L .
E@ future internet

Review

Securing IoT Devices against Differential-Linear (DL) Attack
Used on Serpent Algorithm

Khumbelo Muthavhine * and Mbuyu Sumbwanyambe *

check for

updates
Citation: Muthavhine, K.;
Sumbwanyambe, M. Securing IoT
Devices against Differential-Linear
(DL) Attack Used on Serpent
Algorithm. Future Internet 2022, 14, 55.
https:/ /doi.org/10.3390/£i14020055

Academic Editor: Georgios

Kambourakis

Received: 19 October 2021
Accepted: 24 November 2021
Published: 13 February 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Department of Electrical and Mining Engineering, University of South Africa, Roodepoort,
Johannesburg 1709, South Africa
* Correspondence: kdmuthavhine@gmail.com (K.M.); sumbwm@unisa.ac.za (M.S.)

Abstract: Cryptographic algorithms installed on Internet of Things (IoT) devices suffer many attacks.
Some of these attacks include the differential linear attack (DL). The DL attack depends on the
computation of the probability of differential-linear characteristics, which yields a Differential-
Linear Connectivity Table (DLCT). The DLCT is a probability table that provides an attacker many
possibilities of guessing the cryptographic keys of any algorithm such as Serpent. In essence, the
attacker firstly constructs a DLCT by using building blocks such as Substitution Boxes (S-Boxes)
found in many algorithms’ architectures. In depth, this study focuses on securing IoT devices against
DL attacks used on Serpent algorithms by using three magic numbers mapped on a newly developed
mathematical function called Blocker, which will be added on Serpent’s infrastructure before being
installed in IoT devices. The new S-Boxes with 32-bit output were generated to replace the original
Serpent’s S-Boxes with 4-bit output. The new S-Boxes were also inserted in Serpent’s architecture.
This novel approach of using magic numbers and the Blocker Function worked successfully in this
study. The results demonstrated an algorithm for which its S-Box is composed of a 4-bit-output that is
more vulnerable to being attacked than an algorithm in which its S-Box comprises 32-bit outputs. The
novel approach of using a Blocker, developed by three magic numbers and 32-bits output S-Boxes,
successfully blocked the construction of DLCT and DL attacks. This approach managed to secure the
Serpent algorithm installed on IoT devices against DL attacks.

Keywords: security of IoT devices; serpent; differential-linear attack (DL attack); differential-linear
connectivity table (DLCT); magic numbers

1. Introduction

The IoT has seamlessly woven itself into people’s lives based on the fact that everyone
is finding the technology useful in terms of the support that accompanies it. This support
is not limited to making the lives of people easier [1-3]. For example, the connection
from intelligent thermostats, home hubs, remote door locks, and numerous app-controlled
devices has made the lives of the people much more interesting and and of high quality,
both for manufacturing and daily use. It is becoming more and more satisfying in people’s
lives in various ways [4].

IoT supports users in working smarter, living more innovatively, and achieving
total control over users’ lives [3-5]. In addition to users’ smart home devices, IoT is
an indispensable technology in trade and industry in providing companies a real-time
glimpse into the internal operations of the company’s practices [5]. IoT provides insights
into everything from machine production to supply chain and logistics operations (this is
from the warehouse level to the customer’s door) [3,4]. IoT enables businesses to automate
methods and save capital on employment. Moreover, IoT lessens waste and enhances
service delivery by rendering production and delivery of products less expensive and
rendering transparency into client transactions [5]. IoT empowers organizations to reduce
expenses, increase security, and enhance quality from end to end, which tranlates to a

Future Internet 2022, 14, 55. https:/ /doi.org/10.3390/i14020055

https://www.mdpi.com/journal/futureinternet

https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0003-1709-0607
https://doi.org/10.3390/fi14020055
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/fi14020055
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi14020055?type=check_update&version=1

Future Internet 2022, 14, 55

2 of 32

win-win situation for both clients and suppliers [4,5]. Even though IoT is beneficial for the
community and manufacturers, there are difficulties related to the deployment of the IoT,
such as privacy and security of private data.

The privacy difficulties postured by the IoT are related to those postured by existing
digital technologies that obtain and transmit data, especially radio-frequency identification
and cloud computing. IoT devices are everywhere, and users have little experience on the
know-how involved in managing data [4].

When executing an action that depends on digital technologies, including the IoT,
users should consider the potential budgetary and social importance of possible digital
protection occurrences concerning availability, integrity, or data confidentiality in data
operation [3]. These values can weaken resources (for instance, through the interruption of
transactions), threaten reputation (for example, through the disclosure of private data or
website damage), or modify the business environment (for instance, through deprivation
of innovation) [3-5].

Privacy encompasses the practices on which personal data can be obtained and is,
consequently, one of the most prominent challenges. The processes of tracing, verification,
validation of devices, all activities performed, and collecting private data from different
forms can foster an environment for effortless hacking with respect to information [5].

Security is one of the common difficulties that the IoT has to address [3]. Affordability
and low expense broadband connection and Wi-Fi abilities in numerous devices are re-
quired for secure localization in common areas, and transmitting them unprotected would
yield them to cyber-attacks [3,5]. IoT enables consistent data sharing between similar gad-
gets and distinguishes three principal components guaranteeing security—authentication,
access control, and confidentiality of IoT [4]. A robust cryptographic algorithm is needed
to secure data collected, used, stored, and transmitted using IoT devices [3]. IoT devices
depend on cryptographic algorithms to store and transmit confidential information [6-9].
While the improvements of security on IoT devices are increasingly developing using
vigorous cryptographic algorithms, more attackers develop various methods of attacking
the notably strong algorithms [9].

The Serpent algorithm is one of the most popular algorithms and is usually installed
on IoT devices. However there are concerns regarding the robustness of the Serpent
algorithm in terms of security. One of the main concerns is the vulnerability of Serpent
algorithms towards DLCT. DLCT was used to attack Serpent algorithms so as to discover
secret encryption keys [6,7]. Once an invader cracks and discovers the Serpent’s key, all
data encrypted with Serpent in IoT devices can be easily obtained by the attackers. This
attack can result in the exploitation of entire IoT devices and their users. Essentially, it is
easy for an attacker to attack a cryptographic algorithm such as Serpent because it has a low
number of output bits (4-bits) found on the S-Boxes [8]. The Differential-Linear attack can
harm the entire security system of IoT devices if it is not appropriately protected against. A
few studies have been conducted to secure the Serpent algorithm against DL attacks. This
study focuses on strengthening Serpent from DL attacks by constructing a new additional
function called Blocker. This is performed by using three magic numbers and developing
the new 32-bit output S-Boxes so that DLCT becomes cumbersome when building DLCT
using the S-Boxes of the Serpent algorithm. It has been analyzed that DL attacks start with
DLCT. Therefore, by blocking the construction of DLCT, it is believed that a DL attack will
be impossible.

The DLCT can be prevented by using a blocker with three magic numbers. The first
magic number is Q = 4,302,746,963, the second is P = 4,559,351,687, and the third is
M = 4,294,967,296 mapped on Blocker, which will be inserted on Serpent’s architecture.
New 32-bit output S-Boxes were generated to replace the original 4-bits output S-Boxes.
In this study, newly generated 32-bits output, S-Boxes, and Blocker Function successfully
managed to secure the Serpent algorithm by blocking the construction of a probability
table called DLCT used during the process of DL attack.

Future Internet 2022, 14, 55 3 of 32

Additionally, a newly generated function called Blocker is introduced in this study.
A Blocker Function uses a 32-bit output value from S-Box as state32hold and delivers a
new value statehold value as an output. A Blocker Function also transforms a P value, M
value, and Q value into unfactorizable polynomials. Random numbers and XOR operators
are utilized for complexity and confusion in order to prevent reverse engineering for
attackers. The XOR operator and rand() change the values of the variables inside a Blocker
Function. The random numbers and XOR operators also provide a problematic input range
when invaders reverse back a Blocker Function to calculate the exact information utilized.
The value of M, P, and Q are also continually maintained as unfactorizable polynomial
variables, which are non-linear and hard to reverse, in order to construct DLCT using
any machine or computer. The random numbers and XOR operators include inventing
hidden, unseen, and unchangeable variables for intruders. A Blocker Function produces a
unique 32-bit S-Box suitable for the new Magic Serpent Algorithm. A Blocker Function
distracts the attacker since it has many mathematical random numbers and XOR operators.
Additionally, most mathematical XOR operators and random numbers are irreversible.
For more mathematical characteristics of a Blocker Function and C++ explanations, refer to
Section 4 and Figure 1.

uint®_ t Blocker (uintf4_t state32hold, uint®_t statehold)

= old 15 an output of Bloch

{ aintsﬂ_t =0, P=0, TempState =0, M=4294967296;
uinté4_t iSecret:
state32hold = state3Zhold * (bool) (state3zhold/ M)
E + M * (bool) (M / state3Zhold):
if (state3zhold > M)
{ Q = 4559351687;

I some ct LAT tables usin
iSecret = rand()% (Q"M):
= state3Zhold;
state3Zhold <<2;
state32hold <<4;

M~ B

M~ Q:

=0Q " B

EwmowmoE
1

//Changing M, P and ¢ to be random of a ran
M = rand()% iSecret:
P = rand()% iSecret:

Q = rand()% iSecret:

-}while (C % M)

{ //unknovn invisible and irrsvs
TempState = (~state3Zhold) & Q:
state3Zhold = _absé4(state32Zhold”® Q):
statehold= ((state32Zhold)/P)*0273;

iSecret = rand()}% (PAM):

2 = TempState << 1

//Changing M, P and Q to be random of a range stateshold
Q0 = rand ()% statehold:

M = rand()% statehold;

P = rand ()% statehold:

return statehold;

M P o

}

Figure 1. New generated function called Blocker.

Future Internet 2022, 14, 55

4 0f 32

1.1. Serpent Algorithm

The Serpent is the cryptographic algorithm, a block cipher that encrypts and decrypts
a data block of 128-bits using different sizes of the keys, such as 128, 192, and 256-bits [10].
The Serpent has three main building blocks. The building blocks are the mathematical
functions used in the construction of an algorithm. These three main blocks are described
as follows:

1. Initial Permutation denoted by IP. The function of IP is to rearrange an origi-
nal order of the plaintext before the encryption process using Equation (1) where
Original Plaintext is the input of IP. A symbol of ” * ” is a multiplication operator.
OutputIP is an output of IP, and mod(127) is a mathematical modulus of 127. Refer
to Equation (1).

OutputIP = (Original Plaintext * 32)mod (127) 1)
2. Serpent has a 32-round function composed of subkeys (key mixing), eight S-Boxes,

and a linear transformation. The 32-round function is mathematically explained by a
mathematical expression provided in Figure 2.

The linear transformation L is the application of
a series of rotations (< < <), shifts (< <) and
XORs () between the words of the current
internal state. Let W, W, W, and TW; be the 4 words
The following operations are done sequentially:
Wo =<<13. W =W, ==« 3

W, =W, & W, @& W,

Wy =Wad W (W << 3).

Wi =W, <<< 1. Wy=W,; <<<T.

Wy = Wy W1 & Wi,

Wo=Wod Wy (W, << 7).

Wy = W, <<« 5. Finally, we have

Figure 2. 32-round function of Serpent.

3. Serpent has final permutation IP~! function, which is an inverse of initial permuta-
tion IP.

Serpent uses eight 4 x 4 S-Boxes during the encryption process. These S-Boxes,
together with their inverses, are defined in Tables 1-8. For instance, if the input of Sy (X) is
0 = X, then the output is 3, and Sy(0) = 3. If the input of S;(X) is 1 = X, then the output
is 12 and S1(1) = 12. If the input of Sy(X) is 2 = X, then the output is 15, 5;(1) = 15,
and so on. The same applies to the inverse cases. Refer to Figure 2. Serpent requires
33 of 128-bits, and subkeys are generated from an original key given by the user before
encryption starts. The user can provide an original key size of 128, 192, or 256-bits long.
In this study, the original 128-bit key is used to demonstrate how other 33-bit subkeys are
generated using the mathematical expression given in Figure 3.

Future Internet 2022, 14, 55 5o0f 32

Table 1. First S-Box of Serpent defined as Sy (X).

X 0 1 2 3 4 5 6 7 8
So(X) 3 8 F 1 A 6 5
InvSe(X) D 3 B 0 A 6 5 C 1 4 4 7 F 9 8 2

\O
>
=
@)
O
t
i

o)
us]
o~
N
o
\O

Table 2. Second S-Box of Serpent defined as S1(X).

X o 1 2 3 4 5 6 7 8 9 A B C D E
S1(X) F C 2 7 5 A E 8 6 D 3
Inv$y(X) 5 8 2 E F 6 C 3 B 4 7 9 1 D A

Table 3. Third S-Box of Serpent defined as S,(X).

X 0 1 2 3 4 5 6 7 8 9 B C D E F
S2(X) 8 6 7 9 3 C A C E 4 B 5
InvS,(X) C 9 F 4 B C 1 2 0 3 6 D 5 8 A 7

Table 4. Fourth S-Box of Serpent defined as S3(X).

X 0o 1 2
S5(X) 0O F B
InvS;5(X) 0 9 A

3 4 5

o3
©
>
o]
0
w)
sl
s

@)
o
w
g
—
N
>
&)

7 B E 6 D 3 5 B 2 4 8 F 1

Table 5. Firth S-Box of Serpent defined as S4(X).

X o 1 2 3 4 5 6 7 8 9 A B C D F
S4(X) 1 F 8 3 C 0 B 6 2 5 4 A E 7
InvSy(X) 5 0 8 3 A 9 7 E 2 C B 6 4 F D 1

Table 6. Sixth S-Box of Serpent defined as S5(X).

X 0 1 2 3 4 5 6 7 B C D E F
S5(X) F 5 2 B A 9 CO0 3 E 8 D 6 7
InvSs(X) 8 F 2 9 4 1 D E B 6 5 3 7 C 0

Table 7. Seventh S-Box of Serpent defined as S¢(X).

X o 1 2 3 4 6 7 8 9 A B C D E F

Se(X) 7 2 C 5 6 1 D 3

InvS¢(X) F A 1 D 6 0 4 E 7 2 C 8 B
Table 8. Eighth S-Box of Serpent defined as Sy (X).

X o 1 2 3 4 5 7 A B C D E F

S7(X) 1 ¢ F 0o E 8 2 B 7 4 C A 9 3

InvS;(X) 3 0 6 D 9 E 8 B 7 A 1 4 2

Future Internet 2022, 14, 55

6 of 32

It receives the 128, 192 or 256-bit secret key
as input and generates 33 subkeys with 128

bits each. The input has 8 words indexed
from w_g to w_;.

Then, the pre-key is calculated, which are 132
words indexed from wy to w4, in the
following manner:

w; = (Wi_g Pwi_s Pwi_aPwi1 PiPg) << 11
where ¢ is the golden ratio

(v/3 + 1)/2 or 029377959

From the pre-key we generate the 133 words
of the subkeys.

Each word can be written as
ki = 5{3”-*'[:1-1; mod 33)) mod 32(Wi)-

0 <1< 32

Figure 3. Key generation of Serpent.

1.2. Differential-Linear Attack

The differential-linear attack is the mathematical procedure that is used in attacking
algorithms by constructing a probability table called DLCT using S-Boxes in order to guess
the keys [6,7]. An attacker chooses input pairs (P; and P;) of an S-Box and analyzes the
output pairs (C; and Cp) to construct DLCT using Equation (2). From Equation (2), there is
A, which is calculated as P; @ P, and A, which is calculated as C; @& C,. Multiplication is
calculated using the dot multiplication operator to indicate that bits are multiplied instead
of entire bytes.

DLCT(A,A) = Y (~)MEesieA))
Si(x)e[1,0]

It is already stated that Equation (2) is used to construct DLCT using S-Box: For
instance, if the first S-Box of Serpent is defined by Table 1, which has 4-bits input and
4-bits output chosen, then the DLCT will be a 2¢ x 2* matrix. Generally, if an S-Box has
N-bits of input and M-bits of output, then its DLCT, when constructed, will be a 2N x oM
matrix. Hence, the DLCT of the first S-Box of Serpent defined in Table 1 is said to be 2* x 2%,
With the aid of Equation (2), the DLCT of the first S-Box of Serpent is constructed and
given in Table 9. With the aid of Table 9, an attacker can guess the key statistically by using
probability theory. The highest number is eight in Table 9. The probability of guessing
a key is 8/16, which is approximately the probability of guessing the head side when a
coin is tossed. In simple terms, it is easy for an attacker to attack an algorithm with the aid
of DLCT. The attacker checks the correlation between Cy-A and C,- A, if the correlation is
high, then the key is discovered by using DLCT. While the elemental application of DLCT
is for discovering a more accurate key investigation of the DL attack, it can be applied to
improve DL attacks to the next advanced level. This study proved that attackers can apply
the DLCT to choose the differential for C; and the linear approximation for C; in a manner
that exposes the correlation between C; and C; to the attackers” advantage [6].

Future Internet 2022, 14, 55 7 of 32

Table 9. The DLCT of the Serpent’s first S-Box So(X).

A\A 0 1 3 4 5 6 7 8 9 A B C D E F
0 8 8 8 8 8 8 8§ 8 8 8 8 8 8
1 8§ 0 —40 -4 40 4 0 -40 0 O 4 o0 O
2 8§ 0 0 -4 0 O -4 -8 0 0 0O 4 0 0 4
3 8§ —4 0 4 —-40 -4 0 O -4 0 0 4 0 O
4 8 0 -8 0 0 0 O -80 0 8 0 0 0 O
5 8§ 4 0 0 O -4 0 0 0 4 O -4 0 -4 —4
6 8§ —4 —4 o o0 0 o0 8 -4 -4 0 0 0 0 O
7 8§ 0 4 0 0 -4 0 0 4 0 O -4 0 -4 —4
8 8§ —4 0 —4 0 -4 4 0 O -4 0 0 0 4 0
9 8§ 0 -8 0 0 O O O o o0 o0 o0 o0 o0 O
A § 0 —40 4 O -4 40 —-40 0 0 0 4 O
B 8§ 0 0 -4 0 0 -4 0 0 O -84 0 0 4
C 8§ 0 0 O -4 0 0 0 4 0 O -4 -4 0 —4
D § -4 48 0 4 4 0 0 -4 40 0 -4 —40
E 8 4 0 0 -4 0 0 0 0 4 O -4 —4 0 —4
F 8 o o0 4 4 0 0 0 O -8 0 -4 —4 0

1.3. The Magic Number

The magic number refers to the anti-design of using a constant integer directly to
a source code of an algorithm. The magic number is applied to break one of the oldest
functionality of coding [2]. The magic number renders the source code more cumbersome
with respect to being modified and analyzed by an attacker [11]. Magic numbers are more
confusing to an attacker when the same constant is applied to one section of an algorithm’s
source code without the derivative [2,11].

1.4. Objective of the Study

The Serpent algorithm is one of the typical traditional algorithms installed on IoT devices
(example smart cards, sensors, remote controls, and intelligent cameras). The main problem is
the DLCT, which is used in Serpent to reveal hidden encryption keys by intruders utilized to
secure data stored in the IoT devices. In this study, a newly generated 32-bit output S-Boxes
and a Blocker Function is proposed to ensure that the Serpent algorithm is protected from DL
attacks, and the development of a feasibility table called DLCT employed during the process
of a DL attack has to be blocked. A proposed Blocker Function uses a 32-bit output value from
S-Box as state32hold and provides a new statehold value as an output. A Blocker Function
also offers P value, M value, and Q value as unfactorizable polynomials. Random numbers
and XOR operators are used for complexity and confusion in order to stop reverse engineering
used by intruders. The random numbers and XOR operators are also proposed in order to
provide a problematic input range when invaders reverse a Blocker Function to calculate the
exact information utilized in that situation. For more mathematical characteristics of a Blocker
Function and C++ explanations, refer to Figure 1. For more detail of a Blocker Function and
flowchart, refer to Appendix A Figure Al.

1.5. The Numerous DL Attacks on Serpent Algorithm

Anderson et al. [12] attacked the Serpent algorithm using a DL attack and DLCT table.
Eighty-six percent of key bits were discovered. Compton et al. [13] developed a Simple Power
Analysis attack (SPA) to attack an 8-bit smart card encrypted by Serpent. The results showed

Future Internet 2022, 14, 55

8 of 32

that Serpent key generation was convincing to a side-channel attack because of a linear
feedback shift register (LFSR). LFSRs were very common in most cryptographic algorithms;
suggestions were given that Serpent’s LFSRs should be carefully modified and guesstimated
in order to reduce attacks. Bar-On et al. [6] developed a new tool called DLCT used to attack
Serpent’s secret keys. Canteaut et al. [7] analyzed the observation of DLCT to obtain absolute
indicators of Serpent weaknesses. Canteaut et al. [7] expanded the analytic results found on
DLCT and DL attacks. Canteaut et al. [7] improved the observations about the notion of DLCT
and DL attacks. According to the results found by Canteaut et al. [7], the DLCT approach
method was found to be similar to the auto-correlation spectrum entities, and a conclusion
was drawn that DLCT was nothing else but an Auto Correlation Table (ACT). Furthermore,
Canteaut et al. [7] indicated that the ACT spectrum was invariable under any equivalence
similarities and was not invariant under changes. Biham et al. [14] attacked the Serpent
algorithm using the DL attack with the aid of the DLCT tool. Therefore, there is no denial
that the Serpent algorithm is attackable by using DL attacks and the DLCT table. For more
information on Serpent attacks, refer to the literature review of this study.

2. Problem Statement

The Serpent algorithm is one of the most common algorithms required to be installed
on IoT devices. The main concern is a new tool called DLCT used to attack Serpent by
intruders in order to discover secret encryption keys used to secure data stored in IoT devices.
The process of using DLCT to find the key is called a DL attack [6,7]. Once an attacker
cracks and discovers Serpent’s key, all data encrypted with Serpent in IoT devices can be
easily accessible to attackers. This attack can result in the exploitation of entire IoT devices
and their users. Essentially, it is simple for an attacker to attack a cryptographic algorithm
such as Serpent, since it has a low number of output bits (4-bit) found on the S-Boxes [8].
A differential-linear attack can harm the entire security of IoT devices if it is not appropriately
considered. Little has been conducted to secure the Serpent algorithm against DL attacks. This
study focuses on securing Serpent from DL attacks by constructing a new additional function
called Blocker, using three magic numbers, and developing new 32-bit output S-Boxes so that
DLCT will be cumbersome for building DLCT using the S-Boxes of the Serpent algorithm. It
has been analyzed that DL attack starts with DLCT. Therefore, by blocking the construction of
DLCT, it is believed that a DL attack will be impossible.

Additionally, a newly generated function called Blocker is introduced in this study.
A Blocker Function uses a 32-bit output value from S-Box as state32hold and delivers a
new value, statehold value, as an output. A Blocker Function also turns P value, M value,
and Q value into unfactorizable polynomials. Random numbers and XOR operators are
utilized for complexity and confusion in order to prevent reverse engineering for attackers.
The XOR operator and rand() change the values of the variables inside a Blocker Function.
The random numbers and XOR operators also provide a problematic input range when
invaders reverse a Blocker Function to calculate the exact information utilized in that
situation. The values of M, P, and Q are also continually maintained as unfactorizable
polynomial variables, which are non-linear and hard to reverse, in order to construct
DLCT using any machine or computer. The random numbers and XOR operators include
inventing hidden, unseen, and unchangeable variables for intruders. A Blocker Function
produces a unique 32-bit S-Box suitable for the new Magic Serpent Algorithm. A Blocker
Function distracts the attacker since it comprises many mathematical random numbers and
XOR operators. Additionally, most mathematical XOR operators and random numbers
are irreversible. For more mathematical characteristics of a Blocker Function and C++
explanations, refer to Section 4 and Figure 1.

3. Literature Review

Biham et al. [14] developed a Serpent as an algorithm to replace the Data Encryption
Standard (DES) algorithm. The main purpose of developing Serpent was to increase the
Avalanche Effect (AE) in order to confuse and frustrate attackers [15].

Future Internet 2022, 14, 55

9 of 32

Muthavhine and Sumbwanyambe [16] indicated that Serpent had been one of the
most cryptographic algorithms used on IoT devices. In addition, Anderson et al. [12]
demonstrated that Serpent had been used on IoT devices such as smart cards, Intel Pentium,
and other 8-bit processors.

Sehrawat and Gill [17] indicated that nowadays, IoT devices such as smart cards
play a critical function in everyone’s life by delivering excellent services to the facet of
the cyber world. IoT devices could also provide services such as intelligent management
and monitoring. Additionally, Sehrawat and Gill [17] indicated that there has been an
increase in 5G network dependence for seamless services; IoT devices had been attracting
much attention to researchers. However, IoT devices in this miscellaneous 5G network
are vulnerable to many attacks. It was already stated that most IoT devices encrypt data
using Serpent.

Tezcan and Ozbudak [18] tried to reduce attacks found on Serpent by using differential
factors. The differential factor attacked the key size using differential cryptanalysis and
time complexity. Dunkelman et al. [19] developed more accurate results of the DL attack on
round number 11 of Serpent found on IoT devices. The results were found using statistical
analysis, mathematical theory, and experimental criticisms, which showed and declared
that early attacks had exaggerated effects. Compton et al. [13] developed a Simple Power
Analysis attack (SPA) to attack an 8-bit smart card encrypted by Serpent. The results
showed that Serpent key generation was convincing to a side-channel attack because of
a linear feedback shift register (LFSR). LFSRs are very common in most cryptographic
algorithms; suggestions were given that Serpent’s LFSRs should be carefully modified and
guesstimated in order to reduce attacks.

Biham et al. [20] presented a linear approximation on round number nine of Serpent
using a statistical theory of 1/2 + 272 probability. Furthermore, Biham et al. [20] continued
using the theory to attack round number 10 of Serpent using all key sizes: data complexity
of 2118 and time taken of 2%% seconds. A random variable of the probability was also applied
on the first attack against round number 11 of Serpent using 192-bit and 256-bit key lengths,
which needed an equal quantity of data and 2'8 seconds taken [20].

Bar-On et al. [6] developed a DLCT used to attack Serpent’s secret keys. Canteaut
etal. [7] analyzed and observed a DLCT to obtain absolute indicators of Serpent weaknesses.
Canteaut et al. [7] expanded the analytic results found on the DLCT and DL attacks.
Canteaut et al. [7] improved the observations about the notion of DLCT and DL attack.
According to the results found by Canteaut et al. [7], the DLCT approach method was
found to be similar with respect to auto-correlation spectrum entities, and a conclusion
was drawn that DLCT was nothing else but an Auto Correlation Table (ACT). Furthermore,
Canteaut et al. [7] indicated that the ACT spectrum was invariable under any equivalence
similarities and was not invariant under changes.

Bar-On et al. [6] indicated that the DLCT was formulated expeditiously using the fast
Fourier transform. Additionally, Bar-On et al. [6] applied the DLCT’s strength to enhance
DL attacks on ICEPOLE and DES in order to justify published experimental findings on
CAESAR and Serpent. The results showed that DLCT was not abided by the DL attack
model. Little has been conducted with respect to securing Serpent against DL attacks. This
study focuses on securing Serpent, found on IoT devices, against DL attacks by using new
32-bit S-Boxes and a new function developed from three magic numbers in such a way that
DLCT will be cumbersome to construct when using new 32-bit S-Boxes. During the study;,
the analysis of the results showed that DL started with DLCT. Therefore, by blocking the
construction of DLCT, it was believed that the DL attacks would be impossible.

Additionally, a newly generated function called Blocker is introduced in this study.
A Blocker Function uses a 32-bit output values from S-Box as state32hold and delivers
a new value, statehold, as an output. A Blocker Function also turns P value, M value,
and Q value into unfactorizable polynomials. Random numbers and XOR operators are
utilized for complexity and confusion in order to prevent reverse engineering for attackers.
The XOR operator and rand() change the values of the variables inside a Blocker Function.

Future Internet 2022, 14, 55

10 of 32

The random numbers and XOR operators also provide a problematic input range when
invaders reverse a Blocker Function to calculate the exact information utilized in that
situation. The values of M, P, and Q are also continually maintained as unfactorizable
polynomial variables, which are non-linear and hard to reverse, in order to construct
DLCT using any machine or computer. The random numbers and XOR operators include
inventing hidden, unseen, and unchangeable variables for intruders. A Blocker Function
produces a unique 32-bit S-Box suitable for the new Magic Serpent Algorithm. A Blocker
Function distracts the attacker since it comprises many mathematical random numbers and
XOR operators. Additionally, most mathematical XOR operators and random numbers
are irreversible. For more mathematical characteristics of a Blocker Function and C++
explanations, refer to Section 4 and Figure 1.

4. Research Methodology

The main purpose of this study was to secure Serpent found on IoT devices against
DL attacks. The original 4-bit output S-Boxes of Serpent were replaced with new generated
32-bits output S-Boxes. A new mathematical function called Blocker was developed using
three magic numbers. A new 32-bit output S-Boxes and Blocker were inserted on Serpent’s
infrastructure in order to obtain better encryption and decryption processes with resistance
to DL attacks. After inserting new 32-bits output S-Boxes and Blocker in Serpent’s infras-
tructure, a newly modified Serpent was developed. In this study, the new modified Serpent,
with a new S-Boxes and Blocker, was coined Magic Serpent (Mag_Serpent). The functional-
ity of Mag_Serpent was found to be very different compared to the original Serpent since
the encryption process, strength, and the resistance of the DL attacks were stronger than
the original Serpent found on IoT devices. The research study was conducted as follows:

1. Serpent was collected from IoT devices (such as smart cards, sensors, and 8-bit proces-
sors).

2. The correctness of Serpent was checked and tested by using test vectors given by
Serpent developers’ reports.

3. All the implemented procedures on Serpent during the process of DL attacks were
tested and analyzed using C++.

4. All the original 4-bit output S-Boxes of Serpent were replaced by the newly generated
32-bit output S-Boxes.

5. Three magic numbers were used to generate a new function called Blocker inserted in
Serpent infrastructure using C++ implementation. Refer to Figure 1.

6. All functions retrieving S-Boxes of 4-bits output from original Serpent were changed to
retrieve a Blocker Function with 32-bit output S-Boxes. Let us examine the following
example.

Output = S;(x) (3)

Note: S;(x) on Equation (3) is 4-bit output S-Box. Equation (3) is replaced to retrieve
Equation (4).
Blocker(S;(x), Output) 4)

Si(x) on Equation (4) is a 32-bits output S-Box since all original 4-bit output S-
Boxes were replaced with new 32-bit output S-Boxes. Upon key generation, de-
fined in Figure 3, the Golden ratio ¢ = 9E3779B9 is also replaced by magic number
M = 4,294,967,296.

7. The possibility for DL attacks was verified with respect to whether it was still success-
ful after new S-Boxes and Blocker had been applied or inserted. If it was still possible,
steps three and four are repeated.

8. If a DL attack was blocked on steps three, four, and five, then a new algorithm
inserted with new 32-bit output S-Boxes and Blocker was accepted as a Magic Serpent
(Mag_Serpent). As a result, Mag_Serpent was found to be resistant to DL attacks.

The research methodology was conducted on how to make DLCT more unmanageable
with respect to preventing attackers from discovering Serpent’s keys after a DL attack

Future Internet 2022, 14, 55

11 of 32

is applied. It was already stated that the security of Serpent depends on the size of the
S-Box output bits. The original output bits of Serpent’s S-Boxes were found to be short
(4-bit). It is easy for attackers to attack such a type of algorithm. New generated 32-bit
output S-Boxes were used to replace all 4-bit output S-Boxes in order to increase the size
of output bits so that Serpent is secured against DL attacks. It was found that the new
32-bit output S-Boxes worked successfully in preventing DL attacks, while the Blocker
Function worked successfully to block the construction of DLCT. The research methodology
is summarized using the schematic diagram in Figure 4. The results used successfully to
obstruct the construction of DLCT and yielded a complicated process for conducting DL
attacks on Serpent.

(\ Start)

T

Collect Serpent from loT devices.

Check the correctness of Serpent using
test vectors provided by Serpent's
developers.

]

+

Implement all DL procedures
using C++ coding.

Generate new 32-Bits outputs S-

Boxes and their inverses.

—

Use three magic numbers to ‘
generate Blocker. l

|

Replace all original Serpent's S-Boxes with the new 32-Bits

Change all the use of S-Boxes to outputs S-Boxes and insert Blocker function in Serpent's
infrastructure.

use Blocker on each Serpent N
function.

—
o —
- —
- -—

. . <: fnléeﬁﬁi%itg?ﬁ?clfmd a DLCT table : \
Accept and coin a new modified T —
Serpent as Magic Serpent T —
(Mag_Serpent) which is resistant to T No
Differential-Linear (DL) attack. Yes
l Yes : "/|// dified SEHT“
- — s a new modified Serpen —
— — — |
g ™~ ~——encrypting and decrypting properly? —
C End) T _—
~ L . -

Figure 4. Schematic diagram of research methodology.

The Serpent’s S-Boxes were found to be 4 x 4, meaning that they had 4-bit inputs and
4-bit outputs. It was easy to construct DLCT using these kinds of S-Boxes. The DLCT's of
original Serpent’s S-Boxes were tables of 2* x 24 matrix with high-probability elements for
discovering secret keys. Generally, if an S-Box has N-bits of inputs and M-bits of output,
then its DLCT when constructed will be a 2V x 2M matrix. Hence, the DLCT of the first
S-Box of Serpent, defined in Table 1, was said to be 2* x 24. A C++ program code was
written to construct DLCT of the original first S-Boxes defined in Table 1 using Equation (2).
It was proven that it is an easy method to attack Serpent using DLCT, as discussed by Bar-
On et al. [6] and Canteaut et al. [7]. In order to block the DL attack, the new 32-bit output
S-Boxes were generated to replace Serpent’s original S-Boxes. For instance, Tables 1-8
were replaced with Tables 10-17, respectively. The Blocker Function was constructed
from three magic numbers using C++ code given in Figure 1. The magic numbers were
Q =4,302,746,963, P = 4,559,351,687, and M = 4,294,967,296.

Future Internet 2022, 14, 55

12 of 32

Table 10. New generated 32-bit output S-Box to replace Table 1.

X So(X) InvSy(X)
0 411264£80 411264£80
1 91377dalf 10£c22£87
2 1016b6cfo4 7128a6£79
3 21038e4da e15c964be
4 b146544c5 al3ee8f72
5 7128a6{79 f16401all
6 61213ba26 1016b6cf64
7 cl4dbfal8 91377dalf
8 f16401a11 61213ba26
9 e15c964be d1552af6b
A 5119d04d3 cl4dbfal8
B 310af9a2d 8130124cc
C 8130124cc b146544c5
D 10£c22£87 21038e4da
E al3ee8f72 5119d04d3
F d1552af6b 310af9a2d
Table 11. New generated 32-bit output S-Box to replace Table 2.
X $1(X) InvS1(X)
0 1016b6cf64 1016b6cf64
1 d1552af6b b146544c5
2 310af9a2d 21038e4da
3 8130124cc e15c964be
4 al3ee8f72 61213ba26
5 10£c22£87 411264£80
6 61213ba26 7128a6{79
7 b146544c5 10£c22£87
8 21038e4da 5119d04d3
9 cl4dbfal8 al3ee8f72
A f16401all f16401al1l
B 91377dalf 8130124cc
C 7128a6f79 310af9a2d
D el5c964be d1552af6b
E 411264180 91377dalf
F 5119d04d3 cl4dbfal8
Table 12. New generated 32-bit output S-Box to replace Table 3.
X S (X) InvS;(X)
0 91377dalf 91377dalf
1 7128a6{79 1016b6cf64
2 8130124cc 310af9a2d
3 al3ee8f72 al3ee8f72
4 411264180 5119d04d3
5 d1552af6b 21038e4da
6 b146544c5 el5c964be
7 1016b6cfo4 f16401al1l
8 e15c964be cl4dbfal8
9 21038e4da 7128a6{79
A f16401a11l 61213ba26
B 5119d04d3 411264£80
C 10£c22£87 8130124cc
D cl4dbfal8 d1552af6b
E 61213ba26 b146544c5
F 310af9a2d 10£c22f87

Future Internet 2022, 14, 55

13 of 32

Table 13. New generated 32-bit output S-Box to replace Table 4.

X S3(X) InvS;3(X)
0 10£c22£87 61213ba26
1 1016b6cf64 10£c22£87
2 cl4dbfal8 91377dalf
3 91377dalf 41126480
4 d1552af6b b146544c5
5 al3ee8{72 al3ee8f72
6 7128a6f79 8130124cc
7 411264180 fl6401all
8 e15c964be 310af9a2d
9 21038e4da d1552af6b
A 310af9a2d cl4dbfal8
B 5119d04d3 7128a6£79
C b146544c5 5119d04d3
D 8130124cc 1016b6cf64
E 61213ba26 e15c964be
F f16401a11 21038e4da
Table 14. New generated 32-bit output S-Box to replace Table 5.
X S4(X) InvSy(X)
0 21038e4da 10£c22£87
1 1016b6cf64 al3ee8f72
2 91377dalf b146544c5
3 411264£80 8130124cc
4 d1552af6b cl4dbfal8
5 10£c22£87 f16401all
6 cl4dbfal8 7128a6{79
7 7128a6f79 el5c964be
8 310af9a2d 411264£80
9 61213ba26 61213ba26
A 5119d04d3 d1552af6b
B b146544¢5 310af9a2d
C al3ee8f72 5119d04d3
D f16401all 91377dalf
E 8130124cc 1016b6cf64
F el5c964be 21038e4da
Table 15. New generated 32-bit output S-Box to replace Table 6.

X S5(X) InvSs5(X)
0 1016b6cf64 1552af6b

1 61213ba26 al3ee8f72
2 310af9a2d 1016b6cf64
3 cl4dbfal8 5119d04d3
4 5119d04d3 cl4dbfal8
5 b146544¢5 f16401all
6 al3ee8f72 21038e4da
7 d1552af6b 310af9a2d
8 10£c22£87 10£c22£87
9 411264£80 41126480
A f16401all 7128a6£79
B 91377dalf e15c964be
C el5c964be 61213ba26
D 7128a6{79 91377dalf
E 8130124cc b146544c5
F 21038e4da 8130124cc

Future Internet 2022, 14, 55

14 of 32

Table 16. New generated 32-bit output S-Box to replace Table 7.

X S6(X) InvSe(X)
0 8130124cc 61213ba26
1 310af9a2d 91377dalf
2 d1552af6b 310af9a2d
3 61213ba26 fl6401al11
4 91377dalf 1016b6cf64
5 5119d04d3 7128a6f79
6 7128a6{79 d1552af6b
7 cl4dbfal8 41126480
8 f16401all cl4dbfal8
9 al3ee8f72 5119d04d3
A 21038e4da 8130124cc
B 1016b6cf64 al3ee8f72
C e15c964be 21038e4da
D 411264£80 e15c964be
E b146544c5 b146544c5
F 10£c22£87 10£c22£87

Table 17. New Generated 32-bit output S-Box to replace Table 8.

X S7(X) InvS7(X)
0 21038e4da e15c964be
1 e15c¢964be 411264£80
2 1016b6cf64 cl4dbfal8
3 10£c22£87 10£c22£87
4 fl6401all b146544c5
5 91377dalf 7128a6f79
6 310af9a2d 61213ba26
7 cl4dbfal8 d1552af6b
8 8130124cc 21038e4da
9 5119d04d3 fl6401al11
A d1552af6b 5119d04d3
B b146544c5 8130124cc
C al3ee8f72 1016b6cf64
D 41126480 al3ee8f72
E 61213ba26 91377dalf
F 7128a6{79 310af9a2d

Tables 10-17 were experimentally written in C++ program to be represented by
Figures 5 and 6, where Figure 5 indicated all new 32-bit S-Boxes and Figure 6 indicated all
new inverse 32-bit S-Boxes in C++.

4.1. A Blocker Function

In this study, a new function described as a Blocker is added (refer to Figure 1). A Blocker
Function is an a new generated C++ function implemented solely to develop DL attack
blockages on the Serpent algorithm required on IoT devices. This function is developed
after the S-Boxes of the Serpent algorithm are transformed to produce 32-bit output S-Boxes.
The main purpose of a Blocker Function is to ensure that newly generated 32-bit output
S-Boxes suit Serpent’s algorithm infrastructure. In simple terms, a Blocker Function regulates
all new 32-bit output S-Boxes efficiently utilized throughout the encryption and decryption
processes of the newly adjusted Serpent algorithm. A Blocker Function offers a new 32-bit
S-Box suitable for the new Magic Serpent Algorithm. A Blocker Function confuses the intruder
since it contains many mathematical random numbers. Additionally, most random numbers
are irreversible. Without a Blocker Function, a new generated 32-bit output S-Box will not be
placed in the algorithms. This Blocker Function has distinct characteristics for ensuring that a
DL attack is obstructed. These characteristics are defined as follows:

Future Internet 2022, 14, 55

15 of 32

1. The output of a Blocker Function is not fixed unlike in S-Boxes where a look-up table
is implemented with defined inputs and outputs.

2. The output of a Blocker Function is secreted and calculated unlike in the Serpent
S-Boxes where the output is remarkable on a look-up table.

3. A Blocker Function is inevitable. If one recognizes an output of a Blocker Function that
does not signify an input, it can be reversely estimated and retrieved. The intention
is that a Blocker Function is composed of several quantities of random numbers and
XOR operators.

4. Chosen magic numbers (such as P, Q, and M) used in a Blocker Function are unfactor-
izable. Refer to Figure 1.

5. All functions appropriated to comprise a Blocker Function are non-linear.

6. The input of a Blocker Function is 32-bit long, and the intruder cannot easily create
the DLCT of 232 using a computer or any processor since a lot of memory is required.

7. A Blocker Function acquires the output of 32-bit S-Boxes and manipulates them as
its input. Then, an outstanding output value is produced in order to be utilized in
the Magic Serpent algorithm. A new distinct output value is unpredictable; hence, it
confuses the intruders.

8. The output of 32-bit S-Boxes is determined as state32hold. A Blocker Function receives
this output as its input and returns an unpredictable variable called statehold. Refer
to Figure 1.

9. After executing a Blocker Function, all functions in the Serpent algorithm recalling
S-Boxes have to identify or employ a Blocker Function because S-Boxes are mathemat-
ically preserved and unalterable in a Blocker Function.

10. A Blocker Function provides tamper-proof 32-bit output S-Boxes. Let us suppose that
the positions of 32-bit output S-Boxes are altered or the 32-bit S-Boxes are displaced.
In that case, Mag_Serpent will not produce the anticipated results.

This study applies a Blocker Function to create a new 32-bit S-Box suitable for the
new Magic Serpent Algorithm, and this distracts the attacker since it contains many
mathematical random numbers and XOR operators. Additionally, most mathematical
random numbers and XOR operators are irreversible. Unlike the traditional S-Boxes
employed in Serpent algorithms, a Blocker Function has supplemented robustness against
a DL attack. A Blocker Function works favorably in both and is suitable with respect
to the new 32-bit S-Boxes and prevents a DL attack of a new Magic Serpent algorithm.
Mathematically, a Blocker Function is created as follows.

Assign: M = 4,294,967,296

Perform: Change the value of state32hold, using state32hold as the value of the following:

state32hold = state32hold x ($atedaholdy 1 pp s () where state32hold is an
input of a Blocker Function from 32-bit S-Box.

Check if the value of state32hold is greater than M. If state32hold > M, open a first
loop of if statement. Assign the following:

Q =4,559,351,687;

P =4,302,746,963.

iSecret is a random number with the range up to a value of (P ® Q). This number is
with the magic numbers in the entire Blocker Function. iSecref is a random number, and it
is unpredictable and irreversible. Close a first loop of if statement.

Check if this the value of state32hold is less than or equal to M. If state32hold < or =M,
open a second loop of i f or else statement. Assign the following: iSecret is a random number
with the range up to (Q & M). Assign M = state32hold and Q = state32hold <<< 2,
where << < is the left round shifting of the number of bits, for example, five in decimal
notation = 0101 in binary notation. If 0101 is round left-shifted one (by one), then 0101
will be 1010 in binary notation, which equals 10 in decimal notation or A in hexadecimal
notation. Therefore, 5 <<< 1 = 10 is represented in decimal notation. Assign the
following:

P = state32hold << < 4;

M
state32hold

Future Internet 2022, 14, 55

16 of 32

Q=MoP;
P=MoQ;
M=Q®P.

Change the values of M, P, and Q into random numbers in a range from 0 to iSecret;
mathematically, this can be expressed as follows:

M = rand (M) modulo iSecret

P = rand(P) modulo iSecret

Q = rand(Q) modulo iSecret
the where modulo operation is the mathematical operator that returns the remainder of a
division random number x denoted by rand(x) and iSecret. In this study, x can be M, P, or
Q. Close a second loop of if or else statement.

Recollect all the declared values calculated from the first and second if statements.
If the recollected values pass a variable Q greater than zero, then create a variable called
TempState.

Assign the following: TempState = NOT (state32hold) ANDQ. where NOT and AND
are mathematically bitwise operators. Note that NOT operator returns negative numbers
increased by one if an input is a positive integer. For instance, NOT(5) = —6, NOT(10) =
—11, NOT(2) = —3, and so on.

Assign the following: state32hold = |(state32hold & Q|, where |x| is an absolute
operator. An absolute operator converts every negative variable to a positive variable.
For instance, | —y| = |y| = y.

Assign the following:

statehold = (Stte32hold) g 187

iSecret = rand(iSecret) modulo (P & M).

Assign the following: Q = TempState <<< 1.

Note that the creation of Q = TempState <<< 1 always decreases the value of Q
continuously until Q is less than zero. A Blocker Function also checks if Q is greater than zero.
If Q is more significant than zero, recur the third for loop until Q is less than zero or change
Q, P, and M values into random numbers with a range of zero to the value of statehold.

Q = rand(Q) modulo (statehold)

M = rand(M) modulo (statehold)

P = rand(P) modulo (statehold)

Transfer or replace the new value of statehold that will be used by different Serpent
functions or other building blocks used on the Serpent algorithm.

Close the third for loop.

Close a Blocker Function.

A Blocker Function uses a 32-bit output value from S-Box as state32hold and delivers
a new value statehold value as an output. A Blocker Function also turns P value, M
value, and Q value into unfactorizable polynomials. Random numbers and XOR operators
are utilized for complexity and confusion to prevent reverse engineering for attackers.
The XOR operator and rand() change the values of the variables inside a Blocker Function.
The random numbers and XOR operators also provide a problematic input range when
invaders reverse a Blocker Function to calculate the exact information utilized in that
situation. The value of M, P, and Q are also continually maintained as unfactorizable
polynomial variables, which are non-linear and hard to reverse, in order to construct
DLCTs using any machine or computer. The random numbers and XOR operators include
inventing hidden, unseen, and unchangeable variables for intruders. A Blocker Function
produces a unique 32-bit S-Box suitable for the new Magic Serpent Algorithm. A Blocker
Function distracts the attacker since it comprises many mathematical random numbers and
XOR operators. Additionally, most mathematical XOR operators and random numbers
are irreversible. For more mathematical characteristics of a Blocker Function and C++
explanations, refer to Figure 1. For more detail of a Blocker Function and flowchart, refer
to Appendix A Figure Al.

Future Internet 2022, 14, 55

17 of 32

SiNew 4x32 bit Ssrpsnt S-boxss/) /S

{0x411264f80,
0x21038e4da,
Ox6l213baZe,
OxelSc9cdbe,
Ox8130124cc,

O=xdl5ss2afel,
Oxal3esd8f72,
Oxkl4g544ch,
Oxfled40lall,
OxelSc9edbe,
{0x81377dalf,
Oxalleesdf72,
Oxkbl4c544cs,
0x21038e=4da,
0x10fc22f87,
0x310afoz2d},
{Ox10fc22f87,
Ox91377dalt,
0xT7123a6f79,
0x21038e4da,
Oxkl4g544ch,

{0x21038e4da,
Ox411264f80,
Oxclddkbfals,
Oxel2l3bale,
Oxal3eesf72,
OxelSchedbe},

Oxcldadbfals,
Oxal3ee8f72,
Ox411264f30,
OxelScoedkbe,

{0x8130124cc,
Oxel2l3baZe,
0x7123a6f79,
Oxal3eegf72,
OxelScY9e4dbe,

{0x21038e4da,
Ox10fc22f87,
Ox310afsazd,
0x5115d404d3,
Oxal3esBf72,

Ox9137T7dalf,
Oxkl146544c5S,
Oxclddbfals,
0x511940443,
0x10fc22F87,

Oxdl552aféb},
{O0x1016b6cted,

Ox310af%az2d,
Ox10fc22f87,
0Ox21038e4da,
0x9137T7dalf,
0x411264£380,
OxT1253ae6f79,

static const uinté4 _t S[2][1E] = {

Ox10lekbecfed,
0x7128a6f79,
Oxfle40lall,
0x310afvazd,
Oxal3eedf72,

0x8130124cc,
Ox6l213baze,
Oxcldadbfals,
0x7128a6f79,
0x511540443},
0x8130124cc,

0x411264f30, OxdlSsZafeb,

Oxl0leébecfcd,

OxelScSedbe,

Oxfle40lall, 0x511540443,
Oxcl4dbfalg, O0x6l2l3bale,

Ox10lebecfed,
DxdlssZafel,
0x411264£80,
Dx310af%azd,
0x83130124cc,

Oxfle40lall},

OxlOlebecfced,

Oxcladkhfals,
Oxal3eedf72,
OxelScS9edbe,
0x5115404d3,
OxelZl3bale,

Ox8137T7dalt,

Oxdl552afekh, O0xl10fc22f37,
0x7T123aef79, 0x310af%%azd,
0x51154d044d3, O0xkbl4a544cs,
Oxfle4d40lall, 0Ox3130124cc,

{0x1l0lebecfed, OxelZl3bale,

0x5115940443,
Oxdls5Zafel,
Oxfle40lall,
OxT128a6f75,

0x21038e4da},

Ox310afsazd,
0x91377dalf,
Oxclddkfals,
0x21038e4dda,
0x411264F30,

Ox10fc22f87},

OxelSchedbe,
Oxfle40lall,
Ozxclddkfals,
Oxdl552aféelb,
0Ox411264F50,

OxT125a6fTa}E:

O=x310af5azd,
Oxbl46544cs,
Ox10fc22f87,
0x9137T7dalf,
0x8130124cc,

Oxdls52Zafel,
0x51154044d3,
Oxfle4d40lall,
Oxl0lekbecfcd,
0xbl46544csS,

0x10lebecfad,
0x9137T7dalf,
0x8130124cc,
Oxbl46544csS,
Ox6l213baiZa,

Figure 5. New 32-bit S-Boxes written in C++.

Future Internet 2022, 14, 55

18 of 32

OxelScSedbe,

Oxbl48544ch,

OxelScSed4be,
0x7128acf75,
Oxal3ee3f72,
Ox310afsaz2d,
Oxclddbfald},
{0x91377dalf,
Oxal3es3f72,
OxelScSedbe,
Ox7128a6f75,
0x8130124cc,
Ox10fc22f87},
{0xel2l3kale,
Ox411264f80,
0x8130124cc,
OxdlsSzafel,
0x5119d04d3,
O0x21038e4dal},
{0x10fc22F87,
0x8130124cc,
0x7128acf75,
Ox6l213baze,
0x51159d04d3,
Ox21038e4da},
{Oxdl552afek,
0x51194d04d3,
0x21038e4da,
0x411264f80,
Oxel213kbale,
0x8130124cc},
{O0xel2l3kale,
Oxfle401all,
Oxdlsszafek,
0x5119d04d3,
0x21038e4da,
Ox10fc22f€87}) ,
{0xel5c9edbe,
Ox10fc22f87,
Oxel213kbale,
Oxfle401all,
Ox10lebecfed,

Oxl0lebecfed,

A AW=w ®x3Z2 bit S=srpent i1nverss S-boxss/ss
gtatic const uintéd4 t IS[E][le] = {
{0x411264f830, Ox10fc22f37, O0xT128acf75,

Oxal3eedf72,

0x21038e4da,

Ox310afsa2d},
{0x10lebeocfed,

Ox6l213baze,
OxlOfcZ22f87,
Oxfle40lall,
OxdliSZafel,

A

Oxfle40lall,

Ox91377dalf, Ox6lZlibaZea,
Oxdls5Zafek, Oxcl4dbfals, 0x8130124cc,

0x5119d04d3,

Oxb146544cS, 0x21038e4dda,

0x411264f80,
0x51159d404d3,
0x8130124cc,
0x51377dalf,

Oxl0lébecfed, O0x310afsazd,

0x51159d404d3,
Oxfle40lall,
OxelZl3bae,
OxdlsszZafeb,

Ox10fc22£87,
Oxkbl4e544cE,
0xfle401all,
Oxcl4dkhfalsd,
Ox10lekecfead,

Oxal3eelf72,
Oxcl4dbfalld,
OxelScSedbe,
OxdlsS2afeb,
0x91377dalf,

Oxal3esdf72,
Oxcl4dkhfalsd,
Ox310afoa2d,
0x7128a6f79,
0x91377dalf,

0x91377dalt,
Ox10lekecfead,
0x411264f80,
Ox8130124cc,
OxelScSedbe,

0x411264f30,
Oxkbl4e6544csh,
Oxdlss2afel,
0x5115404d3,

Oxal3eedf72,

O0x310af9a2d} }:

O0x21038e4da,
Oxcl4dbfalld,
Ox411264f80,
Oxl21465494cS,

0x91377dalf,
Oxal3es3f72,
Ox310afsaz2d,
Ox7128acf75,

OxelScSe4be,

Oxk146544c5,
Oxfle40lall,
Ox411264f30,
0x310afsazd,
OxlOlebecfe4,

0x10lebecfed,
Oxfle401lall,
Ox10fc22f87,
OxelScSedbe,
Oxkbl4e544cE,

Ox31l0afsazd,

0x71283a6f79,
Oxcld4dbfalld,
Oxal3es3f72,
Oxkb146544csS,

Oxclddbfals,
Ox7128acf75,
Ox21038e4da,
0x8130124cc,

0x91377dalf,

Figure 6. New inverse of 32-bit S-Boxes written in C++.

Future Internet 2022, 14, 55

19 of 32

4.2. Experimental Confirmation of DL Attack on Serpent

This study experimentally verified and analyzed the DL attack conducted in [19] on a
12-round Serpent. The attack was based on the fundamental 11-round DL attack using a
plaintext pair that provides the input differentials of 28 participating S-Boxes in round zero.
Consequently, changing the Serpent algorithm was conceivable, and a 12-round attack
against Serpent with 256-bit keys was obtained.

Dunkelman et al. [19] tried all the possible input differences for round 1 that yielded
the difference LT~ (AP) = 20000000000001 A00E00400000000000,. The difference was not
changed by S-Boxes 2, 3, 19, 23, and so on; those S-Boxes did not change the participating
bits of LT~1(AP) [19]. Consequently, Dunkelman et al. [19] constructed plaintext structures,
which took that fact into attention and obtained a 12-round attack on Serpent:

1. Dunkelman et al. [19] selected N = 21235 plaintexts that consisted of 2115 stryctures,
and each was selected by choosing the following: (a) an abitaray plaintext Fp; (b) the
plaintexts P, ..., Pyi2_;, which differed from Py by all the 2!'2 — 1 possibilities of
non-empty subsets of the bits which were used as inputs of all S-Boxes except 2, 3, 19,
and 23 in round zero [19].

2. Dunkelman et al. [19] requested the cipher texts of the encrypted plaintext structures
by using the private unknown key K. 3. For every input 112-bit of Ky value using
those 28 S-Boxes, partly encrypted all the plaintexts in the first round and utilize the
original 11-round DL attack on Serpent [19].

3. Each experimental key revealed and provided Dunkelman et al. [19] 112 + 20 +
28 = 160-bit subkeys: 112-bit of round 0; 20-bit of round 1; and 28-bit of round 11,
simultaneously with an accuracy test [19]. The accurate estimation of the 160-bit was
anticipated to be the typical and frequently expected value with the appearance of
more than 84% completion rate [19].

4. The remainder of the key bits were retrieved by supplemental techniques [19].

The study experimentally verified that the data attack complexity was 21235 chosen
plaintexts. The time attack complexity 21235 x (%) x 2112 = 22317 encryptions for the
partial encryption in Step 3, and 21374 x 2112 = 22494 for the repeated trials of the 11-round
DL attack [19].

The study further experimentally verified that on a 10-round DL attack of Serpent
using 128-bit keys, the data complexity was 21012 elected plaintexts, and time encryption
complexity was 21152,

4.3. Experimental Contribution of DL Attack on a Newly Generated Mag_Serpent

Mag_Serpent used a new 32-bit S-Box, which declined to execute C++ DLCT from
various computers and machines due to memory limitations on diverse computers and
machines. No computers and machines could compute the DLCT of 2¢ x 232 = 16 x
429,4967,296 matrix, which is presumed to carry 68,719,476,736 entities. Without DLCT,
it was impracticable to conduct a DL attack on a newly generated 4 x 32 S-Boxes of
Mag_Serpent algorithm. No rounds out of 32 were attacked using the DL attack due to
the new 32-bit output S-Boxes, which obstructed the development of the DLCT due to
memory constraints.

A review of how DLCT was theoretically developed was examined and programmed
experimentally in C++ code for validation, testing, confirmation, and verification. On the
Serpent, the results revealed that the DL attack was possible. The main building blocks
that performed all possibilities of the DL attack were the size of the S-Boxes. The Serpent’s
S-Boxes were 4 x 4, indicating 4-bit inputs and 4-bit outputs. The experiment determined
that it was straightforward to build DLCT utilizing the 4 x 4 Serpent S-Boxes (refer to
Table 9 and Figure 7).

Future Internet 2022, 14, 55

20 of 32

Figure 7. C++ experimental results of DLCT

The experiment used a C++ program to generate the DLCT of 4 x 4 and 4 x 32 S-Box.
The code validation was examined by using a 4 x 4 Serpent S-Boxes and a newly generated
4 x 32 S-Box of Mag_Serpent algorithm. The purpose of validating the code was to confirm
the correctness of the written C++ experimental output DLCT compared to the theoretical
outputs. Note that the DLCT of 4 x 4 S-Box is a matrix of 24 x 24 = 16 x 16 matrix with
256 entities (refer to Table 9 and Figure 7).

The experiment continued on a newly developed 4 x 32 S-Box of Mag_Serpent
algorithm. The program malfunctioned after five hours before the DLCT was executed. No
computer or machine could compute the DLCT of 2% x 232 = 16 x 4,294,967,296 matrix,
which is expected to contain 68,719,476,736 entities. Without the DLCT, conducting a DL
attack on a newly developed 4 x 32 S-Box of Mag_Serpent algorithm was impracticable
(refer to Table 9 and Figure 7).

DLCT of 4 x 4 S-Box had the first integer 16, which is (2*) considering the S-Box
required four bits output as the most distinguished parameter. Sixteen is a byte that was
donated as 00010000 in binary notation. If each 4 x 4 S-Box DLCT was treated as a byte,
then the memory required to construct 4 x 4 S-Box DLCT is 8 bits x 256 = 256 bytes. Note
that 256 is the number of items displayed on a 4 x 4 S-Box DLCT. A machine or computer
can efficiently handle 4096 bytes (refer to Table 9 and Figure 7).

From the above computations, the S-Box required thirty-two bits as the first parameter.
The study presumed that the DLCT of 4 x 32 S-Box would have the first number item
as 4,294,967,296, which is (232). The 4,294,967,296 number is a triple-word comprising 5
bytes donated as 00000000100000000000000000000000000000000 in binary notation. If each
4 x 32 S-Box DLCT element were treated as a triple-word, then the memory required to
build 4 x 32 S-Box DLCT would be 40 bits x 2% x 232 = 343,597,383,680 bytes. Note that
343,597,383,680 was an expected number of entities displayed on a 4 x 32 S-Box DLCT.
A machine or computer could not easily handle a computation memory of 343,597,383,680
bytes of each item. Hence, C++ DLCT of the 4 x 32 S-Box program malfunctioned before
execution (refer to Table 9 and Figure 7).

DLCT of the Serpent S-Box was a table with 2% rows x 2% columns with high probabil-
ities of comprehending a key. The experiment used the C++ program to generate the DLCT
of 4 x 4 Serpent S-Box. After examining the method, the results confirmed that attacking
the Serpent algorithm using DLCT was achievable. The study applied the newly created
32-output-bit S-Boxes on Serpent found on IoT devices in order to block a DL attack (refer
to Table 9 and Figure 7). Table 9 was presumed DLCT, and Figure 7 was the experimentally
analyzed DLCT performed by running a C++ DLCT code. A C++ DLCT code was used to

Future Internet 2022, 14, 55

21 of 32

prove and confirm that the study of building a DLCT was conducted with all methods of a
DL attack on a Serpent.

The code was also implemented in both Serpent and Mag_Serpent in order to examine
whether a DL attack was possible. All results were presented, and the results completely
explain the development of the DLCT that came before; after a novel approach of utilizing
32 bits, S-Boxes were implemented. The study employed a Blocker Function to create a
new 32-bit S-Box suitable for the new Mag_Serpent algorithm and distracted the intruder.
The random numbers and XOR operators also provide a problematic input range when at-
tackers reverse a Blocker Function to determine accurate information used in that situation.
The values of M, P, and Q are also continually maintained as unfactorizable polynomial
variables, which are non-linear and hard to reverse, in order to construct DLCT using any
machine or computer. The random numbers and XOR operators include inventing hidden,
unseen, and unchangeable variables for intruders. A Blocker Function produces a unique
32-bit S-Box suitable for the new Magic Serpent Algorithm. A Blocker Function distracts
the attacker since it comprises many mathematical random numbers and XOR operators.
Additionally, most mathematical XOR operators and random numbers are irreversible.
For more mathematical characteristics of a Blocker Function and C++ explanations, refer to
Section 4 and Figure 1.

In this study, Mag_Serpent was resistant to a DL attack and created a new 4 x 32 S-
Box. The study used a Blocker Function to insert the new 32-bit S-Boxes that are suitable
for the new Mag_Serpent algorithm. The study used a Blocker Function to confuse the
attacker since it comprises many mathematical random numbers and XOR operators.
Additionally, most mathematical XOR operators and random numbers are irreversible.
The new Mag_Serpent successfully decrypted and encrypted information after adopting a
Blocker Function and the new 4 x 32 S-Boxes. The code of the new Mag_Serpent algorithm
is obtainable upon request. The C++ code confirmed that a DL attack was permissible
to a standard Serpent on several rounds, including round 12 before applying a Blocker
Function and the new 4 x 32 S-Boxes. Nevertheless, after applying a Blocker Function and
the new 4 x 32 S-Boxes as a novelty, the C++ code confirmed that the study blocked the DL
attack successfully on Mag_Serpent. Additionally, creating a DLCT matrix with 232 rows
and columns was not straight forward due to the memory constraints of the computer.

5. Results and Analysis

On Serpent, the results revealed that the DL attack was possible. The main build-
ing blocks that performed all possibilities of the DL attack were the size of the S-Boxes.
The Serpent’s S-Boxes were 4 X 4, indicating 4-bit inputs and 4-bit outputs. The experiment
determined that it was straightforward to build a DLCT utilizing 4 x 4 Serpent S-Boxes
(refer to Table 9 and Figure 7).

The experiment used a C++ program to generate a DLCT of 4 x 4 and 4 x 32 S-Box.
The validation of the code was examined by using a 4 x 4 Serpent S-Box and a new
generated 4 x 32 S-Box of Mag_Serpent algorithm. The purpose of validating the code was
to confirm the correctness of the written C++ experimental output DLCT compared to the
theoretical outputs. Note that the DLCT of 4 x 4 S-Box is a matrix of 2* x 2* =16 x 16
matrix with 256 entities (refer to Table 9 and Figure 7).

The experiment continued on a newly developed 4 x 32 S-Box of Mag_Serpent
algorithm. The program malfunctioned after five hours before DLCT was executed. No
computer or machine could compute the DLCT matrix of 24 % 232 = 16 x 4,294,967,296,
which is expected to contain 68,719,476,736 entities. Without the DLCT, it was impracticable
to conduct a DL attack on a newly developed 4 x 32 S-Box of Mag_Serpent algorithm.
On Serpent, results revealed that the DL attack was possible. The main building blocks
that performed all possibilities of the DL attack were the size of the S-Boxes. The Serpent’s
S-Boxes were 4 x 4, indicating 4-bit inputs and 4-bit outputs. The experiment determined
that it was straightforward to build a DLCT utilizing the 4 x 4 Serpent S-Boxes (refer to
Table 9 and Figure 7).

Future Internet 2022, 14, 55

22 of 32

A DLCT of 4 x 4 S-Box has a first integer of 16, which is (2*) considering the fact
that S-Box required four-bit outputs as the most distinguished parameter. Sixteen is a byte
donated as 00010000 in binary notation. If each 4 x 4 S-Box DLCT is treated as a byte, then
the memory required to construct a 4 x 4 S-Box DLCT was 8-bit x 256 = 256 bytes. Note
that 256 is the number of items displayed on a 4 x 4 S-Box DLCT. A machine or computer
can efficiently handle 4096 bytes (refer to Table 9 and Figure 7).

From the above computations, S-Box required thirty-two bits as the first parameter.
The study presumed that the DLCT of 4 x 32 S-Box would have the first number item as
4,294,967,296, which is (232). The number 4,294,967,296 is a triple word comprising 5 bytes
donated as 00000000100000000000000000000000000000000 in binary notation. If each 4 x 32
S-Box DLCT element was treated as a triple-word, then the memory required to build 4 x 32
S-Box DLCT would be 40 bits x 2* x 232 = 343,597,383,680 bytes. Note that 343597383680
was an expected number of entities displayed on a 4 x 32 S-Box DLCT. A machine or
computer cannot easily handle a computation memory of 343597383680 bytes of each item.
Hence, the C++ DLCT of the 4 x 32 S-Box program malfunctioned before execution. Refer
to Table 9 and Figure 7.

DLCT of the Serpent S-Box was a table of 2* rows x 2 columns with high probabilities
of comprehending a key. The experiment used the C++ program to generate the DLCT of
4 x 4 Serpent S-Box. After examining the method, the results confirmed that attacking
the Serpent algorithm using DLCT was achievable. The study applied the newly created
32-output-bit S-Boxes on Serpent found on IoT devices to block a DL attack (refer to Table 9
and Figure 7).

The new 32-bit output S-Boxes prevented the construction of DLCT, which was pre-
sumed to be a 2* x 232 matrix, since the new output bits increased from 4 bit to 32 bit. That
is, a 2% x 232 = 256 x 4,294,967,296 matrix is required to construct DLCT, which needs
high computer memory in order to compute and display such a matrix. The experiment
demonstrated that it was impracticable to construct a DLCT of a new 32-bit output S-
Box using Equation (2) if the Blocker Function is embedded on Serpent’s structure, since
the maximum size limitation was limited and the memory required had been exceeded.
The C++ program of the DLCT with respect to new S-Boxes clashed before DLCT was finally
constructed due to the memory limitation of a computer. An ordinary computer cannot
construct a matrix of 256 columns x 4,294,967,296 rows. The experiment also confirmed
that it was impractical to construct a matrix of 256 x 4,294,967,296, since a computer has a
maximum memory of 24, which is impossible. If ther eis no DLCT, there will be no DL
ttacks. Therefore, in this study, securing Serpent against DL attacks by using the Blocker
Function and 32-bit output S-Boxes worked successfully. The experiment showed that
when the Blocker Function was inserted in Serpent’s infrastructure, all positions of 32-bit
S-Boxes were unchangeable. For instance, a new 32-bit output Sp(X) cannot be changed
nor substituted with any arbitrarily new 32-bit output S-Box such as S1(X), S2(X), ...,
or S7(X). The newly generated S-Boxes cannot be replaced by any 32-bit output S-Box
taken from other known algorithms, even though the sizes are equal.

In this study, all procedures used to attack the original Serpent using DL attacks were
studied and conducted. The C++ programs were written to confirm if an original Serpent
could be attacked using DLCT and DL attacks. The C++ programs confirmed and executed
the same results defined and provided in Table 9. Table 9 was the theoretical results found
by Bar-On et al. [6] when the original Serpent was attacked using 4-bit output S-Boxes
defined in Table 1. All procedures used to attack an original Serpent by Bar-On et al. [6]
were conducted using C++ programs. In this study, the C++ programs confirmed and
validated the theoretical results defined in [6]. The experimental results found in this study
are given in Figure 7. Table 9 and Figure 7 had the same elements. Table 9 provides the
theoretical DLCT, as explained by Bar-On et al. [6], and Figure 7 provides the experimental
DLCT results conducted in this study. The serpent was attacked on rounds 10 and 11,
whereas Mag_Serpent resisted being attacked all rounds during the DL attack process
(refer to Table 18 and Figure 8).

Future Internet 2022, 14, 55 23 of 32
Table 18. Results of DL Attack.
Name of Algorithm Time Complexity Data Complexity Rounds Attacked
Serpent 51155 5101.2 10
Serpent 9231.7 9249.4 11
Mag_Serpent o o 0
1 1 1
. 11
) N
L+ -

#Rounds Attacked
|
|

()

! ! I
Serpent Serpent . Mag Serpent

Name of Algornthm

Figure 8. Results of DL attack.

The C++ experiment showed that a DL attack was possible with respect to the orig-
inal Serpent before new S-Boxes and Blocker approaches were implemented, but after
the implementation of the novelty of using new 32-bit output S-Boxes and Blocker Func-
tion, the DL attack was blocked on a new modified Serpent called Mag_Serpent (refer to
Tables 19 and 20).

Table 19. Results of feasibility of constructing DLCT before and after 32-bit output S-Boxes and
Blocker were applied.

Name of Aleorithms Before 32-Bit Output S-Boxes After 32-Bit Output S-Boxes
& and Blocker Were applied and Blocker Were Applied
. Construction of DLCT was
Serpent Construction of DLCT was infeasible due to the

feasible .
requirement of memory

Table 20. Results of key discovery before and after 32-bit output S-Boxes and Blocker were Applied.

Before 32-Bit Output S-Boxes After 32-Bit Output S-Boxes and

Name of Algorithms and Blocker Were Applied Blocker Were Applied
Serpent The key was revealed in all No discovery of a key was found
crpe rounds since no DLCT, no DL attack

In cryptography, the Avalanche Effect is a satisfactory characteristic of algorithms [21].
If one input bit is inverted (flipped), the output bits have to improve significantly. Such a
small adjustment in either the plaintext or the key should produce an excessive variation
in the ciphertext in strong algorithms [21]. The Avalanche Effect is advanced in order to

Future Internet 2022, 14, 55

24 of 32

obtain a method called the Strict Avalanche Criterion (SAC) for examining the encryption
robustness of an algorithm [22]. SAC is achieved if a particular input bit, either the plaintext
or the key, returns the transformation of ciphertext output bits of 50% probability [22].
The experiment utilized the Avalanche Effect on Serpent and Mag_Serpent in order to
obtain SAC. The results showed that the Serpent and a newly generated Mag_Serpent
algorithm had better SAC characteristics. The Avalanche Effect of Mag_Serpent and
Serpent on both key and plaintext was approximately 50% probability compared to SAC
characteristics (refer to Table 21 and Figures 9-14).

bcdeffedchbad

cdeffedcba

bcdeffedchbad

bcdeffedcbat
bcdeffedcbat

bcdeffedchbad

bcdeffedchbad

bcdeffedcbat

h return value 8

Figure 9. Experimental Avalanche Effect of Serpent when one bit of a key was flipped.

Future Internet 2022, 14, 55 25 of 32

return wvalue @

Figure 10. Experimental Avalanche Effect of Serpent when one bit of a plaintext was flipped.

Future Internet 2022, 14, 55 26 of 32

Figure 11. Experimental Avalanche Effect of Mag_Serpent when one bit of a key was flipped.

Future Internet 2022, 14, 55 27 of 32

changed out

return value @

Figure 12. Experimental Avalanche Effect of Mag_Serpent when one bit of a plaintext was flipped.

Future Internet 2022, 14, 55 28 of 32

ol - STARTE
o4 - N
o2 - N

SN =
1087

wsl [-

I
Serpent Mag Serpent

#hey Avalanche Effect in Percentage

Name of Algorithm

Figure 13. Experimental key Avalanche Effect in percentage.

32

oy

=

‘.‘E '|]I-.; 1

A i -
o

& 502 .
=

=

2 Al .
§

-) 1.8
= 4DE .
w N
=

= ! !

3 Serpent Mag_Secrpent
=y

#H

MNuame ol Algorithm

Figure 14. Experimental plaintext Avalanche Effect in percentage.

Table 21. Avalanche Effect of key and plaintext when one bit was flipped.

. Key Avalanche Effect in Plaintext Avalanche Effect in
Name of Algorithm
Percentage Percentage
Serpent 49.8657 50.3842
Mag_Serpent 50.5340 49.7985

In cryptography, the memory required to install an algorithm is one of the most
needed parameters before installation. If an algorithm requires higher memory than the
platform or environments installed, that algorithm is neglected irrespective of encryption
strength. The study measured the memory of both Serpent and Mag_Serpent using the
C++ program. The results showed a memory of 11181 bytes and 13206 bytes for Serpent
and Mag_Serpent, respectively (refer to Table 22 and Figures 15-17).

Future Internet 2022, 14, 55

29 of 32

Table 22. Memory required for installation of algorithms.

Name of Algorithm Memory Required in Bytes
Serpent 11,181
Mag_Serpent 13,206

Figure 16. Experimental memory of Mag_Serpent for installation.

-J[JI'

L3 .

L1 [i

I
Serpent Mag_ Serpent

#Memory Required for Installation in Bytes

Nume ol Algorithm

Figure 17. Memory required for installation in bytes.

Encryption and decryption of Serpent and Mag_Serpent were experimentally con-
ducted to verify if both algorithms functioned splendidly for the encryption and decryption.
The study used an image to test the encryption and decryption of Serpent and Mag_Serpent
using the C++ program. The results demonstrated that both encryption and decryption of
Serpent and Mag_Serpent were working as expected (refer to Figure 18).

Future Internet 2022, 14, 55

30 of 32

Original Encrypted Decrypted
Image Image Image

Serpent

Figure 18. Encryption and decryption of image by using Serpent and Mag_Serpent.

6. Conclusions and Future Work

The study measured the memory of both Serpent and Mag_Serpent using the C++
program. The results demontrate a memory of 11,181 bytes and 13,206 bytes for Serpent
and Mag_Serpent, respectively.

The experiment conducted the Avalanche Effect on Serpent and Mag_Serpent in
order to obtain SAC. The results demonstrated that the Serpent and a newly gener-
ated Mag_Serpent algorithm had better SAC characteristics. The Avalanche Effect of
Mag_Serpent and Serpent on both key and plaintext was approximately 50% probability
compared to SAC characteristics.

The experiment continued on a newly developed 4 x 32 S-Box of Mag_Serpent
algorithm. The program malfunctioned after five hours before DLCT was executed. No
computer or machine could compute the DLCT of 24 % 232 = 16 x 4,294,967,296 matrix,
which is expected to contain 68,719,476,736 entities. Without DLCT, it was impracticable to
conduct a DL attack on a newly developed 4 x 32 S-Box of Mag_Serpent algorithm. On the
Serpent, the results revealed that the DL attack was possible. The main building blocks
that performed all possibilities of the DL attack were the size of the S-Boxes. The Serpent’s
S-Boxes were 4 x 4, indicating 4-bit inputs and 4-bit outputs. The experiment determined
that it was straightforward to build a DLCT utilizing 4 x 4 Serpent S-Boxes.

The C++ experiment showed that a DL attack was possible relative to an original
Serpent before new S-Boxes and Blocker approaches were implemented, but after the
implementation of the novelty of using new 32-bit output S-Boxes and Blocker Function,
the DL attack was blocked on a new modified Serpent called Mag_Serpent.

The study showed that the Serpent algorithm used to secure data stored on IoT devices
was secured against DL attacks by using magic numbers and the Blocker Function. It has
been confirmed that it is impossible to draw a DLCT of 32-bit output S-Box. Furthermore,
it has been proven that if the construction of DLCT is infeasible on a particular algorithm,
then no DL attack will be possible on that algorithm. In this study, a new modified Serpent
was generated and named Mag_Serpent.

Future studies will include measuring the power consumption of Mag_Serpent com-
pared to an original Serpent. Other attacks (such as Boomerang, man-in-the-middle,
and Denial of Services (DoS)) will be analyzed using a Blocker Function and 32-bit S-Boxes.

Funding: This research received no external funding.

Data Availability Statement: Not Applicable, the study does not report any data.

Future Internet 2022, 14, 55 31 of 32

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

M=4294967296; iSecret = rand(s @ modulo M > 07
iSecret
state32hold = state32hold x) modulo (Q XOR M);

(state32hold/ M) NO
+M x (M / state32held); M = state32hold;

Is state32hold > M?

YES

Q = state32hold <<<2;
P = state32hold <<<4;

Q=MXORP; Q =rand(Q)
NO. P=M XORQ; modulo statehold;
) O0=QXORP; YES M = rand(M)
modulo statehold;
P = rand(P) modulo

M = rand(M) modulo iSecret;
P = rand(P) modulo iSecret;
Q = rand(Q) modulo iSecret;

statehold;
Return new value
of statehold to be
used by other
function;

Q= 4559351687;
P=4302746963;

iSecret = rand(iSecret

) modulo (P XOR QJ;

TempState = NOT(state32hold) AND Q;
state32hold = |state32hold XOR Q|;
statehold= ((state32hold)/P) XOR0273;
iSecret = rand(iSecret
) modulo (P XOR M);
Q = TempState <<< 1;

Figure A1. Flowchart of a Blocker Function.

References

1.

10.

11.

12.
13.

14.

15.

16.

17.

Wiemer, F. Security Arguments and Tool-Based Design of Block Ciphers; Faculty of Mathematics at Ruhr-Universitdt Bochum, ICAR:
New Delhi, India, 2019; pp. 1-188. Available online: https://hss-opus.ub.rub.de/opus4/frontdoor/index/index/docld /7044
(accessed on 23 November 2021).

Martin, C.R. Smells and Heuristics-G25 Replace Magic Numbers with Named Constants; Prentice Hall: Boston, MA, USA, 2020; p. 300.
Blog, IoT, Technology. Why Is the Internet of Things Important to Our Everyday Lives? 2019; pp. 1-8. Available online:
https:/ /mojix.com/internet-of-things-everyday-lives/ (accessed on 23 November 2021).

Ziegeldorf,].H.; Morchon, O.G.; Wehrle, K. Privacy in the Internet of Things: Threats and Challenges. Commun. Distrib. Syst.
2021, 7, 1-14. [CrossRef]

OECD Digital Economy Policy Papers. The Internet of Things Seizing the Brnefits and Addressing the Challanges; OECD: Paris, France,
2016; pp. 1-57.

Bar-On, A.; Dunkelman, O.; Keller, N.; Weizman, A. DLCT: A New Tool for Differential-Linear Cryptanalysis. Lect. Notes Comput.
Sci. 2019, 11476, 313-342.

Canteaut, A.; Kolsch, L.; Wiemer, F. Observations on the DLCT and Absolute Indicators. In Proceedings of the ICAR, Belo
Horizonte, Brazil, 2-6 December 2019; pp. 1-18.

Hosseinkhani, R.; Javadi, H.H.S. Using Cipher Key to Generate Dynamic S-Box in AES Cipher System. Int.]. Comput. Sci. Secur.
2012, 6, 19-28.

Anderson, R.; Biham, E.; Knudsen, L. The Case for Serpent. Case Study. 2012, pp. 1-5. Available online: https:/ /sid.ethz.ch/
debian/rjal4-papers/serpentcase.pdf (accessed on 23 November 2021).

Najafi, B.; Sadeghian, B.; Zamani, M.S.; Valizadeh, A. High Speed Implementation of Serpent Algorithm. In Proceedings of the
16th International Conference on Microelectronics, Tunis, Tunisia, 6-8 December 2004; pp. 718-721.

Maguire, J. Bjarne Stroustrup on Educating Software Developers. Datamation. 2018. Available online: https://www.datamation.
com/trends/bjarne-stroustrup-on-educating-software-developers/ (accessed on 23 November 2021).

Anderson, R.; Biham, E.; Knudsen, L. Serpent and Smartcards; Cambridge University: Cambridge, UK, 2021; pp. 1-8.

Compton, K.J.; Timm, B.; Laven, J.V. A Simple Power Analysis Attack on the Serpent Key Schedule. IACR Cryptol. ePrint Arch.
2009, 2009, 473.

Biham, E.; Anderson, R.; Knudsen, L. Serpent: A New Block Cipher Proposal. In Fast Software Encryption; Springer:
Berlin/Heidelberg, Germany, 1998; pp. 222-238.

Rajesh, S.; Paul, V.; Menon, V.G.; Khosravi, M.R. A Secure and Efficient Lightweight Symmetric Encryption Scheme for Transfer
of Text Files between Embedded IoT Devices. Symmetry 2019, 11, 293. [CrossRef]

Muthavhine, K.D.; Sumbwanyambe, M. An Analysis and a Comparative Study of Cryptographic Algorithms Used on the Internet of
Things (IoT) Based on Avalanche Effect; University of South Africa: Pretoria, South Africa, 2018; pp. 1-184.

Sehrawat, D.; Gill, N.S. Lightweight Block Ciphers for IoT based applications: A Review. Int. |. Appl. Eng. Res. 2018, 13,
2258-2270.

https://hss-opus.ub.rub.de/opus4/frontdoor/index/index/docId/7044
https://mojix.com/internet-of-things-everyday-lives/
http://doi.org/10.1002/sec.795
https://sid.ethz.ch/debian/rja14-papers/serpentcase.pdf
https://sid.ethz.ch/debian/rja14-papers/serpentcase.pdf
https://www.datamation.com/trends/bjarne-stroustrup-on-educating-software-developers/
https://www.datamation.com/trends/bjarne-stroustrup-on-educating-software-developers/
http://dx.doi.org/10.3390/sym11020293

Future Internet 2022, 14, 55 32 of 32

18.

19.

20.

21.

22.

Tezcan, C.; Ozbudak, F. Differential Factors: Improved Attacks on Serpent. In International Workshop on Lightweight Cryptography
for Security and Privacy; Springer: Cham, Switzerland, 2021; pp. 1-18.

Dunkelman, O.; Indesteege, S.; Keller, N. A Differential-Linear Attack on 12-Round Serpent. In Proceedings of the International
Conference on Cryptology in India, Kharagpur, India, 14-17 December 2008; pp. 308-321.

Biham, E.; Dunkelman, O.; Keller, N. Linear Cryptanalysis of Reduced Round Serpent. In Fast Software Encryption; Springer:
Berlin/Heidelberg, Germany, 2001; pp. 1-12.

Subandi, A.; Lydia, M.S.; Sembiring, R.W. Analysis of RC6-Lite Implementation for Data Encryption. Scitepress. 2021; pp. 42—47.
Available online: https:/ /www.scitepress.org/Papers/2018/100375/100375.pdf (accessed on 23 November 2021).

Sanap, S.D.; More, V. Performance Analysis of Encryption Techniques Based on Avalanche effect and Strict Avalanche Criterion.
In Proceedings of the 2021 3rd International Conference on Signal Processing and Communication (ICPSC), Kumamoto, Japan,
22-24 July 2021; pp. 676-679.

https://www.scitepress.org/Papers/2018/100375/100375.pdf

	Introduction
	Serpent Algorithm
	 Differential-Linear Attack
	The Magic Number
	Objective of the Study
	The Numerous DL Attacks on Serpent Algorithm

	Problem Statement
	Literature Review
	Research Methodology
	A Blocker Function
	Experimental Confirmation of DL Attack on Serpent
	Experimental Contribution of DL Attack on a Newly Generated Mag_Serpent

	Results and Analysis
	Conclusions and Future Work
	
	References

