
����������
�������

Citation: D’Ortona, C.; Tarchi, D.;

Raffaelli, C. Open-Source

MQTT-Based End-to-End IoT System

for Smart City Scenarios. Future

Internet 2022, 14, 57. https://

doi.org/10.3390/fi14020057

Academic Editor: Joel J. P. C.

Rodrigues

Received: 26 January 2022

Accepted: 10 February 2022

Published: 15 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Article

Open-Source MQTT-Based End-to-End IoT System for Smart
City Scenarios
Cristian D’Ortona †, Daniele Tarchi † and Carla Raffaelli *,†

Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi”, University of Bologna,
40136 Bologna, Italy; cristian.dortona@studio.unibo.it (C.D.); daniele.tarchi@unibo.it (D.T.)
* Correspondence: carla.raffaelli@unibo.it
† These authors contributed equally to this work.

Abstract: Many innovative services are emerging based on the Internet of Things (IoT) technology,
aiming at fostering better sustainability of our cities. New solutions integrating Information and
Communications Technologies (ICTs) with sustainable transport media are encouraged by several
public administrations in the so-called Smart City scenario, where heterogeneous users in city roads
call for safer mobility. Among several possible applications, recently, there has been a lot of attention
on the so-called Vulnerable Road Users (VRUs), such as pedestrians or bikers. They can be equipped
with wearable sensors that are able to communicate their data through a chain of devices towards
the cloud for agile and effective control of their mobility. This work describes a complete end-to-end
IoT system implemented through the integration of different complementary technologies, whose
main purpose is to monitor the information related to road users generated by wearable sensors.
The system has been implemented using an ESP32 micro-controller connected to the sensors and
communicating through a Bluetooth Low Energy (BLE) interface with an Android device, which is
assumed to always be carried by any road user. Based on this, we use it as a gateway node, acting
as a real-time asynchronous publisher of a Message Queue Telemetry Transport (MQTT) protocol
chain. The MQTT broker is configured on a Raspberry PI device and collects sensor data to be sent
to a web-based control panel that performs data monitoring and processing. All the architecture
modules have been implemented through open-source technologies. The analysis of the BLE packet
exchange has been carried out by resorting to the Wireshark packet analyzer. In addition, a feasibility
analysis has been carried out by showing the capability of the proposed solution to show the values
gathered through the sensors on a remote dashboard. The developed system is publicly available to
allow the possible integration of other modules for additional Smart City services or extension to
further ICT applications.

Keywords: Internet of Things; Smart Cities; MQTT; BLE; Android; Raspberry PI; open-source

1. Introduction

Internet of Things (IoT) and related technologies have been undergoing exponential
growth for a few years, rising from 15 billion connected devices in 2015 up to 30 billion
in 2020, and their numbers are intended to grow over the next decade [1]. IoT defines a
network of devices, such as sensors, actuators, gateways and cloud services, interconnected
among them with the aim of offering a specific service. Among several verticals, urban
mobility is receiving a lot of attention, driven by the introduction of different micro-mobility
options as an alternative urban mobility solution in the COVID-19 era [2]. Such mobility
options require careful attention towards parameter-tracking for safety reasons.

The number of industrialized cities, which are more and more aware of eco-sustainability
issues, has been constantly growing over the past few years [3]; this trend led government
authorities to sponsor the adoption of eco-friendly means of transportation, such as e-bikes,
electric scooters, Segways and so on. However, as the number of non-conventional means

Future Internet 2022, 14, 57. https://doi.org/10.3390/fi14020057 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi14020057
https://doi.org/10.3390/fi14020057
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0001-7338-1957
https://orcid.org/0000-0002-1250-2476
https://doi.org/10.3390/fi14020057
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi14020057?type=check_update&version=2


Future Internet 2022, 14, 57 2 of 22

of transportation has been rising exponentially, there has been a similar rise in the number
of road accidents, involving so-called vulnerable road users (VRUs) [4]; therefore, the
implementation of wearable technologies is remarkably beneficial in terms of user safety
by helping people connect to a much broader intelligent ecosystem often referred to as a
Smart City.

The main issue in an ubiquitous computer environment, such as IoT, is how impractical
it is to impose standards that everyone has to comply to [5]; hence, one of the biggest
constraints is to deal with closed source systems, which act as black boxes where the
underlying structure is unknown. This leads to IoT solutions that are very hard to interact
with, especially due to the nature of IoT being a very complicated heterogeneous network
platform. An outright example is highlighted in [6], a survey performed on 26 different
IoT clouds that can be grouped into 10 different genres of applications, which showed, as
expected, the lack of heterogeneity management. Moreover, deploying a large number
of wearable devices all over the city would have a large impact on the costs of such a
system; therefore, we deem that, cost-wise, a full-stack solution including all the elements
for complete control of the system from the source to the customer premises would be
highly beneficial as it allows cutting off all those costs linked to third-party software and
hardware, which an IoT solution usually relies on.

Another reason for cost reduction is the presence of an open-source approach where,
once the community is fully engaged, the rate of progress can rapidly accelerate, and the
project can potentially progress at a rate that can overcome closed-source development [1].
Applied to our scenario, the open-source approach allows developing a core system that
can be further extended by developers and users also giving the specific requirements of
any city. The proposed open-source approach could be the basis for further refinement as
well as additional plug-in software and devices.

An End-to-End (E2E) Open-Source Proof-of-Concept (PoC) IoT architecture is pro-
posed here, aiming to properly address the previously introduced issues. It is based on
the integration of different open-source technologies, whose main purpose is to monitor,
through the use of sensors connected to a micro-controller, the information related to the
road users. The system has been implemented by integrating an ESP32, i.e., a System on
Chip (SoC), equipped with sensors used to acquire environmental information that are
able to interact through a Bluetooth Low Energy (BLE) connection with an Android device,
which acts as an intermediate point that gathers the information produced by the sensors
in a real-time asynchronous way. Among different messaging protocols for data exchange
in IoT systems, we envisage the use of the Message Queue Telemetry Transport (MQTT) [7]
protocol between the Android device and the intended users that require monitoring the
road user’s behavior. Similarly, the use of an Android device as an intermediate point
between the wearable device and the rest of the network can be considered a viable option
since we can rely on its presence with any user in an urban environment. Experiments on
MQTT application protocol to support data acquisition and transfer in the cloud has been
performed in the past [8] using a Linux operating system in a fixed workstation. Here, a
mobile scenario is considered where the Android device acts as a publisher with the role
of sending data acquired by the external sensor and internal sensors. The subscriber is
here implemented through a dashboard deployed in the customer premises. In order to
deploy the MQTT communication flow, a broker has also been implemented by resorting
to a Raspberry PI node. Proper wireless communication links have been considered for
allowing the interconnection between the publisher(s), the broker and the subscriber, even
if any broadband and narrow-band solution can be used. The main novelties of the paper
can be summarized in:

• A perfectly functional PoC of an E2E system for message delivering in a Smart City
scenario has been released;

• The PoC is composed of COTS technologies; thanks to this, their integration allows
having a low-cost, deployable solution for different Smart City applications;



Future Internet 2022, 14, 57 3 of 22

• The PoC is based on open-source technologies, allowing its expansion with other
components and services through simple open interfaces by any interested user;

• The integration of an Android-based app into the architecture allows the system to be
potentially used by a large number of people, leading to a widely used echo-system;

• The modularity of the architectural design, along-with the open-source approach
of the different components, allows a rapid evolution of the system toward other
potential application scenarios.

The paper is structured in such a way. In Section 2, we enforce the rationale behind
our solution by analyzing the most important solutions proposed up to now in practical
implementations and by conducting a literature survey. Then, in Section 3, the high-level
description of the architecture is presented, focusing on the main functional aspects of
each node. Following this, in Section 4, the description of the PoC is given by sticking
around the technological characteristics of each element considered in the system. Finally,
some feasibility results are provided, showing the effectiveness of the proposed solution, in
Section 5, and a final discussion is conducted in Section 6.

2. Technological Background

In this section, we review some of the most impacting implementations and proposed
solutions that aim to solve a similar problem to the one we are considering.

In 2020, the 5G Automotive Association, an industrial-based association aiming at
bridging automotive and telecommunication industries, released a White Paper concerning
the protection of VRUs [9]. The report identifies the following road-user types as vulnerable:
pedestrians, cyclists (including eBikes), motorcyclists, road workers, wheelchair users,
scooter, skateboard and Segway users. In particular, three main scenarios have been
described where VRUs can gain from the presence of ICT. In VRU high-risk zones, drivers
(or automated vehicles) are delivered warnings when they enter a high risk area, where
there is a likely presence of many VRUs. Dedicated roadside infrastructure could play a
vital role in disseminating warning messages to VRUs and vehicles as well. The second
scenario instead focuses on interactive communications between VRUs and vehicles, where
a negotiation between the VRU’s device and a vehicle is performed. The third scenario is
maybe considered the most frequent in the future and involves vehicles and smartphones.
In this scenario, VRUs’ devices and vehicles send out safety messages. It is clear from [9]
how important the use of smartphone technologies and its integration in a 5G/IoT echo-
system will be for both VRUs and vehicles. However, in the same document, some technical
enablers have been identified for dealing with VRU protection in the three above-described
scenarios. It is clear how the role of smartphones, due to their embedded sensors, jointly
with proper vehicular communication systems, play a vital role in protecting VRUs. This
allows not only understanding the users’ statuses but also detecting their relative position
and predicting future directions.

An architecture enabling the integration of VRUs, referred to as Cooperative Informa-
tion Technology Services, is discussed in [10]. The cooperative solution is supposed to be
implemented in vehicles; supposedly, VRUs can use the service through their smartphone
or through dedicated devices. In particular, two use cases are identified: (i) the possibility
of knowing if VRUs are near potentially dangerous situations and (ii) the possibility of esti-
mating potential collisions with other vehicles exploiting the prediction of their trajectories.
The communication technologies for VRUs are discussed in [11], where the authors focus
mainly on the vehicle-to-pedestrian paradigms. A framework for vehicle-to-pedestrian
systems is here proposed, mainly focusing on different pre-crash scenarios enabling the
possibility of understanding how different VRU groups can act.

Interestingly, the exploitation of user devices, in particular smartphones, constitutes
a clear trend when managing the safety of VRUs. An early example is in [12], where a
collision prediction algorithm is proposed, which exploits the communication between
pedestrian and vehicles. Such an approach allows enhancing the classical approaches based
on visibility among users. In particular, the authors propose a system where the devices’



Future Internet 2022, 14, 57 4 of 22

and the vehicles’ positions are broadcast reciprocally so as to minimize potential accidents.
In [13], instead, the authors propose the Pedestrian-Oriented Forewarning System (POFS)
that aims to protect distracted pedestrians. POFS exploits four possible smartphone states:
screen, voice, screen-voice and silent. Based on these states, a collision prediction algorithm
is proposed that is able to send alert messages to pedestrian users. Another example is in
the 5GCAR project [14], where the authors propose a 5G radio-based positioning system
jointly with a road users trajectory estimation. In such a system, an alert is sent every time
the driver has to react to a potential warning. Each pedestrian was supposed to bring a
smartphone with a protect me app, which is able to alter any warning situation. In [15], the
authors propose a VRU warning system, where users exchange among themselves warning
messages about potential issues they may encounter when in motion. Such messages are
exchanges through commercial smartphones. In [16], the authors consider the possibility of
detecting VRUs outside the field of view through wireless communications by considering
BLE and WiFi Direct. Apart from the smartphone, the integration of sensor nodes has
been considered a promising approach. As an example, in [17], the authors propose the
Cooperative Safety System for Vulnerable Road Users (CS4VRU) architecture, which aims
to alert cyclists about potential cars approaching them through wearable devices in the
helmet. In addition, the developed smartphone app allows the cyclists to share their
position through a VANET.

In contrast to the previous approaches, we aim at: (i) developing an E2E solution able
to convey the VRU data acquired through external sensors and/or smartphone-embedded
sensors toward a centralized premise; (ii) exploiting multiple wireless technologies so as to
optimize different links; (iii) exploiting a pub-sub paradigm through the MQTT protocol,
hence enabling a logical decoupling between source and destination; (iv) using open-source
technologies in order to build a core system where additional plug-in can be added for
enabling scenario-specific solutions.

3. End-to-End Architecture

In this section, we describe the proposed end-to-end architecture by focusing on its
main functionalities from a high-level point of view. We bear on a reference IoT stack
architecture in order to leverage our solution by coarsely analyzing each layer of the stack.
In Section 4, a more in-depth overview of the adopted software and hardware technologies
will be illustrated, together with a more detailed description of their implementation.

The architecture deployed in this paper is depicted in Figure 1 and consists of func-
tional nodes, each with a specific role to allow the set-up of an open-source end-to-end
workflow. Complete handling of message transfer from the data source to the destination of
the sensed data is provided within a functional infrastructure for managing and monitoring
the expected road-user activities.

The designed platform is intended to be used for acquiring data from any of the
devices in the area. As an example, focusing on Intelligent Transport System applications,
one can think of an alert about other vehicles arriving in the opposite direction, as well as
feedback from the sensors in case any of them are measuring an out-of-range value. It is
worth noticing that the designed platform is general, which allows implementing different
Smart City applications and scenarios. The designed architecture is thus able to implement
a complete E2E message delivery through proper hardware, software and networking
solutions. To this aim, the selection of BLE and WiFi as wireless technologies for connecting
the devices allows fully exploiting the characteristics of the data to be handled by each
link. While the BLE allows transporting small-sized data packets, making it suitable for
connecting sensors and smartphones, WiFi is the perfect choice for connecting nodes in a
relatively longer distances. To this aim, 4G/5G technologies could also be used.



Future Internet 2022, 14, 57 5 of 22

Figure 1. The end-to-end architecture of the proposed solution.

Due to the heterogeneity of IoT solutions and implementations, there is no standard
approach in the definition of the system architecture and cloud platform [1]; hence, we
resorted to open-source implementation, where each single function has been mapped on
our reference IoT architecture.

The MQTT protocol is supposed to be used at the application layer for transmit-
ting data.

The designed architecture is composed of four main functional layers:

• The Sensing Layer is responsible for implementing the cyber–physical interface,
enabling the possibility of sensing physical data from the users. The sensed data
can be human-related data (e.g., hearth monitor, position), vehicle-related data (e.g.,
battery charge, vehicle position) or environmental data (e.g., humidity, air temperature,
pressure). Wearable sensors can be deployed in sportswear without needing to use
expensive vehicles.

• The Gateway is responsible for collecting data from the sensing layer through any
proprietary/custom protocol embedded in an IP packet to be delivered through the
Internet. The gateway layer is implemented through two different nodes, one enabling
the interface towards the sensing layer while the other, acting as a user’s personal
device, for transmitting data toward the final destination. In particular, the gateway
acts as the MQTT publisher and is implemented on a mobile device that is presumably
held by the users. This choice allows the approach to be available for any kind of road
users, even in simple and cheap vehicles, such as bikes or simple pedestrians. The
mobile device can be replaced, in principle, by other devices already installed in more
complex vehicles, such as cars.

• The MQTT Broker acts as an intermediate point of the publisher/subscriber commu-
nication architecture. It is responsible of receiving any MQTT input from the gateways
and notifying the subscriber about updated sensed data.

• The Dashboard acts as an MQTT subscriber, enabling the possibility of showing all
the data collected by the gateway through internal sensors and at the Sensing layer.

The sensing layer allows the collection of data, such as health information of the user
with the wearable device, and the surrounding environmental information by collecting the



Future Internet 2022, 14, 57 6 of 22

sensors’ data that have been implemented. Sensors and actuators, in fact, are the primary
sources of information in an IoT system and provide the data that will then be processed
by the device, e.g., a micro-controller, they are connected to.

According to this view, we have implemented a general-purpose embedded system
for wearable devices through the use of the ultra-low power SoC Esp32 produced by
the Espressif System [18]. Thus, we do not have to consider the type of wearable that
will be used by the provider of the service; rather, we focused on the development of a
general purpose underlying the infrastructure that can be later used regardless of the kind of
wearable adopted. In fact, the advantage of having an open-source system is not only letting
people contribute to the development of such technology but also allowing companies to
adjust the infrastructure according to their needs. Such a modular design permits having a
standardized infrastructure among companies that would use the proposed architecture,
allowing the implementation of different wearable devices with different hardware and
sensors, which are tailored around the needs of that particular company, making this
system a fully heterogeneous IoT solution.

These information streams, gathered through the sensors, will then be sent to a
smartphone—in this case, an Android device—through a BLE connection. The role of the
Android device is to provide an edge gateway that allows us to offload the computational
tasks directly to the mobile device rather than transmitting them to the cloud. This solution
has been already considered a viable option when Android devices are considered as an
edge processing node [19]. It is worth noticing that, nowadays, every user likely carries a
smartphone, giving the proposed solution short-term practical applicability. Considering
this, an Android app is developed that allows the user to gather the information acquired by
the sensors on the wearable device and provide a general view on the stats of their activity.
The app allows the user to connect to the embedded system mounted on the wearable device
through BLE connections, which is a common communication technology for constrained
devices with very limited battery life. The software developed for this application is fully
available as open-source, resulting in the possibility of further development with additional
features in order to meet the needs of the service provider [20]. Moreover, we deem that
having control over the information of a certain service, the user is important in order to
prevent and offer fast first-aid in the case of a road accident or any issue that might harm
the VRU who is using that particular service deployed through the use of our architecture.
To this aim, we developed a control panel that allows visualizing and monitoring those
stats gathered through the sensors of every user by using a simple web-service that acts
as a control dashboard. This web-service, which is still part of the PoC, is able to acquire
the sensors’ data from the smartphone device through the use of the communication
protocol MQTT.

It has to be highlighted that the selection of MQTT as the application layer protocol
allows decoupling the transmitter, i.e., the publisher, and the receiver, i.e., the subscriber. A
pub/sub paradigm allows implementing an efficient way for delivering messages through
an intermediate node, even in those situations where one of the two parts may be dis-
connected or temporarily unavailable, allowing, at the same time, to provide an efficient
way for delivering messages. The MQTT connection is implemented thanks to the broker
that is running on a Raspberry Pi 3B [21]. For what concerns the Broker software imple-
mentation, we use Mosquitto [22], an open-source broker developed by Oracle, while the
Android device and the web-service act as MQTT clients. The developed Android app
also integrates the MQTT connection through the use of the Paho library [23], developed
by Oracle, and publishes the information acquired by the sensors on predefined topics.
The control panel acts as a MQTT subscriber by subscribing to the topics the Android
devices are publishing; this capability has been implemented through the use of the Paho
JavaScript library. However, due to the HTTP definition, it is impossible to have a direct
link for data exchange between the broker and the web-service; hence, we resorted to the
use of web-sockets.



Future Internet 2022, 14, 57 7 of 22

4. Proof-of-Concept

In this section, the implementation of each node of the architecture is discussed by
analyzing the used hardware together with the developed software in order to provide a
detailed explanation of the PoC.

4.1. Gateway Interface to Sensing Layer: The ESP32 Platform

As stated before, the first goal of the proposed IoT architecture is to integrate wearable
devices, requiring the development of the software that manages the data, as well as the
connections of each node with the rest of the architecture, and a feasibility study of the
hardware, in particular the SoC and the sensors.

We predicat that the microcontroller with the sensors will be worn by the users, pro-
viding a fully functional smart-device. With these premises, one of the issues we aimed to
solve was determining which microcontroller would best fit the requirements that a wear-
able solution, due to the constrained sizes of the device, generally requires, even though
it is difficult to have a system where all these requirements are met. In order to process
the stream of data acquired by the sensors, we have decided to use the ultra-low power
SoC ESP32 [18], having all the most updated state-of-the-art characteristics of low-power
chips, such as clock gating, power modes and dynamic power scaling. The ESP32 SoC is
a single 2.4 GHz WiFi and Bluetooth combo chip designed by the Taiwan Semiconductor
Manufacturing Company (TSMC) ultra-low-power 40 nm technology, which mounts a
Tensilica Xtensa LX6 dual-core microprocessor together with 448 KB of ROM, 520 KB of
SRAM and 4 MB of flash memory. Moreover, by having a look at the architecture, the
Ultra Low Power co-processor stands out, which is an FSM (Finite State Machine) de-
signed to perform measurements using the Analog/Digital Converter (ADC) or external
Inter-Integrated Circuit (I2C) sensors, while the main processor is in deep-sleep mode;
this is particularly important as it is used to wake up the chip from its sleeping mode. In
the literature, there are many use cases [24,25] where this SoC is used; such applications
range from IoT solutions to much more complex systems, such as voice encoding or music
streaming, where a huge quantity of resources are involved.

The main reason for choosing the ESP32 SoC is that it jointly implements Bluetooth
and WiFi connections with a very efficient power management scheme, which permits
drawing a current as low as 10 µA when it is used in sleep-mode; for what concerns the
transmission of BLE packets, the datasheet defines 130 mA as the typical power consump-
tion considering measurements taken with a 3.3 V supply at 25 °C of ambient temperature.
This microcontroller’s advantages make it a feasible chose for IoT devices;indeed, there
are many examples of plug-and-play devices that are currently available on the market to
purchase. Among others, it is worth citing the LilyGo platform, which is an open-source
hardware Smart Watch based on the ESP32-PICO-D4 [26].

In addition to the ESP32 platform, we considered an external sensor device. In particu-
lar, we resorted to the BME280 [27], an integrated environmental sensor developed by Bosch
Sensortech, offering the possibility of sensing the relative humidity, the barometric pressure
and the ambient temperature. This chip, with its 8-pin metal-lid 2.5 × 2.5 × 0.93 mm3 LGA
package, has mainly been developed for IoT devices, particularly wearable devices, where
size and low power consumption are key design parameters. Current-wise, it is indeed
perfectly feasible for low current consumption, and it has a 0.1 µA current consumption
when it is in sleep-mode and 3.6 µA when it is in active-mode. In the developed prototype,
we use a pre-build module based on the BME280, where it is integrated together with a
Low Drop Out (LDO) Voltage Regulator and a I2C Voltage Level Translator.

The connection between the BME280 module and the ESP32 is implemented through
the I2C connection interface, which allows having synchronous communication between
the two devices and a data-stream with a bit rate equal to 100 kb/s. Regarding the I2C
connection, the ESP32 works as a master and the sensor as a slave, and its I2C 7-bit address
is b’0111911x, where the first 6-bits are fixed, but it is possible to choose the value of the
least significant bit.



Future Internet 2022, 14, 57 8 of 22

4.1.1. Software Implementation

In order to program the ESP32, we used the C++ programming language through the
Arduino framework, which is a relatively easy and fast prototyping tool that allows us to
experiment on our models before production, although most embedded system products
ready for production implement the real-time operating system (FreeRTOS) kernel [28], as
it is designed to be small and simple.

In order to enable a communication between the ESP32 and the BME280, we have
used the drivers developed by Adafruit [29], which allow connecting the sensor and easily
reading the values obtained from the measurement of temperature, pressure and humidity
from its registers. The output of the readings has to be sent through a BLE connection
to the Android gateway, and another library [30] has been used in order to manage this
connection. In the case of the SoC, the three main BLE protocol layers (i.e., Application,
Host and Controller) are implemented in the same chip in order to save space and have a
more miniaturized device.

Before analyzing the implemented structure, it is important to introduce the BLE
Generic Access Profile (GAP) and the BLE Generic Attribute Profile (GATT), and their role
in the relationship between the two devices [31]. The GAP defines which of the two mecha-
nisms are used by a BLE device for communicating with other devices, i.e., broadcasting or
connecting. The GAP defines how BLE-enabled devices can make themselves available and
how two devices can communicate directly with each other. The GATT instead defines the
role of a specific device, which can be a client or a server. The client typically sends a request
to the GATT server and can read and/or write attributes in the server. The server stores the
attributes. Once the client makes a request, the server must make the attributes available.

The ESP32 acts as the GAP Peripheral, meaning that it transmits advertising packets
with the aim of establishing a connection with the device; in this case, the Android smart-
phone, acting as the GAP Central, is constantly listening to advertising packets sent on air
by nearby peripherals in order to connect to the correct one. The Broadcaster role for the
SoC has been discarded, making it work as a BLE Beacon, due to possible security issues,
e.g., eavesdropping, that someone would face while transmitting data without establishing
a secure connection first. Regarding the GATT role, it can be assigned to a device regardless
of its GAP role, and it is even interchangeable; in our case, the SoC works as the GATT
Server during the whole time since it sends the data packets without receiving any. The
GATT Client role has instead been assigned to the smartphone. The implemented GATT
Server, hierarchically organizing all the attributes defined by the Attribute Protocol, is
represented in Figure 2.

The GATT server has been implemented with two services. The BME280_Service
contains the attributes labeled Characteristic, following the GATT convention, assigned to
different sensors, while the Hearth_Service is foreseen to be assigned to a heart-rate monitor,
although it is not implemented in the deployed PoC, and used as a future plug-in extension.
The BME280 service has four characteristics corresponding to the temperature, humidity,
pressure and altitude readings, where the latter, although not directly read by the sensor,
can be calculated through the other readings’ information. The heart-rate service has only
one characteristic, which is connected to the reading of the heart-rate of the service user.
In order to work with every attribute, the Universally Unique Identifier (UUID) should
be defined, allowing to universally identify the attribute. Even though the BLE Special
Interest Group (SIG) provides a list of short 16-bit or 32-bit UUIDs that are standardized
and might be used in applications, in the considered system, we have decided to resort
to custom UUIDs due to the custom and specific implementation; in this case, the full
128-bit UUID value should be used since we are not using the standard base UUID [32].
At the software level, we have defined each attribute by specifying the type, and hence
service, characteristic or descriptor, then we assigned a corresponding UUID for each one,
as previously defined, and the properties. In this case, the attributes should be read-only
since we do not want the Android gateway to be able to overwrite them, we only want it to
read their values corresponding to the sensors readings.



Future Internet 2022, 14, 57 9 of 22

Figure 2. GATT Server Hierarchy.

In addition, we implemented the Notify property, as defined by the BLE Core Specifica-
tion. Since we want to send the readings from the sensors asynchronously and in real-time
to the GATT Client to avoid the client cycling asking the server for new readings, since it is
not a power-efficient solution, the Notify property allows the server to automatically notify
the client whenever there is a new sensor reading, and we have a flow that is different from
the usual request/response pairs. However, for each characteristic, it must be implemented
as a descriptor, as can be seen in Figure 2. For the purposes of this implementation, we
resorted to the Client Characteristic Configuration Descriptor (CCCD), a GATT-defined
descriptor, which works similarly to a switch, enabling or disabling server-initiated up-
dates [33]. This function allows the client to decide whether or not it wants to receive
automatic asynchronous updates from the server by writing the attribute’s value, a two-bit
field; the client will simply use a Write Request Attribute Protocol (ATT) packet, which set
the least significant bit to 1, while the server will reply with a Write Response ATT packet.
When the process is successful, the server will be able to send automatic updates.

4.2. Gateway Interface to the Broker: The Android Platform

IoT systems consist of heterogeneous interconnected devices, leading to an ever-
growing demand for ubiquitous connectivity. Regardless of the implemented vertical, the
IoT infrastructure has to manage several sensors, which may significantly differ either for
connectivity or acquired data type. With such requirements, the role of a gateway in such
architectures is crucial, as it represents the bridge connecting the sensing layer, composed
of the different sensors with different characteristics, to the network layer.

The architecture proposed in this paper considers the gateway as a combination of
two devices: the SoC and the Android device. The latter represents the mobile part and
has the role of interfacing all the sensors of the wearable device to the network after the
data have been acquired by the ESP32. This gateway layout permits offloading the heavy
workload, which gateways would generally have to process, between the two nodes: the
processing of the data from the sensors has been assigned to the SoC, while the bridge with
the network layer is handled by the Android device.

The open-source application for managing the system running on the smartphone
has been properly designed by us. The goal of the Android app is two-fold: (i) the
implementation of the Bluetooth connectivity, connecting the smartphone with the SoC on
the wearable device, and (ii) the implementation of the MQTT connectivity, which, instead,
allows the user to connect to the external network.



Future Internet 2022, 14, 57 10 of 22

In this section, we will briefly describe the main aspects of the Android implementa-
tion, analyzing how the Bluetooth connectivity has been implemented and then introducing
the Paho library [23] used for the implementation of the MQTT protocol. The app has been
developed in Java through the use of the Android Studio IDE and the minimum SDK, which
has been set to Marshmellow (API 23). Android provides a standard Bluetooth stack that
supports both classic Bluetooth and BLE (For major clarity, BLE support was introduced
with the API 18 and enabled Android smartphones to communicate with devices, such as
proximity sensors, light-bulbs, wearables.) By recalling the BLE protocol stack, it is clear
that the Android device acts as an ATT role of Central, which means it will remain listening
for advertising packets transmitted by the ESP32 in order to establish a secure connection
with it through the bounding procedure. Conversely, for what concerns the GATT role,
the Android smartphone works as a client since it receives and reads the payload of the
Characteristics of the SoC GATT server, as introduced in Section 4.1.

The Android app has been organized in two Android Activities in order to be used
by any type of device, even low-end terminals. The only requirement is to have installed
Android API 23. In Figure 3, the graphic user interface (GUI) of the main Android Activity
is reported. The user can interact with the app through the toolbar, which includes all the
functionalities the application provides, such as the BLE connection to the GATT server,
scanning of BLE devices nearby, data transmission to the MQTT broker and a button that
allows the user to send SoS requests. Moreover, the GUI shows which wearable device the
user is connected to and whether or not there is an ongoing connection, while a scroll-view
has been used in order to display the values acquired by the sensors.

In the considered scenario, we used the BME280, which is able to jointly sense pressure
and humidity data. In addition to this, the embedded Smartphone sensors are used.
Moreover, it is worth noting that virtually any sensor could be plugged in, resorting to any
of the standard interfaces we have used in our system. As an example, in the case of a VRU,
we can also think of a Bluetooth-interfaced sensor able to measure the battery status of the
electric bike/scooter, as well as the user’s health status through a smartwatch device.

Figure 3. The Android App main Activity.

4.2.1. BLE Management

The first action to be performed in order to establish a Bluetooth connection between
the two devices is a scan of the nearby BLE devices with the ATT role of peripherals.



Future Internet 2022, 14, 57 11 of 22

This is achieved by interacting with the Android app toolbar, whose role is to display
the list of the nearby BLE devices so that the user is able to pick the device they wish to
connect to from the list. In order to initialize the scan, it is mandatory to declare in the
AndroidManifest.xml file the correct permissions the Android needs in order to use the
Bluetooth API. Moreover, since the API 23 Android requires the user to accept at run-time
those permissions that are labeled as dangerous, the user has to allow the app to acquire
the permissions regarding the location of the user since they are a mandatory requirement
for the BLE API to work. Once the permissions have been granted, an object of the class
BluetoothAdapter() is instantiated, which abstracts the Bluetooth Radio, integrated in
the smartphone, and allows interacting with it through the software code.

The first operation allows checking if the device running the app supports BLE; in
case it does not, the app will not allow the user to proceed further. This instance is used
later to instantiate an object of the class BluetoothLeScanner(), which is used for all
those operations regarding the scanning of BLE devices. Moreover, the Android allows
implementing a white list of the scanned devices we might be interested in by discarding the
others. Since we aim to connect to a small pool of devices the IoT wearables implementing
the SoC programmed previously, we believe implementing a white list will allow the
Android app to connect to only to the ESP32 SoCs on the wearable devices to prevent
the Android app from connecting to other devices. Once the scan has been initialized,
the results will be available in a callback function and the graphic interface is updated at
run-time with all the nearby devices scanned previously being filtered.

In order to implement the Bluetooth communication, it is necessary to use multithread-
ing techniques due to the asynchronous behavior of the communication; hence, we have
a message queue in the Android with all the threads to be run. Once the user has chosen
the correct wearable device to connect to, they are redirected back to the main activity
where they will initialize the connection to the GATT server. The connection to the GATT
server starts by instantiating an object of the class BluetoothDevice(), which is used
to invoke the method connectGatt(Context context, boolean autoConnect,
BluetoothGattCallBack bluetoothGattCallBack). This allows the smartphone
to automatically connect to the wearable devices, as long as they are bounded. In order to
acquire the output of this method call, we have defined a callback function through the use
of the Java anonymous inner class construct, which creates a class that implements a Java
interface; hence, certain Abstract methods must be overridden as in Listing 1.

Listing 1. Gatt Callback Function.

BluetoothGattCallback gattCallBack = new BluetoothGattCallback() {
@Override
public void onConnectionStateChange(BluetoothGatt gatt, int status, int newState)

{
super.onConnectionStateChange(gatt, status, newState);
...
}

@Override
public void onServicesDiscovered(BluetoothGatt gatt, int status) {
super.onServicesDiscovered(gatt, status);
...
}

@Override
public void onCharacteristicChanged(BluetoothGatt gatt,

BluetoothGattCharacteristic characteristic) {
super.onCharacteristicChanged(gatt, characteristic);
...
}

@Override
public void onDescriptorWrite(BluetoothGatt gatt, BluetoothGattDescriptor

descriptor, int status) {



Future Internet 2022, 14, 57 12 of 22

super.onDescriptorWrite(gatt, descriptor, status);
...
}
}

The method public void onConnectionStateChange(BluetoothGatt
gatt, int status, int newState) is used to check on the status of the Bluetooth
connection between the two devices involved in the data exchange, indicating when a GATT
client has connected/disconnected to/from a remote GATT server. In case the connection
occurs, the method discoverServices() is invoked in order to acquire and sync with
the list of remote services, characteristics and descriptors. This is an asynchronous operation
that triggers the callback method public void onServicesDiscovered(Bluetooth
gatt, int status) and, if the discovery was successful, the services can be retrieved

by calling the function getServices().
As pointed out in Section 4.1.1, each BLE characteristic of the ESP32 implements

the Notify property, allowing the client to be notified whenever a change in one of the
BLE characteristics occurs. However, the client must explicitly express its desire to use
such system by writing the CCCD of the characteristic it wishes to receive notifications
from. In order to enable the property, we have to check, first, if the characteristic is
present; in this case, the descriptor is retrieved, with the function getDescriptor(UUID
uuid) and its GATT-defined 32-bit UUID equal to h’0x2902, which is the standard

for characteristic configuration descriptors. Once the sync is completed, the method
setValue(BluetoothGattDescriptor.ENABLE_NOTIFICATION_VALUE) must be
called in order to modify the locally stored cached value of this descrip-
tor. The new value assigned to the descriptor is BluetoothGattDescriptor.
ENABLE_NOTIFICATION_VALUE, corresponding to a two-bit field equal to b’0x01, while,
if we enable the indication property, the bit-field would have been equal to b’0x10.

The server should be aware of our intention to use that property; hence, the
function writeDescriptor(BluetoothGattDescriptor descriptor) is called,
and it writes the value of the locally stored cache onto the descriptor associated
with the remote device. This function triggers the callback method public void
onDescriptorWrite(BluetoothGatt gatt, BluetoothGattDescriptor
descriptor, int status), which is part of the callback functions defined in
Listing 1. Its role is to collect the result of a write operation concerning GATT descrip-
tors; in our case, if the write request is successful, then, inside this callback function,
the method setCharacteristicNotification(Descriptor descriptor,
boolean enable) is updated, allowing the Android GATT client to asynchronously
listen to GATT automatic server.

In case one of the characteristics, whose descriptor has been written in or-
der to allow the notify property, changes, the server sends a notification that trig-
gers the callback function onCharacteristichChanged(BluetoothGatt gatt,
BluetoothGatCharacteristic characteristic), which contains the characteris-
tic that has been updated and its new value.

In the app, the UI should be updated with the new sensor values whenever they are
notified; this is accomplished by using a broadcast-receiver. Android apps can send or
receive broadcast messages from the Android system similarly to the publish/subscribe
design pattern we find in network protocols, such as MQTT. All the broadcasts sent will be
routed to the activity that has been expressively declared through the use of specific intent
filters. They can be used as a messaging system across apps and outside the normal user
flow. In our case, the Bluetooth service we have implemented in the background allows
sending custom broadcasts to the main Activity with the aim of updating the UI with the
new sensor values.



Future Internet 2022, 14, 57 13 of 22

4.2.2. Android MQTT Client

The developed Android app, as previously stated, is able to send sensor’s updates
received from the BLE GATT server, as well as other kinds of information regarding the user,
to a web dashboard through the MQTT protocol. Such connection has been implemented on
the Android side by integrating a further background service that enables the smartphone
to work as an MQTT client. The events occurring in such connection are handled by the
Paho library, which provides a quite easy and straightforward solution when it comes to
MQTT integration in Android devices.

The connection with the broker and the publishing of the messages on the different
topics occurs whenever the user interacts with the UI of the app and selects the option that
starts the MQTT service in the background. Once the service is called, an instance of the
class MqttAsyncClient() is created. It allows the client to initiate MQTT actions and
then carry on working, while the MQTT actions are being completed in the background
thread. Moreover, in order to check on the connection status, the interface MqttCallBack
() is implemented, allowing the client to be notified when asynchronous events related to
the client occur.

The values published by the app are those acquired through the BME280 sensor, i.e.,
temperature, humidity, pressure and altitude; in addition, an SoS message is published,
which contains the GPS location of the user acquired through the smartphone GPS sensor.
The MQTT messages are formatted with four possible topics, each one according to the
MQTT specifications [7], having a PDU composed of three different fields: a fixed header, a
variable header and a payload. The first four bits of the fixed header define the supported
message types, and the remaining four bits of the first byte are used to define the different
header flags, such as QoS (Quality of Service), DUP (duplicate) and RETAIN. In our case,
the topics, whose payload contains one of the values read by the sensor encoded as a JSON
object, have a QoS equal to zero in their 4-bit flag, where the QoS level defines how reliable
the reception of the published message by the client subscribed to that specific topic is. In
our case, a value equal to zero corresponds to the least QoS level; thus, there is no guarantee
the message will be received by the subscribers subscribed to the topic; indeed, there is
no acknowledgment packet sent, proving the publisher is aware of the reception of the
message. The reason for selecting such QoS is due to its low resource-hungry requirements
if compared to the other QoS levels; moreover, the loss of a packet would not be a problem
as there is no essential information being sent.

The SoS request topic carries the position of the user at the time the request is sent in
the payload, while the QoS level is equal to 1 in this case. A QoS level of 1, also referred to
as At Least Once, is a quite reliable transmission method in the MQTT protocol, but, as a
drawback, it is resource-expensive, and the message could be sent more than once. The SoS
message is essential and must be received by the subscribers at all costs; thus, receiving
it more than once would lead to no issue. Nonetheless, it is supposed to be infrequently
published by the client compared to the other topics implemented; hence, spending more
resources than usual would be acceptable. The higher reliability of this level of service is
accomplished by a two-level handshake between the publisher and subscriber, allowing
the message to be received at least once. Figure 4 depicts the general PDU exchange that
occurs in the IoT system we implemented.



Future Internet 2022, 14, 57 14 of 22

Figure 4. MQTT Packets Exchange.

4.3. Raspberry PI 3B+ Node

In the architecture we presented, the node in the middle, between the gateways
and the dashboard, is a Raspberry Pi 3B+. It is a fairly low cost and portable computer
developed by the Raspberry Pi Foundation. It is endowed with a 64-bit quad core processor
running at 1.4 Ghz, dual-band 4.2 Ghz and 5 Ghz wireless LAN, Bluetooth 4.2/BLE,
Ethernet connection and an extended 40-pin GPIO header, which allows interfacing external
components [21]. It has been deployed with the Raspberry Pi OS, which allows updating it
in order improve the stability, performance and security of the system.

The MQTT broker is actually installed on a Raspberry PI B3+ node. In a practical
implementation, it is possible to think of several MQTT brokers that are supposed to
be deployed in a Smart City scenario, e.g., on light poles or traffic lights, enabling the
possibility of receiving MQTT messages from the vehicles in proximity through any wireless
connection, e.g., IEEE 802.11x-based solutions. Despite the proposed solution being based
on a pre-deployed MQTT approach, modern container/Virtual Machine-based approaches
can be used. As an example, a Docker-based MQTT broker can be used for flexibly
deploying MQTT brokers on devices.

4.3.1. Mosquitto

The logical role assigned to the Raspberry Pi node is the MQTT broker, which allows
communication between different MQTT clients. Mosquitto is an open-source lightweight
message broker that implements the MQTT protocol versions 5.0, 3.1.1 and 3.1 and is
suitable for all devices from low-power single-board computers to full servers [22]. The
rationale behind MQTT is its light weight; in fact, it is intended for devices with limited
power capabilities, or when we have to deal with constrained and unreliable networks,



Future Internet 2022, 14, 57 15 of 22

e.g., cellular networks, affected by a high packet loss rate [34]. These advantages make it a
feasible solution for web-based data monitoring operations [35].

The MQTT clients are implemented on the Android smartphones running the devel-
oped app, acting as MQTT publishers by publishing the readings of the wearable device’s
sensors, as well as on a webservice dashboard, later illustrated in Section 4.4, acting as a
MQTT subscriber.

The main role of the broker is to provide a way for routing the packets on a certain
topic to the clients subscribed to that specific topic. However, the broker has several other
responsibilities; one of those is authentication: in order to secure the connection of the
IoT system, it is important not only to define the authentication credentials, such as a
username or password, to be used by every client to sign into the broker but also establish
an encrypted communication between the broker and the clients through TLS and SSL.
In our case, we have created a custom configuration for Mosquitto, which let us define a
password and username that will be used to log into the broker, but, more importantly,
since we are dealing with a webservice client, we had to enable MQTT over websockets by
defining the socket number the broker has to listen to as 9001.

4.4. Webservice Dashboard

As previously stated, one of the main features of the proposed architecture is the real-
time monitoring of the statistics collected by the sensors mounted on the wearable devices.
This enables whoever is using our E2E architecture, e.g., a certain company deploying
their services, to supervise the activity that is being performed by the users of that certain
service. This feature is particularly important in those applications targeting VRUs since
they have a higher probability of being engaged in accidents, putting their life at risk.
Hence, being able to have a real time and accurate pool of data helps provide a clearer
overview of the statistics of one user’s health, as well as the environmental ones. This
knowledge is fundamental since it allows the provider to offer immediate first aid in case
of an unwell user.

With such premises, we developed a webservice dashboard that enables receiving the
sensors’ data through the Android smartphone and the MQTT connection. Such dashboard
has been implemented exploiting the Javascript functions inherited from the open-source
Paho library, enabling a browser-based Javascript MQTT Client.

The developed web application relies on Websockets in order to allow bi-directional
communication between the dashboard and the MQTT broker. It is worth noticing the
HTTP, due to its architectural structure, which is not designed for real-time full duplex
web applications [36]. Moreover, in IoT systems, especially those requiring real-time
data exchange, latency is one of the main issues. In the case of HTTP, we would have
to implement HTTP polling, where the client sends a request to the server every polling
interval. Therefore, in order to use this method, we should be aware of the frequency
used by the sensor for updating the data, which is unfeasible to acknowledge with an
asynchronous architecture. By increasing the polling interval, we would also cause a
high number of requests, which might be inconsistent, as the server might not have
the value of the new sensors yet, leading to a non-optimized IoT solution. This latter
problem might be solved with long polling, which efficiently handles the information push
from servers to client by holding the client’s request until there is a new sensor value
available to send as a response rather than sending an empty response PDU. However,
it has been demonstrated how the Websockets protocol is the overall best solution for
full-duplex communications when packets have to travel long distances over congested
networks [37]. MQTT over Websockets allows receiving the messages we have in a standard
publish/subscribe paradigm in an environment, the web browser, where the defined
paradigm is request/response, thus allowing the browser to leverage all MQTT features,
such as displaying real-time information from the Android gateway. Since the web service
only accepts Websockets, the broker must be able to handle them by encapsulating the
MQTT packets in Websockets frames.



Future Internet 2022, 14, 57 16 of 22

The dashboard has been developed with a rather simple graphic interface, and the
first thing to do is define the IP address and port of the MQTT broker that the client has to
connect to. In this specific case, the port number is 9001, which is the one generally used
for Websockets; it is mandatory to enter the username and password that were previously
set up during the configuration of the browser, as described in Section 4.3.1. Once the
connection has been established, it is possible to receive the sensor’s readings, which will
then be displayed on screen, as shown in Figure 5.

Figure 5. Dashboard: Sensors Display.

The Paho MQTT client running in background allows the user to subscribe to two
different topics. The first one concerns the wearable device to be monitored, picked up
through the scrolling menu where there is a list of all the wearable devices that have been
deployed. This approach is feasible because each wearable device publishes the information
gathered by its sensors on different topics through the Android gateway with the structure
BleAddress/valueType, which allows jointly defining the BLE node and the sensed
value. Thus, we can have multilevel topics, where the first level refers to the Bluetooth
MAC address of the radio mounted on the ESP32 SoC, while the second layer refers to the
type of sensor value being handed over, i.e., temperature, pressure, humidity, etc.

The second topic subscribed by the webservice is emergency/sos; it is system-
defined and shared among all SoCs. In fact, as the first layer suggests, it does not depend
on a single device. This topic allows receiving SoS calls from any wearable device at any
point of time regardless of which device is being monitored. This is accomplished simply
by integrating the payload with a JSON object. It is then parsed using Javascript, and from
it, we extract the key-value pairs, which, respectively, contain the Bluetooth MAC address
of the radio mounted on the SoC requesting the SoS and the position of the user, as acquired
through the Android device.

5. Feasibility Evaluation

In order to evaluate the feasibility of the proposed system, a Proof of Concept has
been setup. In Figure 6, a picture of the real setup of the PoC is presented. It is possible to
notice the wearable prototype node that is implemented on the development dashboard
where both the BME280 sensor and the ESP32 SoC are installed. An Android smartphone
with the developed app is also part of the PoC where a proper BLE link is used for its
connection with the wearable node. The Raspberry PI 3B+ node is used as the MQTT Broker;
indeed, it receives MQTT messages from the Android device, acting as the publisher and



Future Internet 2022, 14, 57 17 of 22

sends them to the connected MQTT subscriber, here represented as a Windows 10 PC. As
previously mentioned, in the implemented PoC, the MQTT subscriber is here implemented
as a Webservice, where a proper Dashboard is used for representing the sensed values.

Figure 6. The real setup of the PoC.

In this section, the feasibility of the proposed solution will be analyzed by focusing
on the exchange of BLE data packets occurring between the Android smartphone and the
ESP32 SoC. While the E2E implementation has been proven by considering the visualization
on the Dashboard, as represented in Figure 5, we focus now on the BLE packet exchange.
The aim of the analysis carried out is to provide insight into the BLE PDU exchanged
between the two nodes and prove that the information contained in such packets do map
perfectly to those that have been implemented on the software side. It is worth noticing
that the system we have implemented is aimed at testing a single E2E connection going
from a wearable device, acting as source of data, to an MQTT subscriber node, acting as
sink. To this aim, we have not performed tests over fully loaded scenarios. It is, however,
clear from other papers, e.g., [38], that an Eclipse Mosquitto-based solution, despite not
being designed as a scalable implementation, allows processing around 20,000 messages
per second, which is far beyond those envisaged in the considered scenario.

Smartphones generally have implemented the two most important BLE protocol layers,
i.e., the host and controller. The host represents the upper layer of the protocol stack and
is generally more resource-hungry than the controller; hence, quite often, it is integrated
into the main CPU. It can communicate with the controller through the Host–Controller
Interface (HCI). Such configuration is known as Dual-IC-over-HCI since the two protocol
layers are embedded into two different Integrated Circuits communicating with each other
through a communication mean defined by the Bluetooth specification, implying that any
host can exchange data through HCI with any controller, regardless of the manufacturer.

The interaction between these two layers is part of our analysis: we have used the
Wireshark packet analyzer tool in order to sniff both the HCI events and the HCI commands,
which are the two different PDUs sent by the HCI between those two endpoints. Whenever
the user interacts with our app and performs actions that imply the use of the BLE chip,
each request is first received and processed by the host, and, later on, the command to be
executed is sent to the BLE radio controller, which will answer with an HCI event.



Future Internet 2022, 14, 57 18 of 22

A common HCI command is sent. Whenever the user initializes a scan of the BLE
devices nearby, the BLE radio controller will answer with a list of events, i.e., the advertising
packets sent out by the nearby Bluetooth devices; it is worth mentioning that HCI events
and commands are vendor-specific. In Figure 7, a scan response is shown, which was
sent by the ESP32 and contains, in the payload, all the information that was previously
discussed in the software development of the ESP32 node.

Figure 7. Advertising Scan Response.

Once the connection of the Android smartphone to the SoC has been correctly estab-
lished, an exchange of ATT PDUs between the two endpoints takes place. Many attributes’
protocol PDUs use a sequential request–response protocol [33], where once a client sends a
request to the server, there are no more requests being sent from that client until a response
PDU has been received; a request–response pair is a defined transaction. This pattern is
not valid for notifications, which do not have a response PDU since they are asynchronous;
hence, for commands that do not have a response PDU, there is no flow control, and
commands can be sent any time without having to wait for a response.

Herein, we intend to limit our analysis to the ATT PDU, which we deem worth
mentioning. The first transaction we analyzed starts with the smartphone sending a
command to the ESP32 with opcode ATT_FIND_INFORMATION_REQ, which is used to
obtain the mapping of attribute handles with their associated types, allowing the client
to discover the list of attributes and their type of GATT server. If at least one attribute
is returned, the ATT_FIND_INFORMATION_RSP PDU will be sent from the server to the
client; if no attribute is returned, the ATT_ERROR_RSP PDU is returned with the respective
error code. Another transaction that occurs is the one that starts with requests having
opcode ATT_READ_BY_TYPE_REQ, which is used for obtaining the values of attributes,
when the attribute type is known while the handle is not. The response to this PDU has
opcode ATT_READ_BY_TYPE_RSP and contains the pair of handles and values of the
attributes that have been read.

As stated in Section 4.1, each characteristic has the Notify property, and it is enabled
by the Android device by writing to the CCCD of every characteristic of the GATT server
that the GATT client would receive notifications from. Such an operation is performed



Future Internet 2022, 14, 57 19 of 22

at the network layer by sending the ATT PDU with opcode ATT_WRITE_REQ, which is
used to request the server write the value of an attribute; in this case, the CCCD is the
attribute of the server we wish to write with value b’0x01 since it allows enabling the
notification property. The PDU with opcode ATT_WRITE_RSP will then acknowledge
whether the attribute was correctly written or not. The whole initialization procedure
aimed at establishing a means of communication between the two endpoints has been
analyzed to lasts only 3.7 s, in the worst case scenario, when the distance of the two BLE
devices is greater than 1 m. In Figure 8, the PDU corresponding to the delivered notification
from the GATT server is shown, which has as its opcode ATT_HANDLE_VALUE_NTF, and
it is not longer sequential—the transaction pattern defined before is no longer followed.

Figure 8. Handle Value Notification.

The system has been tested in different communication scenarios with the goal of
estimating its performance in a realistic setting. To this aim, we considered connecting the
Android device with the MQTT Broker through different wireless technologies, i.e., WiFi,
EDGE, HSPA+ and 4G. In Table 1, the results obtained through a measurement campaign
performed on slots of 80 s for 10 different times at different hours of the day are reported.
We can see the communication technologies’ great impact. It is, however, worth noticing
that, even in the worst case obtained through the EDGE, we are able to implement some
of the applications over the presented scenario. As an example, moving vehicles in traffic
through a calm neighborhood were sufficiently alerted about other vehicles nearby.

Table 1. MQTT message latency through different communication technologies.

Technology WiFi EDGE HSPA+ 4G

Average Delay 58 ms 1158 ms 651 ms 467 ms
Maximum Delay 104 ms 1997 ms 1430 ms 589 ms
Minimum Delay 31 ms 746 ms 343 ms 302 ms

Moreover, we have to clarify that, following BME280 specifications, each sensor is
supposed to generate one sensed value with a rate equal to 21 Hz, i.e., every 47 ms. Hence,
the Android node receives one BLE packet every 47 ms. In addition to this, the Android-
embedded sensors are set in order to receive data every 200 ms (i.e., by setting the delay
to SENSOR_DELAY_NORMAL). In the worst case scenario, since we have five values
through the BLE interface and one internal, we have around 110 MQTT packets per second.
Considering that each MQTT packet is around 5 B for small data, the data rate is around
4.4 kb/s. We have to add the TCP/IP and Layer 2 overheads. However, we can state that
the data are largely supported by any wireless technology.

6. Discussion

Novel solutions to efficiently and safely manage emerging services in smart cities
have been considered. Citizens are much more likely to use alternative mobility solutions,
especially as a consequence of the COVID-19 pandemic, characterized by different vulnera-
bilities that co-exist with more traditional ones. The need to manage and protect vulnerable
road users and protect them from accidents is emerging and can be solved by advanced



Future Internet 2022, 14, 57 20 of 22

IoT technologies that are suitable even for cheap vehicles. In this paper, we have proposed
a system that introduces an E2E solution that is able to monitor the VRU data through
wearable devices. Through the proper use of different communication technologies (i.e.,
BLE, MQTT), devices (i.e., ESP32, Android, Raspberry PI) and software technologies (i.e.,
Websocket), we have built a Proof-of-Concept solution to monitor the user data in real time.
The possibility of benefiting from commonly used devices, such as Android smartphones,
as well the open-source release of the whole system code, allows the fast deployment of the
proposed solution in smart city scenarios. This solution, which has been demonstrated to
be feasible, adopts a flexible open-source software that makes it available to support an
additional plug-in for future services.

While main solutions for IoT are based on ad hoc data collection that lacks flexibility
and scalability, the solution proposed in this paper shows that by using common off-the-
shelf elements, it is possible to enable the design of a highly scalable and flexible IoT system,
that, even though presented for road users, can be also applied, with the data collected by
the same set of sensors, to other purposes, such as road maintenance or crowd management,
and many other use cases. We believe that showing a complete workflow for this kind of
application can foster the development of large-scale IoT systems, being of interest not only
for researchers but also for enterprises that can rise and spread in this field.

The next steps involve the insertion of multiple users able to act as both the publisher
and subscriber so as to enable a user-to-user communication paradigm. Moreover, the
possibility of exploiting virtualization and containerization technologies will be exploited
in order to create a more flexible environment. Finally, we will endeavor to solve privacy
and security concerns. At this time, the solution includes online basic security mecha-
nisms, as detailed in the paper. It is widely known that MQTT necessitates additional
security mechanisms [39,40], and in the future, they will become part of the project under
development.

Author Contributions: Conceptualization, D.T. and C.R.; methodology, D.T. and C.R.; software, C.D.;
validation, C.D., D.T. and C.R.; investigation, C.D.; resources, C.D.; data curation, C.D.; writing—
original draft preparation, C.D.; writing—review and editing, D.T. and C.R.; visualization, C.D.; su-
pervision, D.T. and C.R. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are openly available in Github at [20].

Acknowledgments: The authors would like to acknowledge Marco Moricoli, Andrea Castronovo
and Alberto Iantorni for their development as a result of Bachelor Thesis work.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Rayes, A.; Salam, S. Internet of Things from Hype to Reality—The Road to Digitization, 2nd ed.; Springer: Cham, Switzerland, 2019.

[CrossRef]
2. Belli, L.; Cilfone, A.; Davoli, L.; Ferrari, G.; Adorni, P.; Di Nocera, F.; Dall’Olio, A.; Pellegrini, C.; Mordacci, M.; Bertolotti, E.

IoT-Enabled Smart Sustainable Cities: Challenges and Approaches. Smart Cities 2020, 3, 52. [CrossRef]
3. Srivastava, A.; Gupta, M.S.; Kaur, G. Green Smart Cities. In Green and Smart Technologies for Smart Cities, 1st ed.; Tomar, P.,

Kaur, G., Eds.; CRC Press: Boca Raton, FL, USA, 2019; pp. 1–18.
4. Fernandes, B.; Neves, J.; Analide, C. Road Safety and Vulnerable Road Users—Internet of People Insights. In Proceedings of the

6th International Conference on Smart Cities and Green ICT Systems, Porto, Portugal, 22–24 April 2017; pp. 311–316. [CrossRef]
5. Razzaque, M.A.; Milojevic-Jevric, M.; Palade, A.; Clarke, S. Middleware for Internet of Things: A Survey. IEEE Internet Things J.

2016, 3, 70–95. [CrossRef]
6. Ray, P.P. A survey of IoT cloud platforms. Future Comput. Inform. J. 2016, 1, 35–46. [CrossRef]
7. MQTT Specification. Available online: https://mqtt.org/mqtt-specification/ (accessed on 31 December 2021).

http://doi.org/10.1007/978-3-319-99516-8
http://dx.doi.org/10.3390/smartcities3030052
http://dx.doi.org/10.5220/0006359303110316
http://dx.doi.org/10.1109/JIOT.2015.2498900
http://dx.doi.org/10.1016/j.fcij.2017.02.001
https://mqtt.org/mqtt-specification/


Future Internet 2022, 14, 57 21 of 22

8. Borsatti, D.; Cerroni, W.; Tonini, F.; Raffaelli, C. From IoT to Cloud: Applications and Performance of the MQTT Protocol. In
Proceedings of the 2020 International Conference on Transparent Optical Networks (ICTON), Bari, Italy, 19–23 July 2020; IEEE:
Piscataway, NJ, USA, 2020. [CrossRef]

9. 5GAA Automotive Association. Vulnerable Road User Protection. White Paper, 5GAA. 2020. Available online: https:
//5gaa.org/news/vulnerable-road-user-protection/ (accessed on 31 December 2021).

10. Scholliers, J.; van Sambeek, M.; Moerman, K. Integration of vulnerable road users in cooperative ITS systems. Eur. Transp. Res.
Rev. 2017, 9, 1–9. [CrossRef]

11. Sewalkar, P.; Seitz, J. Vehicle-to-Pedestrian Communication for Vulnerable Road Users: Survey, Design Considerations, and
Challenges. Sensors 2019, 19, 358. [CrossRef] [PubMed]

12. Hussein, A.; García, F.; Armingol, J.M.; Olaverri-Monreal, C. P2V and V2P communication for Pedestrian warning on the basis of
Autonomous Vehicles. In Proceedings of the 2016 IEEE 19th International Conference on Intelligent Transportation Systems
(ITSC), Rio de Janeiro, Brazil, 1–4 November 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 2034–2039. [CrossRef]

13. Liu, Z.; Pu, L.; Meng, Z.; Yang, X.; Zhu, K.; Zhang, L. POFS: A novel pedestrian-oriented forewarning system for vulnerable
pedestrian safety. In Proceedings of the 2015 International Conference on Connected Vehicles and Expo (ICCVE), Shenzhen,
China, 19–23 October 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 100–105. [CrossRef]

14. Saur, S.; Mizmizi, M.; Otterbach, J.; Schlitter, T.; Fuchs, R.; Mandelli, S. 5GCAR Demonstration: Vulnerable Road User Protection
through Positioning with Synchronized Antenna Signal Processing. In Proceedings of the 24th International ITG Workshop on
Smart Antennas, Hamburg, Germany, 18–20 February 2020.

15. Napolitano, A.; Cecchetti, G.; Giannone, F.; Ruscelli, A.; Civerchia, F.; Kondepu, K.; Valcarenghi, L.; Castoldi, P. Implementation
of a MEC-based Vulnerable Road User Warning System. In Proceedings of the 2019 AEIT International Conference of Electrical
and Electronic Technologies for Automotive (AEIT AUTOMOTIVE), Turin, Italy, 2–4 July 2019; IEEE: Piscataway, NJ, USA, 2019.
[CrossRef]

16. Waldemar, T.; Boehm, F.; Schlegel, T. Prototyping Approach of Networking Road Users for Cooperative Collision Avoidance
using Smartphones. In Proceedings of the 2019 Sixth International Conference on Internet of Things: Systems, Management and
Security (IOTSMS), Granada, Spain, 22–25 October 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 374–379. [CrossRef]

17. Hernandez-Jayo, U.; Perez, J.; de-la Iglesia, I. Poster: Wearable warning system for improving cyclists safety in the scope of
Cooperative systems. In Proceedings of the 2015 IEEE Vehicular Networking Conference (VNC), Kyoto, Japan, 16–18 December
2015; IEEE: Piscataway, NJ, USA, 2015; pp. 153–154. [CrossRef]

18. Espressif Systems. ESP32 Wi-Fi & Bluetooth MCU. Available online: https://www.espressif.com/en/products/socs/esp32
(accessed on 31 December 2021).

19. Tarchi, D.; Grandi, S.; Cerroni, W. Android-based Implementation of a Fog Computing and Networking Environment. In Pro-
ceedings of the 2019 IEEE Wireless Communications and Networking Conference (WCNC), Marrakech, Morocco, 15–18 April
2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–6. [CrossRef]

20. Internet of Vulnerable Road Users. Available online: https://github.com/DanieleTarchi/IoVRU (accessed on 31 December 2021).
21. Raspberry Pi (Trading) Ltd. Raspberry PI Documentation—Raspberry PI OS. Available online: https://www.raspberrypi.com/

documentation/computers/os.html (accessed on 31 December 2021).
22. Eclipse Mosquitto. Available online: https://mosquitto.org/ (accessed on 31 December 2021).
23. Eclipse Paho. Available online: https://www.eclipse.org/paho/ (accessed on 31 December 2021).
24. Babiuch, M.; Foltýnek, P. Creating a Mobile Application with the ESP32 Azure IoT Development Board Using a Cloud Platform.

In Proceedings of the 2021 22nd International Carpathian Control Conference (ICCC), Velké Karlovice, Czech Republic, 31 May–1
June 2021; IEEE: Piscataway, NJ, USA, 2021. [CrossRef]

25. Carducci, C.G.C.; Monti, A.; Schraven, M.H.; Schumacher, M.; Mueller, D. Enabling ESP32-based IoT Applications in Building
Automation Systems. In Proceedings of the 2019 II Workshop on Metrology for Industry 4.0 and IoT (MetroInd4.0 IoT),
Naples, Italy, 4–6 June 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 306–311. [CrossRef]

26. LILYGO® T-WATCH-2020 V3. Available online: http://www.lilygo.cn/prod_view.aspx?TypeId=50053&Id=1380&FId=t3:50053:3
(accessed on 31 December 2020).

27. Bosch Sensortech. Humidity Sensor BME280. Available online: https://www.bosch-sensortec.com/products/environmental-
sensors/humidity-sensors-bme280/ (accessed on 31 December 2021).

28. FreeRTOS—Market Leading RTOS (Real Time Operating System) for Embedded Systems with Internet of Things Extensions.
Available online: https://www.freertos.org/ (accessed on 31 December 2021).

29. Adafruit BME280 Library. Available online: https://github.com/adafruit/Adafruit_BME280_Library (accessed on 31 December
2021).

30. ESP32 BLE for Arduino. Available online: https://github.com/nkolban/ESP32_BLE_Arduino (accessed on 31 December 2021).
31. Chang, K.H. Bluetooth: A viable solution for IoT? [Industry Perspectives]. IEEE Wirel. Commun. 2014, 21, 6–7. [CrossRef]
32. OSI Networking and System Aspects—Naming, Addressing and Registration. Information Technology—Procedures for the

Operation of Object iDentifier Registration Authorities: Generation of Universally Unique Identifiers and Their Use in Object
Identifiers. Rec. X.667; ITU-T. 2012. Available online: https://www.itu.int/ITU-T/studygroups/com17/oid/X.667-E.pdf
(accessed on 25 January 2022).

http://dx.doi.org/10.1109/ICTON51198.2020.9203167
https://5gaa.org/news/vulnerable-road-user-protection/
https://5gaa.org/news/vulnerable-road-user-protection/
http://dx.doi.org/10.1007/s12544-017-0230-3
http://dx.doi.org/10.3390/s19020358
http://www.ncbi.nlm.nih.gov/pubmed/30658392
http://dx.doi.org/10.1109/ITSC.2016.7795885
http://dx.doi.org/10.1109/ICCVE.2015.63
http://dx.doi.org/10.23919/EETA.2019.8804497
http://dx.doi.org/10.1109/IOTSMS48152.2019.8939273
http://dx.doi.org/10.1109/VNC.2015.7385563
https://www.espressif.com/en/products/socs/esp32
http://dx.doi.org/10.1109/WCNC.2019.8885910
https://github.com/DanieleTarchi/IoVRU
https://www.raspberrypi.com/documentation/computers/os.html
https://www.raspberrypi.com/documentation/computers/os.html
https://mosquitto.org/
https://www.eclipse.org/paho/
http://dx.doi.org/10.1109/ICCC51557.2021.9454607
http://dx.doi.org/10.1109/METROI4.2019.8792852
http://www.lilygo.cn/prod_view.aspx?TypeId=50053&Id=1380&FId=t3:50053:3
https://www.bosch-sensortec.com/products/environmental-sensors/humidity-sensors-bme280/
https://www.bosch-sensortec.com/products/environmental-sensors/humidity-sensors-bme280/
https://www.freertos.org/
https://github.com/adafruit/Adafruit_BME280_Library
https://github.com/nkolban/ESP32_BLE_Arduino
http://dx.doi.org/10.1109/MWC.2014.7000963
https://www.itu.int/ITU-T/studygroups/com17/oid/X.667-E.pdf


Future Internet 2022, 14, 57 22 of 22

33. Townsend, K.; Cufí, C.; Akiba; Davidson, R. Getting Started with Bluetooth Low Energy; O’Reilly Media, Inc.: Sebastopol, CA, USA,
2014.

34. Durkop, L.; Czybik, B.; Jasperneite, J. Performance evaluation of M2M protocols over cellular networks in a lab environment.
In Proceedings of the 2015 18th International Conference on Intelligence in Next Generation Networks, Paris, France, 17–19
February 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 70–75. [CrossRef]

35. Grgić, K.; Špeh, I.; Hed̄i, I. A web-based IoT solution for monitoring data using MQTT protocol. In Proceedings of the 2016
International Conference on Smart Systems and Technologies (SST), Osijek, Croatia, 12–14 October 2016; IEEE: Piscataway, NJ,
USA, 2016; pp. 249–253. [CrossRef]

36. Lubbers, P.; Albers, B.; Salim, F. Pro HTML5 Programming—Powerful APIs for Richer Internet Application Development, 1st ed.;
Apress: New York, NY, USA, 2010. [CrossRef]

37. Pimentel, V.; Nickerson, B.G. Communicating and Displaying Real-Time Data with WebSocket. IEEE Internet Comput. 2012,
16, 45–53. [CrossRef]

38. Mishra, B.; Mishra, B.; Kertesz, A. Stress-Testing MQTT Brokers: A Comparative Analysis of Performance Measurements. Energies
2021, 14, 5817. [CrossRef]

39. Butun, I.; Österberg, P.; Song, H. Security of the Internet of Things: Vulnerabilities, Attacks, and Countermeasures. IEEE Commun.
Surv. Tutor. 2020, 22, 616–644. [CrossRef]

40. Singh, M.; Rajan, M.; Shivraj, V.; Balamuralidhar, P. Secure MQTT for Internet of Things (IoT). In Proceedings of the 2015 Fifth
International Conference on Communication Systems and Network Technologies, Gwalior, India, 4–6 April 2015; pp. 746–751.
[CrossRef]

http://dx.doi.org/10.1109/ICIN.2015.7073809
http://dx.doi.org/10.1109/SST.2016.7765668
http://dx.doi.org/10.1007/978-1-4302-2791-5
http://dx.doi.org/10.1109/MIC.2012.64
http://dx.doi.org/10.3390/en14185817
http://dx.doi.org/10.1109/COMST.2019.2953364
http://dx.doi.org/10.1109/CSNT.2015.16

	Introduction
	Technological Background
	End-to-End Architecture
	Proof-of-Concept
	Gateway Interface to Sensing Layer: The ESP32 Platform 
	Software Implementation

	Gateway Interface to the Broker: The Android Platform
	BLE Management
	Android MQTT Client

	Raspberry PI 3B+ Node
	Mosquitto

	Webservice Dashboard

	Feasibility Evaluation
	Discussion
	References

