enrollment up to the fourth
semester using mainly academic data. The approach considered the output of previous
stages, i.e., each step assumed the prior knowledge generated. The model goal consisted
of identifying engineering students with a high probability of dropping out to design and
apply dropout prevention policies effectively. The predictive model could identify 72%
of the students that will dropout. At the end of the fourth semester, the results could
reach 91.5%.

Hutagaol et al. [11] considered three singles classifiers: K-Nearest Neighbor (KNN),
Naïve Bayes (NB), and Decision Tree (DT), to identify the best in predicting students’
dropout at a private university in Jakarta. They use demographic indicators and academic
performance to predict student dropout. Their model reached 79.12% of accuracy.

Kiss et al. [12] identified students at risk of dropping out at a large Hungarian technical
university using predictive analytical tools. They use data of 10,196 students who finished
their undergraduate studies (either by graduation or dropping out) between 2013 and 2018.
They modeled the problem using 3 ML methods: Gradient Boosted Tree (GB), XGB, and
ANN, obtaining accuracy in the range 68.0% to 85.8%.

Studies using “external” features could also be found. Dharmawan et al. [13] used a
model with non-academic features. They concluded that the number of family members,
interest in further studies, and the relationship with lectures are features that influenced the
dropout. Hasbun et al. [14] studied the importance of extracurricular activities to predict
dropout in students from two Bachelor of Science degrees (Engineering and Business),
showing that extracurricular activities are excellent dropout predictors.

The following works revisions the students’ dropout prediction. Mduma et al. [15]
revised machine learning algorithms to predict academic dropout in developing countries.
They conclude that many researchers ignore data that is unbalanced, leading to improper
results. On the other hand, their main focus is providing early prediction instead, including
ranking and forecasting mechanisms on addressing the dropout student’s problem. De
Oliveira et al. [16] searched scientific indexed publications in higher education to analyze
the retention and dropout of higher education students. They identified the data and
techniques used and proposed a classifier using several categories considering several
student and external features.

Table 1 sums up the models, features, metrics used, and the results obtained. Column
1 identifies the work, and column 2 indicates the features used. The “Marks” feature
means that the work uses the curricular units marks. The academic feature indicates
the use of academic data like attendance, GPA, and marks. The “socioeconomic” feature
indicates the use of social and economic data, the “Institutional” refers to data related to
the study plan and the university, “Personal” refers to personal data like address, age, and
gender, “Demography” indicates the inhabitant number of a residential area and other
demographic data, “Motivation” refers to the driving force behind students actions and
other psychological phenomena. “Sports” indicates that students practice sports activities.
“High School” comprises data related to the student’s high school and their marks obtained.
“Activity” is the data obtained through interaction with computer learning systems, e.g.,
time spent by a student for a day. “Attendance” is the school attendance. “Knowledge” is
the knowledge degree that the students have. Finally, “Volunteer” indicates if the students
practice volunteering. The column methods enumerate the methods used in the works.
The “Result” column indicates the respective metric value (e.g., ACC: accuracy, AUC: area
under the curve).
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Table 1. Model, features, and metrics used and results obtained.

Work Features Methods Metrics Result

Alban and Mauricio [6] Personal ANN ACC 0.963
Knowledge RNN ACC 0.968

Chung and Lee [8] Personal RF ACC 0.95
Test marks AUC 0.97
Attendance Sensitivity 0.85
Volunteer Specificity 0.95

Dass et al. [5] Activity RF F1-score 0.875
AUC 0.945
ACC 0.875
Recall 0.875
Precision 0.88

Dharmawan et al. [13] Demography DT ACC 0.660
Economic SVM ACC 0.660
Social iteraction KNN ACC 0.564
Motivation
Personal

Fernádez-García et al. [10] Marks GB ACC 0.682
Personal RF ACC 0.686

SVM ACC 0.686
Ensemble ACC 0.670

Hasbun et al. [14] Academic DT ACC 0.793
Personal ACC 0.939
Sports
High School data

Hutagaol et al. [11] Academic KNN ACC 0.753
Demography Naïve Bayes ACC 0.629

DT ACC 0.649
GB ACC 0.791

Kiss et al. [12] Academic GB ACC 0.680-0.858
Personal XGB Precision 0.670–0.863
High School data MLP Recall 0.735–0.818

AUC 0.729–0.920

Mubarak et al. [4] Activity CNN-LSTM AUC 0.76–0.86
Deep Neural Network F1-score 0.86–0.89
SVM Precision 0.90–0.97
Linear Regression Recall 0.79–0.88

Pereira and Zambrano [9] Marks DT Confidence 0.800
SocioEonomic
Personal
Institutional

Plagge [7] Academic ANN ACC 0.750

Queiroga et al. [3] Activity GA (ADA, DT, RF, MLP, LG) AUC 0.845

3. Data and Methods

This section describes the dataset and methods used for this work.

3.1. Data Collection

The UTAD database was designed to store data from students enrolled in the Com-
puter Engineering degree at the UTAD University, obtained in the period ranging from
2011 to 2019. It contains demographic information, their parents’ profession, education,
and the academic record of each student. Table 2 exhibits these features, with their corre-
sponding name, acronym, and scale. However, UTAD’s staff usually fill out the students’
names, marks, and ages. Therefore, the working dataset contains just the age and the
marks features.

However, in general, the database only contains data about the students’ marks and
age. Usually, the other data was not registered by UTAD’s Staff. Therefore, the working
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dataset curricular units (courses) are identified with the acronym CU in Table 2 and its
marks ranges [10, 20] if the students succeeds or 0 if fails.

Table 2. Initial dataset features.

Feature Name Acronym Curricular Unit (CU) Scale

Age Age Ordinal

City Nominal

Father Employment Status Nominal

Father Education Nominal

Father Profession Nominal

Mother Employment Status Nominal

Mother Education Nominal

Mother Profession Nominal

Final Grade Ordinal

Graduation Year Ordinal

Registration Status Nominal

Computational Logic CL Yes Ordinal

Computer Architecture CA Yes Ordinal

Digital Systems DS Yes Ordinal

English I E-I Yes Ordinal

English II E-II Yes Ordinal

Integrated Laboratory I IL-I Yes Ordinal

Introduction to Computer Engineering ICE Yes Ordinal

Linear Algebra LA Yes Ordinal

Mathematical Analysis I MA-I Yes Ordinal

Mathematical Analysis II MA-II Yes Ordinal

Methodology of Programming I MP-I Yes Ordinal

Seminar I S-I Yes Ordinal

Figure 1 plots the pairwise relationships between the most important curricular units
obtained in Section 3.6. A grid divides the figure, where each feature will be shared across
the y-axes and x-axes. The diagonal plots are the marginal feature univariate distribution
in each column.
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Figure 1. Pairwise relationships between the most important features {0-Success, 1-Dropout}.

3.2. Artificial Neural Networks

ANNs are mathematical models, inspired by the neurons present in biological brains
for data processing, allowing computers to learn and thus make generalizations when
there is a considerable number of solutions to study instances of problems [17]. Biological
neurons are nothing more than simple interconnected processing units, but their behavior
gives rise to intricate matters [17]. In a computational version, the concept is to take
primary information, and through the connection of several nodes, it is possible to give
rise to a type of emergent behavior, which translates into high cognitive level decisions
and classifications.

3.3. Ensemble Methods

Ensemble Methods (EMs) are a machine learning technique that consist of combining
several base models to produce a high accuracy classifier. Usually, all EMs share the same
two steps. First, a finite number of learners are produced. Then, the base learners are
aggregated into a single model [18]. As each machine learning method tends to have some
bias, noise, and variance, an EM helps to minimize this problem, as it is proven that it can
“outperform any single classifier within the ensemble” [19].

3.3.1. Random Forests

Decision Trees (DTs) are a predictive model used in machine learning. DTs are desig-
nated as classification trees when the output variable takes on a discrete range of values.
These are defined by Brodley and Friedl [20], as a “classification procedure that recursively
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partitions a data set into smaller subdivisions on the basis of a set of tests defined at each
branch.” DTs have a hierarchical structure, formed by a root node, a collection of internal
nodes, and the end nodes, which are called leaves. The leaves represent class labels, and
each branch represents a combination of features that lead to these labels.

The use of DTs has several advantages, such as the fact that they require low data
pre-processing since they can handle both quantitative and qualitative data. One of the
most prominent benefits of this model is that they are considered a white box model, unlike
ANN, as they are easy to understand and interpret. However, this model holds some
limitations, offering low robustness, meaning that a small change in the data can produce a
substantial shift in the results. DTs are also prone to suffer from overfitting, since generated
trees might be overly intricate, with the inadequate capability to generalize to new data.

Random Forests (RFs) are an ensemble of many decision trees. In RFs, each tree is
trained independently by using a random sample of the training data. Each tree then
makes its prediction, and the class with the most votes is considered the final prediction.
The fundamental principle of this model consists of the wisdom of the crowd, where the
aggregation of independent solutions outperforms individual solutions [21].

3.3.2. Gradient Boosting

Gradient Boosting (GB) is an ensemble technique that builds a sequence of weak
learners, usually decision trees. GB creates trees individually, where the subsequent tree
tries to correct errors made by the previously trained tree. In every distinct iteration,
a new, weak base-learner model is trained, concerning the error of the entire ensemble
learned up to that point [22]. In short, this algorithm optimizes an arbitrary loss function
by sequentially choosing a function that points in the negative gradient direction. In this
paper, two variants of this algorithm are used, namely: XGBoost [23] and CatBoost [24].

3.4. Permutation Feature Importance

The Permutation Feature Importance (PFI) technique was introduced by Breiman [25]
for RFs. It is defined as the decrease in a model score when a single feature value becomes
randomly permuted. This procedure breaks the correlation between a feature and the
correct output. A feature has low importance when randomly shifting its values, as it does
not provoke a meaningful decline in the model’s score. Contrarily, when the model’s score
shows a notable drop, it implies that the model depended on the feature to predict the
correct output.

3.5. Random Over-Sampling

The number of instances in a class is usually uneven concerning another class or
classes. One way to address this problem is to perform the class distribution balance in the
pre-processing phase. Random Over-Sampling (ROS) [26] is a technique which generates
new samples in the under-represented classes. ROS does this by randomly sampling with
replacement of the currently available samples.

3.6. Data Pre-Processing

Figure 2 illustrates the pipeline used in this work. In the first step, Prepare data, the
data is ingested, and some cleaning is done, before using the PFI technique. However,
when the ANN model is used, some additional data manipulation is done (see Section 4).
The second step regards model construction, training, and validation. In the last step, the
model is implemented, used to predict new samples, and monitored. In this section, the
first step is described.
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Figure 2. Machine learning modularization pipeline.

The data considered in this study were previously anonymized before pre-processing
to comply with the current data protection regulation. The original dataset contained
academic information for each student on a single line. Therefore, the first-year grades
were extracted per column. Then, only the academic record of each student was kept,
as well as their age. This was done due to the fact that the other features contained
several empty fields, which would not contribute to the correct prediction. Additionally,
ll students who are still completing the course and those who dropped out shortly after
joining university (students with a zero score, in all subjects) were excluded from the
dataset. A new binary variable was created, indicating whether the student dropped out
or not, which was to be used as the output variable. It led to a new, cleaned data set with
information from 331 students. There is some significant data imbalance in the present
study, with 124 cases of school dropout and 207 cases of students that finished the study
plan successfully.

The extraction of the most relevant features was carried out using the PFI technique
(Section 3.4). The results are presented in Figure 3. The top six features (highlighted in blue)
were selected, as it was found that these cause a more significant drop in the accuracy.

0.00 0.02 0.04 0.06 0.08 0.10 0.12

Mathematical Analysis II
Introduction to Computer Engineering

English II
Seminar I
English I

Methodology of Programming I
Computational Logic

Linear Algebra
Mathematical Analysis I
Integrated Laboratory I

Digital Systems
Computer Architecture

Age

Feature Importance

Figure 3. Permutation importance box plot.

In this analysis, the younger students demonstrate more resilience in completing the
study plan, which showed that age is an essential factor in academic dropout. Figure 4
reveals the age importance in academic dropout study. The third quartile of students’
dropout has almost the same value as the median of students that are successful. On the
other hand, the success of the most demanding curricular units is also decisive in the
continuity of students’ studies. Figure 5 illustrates the number of fails per curricular unit.
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The curricular units in red are used in the model as important features, and the curricular
units in blue are discarded. In general, the model used the curricular units with more fails
as the most important features. The exception to the rule is Mathematical Analysis II. In
this case, the number of fails is also significant in students who are successful in the course.
Thus, the model cannot discriminate well students who drop out using this feature.
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Figure 4. Age importance box plot (red: success, magenta: dropout).
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Figure 5. Number of fails per curricular unit (feature red: used in the model, feature blue: discarded).

The applied data division strategy is exhibited in Figure 6. A stratified split was
applied to the data set, keeping 80% for training and 20% as a test set to perform final
evaluations. In the training portion, a stratified cross-validation technique was used,
dividing it into 10-folds. Models were later trained in 9-folds and validated in the remaining
fold. Thus, eliminating the need to divide the data into three distinct datasets, which would
drastically reduce the number of learning samples, given that the amount of available data
is low.

All data

Training data (80%) Test data (20%)

Fold 1 Fold 2 Fold 3 ... Fold 10

Fold 1 Fold 2 Fold 3 ... Fold 10

Fold 1 Fold 2 Fold 3 ... Fold 10

Fold 1 Fold 2 Fold 3 ... Fold 10

Fold 1 Fold 2 Fold 3 ... Fold 10

Fold 1 Fold 2 Fold 3 ... Fold 10

Split 1

Split 2

Split 3

...

Split 10 Final evaluation

Figure 6. Data division strategy. Adapted from: https://scikit-learn.org/stable/modules/cross_
validation.html (accessed on 17 January 2022).

4. Results and Discussion

Four different models (CatBoost; Random Forest; XGBoost; ANN) were built. Since all
models, except ANN, are tree-based, they do not benefit from feature scaling. Therefore,
the ANN model was implemented into a pipeline (Figure 7), which applies additional data
pre-processing before it gets fitted into the model. First, the features were scaled between

https://scikit-learn.org/stable/modules/cross_validation.html
https://scikit-learn.org/stable/modules/cross_validation.html
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zero and one. The data was then balanced using the ROS technique (Section 3.5), as it
provided more reliable results then unbalanced data.

Dataset cleaned
Data with 6 features

MinMax
Scaler

Random
Over

Sampler

ANN
Training

ANN
Trained Model

Prediction
Scoring
result

New Data

Figure 7. ANN pipeline architecture.

Every model was then submitted to the stratified 10-fold cross-validation test, de-
scribed before. During this test, the tuning of each model’s hyperparameters was executed,
as these have a significant impact on the model’s prediction performance. The hyperpa-
rameters used for each model are illustrated in Table 3.

Table 3. Model’s hyperparameters.

Model Hyperparameters

CatBoost iterations = 50
learning_rate = 0.9
l2_leaf_reg = 11

class_weights = [1, 1.67]
eval_metric = AUC

max_depth = 1

Random Forest class_weight = [1, 1.67]
max_depth = 7

min_samples_leaf = 2
min_samples_split = 10

XGBoost learning_rate = 0.15
scale_pos_weight = 1.67
colsample_bytree = 0.7

n_estimators = 100
min_child_weight = 7

max_depth = 5
gamma = 0.4

ANN activation = logistic
alpha = 0.001

early_stopping = True
hidden_layer_sizes = 12
learning_rate_init = 0.6

Every model was then submitted to the stratified 10-fold cross-validation test. This
technique allowed to estimate the performance of each model on unseen data. The results
are displayed in Table 4. As noticeable, RF provided the best overall metrics [27], only
losing in recall to XGBoost.

One important metric is AUROC, which defines how accurately each model discrim-
inates between classes. It is one of the most commonly adopted metrics to measure the
model’s performance in classification problems. The obtained ROC curves, for RF, on the
previous test, are displayed in Figure 8. With a mean value of 0.91 and a standard deviation
of 0.05, this model can very precisely and consistently distinguish a dropout student from
a non-dropout.
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Table 4. Comparison between the different models results of a stratified 10-fold cross validation test,
on training data.

Precision 1 Recall 1 F1-Score 1 AUROC 1 Accuracy 1

CatBoost 0.78 ± 0.26 0.82 ± 0.25 0.79 ± 0.19 0.90 ± 0.12 0.84 ± 0.14

Random Forest 0.81 ± 0.21 0.81 ± 0.29 0.81 ± 0.22 0.91 ± 0.10 0.86 ± 0.15

XGBoost 0.78 ± 0.25 0.83 ± 0.30 0.80 ± 0.23 0.91 ± 0.11 0.85 ± 0.16

ANN 0.85 ± 0.28 0.71 ± 0.38 0.75 ± 0.23 0.92 ± 0.09 0.83 ± 0.14

1 Mean value ± standard deviation from the ten different validation sets, in cross-validation.
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RF also presented an F1-Score of 0.81 with a standard deviation of 0.22, being the best
across all models. This metric represents the harmonic mean between recall and precision,
being a good measure of the model’s performance. The final validation data (unseen data)
was then fitted into each model, as a last sanity test for their generalization capability. The
results are displayed in Table 5. In this test, XGBoost showed the best results. However, it
is expected that the RF will present a more stable performance, due to the slightly more
reliable results obtained in the cross-validation.

Table 5. Comparison between the different models’ predictions on the final test set.

Precision Recall F1-Score AUROC Accuracy

CatBoost 0.84 0.84 0.84 0.95 0.88

Random Forest 0.81 0.88 0.85 0.96 0.88

XGBoost 0.82 0.92 0.87 0.95 0.90

ANN 0.77 0.80 0.78 0.94 0.84

Most of the articles reviewed make the prediction considering several characteristics
external to the academic context. These models are good when there is data to feed them. At
UTAD, the recorded features were scarce, and it was necessary to use models with existing
data. In this context, models considering only academic marks and the age of students
were used to predict school dropout, achieving good results (F1-score of 0.87). Some of the
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papers reviewed showed that non-academic data, in particular socioeconomic data, also
influence the academic results. As the proposed model presents promising results, it can be
concluded that the grades obtained by the students somehow also incorporate their social
extract and way of life.

5. Conclusions and Future Work

In the present study, the prediction of academic dropout was considered. Although
school dropout depends on several factors, like economic, social, parental training, and
institutional conditions, this study was conducted with data referring to the success of the
curricular units as a source. With the results achieved, it is concluded that this analysis is
possible even when the students’ data are scarce. In fact, all the methods considered in
this paper show promising results in predicting academic dropout, emphasizing RF and
XGBoost, which demonstrated an accuracy of 88% and 90% in the final test set, respectively.
This prediction is possible because students’ grades somehow already incorporate their
living conditions. On the other hand, the study of the importance of the characteristics
revealed that the successful completion of the course depends on the maturity of the
students (age) and the success in more demanding curricular units.

As a future study, these new data mining techniques will be applied to other study
plans, which would allow for the deployment of the most suitable models. Therefore, one
classifier will be incorporated in the UTAD’s information system to support academic staff
in predicting students dropout. On the other hand, students’ personal information, like
economic and personal data, will be considered when UTAD collects a significant amount
of data.
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ACC Accuracy
ADA ADABoost
Age Age
ANN Artificial Neural Network
AUC Area Under the Curve
CA Computer Architecture (CU)
CL Computational Logic (CU)
CNN Convolutional Neural Networks
CU Curricular Unit
DGEEC Direção Geral de Estatística a Educação e Ciência
DS Digital Systems (CU)
DT Decision Tree
E-I English I (CU)
E-II English II (CU)
GA Genetic Algorithm
GB Gradient Boosted Tree
ICE Introduction to Computer Engineering (CU)
IL-I Integrated Laboratory I (CU)
KNN K-Nearest Neighbor
LA Linear Algebra (CU)
LG logistic regression
LSTM Long Short-Time Memory
MA-I Mathematical Analysis I (CU)
MA-II Mathematical Analysis II (CU)
ML Machine Learning
MLP MultiLayer Percepton
MP-I Methodology of Programming I (CU)
NB Naïve Bayes
RF Random Forest
ROC Operating Characteristic Curve
S-I Seminar I (CU)
SVM Suppor Vector Machine
UTAD Universidade de Trás-os-Montes e Alto Douro
XGB Extra Boosted Tree
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