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Abstract: The combat against fake news and disinformation is an ongoing, multi-faceted task for
researchers in social media and social networks domains, which comprises not only the detection
of false facts in published content but also the detection of accountability mechanisms that keep a
record of the trustfulness of sources that generate news and, lately, of the networks that deliberately
distribute fake information. In the direction of detecting and handling organized disinformation
networks, major social media and social networking sites are currently developing strategies and
mechanisms to block such attempts. The role of machine learning techniques, especially neural
networks, is crucial in this task. The current work focuses on the popular and promising graph
representation techniques and performs a survey of the works that employ Graph Convolutional
Networks (GCNs) to the task of detecting fake news, fake accounts and rumors that spread in social
networks. It also highlights the available benchmark datasets employed in current research for
validating the performance of the proposed methods. This work is a comprehensive survey of the use
of GCNs in the combat against fake news and aims to be an ideal starting point for future researchers
in the field.

Keywords: fake news; graph convolutional networks (GCNs); misinformation; fake accounts; bots;
astroturfing

1. Introduction

The recent debate on COVID-19 vaccination, political debates that took place in
national level the last two decades, other events and issues of global interest, such as world
tragedies, war-related migration, global warming, etc., raise discussions in social media
and online news. Social media also had their own special role in some of these events,
starting from the role of Twitter in the US Presidential Elections of 2008 until the more
recent Elections of 2016 [1] that popularized the use of the term “fake news” around the
world and made it the Word of the Year in the Collins Dictionary in 2017 [2]. The COVID-19
pandemic and the lack of information regarding the reasons, prevention or cure, especially
during the first months of the pandemic, fueled the spread of numerous rumors and hoaxes
and led to several organized attempts to spread misinformation [3].

The combat against fake news and disinformation is an ongoing, multi-faceted task
for researchers in the social media and social network domains, which comprises, as shown
in Figure 1 not only the detection of false facts in published content but also the detection
of accountability mechanisms that keep record of the trustfulness of sources that generate
news and, lately, of the networks that deliberately distribute fake information. In the first
direction, widely popular fact-checking sites, such as Snopes (https://www.snopes.com/,
accessed on 17 February 2022), FactCheck.org (https://www.factcheck.org/, accessed on
17 February 2022) and Politifact (https://www.politifact.com/, accessed on 17 February
2022), have taken on the mission of checking the rumors, health claims and political claims
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that flood up the news sites but primarily social media. These sites monitor a large amount
of news sources, including popular social media accounts of politicians, artists, bloggers
and other public persons, and have devised their truthfulness rating systems, such as
the Truth-O-Meter of PolitiFact, which assigns a score to each public statement and are
useful resources for checking the facts of individual posts or the overall credibility of
public persons.

In the same discipline are the sites that detect and debunk hoaxes, such as the Hellenic
Hoaxes (https://www.ellinikahoaxes.gr/, accessed on 17 February 2022) in Greece, Cek-
Fakta (https://cekfakta.com/, accessed on 17 February 2022) in Indonesia and others, who
mostly focus on rumors and stories that lurk on social media and intentionally attempt
to misinform readers. Human editors are collecting facts that debunk the myths of social
media and reveal the true story behind the fake facts. The International Fact-Checking
Network (https://www.poynter.org/ifcn/, accessed on 17 February 2022) is a growing
community of fact-checkers around the world that collects factual information and fa-
cilitates the networking, capacity building and collaboration of fact-checkers in order to
combat against fake facts and news. Hoaxy (https://hoaxy.osome.iu.edu/, accessed on
17 February 2022) is another popular tool in this domain, which mostly focuses on the
visualization of how news (including fake news and hoaxes) flows within social media.
Hoaxy tracks the social sharing of links to stories published by two types of websites:
(i) low-credibility sources that often publish inaccurate, unverified claims and (ii) indepen-
dent fact-checking organizations, such as snopes, politifact and factcheck, that routinely
fact check unverified claims.

In the second direction, tools such as NewsGuard (https://www.newsguardtech.com/,
accessed on 17 February 2022) allow news consumers to navigate through reliable and
unreliable news sources online, harnessing the power of a large crowd of journalists and
reporters, who manually review news sources based on different criteria, including the false
content rate, responsibility in correcting errors, use of deceptive headlines (furthermore,
known as clickbait), ownership and financing disclosure, etc., which assess basic practices
of credibility and transparency. The respective news sources are categorized as: (i) green
when they adhere to the basic standards of credibility and transparency, (ii) red when the
fail to meet these standards and severely violate journalistic standards, (iii) satire when
they are not actual news sites but clearly publish false information for satire purposes, or
(iv) platform when the content is user-generated and thus has to be cross-checked per case
for its reliability. Another category of tools that capitalizes on the detection of fake sources
includes Botomoter (https://botometer.osome.iu.edu/, accessed on 17 February 2022), a
site that checks the activity of a Twitter account and gives it a score that defines its bot-
like activity.

Figure 1. An overview of the various tools that combat fake news and misinformation.

In the direction of detecting and handling organized disinformation networks, also
called astroturfing campaigns [4], major social media and social networking sites are
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currently developing strategies and mechanisms to block such attempts. For example,
Facebook recently announced that it took down disinformation networks tied to major
political actors and events around the world (e.g., militant groups, groups that intensify
the immigration crisis, anti-vaccine groups etc.) (https://www.washingtonpost.com/
technology/2021/12/01/facebook-disinformation-report/, accessed on 17 February 2022).
However, the task of uncovering organized fake news campaigns is still a hard one that
requires the proper understanding of the social landscape [5] and the internal mechanisms
of social media and networking platforms and the ways news spread on them [6].

In this paper, we focus on the above tasks, the detection and evaluation of fake news
sources, fake accounts and organized disinformation attempts that generate and spread fake
news in social media. We mainly examine the network structure and the network-related
features of this spreading of news and emphasize the use of graph neural networks in the
modeling of similar tasks. Although there already exist a few survey works on GCNs and
their use in classification tasks [7,8] and several works that tackle the fake news problem
using deep neural networks [9–12], this is the first work, according to our knowledge, that
specifically surveys the use of Graph Convolutional Networks for the detection of fake
news, fake users and rumors.

In the sections that follow, we perform a survey on the methods that use Graph
Convolutional Networks to model the information related to fake news (i.e., content and
social graph) and detect fake news items, rumors, bot and spammer accounts. Section 2
introduces the main concepts of Graph Convolutional Networks and briefly explains how
graphs are constructed. Section 3 details the three different research directions that focus
on detecting fake news items, sources and rumors or misinformation campaigns and
discusses the main research works in each direction. It also formulates the problem in each
case and provides an overview of the processing pipeline in each task. Section 4 lists the
datasets used in these works and provides a summary of their main features and sizes.
Section 5 provides more implementation details on some of the works; lists the tools that
they employ for handling text, creating the graphs or training the GCNs; and provide links
to some useful code repositories for starting with GCNs and fake news detection. Section 6
performs a discussion on the main features of GCNs methods that have been proposed
in the literature, comparatively evaluates their performance on the same datasets when
possible and explains the advantages of each method. It also briefly compares GCNs
against simple Convolutional Neural Networks and Recurrent Neural Networks. Finally,
Section 7 summarizes the problems encountered by the different techniques and highlights
areas for further research on the field. As a whole, the article provides a comprehensive
survey of the very interesting task of detecting fake news and using Graph Convolutional
Networks as promising tools for this task.

2. From Graph Embeddings to Graph Convolution Networks

The social media platform that mostly attracts the interest of researchers that study the
organized diffusion of fake news is Twitter. This is mainly because the platform provides
information about the individual accounts (i.e., sources of news), the content they create
(i.e., tweets) and the content the reproduce or share (i.e., by retweeting). The literature
behind disinformation campaigns on Twitter is long [4,13–15] and keeps growing when new
election campaigns occur around the globe or when crypto-currency and stock investors
want to influence the market through social media [16–19].

A common feature in all these campaigns is the creation of fake accounts. These
fake accounts, also called social bots or sybil accounts, are massively created by software
programs and are used to artificially amplify fake news by reproducing them in social
media. Social media and networking sites develop mechanisms to detect and block the
bulk creation of fake accounts, while researchers develop machine learning techniques [20]
and services to detect bots and check the veracity of news. However, there are still ways
for bots to infiltrate social media [9,21].

https://www.washingtonpost.com/technology/2021/12/01/facebook-disinformation-report/
https://www.washingtonpost.com/technology/2021/12/01/facebook-disinformation-report/
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Graph representations naturally fit numerous application domains [8], particularly
social analysis, because of their unique capability to capture the structural relations of social
networks and the dynamics of data diffusion in them. Although the underlying connectivity
patterns are often complex and diverse, the great success of representation learning in many
domains makes graph representation learning a very promising yet challenging solution to
many social network problems, including the detection of fake news and their diffusion
networks. Graph embedding methods [22,23] can simplify the underlying graph structure
and support solving simpler tasks, such as edge or node classification. However, they still
fail to capture more complex graph patterns, and this is where deep graph neural networks
come in hand. Graph Convolutional Networks (GCNs) have a great expressive power to
learn the stationarity and compositionality of graphs to extract hierarchical patterns and
high-level features.

GCNs [24] are multilayer neural networks that operate on a graph and learn em-
beddings for each node based on the properties of the node and its neighbors. Using a
single layer of convolution, the GCN can only capture information about the immediate
neighbors of the node, but this can be extended by stacking multiple GCN layers. Given
a graph G = (V, E), with a set of n vertices V and a set of m edges E that connect them,
the adjacency matrix A of G contains 1s in the diagonal, if we assume that each vertex is
connected to itself, and 1 in any place i, j when there is an edge ei,j connecting node vi to
node vj. The feature matrix X ∈ Rnxk contains in each row xi the feature vector for vertex vi,
where k is the number of features that describe each vertex of G. When a single layer GCN
is employed, the q-dimensional node feature matrix L(1) is defined as L(1) = σ(ĀXW0),
where Ā = D−1/2 AD−1/2 is the normalized symmetric adjacency matrix, D is the degree
matrix of G (a diagonal matrix with Dii = ∑ j Aij), W0 ∈ Rkxq is a trainable weight matrix
and σ is an activation function, such as ReLU. Consequently, X can be considered L(0), the
original feature vector representation of graph nodes. Higher order neighbor information
(e.g., at h hops) can be incorporated by stacking multiple GCN layers and computing the
representation in an iterative way:

Lh+1 = σ(ĀL(h)Wh), (1)

where Wh is a trainable weight matrix.
Graph convolutions can be applied in any type of data that can be represented as

a graph, including text corpora [25], video or images [26], in an attempt to capture the
intrinsic semantic information hidden in the documents or the spatio-temporal information
hidden in the consecutive images of a video.

In the former case, word and document nodes are connected with each other based
on word occurrence in documents (document–word edges) and word co-occurrence in the
whole corpus (word–word edges). Edge weights are based either on the term frequency-
inverse document frequency (TF-IDF) of the word in the document or in the point-wise
mutual information (PMI) of two words in the documents of the collection. The resulting
text graph captures both document–word relations and global word–word relations, and the
respective GCN model computes the new features of a node (either document or word) as
the weighted average of itself and its k-order neighbors [25]. The new node representations
can then be fed to a classification or clustering algorithm to solve a respective text task.

In the latter case, the nodes of the graph can be images or video scenes, which are
originally represented using handcrafted feature vectors. In the case of activity recognition
from videos, skeleton-based data are obtained from each frame in a sequence of frames. The
resulting spatio-temporal graph comprises the joints as nodes and the natural connections
between human body parts as edges. An additional set of edges comprises the connections
between each particular joint in consecutive frames, which constitute the joint trajectory
over time [26]. The respective node representations that result after applying multiple
convolutions on the original node feature matrix capture the joint features across the frames,
as well as the features of the neighboring joints, thus perfectly capturing the spatio-temporal
variations that occur in neighboring joints during specific activities (e.g., the movement of
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lower-body joints when walking or running and the movement of upper-body joints when
we are performing a standing activity).

3. Using GCNs for the Detection of Fake News

As stated in the introduction, the detection of fake news in social media can be targeted
into three different disciplines (see Figure 2): (i) the fake news content, (ii) the sources
that generate fake news and (iii) the networks that amplify the fake news spreading. The
survey of the application of GCN in the task of fake news detection will consequently be
performed in these three directions in the subsections that follow.

Figure 2. The three main directions in the use of GCNs in fake news detection tasks.

3.1. Detecting Fake Content Using GCNs

The approaches that detect fake news from content usually extract textual features
from the text of each post or concatenate to them the visual features of any images that
are included in the post, consequently training binary classifiers that decide whether the
content is fake or not.

The authors in [27] proposed a Knowledge-driven Multimodal Graph Convolutional
Network (KMGCN) to jointly model the textual and visual information of a post into a
unified semantic representation. In a pre-processing step, the text of a post is analyzed
using entity linking methods that detect the entities mentioned in the text. The entities are
then conceptualized using external knowledge graphs. In the same step, they employ a
trained YOLOv3 detector to recognize semantic objects in the associated post images. The
labels of these objects are added to the post words, and the respective concepts from the
knowledge graph constitute the nodes of the graph (represented using Word2Vec word
embeddings) in the graph construction step. The edges of the graph are constructed based
on the PMI of nodes in the documents of the collection. The network that learns the
representation vector for each document comprises two GCN layers and a global mean
pooling layer that aggregates the vertices of each graph. The representation vector of each
post is then fed to a binary classifier.

In [28], the authors use word embeddings to fetch the low-dimension representation
of a single word and sum-pooling to obtain the fixed-length representation vector for each
news item (node features). They also use side information that corresponds to the profile
of users that make the posts in order to update the adjacency matrix (i.e., to create edges
between news items when they share authors with similar profile features). Instead of
stacking multiple GCN layers to merge the long-distance information, they calculate the
different distance proximity matrices to describe the correlation between nodes. Conse-
quently, they feed different depth proximity matrices to the GCN and follow the update
rule of Equation (1).

In a slightly different approach, the graph in [29] is created with words as nodes
in an attempt to preserve non-consecutive and long-range dependencies among words
and capture structural information at the level of entities. Each post is modeled as three
separate graphs, which contain, as nodes, the post words and the respective concepts that
result from knowledge conceptualization pre-processing. The graphs comprise a global
graph H, a parameterized graph U and an individual graph Q. The edges in graph H are
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weighted using the PMI score (word co-occurrence frequency). Graph U is parameterized
and optimized during training, and the edges of graph Q are drawn using the normalized
embedded Gaussian function to measure the similarity between two words in an embed-
ding space. H, U and Q are added to the final adaptive adjacency matrix, and an adaptive
Graph Convolutional Network is trained to exploit the rich semantic relations between
words in a data-driven manner (mainly by adjusting the parameters of graph U). The visual
features of each post are extracted by feeding images to a separate VGG-19 network and a
fully connected layer. Then, a feature-level attention mechanism is employed to learn the
correlations between visual and textual content. The concatenated text and visual features
constitute the final representation of each post. A fully connected layer activated by a
non-linear function is used to classify posts as fake news or not.

Finally, the authors in [30] construct a heterogeneous graph with different types of
nodes and edges to integrate information about news’ relevance in time, content, topic
and source and propose a GCN that utilizes a wider receptive field, a neighbor sampling
strategy and a hierarchical attention mechanism. The heterogeneous graph contains four
types of nodes (i.e., news, domains, reviews and sources) and its edges link the news nodes
with other news nodes with similar content or with their domain, source or review nodes.
The neighbor sampling strategy allows controlling the number of nodes that are considered
(indirectly, through a common domain or a common source, for example) relevant to a
news’ node and the respective explosion in the number of neighbors that may occur at
each graph convolution layer. This approach attempts to include side information about
the news, such as the reviews, which in a way goes beyond the news content itself and
examines the actual response of the social network. However, it does not examine the
diffusion of a fake news item in the network.

The problem formulation begins with a set of news posts P = {p1, ..., pn}, which con-
tain textual or visual content and side information that may correspond to the profile of the
user that made the post. The content of each p ∈ P is pre-processed to extract key concepts,
terms or features, which are mapped to the respective textual Rt or visual Rv embeddings
either using pre-trained word or image embedding models, such as GloVE or VGG-19.
The next step, as shown in Figure 3, is the creation of an undirected graph G = V, E, with
concepts/features as nodes u ∈ V and edges e ∈ E that denote relations between concepts
(e.g., based on co-occurrence in posts). Using the embeddings R (concatenations of Rt and
Rv) of all nodes, the input matrix X ∈ Rnxd is created, where n is the number of nodes and
d is the dimensionality of the node embeddings. The adjacency matrix A ∈ Rnxn is used to
represent the set of edges E.

Figure 3. An overview of the fake news detection process using GCN.

The Graph Convolution Network (GCN) in the next step aims to capture the effect
of neighboring nodes (i.e., concepts) to the embedding of each node. Each GC layer is
formally represented as a function that takes as input the feature matrix from the previous
layer Z(j) and outputs a higher level matrix Z(j+1), as shown in Equation (2):
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Z(j+1) = σ(D̂−1/2 ÂD̂−1/2Z(j)W) (2)

where Â = A + I, I is the identity matrix, D̂ii = ∑j Âij, W is the transformation ma-
trix for the j-th layer, and Z(0) = X. σ is a non-linear activation function, e.g., a ReLU
σ(x) = max(0, x).

The next step is to apply a global mean pooling to aggregate the vertices of each graph
and obtain the representation vector of posts. The vector of each post is fed to a binary
classifier that employs a cross-entropy classification loss to distinguish between fake and
non-fake news.

3.2. Detecting Fake Sources Using GCNs

The detection of bot or fake accounts is an important yet challenging task that can
significantly help in combating the propagation of fake news in social networks. The main
characteristic of such accounts is that they disguise and pretend to be legitimate user ac-
counts and that they usually operate collectively and in bursts. Graph representations and
GCNs have proven helpful in the task of correctly detecting such accounts, taking into ac-
count the features of the accounts primarily but also information from their neighborhood.

Feng et al. [31] combine the user account description, the content that it posts, other
numerical and categorical features that they can assign to an account and the information of
neighboring accounts in order to distinguish bots among users. They use RoBERTa [32] to
encode user description and user posts (tweets). They also attach numerical (e.g., number
of followers, followees, likes, etc.) and categorical (e.g., geolocation enabled, contributors
enabled, etc.) features available from the Twitter API. Consequently, the users are treated as
nodes in a graph, which has two types of edges (i.e., following and follower). By applying
Relational Graph Convolutional Networks to the graph, they learn user representations,
which are fed to a softmax layer for the binary classification task (i.e., bot or not).

Similarly, the authors in [33] propose a bot detection technique that combines social
network altmetrics and GCN to distinguish between bots and humans. The unweighted
and undirected graph that is the basis of this technique contains Twitter users as nodes and
edges that correspond to retweets or mentions. The properties of a user refer to several
altmetrics, including degree, triangle count, closeness centrality, etc. A four-layer GCN
model and a softmax dense layer are used for classifying the nodes as tweet posted by
humans or bots.

In a very recent work [34], the authors combine BERT and GCN and propose a trans-
ductive learning method for detecting social bots. The method is based on a heterogeneous
graph that comprises word and document nodes, which represent the unique words (vo-
cabulary) and documents in the collection. Edges either denote the word occurrence in
a document (word–document edges) or word co-occurrence (word–word edges) and are
weighted using TF-IDF and PMI, respectively. The resulting graph is fed to a two-tier
GCN, and its output is sent to the softmax classifier. An auxiliary classifier is mainly built
by embedding the document using BERT and feeding it to a dense layer with softmax
activation. The joint optimization of BERT and GCN parameters is carried out by using the
cross-entropy loss at the nodes of the markup document.

Social spammers are the targets in [35], where the authors model the social network as
a graph with both uni- and bi-directional edges and users as nodes. They also replace the
forward propagation rule of GCN on a single directed graph (as shown in Equation (1))
with a layer-wise propagation rule that aggregates the propagation over the incoming,
outgoing and bi-directional edges of a node. They also assume that spammers have more
outgoing neighbors than incoming ones and use a pairwise Markov Random Field (MRF)
to model the joint probability distribution of all users’ identities. The MRF layer is stacked
on top of the modified GCN and the whole model can be trained in an end-to-end manner
to correctly classify a node as a spammer user or not.

Recently, the authors in [36] proposed a weak supervised learning approach to trans-
form the PHEME dataset into a rumor spreader dataset. They exploited the user-user reply
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graph that is inherent in this dataset and use sentiment analysis of the tweets to identify
rumors (i.e., tweets with negative sentiment in the replies are identified as rumors). The
text and user profile features along with some ego-network features of each user constitute
the node (user) information of the social graph, which is fed to a GCN in order to classify
users as rumor spreaders or not.

Dong et al. [37] focused on detecting rumors and proposed a GCN-based method
for the identification of multiple rumor sources. They use knowledge from infection and
influence models in order to model the problem of rumors that spread in the social network.
The input to their mode is a set of different infection states of a given network and the
output is the actual rumor sources. Their method is based on the fact that rumor sources
are surrounded by more infected nodes than normal sources, and non-infected nodes
are usually far from the rumor sources. In order to capture the features of multi-order
neighbor nodes, they stack multiple GCN layers that use RELU and a single dense layer
that uses the sigmoid function. They consequently modify GCN to be directly applied to
the supervised learning task of detecting rumor sources. They evaluate their method on
popular benchmark social networks in which they define infection sources that the method
has to detect and apply different propagation models.

The problem formulation in this case begins with a set of social media users (accounts)
U = {u1, ..., un}, who connect to each other with social links and have social and textual
metadata associated with them based on the posts they make, their profile information
and the social features (e.g., connectivity metrics) they have. As shown in Figure 4, in the
pre-processing step, the context of user profile and user posts is processed with language
models (e.g., transformers) to produce the textual information embeddings, which are
concatenated with the numerical and categorical social features. The vectors are attached
to the nodes v ∈ V of the directed graph G = V, E, which has users as nodes u ∈ V and
their social links as edges e ∈ E.

Once again, the concatenated textual embeddings and social features constitute the
feature vector R of each node, and the vectors of all nodes form the input matrix X ∈ Rnxd,
where n is the number of nodes and d is the dimensionality of the node vectors. The
adjacency matrix A ∈ Rnxn is used to represent the set of edges E and the same graph con-
volution and max pooling steps are applied, as in the case of news classification, to classify
the users (graph nodes) into spammers or bots and non-spammers or legitimate users.

Figure 4. An overview of the spammer detection process using GCN.

3.3. Combining Fake Characteristics with Dispersion Information Using GCN

In an attempt to combine the power of GCNs to represent and capture the structural
dimension of fake news and the ability of Recursive Neural Networks (RNNs) to model
the way news is spread on social media, Bian et al. [38] proposed a Bi-Directional GCN to
explore the propagation and dispersion characteristics of rumors in tandem. Consequently,
they model the propagation and dispersion chains of posts using a graph, with the original
post and all the subsequent posts related to it as vertices, and directed edges between posts
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that represents the response relation between a post and any other post that refers to it
(or it refers to). The original post and consequently the resulting graphs are labeled as
False or True rumors. The authors also applied the DropEdge technique to reduce the
over-fitting of their GCNs. The high-level node representations from the two GCNs are
concatenated along with the hidden feature vector of the root node using mean-pooling
operators. Several full connection layers and a softmax layer are then employed to predict
the label of the event.

In a similar approach, Li and Goldwasser [39] construct the social information graph,
which consists of vertices that correspond: (i) to political users of Twitter, (ii) other Twitter
users that spread content and (iii) news items that are shared by them. The edges of
the graph correspond to follower relations between political users and simple users that
follow them and post relations between Twitter users and the news items they share. They
evaluate both first-order graph embeddings that capture the direct relationships between
the graph nodes of different types but also employ a two-layer GCN for node classification.
This allows them to classify news items as fake or not using the social representation and
the resulting embedding from the GCN.

The authors in [40] attempt to represent rumor propagation using a dynamic graph
and consequently propose a Dynamic GCN approach for detecting rumors in social media.
In their approach, they take graph snapshots and perform representation learning using
an attention mechanism that captures both structural and temporal information of rumor
diffusion. The proposed method captures the evolving pattern of the rumor diffusion using
a series of snapshots of the same propagation graph (actually a tree) that has posts (and
post feature vectors) as nodes and edges that denote the response of a post from another
post. Sequential snapshots comprising an increasing number of nodes and edges in each
step or temporal snapshots that contain a varying number of additional vertices and edges
between snapshots are both examined. A two-layer bi-directional GCN with ReLU as an
activation function and a global graph pooling (mean pooling) layer is used to convert
node representation to graph the representation, and an additive (or dot-product) attention
mechanism is employed to retrieve a global graph embedding that re-weighs the graph
snapshot embeddings. The output graph embedding is fed to a multi-layer perceptron for
classifying the propagation graph as rumor-related or not.

In the same direction, the authors in [41] create a reply tree and a user graph based
on the originally posted item (tweet) and the items that respond to it (reply tweets) and
employ GCNs to detect rumor conversations. Both the reply tree and the user graph have
directed edges based on the timestamp of tweets and their nodes are tweets and Twitter
users, respectively. The user nodes are characterized by features such as the number of
followers and friends, the number of user tweets liked by others, the user’s verified identity
on Twitter, the user’s profile description, etc. The high-frequency words of the source
tweets and the propagation time interval between the reply tweets and the source tweet
are the two features in the nodes of the reply tree. Two graph convolution layers with an
intermediate dropout layer to avoid overfitting, a global max pooling layer and a fully
connected layer on top are employed in their model to process each graph separately and
generate the respective vector representations. These representations are concatenated and
are given to a fully connected layer to calculate the label of the conversation.

In a different approach that does not employ GCNs but focuses on the news’ propa-
gation path, the work in [42] emphasizes the detection of fake news in the early stages of
their propagation in social networks. Each propagation path is modeled as a multivariate
time series, where a numerical vector at each time-step represents the characteristics of a
user who engaged in spreading the news. A time-series classifier that combines Recurrent
and Convolutional Neural Networks is employed for classifying the propagation path as
fake or not. More specifically, Gated Recurrent Units (GRUs) process the information of
the source tweet and its retweets and are maxed pooled to create a vector representation of
the news’ spreading path. A similar neural network structure, with Convolutional Neural
Network units (CNNs) instead of GRUs, generates a second representation of the news’
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spreading path. The two vectors are concatenated and fed into a multi-layer feedforward
neural network that finally predicts the class label for the corresponding propagation path.

The works that focus on the detection of rumors in social media combine information
from the social graph formed between the users and the conceptual graph that is formed
by the content they share and the concepts it conveys. The set of source news items
S = {s1, s2, ..., sn} that start the rumors and all the subsequent posts P from the users of
the social network form the rumors dataset. As depicted in Figure 5, the input in this
case comprises: i) a social graph GS = V, E, with users as nodes u ∈ V and their social
links as (usually undirected) edges e ∈ E and ii) a set of rumor propagation graphs in the
form of G〉 = V, Ei, each one corresponding to the propagation of a news item si in the
social network. A directed edge e = (u → v) ∈ Ei, denotes that user u ∈ V shared/re-
posted/commented/responded si, influenced by user v ∈ V. The adjacency matrix of this
graph is denoted with Ai. The text embeddings extracted from si and the posts associated
with it constitute the feature matrix Xi of the rumor propagation graph.

Once the graph is constructed, the convolution and classification steps are the same
as before. The classification task can be binary (e.g., rumor or not) or multi-class by
distinguishing between true or false rumors, non-rumors and unverified ones.

Figure 5. An overview of the rumor detection process using GCN.

4. Datasets

The works presented in this survey either employ some standalone (i.e., without link
or any other dispersion information) text corpora and classify them in a binary classification
task or employ Twitter for creating custom data collections. In the latter case, they take
advantage of the fact that Twitter provides both the textual content of tweets, as well as the
profile information of Twitter users and information about the retweets, which can be used
to model the news dispersion.

In the case of news classification tasks, public real-world social media datasets have
been employed in the literature such as:

• PHEME [43]: A Twitter dataset containing 5802 annotated tweets, of which 34% are
rumors. A collection script is also made available by the authors (https://github.com/
azubiaga/pheme-twitterconversation-collection, accessed on 17 February 2022).

• Weibo [44]: 3.8 million weibo.com posts from 2.7 million users of Weibo discussing
4664 events, of which 50% are rumors.

• LIAR [45]: 12,836 labeled short statements with six fine-grained truthfulness labels,
from totally fake to completely true.

• MediaEval Twitter [46]: A dataset with around 17,000 unique tweets spanning over
different events, comprising 9000 fake news tweets, 6000 real news tweets in the
development set and 2000 tweets in the test set. The tweets comprise text, images
and video.

https://github.com/azubiaga/pheme-twitterconversation-collection
https://github.com/azubiaga/pheme-twitterconversation-collection
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• Twitter15 and Twitter16 [47]: Comprising 331,612 posts from 276,663 users on 1490 events
and 204,820 posts from 173,487 users on 818 events, respectively, classified in four
rumor classes.

• Fakeddit [48]: This multimodal (text and images) dataset comprises over 1 million
samples from multiple subreddits from Reddit, split into 2, 3 or 6 classes, along with
comment data and metadata.

For the detection of bot or spam accounts that create rumors the list of datasets
employed comprises:

• TwiBot-20 [49]: A publicly available Twitter bot detection dataset that provides the
follow relationship between users for 230,000 users.

• RTbust [50]: A Twitter dataset comprising 9,989,819 retweets related to 1,691,865
distinct original Italian tweets shared by 1,446,250 distinct users. The dataset contains
social bots and user-operated accounts and covers the need of OSN administrators
that look for automated behaviors in retweeting in order to decide about banning
accounts from social platforms.

• Botometer-feedback [51]: A mix of training data from eight previously published
works containing 57,155 bot and 30,853 accounts.

• Gilani (https://goo.gl/SigsQB, accessed on 17 February 2022) [52]: Approximately
65 million tweets (2–2.5 million per day) from 2.9 million unique accounts.

• $FAKE [53]: A dataset comprising stock microblogs collected from Twitter. A total of
6689 stocks were used to fetch the content from Twitter and resulted in 9 M tweets (22%
are retweets) posted by 2.5 M distinct users. The tweets mention 30,032 companies for
which financial information was collected from Google Finance.

• Midterm [54]: An amalgam of 14 other datasets that consists of 94,124 bot accounts
(lured by honeypot accounts) and 43,396 verified human accounts.

• Twitter Social [55]: A dataset, which has been collected using 60 social honeypot
accounts on Twitter that tweet normal posts, links or popular n-grams in order to
tease their followers to retweet. The social honeypots tempted 36,043 Twitter users,
5773 (24%) of which followed more than one honeypot and 23,869 followed only
one honeypot.

• Twitter 1KS-10KN [56]: A dataset comprising 485,721 Twitter accounts with 14,401,157
tweets and 5,805,351 URLs. From these accounts, 10,004 are considered malicious
affected accounts that post malicious URLs.

• Altmetrics (https://github.com/slab-itu/altmetrics_bot, accessed on 17 February
2022) [33]: A dataset with 457,714 tweets posted by a total of 16,264 unique users,
of which 64 are bots. The 31,380 graph edges correspond to retweets or mentions
between users. The dataset is a merging of the datasets used in [57,58].

In some cases, original news articles are employed as the primary source of a fake
news disinformation campaign. For example, the authors in [39] collected 10,385 news
articles from two news aggregation websites on different events in 2020 discussing 94 event
types, such as elections, terrorism, etc. They also collected information from 1604 highly
active Twitter users, who follow known political Twitter accounts (135 accounts were used
as a seed) and frequently share political news.

5. Code Repositories

When performing research in a new field, it is important for researchers to have
access to useful and reusable resources. This includes datasets, as well as code, model and
algorithm implementations, that can be employed. Luckily, in the case of GCNs, there
are many resources, and in the following, we try to compile a list of the most useful code
repositories and their content.

Authors in [36] provide a link to their code repository (https://github.com/shakshi1
2/Rumor-Spreaders-using-GNN-approach-PHEME-dataset-, accessed on 17 February 2022),
which employs NLTK (https://www.nltk.org/, accessed on 17 February 2022) for pre-processing
the English tweets and extracting their sentiment and Gensim (https://radimrehurek.com/

https://goo.gl/SigsQB
https://github.com/slab-itu/alt metrics_bot
https://github.com/shakshi12/Rumor-Spreaders-using-GNN-approach-PHEME-dataset-
https://github.com/shakshi12/Rumor-Spreaders-using-GNN-approach-PHEME-dataset-
https://www.nltk.org/
https://radimrehurek.com/gensim/
https://radimrehurek.com/gensim/
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gensim/, accessed on 17 February 2022 to obtain word embeddings. They also employ
the NetworkX (https://networkx.org/, accessed on 17 February 2022) library to construct
the graph and the Spektral (https://graphneural.network/, accessed on 17 February 2022)
python library to perform the Graph Convolution.

Authors in [29] provide a link to a useful code repository (https://github.com/
nikhilmaram/Show_and_Tell, accessed on 17 February 2022) for extracting visual fea-
tures from images with the image2sentence model, whereas in [33], the authors share
the code and data for Twitter bot detection using GCNs on github (https://github.com/
slab-itu/altmetrics_bot, accessed on 17 February 2022). Their python code employs Net-
workX for graph creation and a TensorFlow implementation of the Graph Convolution
Layer. The work performed in [34] can be replicated using the shared data and code
(https://github.com/shanmon110/BGSRD, accessed on 17 February 2022), which employs
the BERT model to convert documents into a heterogeneous graph that contains both docu-
ments and words as nodes and edges that correspond to the global word co-occurrence
(i.e., PMI) in the corpus.

In the context of rumor detection, code (https://github.com/jihochoi/dynamic-gcn,
accessed on 17 February 2022) and data (https://figshare.com/s/d8984fd39557a3d295e8,
accessed on 17 February 2022) are provided by [40]. The code for the Dynamic GCNs is
developed on PyTorch Geometric, and several execution parameters allow trying different
snapshot numbers, attention modules and datasets. When it comes down to evolving
graphs and handling graph snapshots [59], the EvolveGCN (https://github.com/IBM/
EvolveGCN, accessed on 17 February 2022) code can be modified to capture the evolution
of the rumor spreading graph.

Other useful resources include the original TensorFlow implementation of GCNs
(https://github.com/tkipf/gcn, accessed on 17 February 2022) by Thomas Kipf, the Deep
Graph Library (https://www.dgl.ai/, accessed on 17 February 2022) built on PyTorch, Ten-
sorFlow and MXNet and the PyTorch Geometric (https://pytorch-geometric.readthedocs.
io/, accessed on 17 February 2022) that is built on PyTorch.

6. Discussion

Table 1 summarizes the methods surveyed in this work, which capitalize on the use of
Graph Convolutional Networks, which are broadly divided into three main groups:

• Text classification approaches that map post words or whole posts as nodes in the
graph and use edges to denote their semantic or positional relations (i.e., co-occurrence,
posted by similar users.). They consequently classify graphs using the representations
learned using GCNs.

• User/source classification approaches that map social network accounts to nodes in
the graph and use edges to denote their social relations. The GCNs are used to classify
sources as fake/bot/spammers or not.

• Propagation graph classification approaches that classify the propagation graphs
(either the final graph or several snapshots of it) as fake or not using GCNs.

The majority of the works are based on assumptions about the underlying publish
and propagation models, for example:

• A fake post employs entities that do not usually appear together in other posts;
• The productivity or re-production rate of a bot or spam account is much higher than

that of a normal account;
• The nodes that are near (within the graph) to a spam or rumor producing account, are

more affected than the nodes that are far from the node;
• A fake news propagation graph has different characteristics (fanout, density, etc.) from

that of a legitimate news one.

https://radimrehurek.com/gensim/
https://radimrehurek.com/gensim/
https://networkx.org/
https://graphneural.network/
https://github.com/nikhilmaram/Show_and_Tell
https://github.com/nikhilmaram/Show_and_Tell
https://github.com/slab-itu/altmetrics_bot
https://github.com/slab-itu/altmetrics_bot
https://github.com/shanmon110/BGSRD
https://github.com/jihochoi/dynamic-gcn
https://figshare.com/s/d8984fd39557a3d295e8
https://github.com/IBM/EvolveGCN
https://github.com/IBM/EvolveGCN
https://github.com/tkipf/gcn
https://www.dgl.ai/
https://pytorch-geometric.readthedocs.io/
https://pytorch-geometric.readthedocs.io/
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Table 1. The summary of methods that use GCN for detecting fake news, fake accounts, fake news sources or fake news propagation networks.

Detection Task Input Graph(s) Nodes Edges GCN type Citation Dataset

Fake content

post text
and images

undirected,
weighted

post words,
concepts,
image labels

PMI based node similarity Knowledge-driven
Multimodal GCN [27] PHEME, Weibo

post,
user profile

undirected,
unweighted posted documents based on user profile similarity Multi-Depth GCN [28] LIAR

post text
and images

(3x)
undirected,
weighted

words, concepts PMI based node similarity GCN + VGG-19
for images [29]

Weibo,
MediaEval,
PHEME

posts, users,
reviews,
domains

undirected,
unweighted

news, domains,
reviews, sources

between news based on content similarity,
between news and other node types GCN [30] Weibo,

Fakeddit

Bot detection

user profile,
posts, neighbor
profiles

directed,
unweighted users follow GCN [31] TwiBot-20

posts, users undirected,
unweighted users retweets, mentions GCN and

altmetrics [33] Altmetrics

posts undirected,
weighted words, posts word–post (TF-IDF)

word–word (PMI) GCN + BERT [34]
RTbust, Gilani,
Botometer-feedback,
$FAKE, Midterm

social graph directed,
unweighted users bidirectional,

unidirectional incoming & outgoing GCN + MRF [35]
Twitter Social,
Twitter
1KS-10KN

Rumour
source
detection

social graph
infection
snapshots

undirected,
unweighted users social relations modified GCN [37] General purpose

social graphs

social graph undirected,
unweighted users social relations GCN [36] PHEME

Fake news
propagation

propagation &
dispersion
chains of posts

directed,
unweighted

original post,
reposts,
responses

reference between
posts

Bi-Directional
GCN [38]

Weibo,
Twitter15,
Twitter16

news items,
propagation
graphs

undirected,
unweighted

political users,
twitter users,
posts

users follow political accounts,
users post news GCN [39] Custom

dataset

Graph snapshots directed,
unweighted

posts,
reposts reference between posts

Dynamic
bi-directional
GCN

[40]
Twitter15,
Twitter16,
Weibo

reply tree,
user graph

directed,
unweighted

posts, replies
users post references, follow GCN [41] PHEME
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The methods proposed so far take advantage of the core social network information,
employ language models, such as BERT or word embeddings, in order to produce com-
prehensive text representations, and, in some cases, employ multimodal information to
support the classification task. In the case of content classification, images are either pro-
cessed using parallel deep neural network architectures, and the resulting representations
are concatenated with the text representations before being fed to the GCN. In the case of
source or propagation graph classification, the emphasis is on features that can enhance the
user profile information, such as features from the content of the post, the graph structure
or the evolution of the propagation graph over consecutive snapshots.

Most of the methods generate homogeneous uni-partite graphs, which either com-
prises word or user nodes interconnected with edges based on similarity or on social
relations, respectively. Some works introduce the use of heterogeneous graphs that com-
prise both textual nodes (words, concepts or posts) and user nodes who are connected with
directed or undirected edges depending on the case. Different edge weighting schemes are
employed in order to enhance the graph edges with additional information concerning the
strength of node relations, whereas a multitude of features are attached to the graph nodes
in an attempt to enrich their representation.

The surveyed methods usually stack from two up to four GCN layers in order to
capture higher-order neighborhood information in the graph and an additional dense
layer to solve the respective classification task. GCNs allow combining the embeddings
of each node with those of its first, second or higher-order neighbors. Thus, in the case of
heterogeneous networks, such as those that comprise posts and users, it allows learning how
the posts of a user’s neighbors affect the credibility of the user or how the neighborhood
of a user affects the credibility of the content she/he posts. In the case of homogeneous
networks with directed edges, GCNs learn how a user is affected by her/his followers or
the people that follow them or how the terms or concepts in fake news items affect the
veracity of other news that contains the same terms or terms related to them. The learned
parameters are the node embeddings and the weights of all neighbors within each layer.

As shown in Figure 6, the overall architecture of the GCN comprise one or more graph
convolution layers, which are responsible for aggregating information from its neighboring
nodes in each node. The GC layers are followed by pooling layers that coarse the graph into
sub-graphs, with nodes that represent higher graph-level representations. A readout layer
with a mean, max, sum or any other aggregation function allows summarizing the final
node representations in a single representation for the whole graph. This allows classifying
the whole graph (which may correspond to a text and its context, a user and their neighbors
and profiles or a rumor propagation graph) to one of many class labels using multiple
dense layer and a softmax layer at the end.

It is possible to compare approaches that employ different techniques when they are
evaluated on the same dataset and the same task. For example, the KMGCN proposed
in [27] achieved an accuracy of 0.886 on the Weibo dataset, whereas the KMAGCN presented
in [29] using a pre-trained XLnet improved the accuracy to 0.944. This improvement is
mainly due to the use of visual features, which are captured using VGG-19. On the other
side, the heterogeneous graph in [30] allows the HDGCN method to achieve an accuracy as
high as 0.961 on the same dataset.

Experiments on the Weibo dataset for the detection of rumors also demonstrated the
ability of GCNs to predict such cases early. More specifically, the combined use of two
GCNs (i.e., one for the propagation and one for the dispersion graph) in the Bi-GCN early
stopping method achieves a prediction accuracy of 0.961, as reported in [38]. The same
model has been evaluated in [40] on the same dataset using a different train-validation-test
split and 10 runs, and the reported average accuracy for Bi-GCN was 0.928. In addition,
the proposed early stopping method of this work, DYNGCN, improved the accuracy to
0.936 in the same experimental setup. The pattern of results is the same in both papers for
the Twitter 15 and Twitter 16 datasets. The main advantage of DYNGCN over the Bi-GCN
is that it trains a different GCN for each snapshot of the rumor diffusion graph and adds
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an attention layer that weights the importance of the graph snapshot embeddings. Both
additive and dot-product attention mechanisms have been tested with the additive model
to provide slightly better results in all datasets.

Figure 6. The architecture of GCNs in a generic graph classification task.

Another straight comparison of the various methods can be performed on the PHEME
dataset. In [27], the authors report an accuracy of 0.8756 with their best variant of KMGCN,
whereas the authors in [29] report a slightly worse accuracy of 0.867 for the KMAGCN
method using BERT. The same dataset has been used in [36,41] but for a completely different
task, which is the identification of rumor spreaders. Both works have employed specific
subsets of the dataset that refer to breaking news and, more specifically, the Charlie Hebdo
shooting, Ferguson unrest, Ottawa shooting, Sydney hostage crisis and Germanwings crash.
The GCN method used in [36] achieved an accuracy of 0.790, 0.705, 0.675, 0.655 and 0.715,
respectively, in each subset. The User-Reply-GCN of [41] was tested on the same dataset
but with a random oversampling technique that changed the percentage ratio between
rumors and non-rumors. In this case, the authors reported an overall F1-score of 0.80 for
the rumor class in all subsets and 0.79 for the non-rumor class.

Compared to the approaches that use simple Convolutional Neural Networks, GCNs
share the same intuition since they try to learn the relationships between neighboring nodes
similarly to learning the relationships between neighboring pixels. However, CNNs rely on
two-dimensional data (pixels) with a specific structure and positioning, whereas GCNs can
work with any kind of arbitrary structured data (nodes). Recurrent Neural Networks can
ideally be combined with GCNs in order to capture the evolution of dynamic graphs [59]
and have several applications ranging from scene perception and action-recognition [60]
to traffic prediction [61]. This combination is very promising in the case of fake news
that propagate through social networks and have very recently been applied [40] in their
detection task. From a design point of view, they seem to be more appropriate than
earlier RNN-CNN combinations that converted the propagation paths to multivariate
time-series [42].

7. Conclusions

The different GCN techniques presented in this article demonstrate the advantages of
graph-based representations and GCNs over simple CNNs or RNNs in graph and node
classification tasks. The graphs better capture the latent relations between concepts in the
news text, between the users that spread the news or between users and the texts they share.
The graph convolution allows communicating this information between the graph nodes
and capturing the effect of social relations (neighborhood) in the dispersion of fake news.
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Finally, temporal graph-convolution techniques manage to better capture the evolution of
the news spreading graphs and detect rumors early.

On the opposite side of their good performance, GCN-based methods suffer from
high complexity, e.g., for the computation of the decomposition of the Laplacian matrix.
Even when the eigenvectors are pre-computed or rank approximations of the eigenvalue
decomposition are employed, the complexity is high, especially for large-scale graphs.
Another major issue that is evident in all works is the large amount of hyper-parameters
that must be learned in each case. The methods usually update this parameters in an
end-to-end learning manner, which limits their modularity and the ability to reuse certain
components of each architecture in a different task. The work in [8] performs an in-depth
discussion of GCNs and their scalability and complexity issues.

The importance for component reusability is evident in many of the works that employ
pre-trained language models (e.g., BERT, XLNet) for text pre-processing or pre-trained
CNNs (e.g., VGG-19) to extract visual features. With this in mind, pre-trained graph
embeddings, such as the knowledge graph embedding of DGL-KE (https://github.com/
awslabs/dgl-ke, accessed on 17 February 2022), could be an interesting addition and
a useful component for developing graph-based solutions for fake news, spammers or
rumor detection.

An issue reported in the works surveyed in this study is the difficulty in extracting
and handling the visual content of fake news and in associating the visual features with
the respective concepts that appear in the textual content. The use of pre-trained mod-
els definitely assists feature and concept extraction, but the association of features with
concepts still requires training for fine-tuning the different hyper-parameters. Another
possible pitfall for the GCN model that employs the early stopping criterion is the need for
an additional validation set for model selection. In the absence of a validation dataset, a
GCN optimized on the training data will probably only have a sharp drop in performance,
especially when the training size is small [62].

Future research in the field has to experiment with more variants of the GCN that
incorporate multimodal content information [63] (using word, document and image
embeddings [64]), graph structure information (in the form of graph embeddings [65])
and side features for nodes and edges. Global graph pooling techniques [66] or any other
structured [67] or hierachical [68] graph pooling method that can capture local properties
of the graph formed around a fake news source have to be examined in combination with
GCN in order to improve the current state of the art. Finally, all the possible GCN issues [69]
must be considered under the prism of the specific fake news and rumor detection tasks.
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Abbreviations
The following abbreviations are used in this manuscript:

GCN Graph Convolutional Network
RNN Recurrent Neural Network
CNN Convolutional Neural Network
BERT Bidirectional Encoder Representations from Transformers
PMI Pointwise Mutual Information
MRF Markov Random Field
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