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Abstract: Indoor localization systems are used to locate mobile devices inside buildings where
traditional solutions, such as the Global Navigation Satellite Systems (GNSS), do not work well due
to the lack of direct visibility to the satellites. Fingerprinting is one of the most known solutions for
indoor localization. It is based on the Received Signal Strength (RSS) of packets transmitted among
mobile devices and anchor nodes. However, RSS values are known to be unstable and noisy due to
obstacles and the dynamicity of the scenarios, causing inaccuracies in the position estimations. This
instability and noise often cause the system to indicate a location that it is not quite sure is correct,
although it is the most likely based on the calculations. This property of RSS can cause algorithms
to return a localization with a low confidence level. If we could choose more reliable results, we
would have an overall result with better quality. Thus, in our solution, we created a checking phase
of the confidence level of the localization result. For this, we use the prediction probability provided
by KNN and the novelty detection to discard classifications that are not very reliable and often
wrong. In this work, we propose LocFiND (Localization using Fingerprinting and Novelty Detection),
a fingerprint-based solution that uses prediction probability and novelty detection to evaluate the
confidence of the estimated positions and mitigate inaccuracies caused by RSS in the localization
phase. We implemented our solution in a real-world, large-scale school area using Bluetooth-based
devices. Our performance evaluation shows considerable improvement in the localization accuracy
and stability while discarding only a few, low confidence estimations.

Keywords: indoor localization; positioning system; fingerprinting; bluetooth; machine learning

1. Introduction

The problem of localizing mobile devices or people has seen increasing attention in
recent decades, especially in robotics [1], sensor networks [2], and even vehicular net-
works [3]. Smartphones and other wearable devices can use the Global Navigation Satellite
System (GNSS), which includes the Global Positioning System (GPS), to obtain a location
outdoors. However, GNSS data can be problematic indoors due to the poor reception of
satellite signals [4]. Thus, several indoor localization systems have been proposed to solve
this problem, all of them with different hardware requirements and performances [5–7].

Many wireless networking technologies have been used in localization systems. Some
of these technologies include WiFi, Bluetooth, Radio Frequency Identification (RFID),
Ultra Wide Band (UWB), and cellular networks [8]. Allied to these technologies, many
techniques have been proposed for the estimation of distances such as Time of Arrival (ToA),
Time Difference of Arrival (TDoA), Received Signal Strength (RSS), and Angle of Arrival
(AoA) [9]. Even with these various technologies, there is no single, definitive solution
due to the many peculiarities of the environments (e.g., obstacles, layouts), hardware (e.g.,
processing and energy limitations), and requirements (e.g., accuracy, real-time data) [8].

One technology that has been employed is the use of Bluetooth Low Energy (BLE)
beacons which have the following advantages: small size, lightweight, low cost, power-
saving and are widely supported by smart devices [10]. BLE devices can be operated at
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multiple transmission power levels with the RSS more stable at a high transmission power
level [11,12], but it has important practical implications for energy efficiency, resulting in
a trade-off between location performance and battery lifetime [13].

RSS is one of the most popular and available information used by localization systems.
One of the reasons for its widespread adoption is that it does not require extra equipment
and can be found on most devices equipped with wireless communications [14]. The RSS
is a measure of the received signal strength of the packets. A common technique for indoor
localization systems is fingerprinting, which uses RSS data to construct radio maps, also
known as fingerprint databases. In the offline phase, RSS maps are created based on the RSS
values obtained at the different points of the area where we want to have the localization
service. Then, a classifier uses this information to estimate the position of the nodes in
the online phase. A commonly used classifier for this purpose is the k-Nearest Neighbors
(kNN), as used by RADAR [15,16].

The main idea of the fingerprinting technique is based on the assumption that each
spatial location indoors can be identified by a single, mostly unique, set of measurable
RSSs [4]. However, since the RSS is very susceptible to noise in the environment, RSS often
can cause errors in the location estimations. For instance, our main application in this paper
aims at providing location information for small, battery-powered devices to be used by
students in schools and allowing several interesting applications such as automatic student
attendance record-keeping, entry and exit control, and so on. However, in the first versions
of our localization system, the instability of the RSS resulted in the students “jumping”
from room to room, even though they were static.

Several techniques are proposed in the literature to deal with the RSS noise [17–22].
Most of these solutions focus on averaging RSS values or making other transformations
in the fingerprint database. However, this noise can affect not only the training data but
also the data received in the online phase especially when considering that, in most cases,
training is done in an empty building while the online phase occurs in a more crowded,
dynamic scenario. Unfortunately, averaging several RSS values is not an option for the
online phase of our application since the mobile devices are extremely power-limited and
it is not possible to change or recharge their batteries. Thus, we need a solution that also
considers the impact of this RSS variation in the online phase without requiring sending
additional data packets.

The main limitation of the RSS-based localization systems is the RSS fluctuation, which
can induce several errors even when using machine learning techniques. This fluctuation
can result in classifications/positions with low reliability. Thus, an intuitive step is to detect
and discard these classifications to get more reliable results with better quality. Thus, in
our proposed solution, we created an additional step called “Evaluation of Confidence”.
For this, we use the prediction probability provided by KNN and the Novelty Detection
technique to detect and discard classifications that are not considered reliable and, often,
have higher errors. This is done using prediction probability, which is an additional step
on the KNN technique based on the distances of the k nearest neighbors. Additionally,
a second filter was created that uses the concept of “novelty” which uses machine learning
techniques to categorize a new classification as “normal” (belongs to that class) or “novelty”
(does not belong to that class).

In this work, we propose a new localization system called LocFiND (Localization using
Fingerprinting and Novelty Detection), a fingerprint-based solution that uses techniques of
novelty detection to evaluate the confidence of the estimated positions in the online phase
allowing the system to discard some of the position estimations that would have unaccept-
able higher errors due to a noisy RSS data that suffered some unexpected degradation from
the environment. Three confidence evaluation techniques have been proposed, one simpler
and one more rigid, but they discard many positions that can be useful. To try to reduce
these losses, a hybrid approach that recovers some of these discarded locations has been
proposed as well.
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For our application and performance evaluation, we used Bluetooth-based anchor
nodes and smartwatch-like mobile devices to be used by the students. We implemented
our solution in a large-scale, real-world school area and compared its performance to the
traditional kNN fingerprint-based solution. Our results show that our solution was able to
improve both the localization accuracy and the number of position fixes while discarding
noisy RSS data.

The main contributions of this paper are as follows:

1. The use of novelty detection techniques to evaluate the confidence of the predictions.
2. Considering that we have noise in the localization phase and solving this problem

without requiring the need for sending extra data packets, which would consume
more energy of the mobile devices.

3. Implementing and evaluating the performance of the proposed solution in a real-
world, large-scale school application.

This paper is organized as follows. Section 2 shows our related work. Section 3 de-
scribes our proposed LocFiND solution. In Section 4, we present our methodology and
the results of our performance evaluation. In Section 5, we discuss the application of our
solution. Finally, Section 6 shows our conclusions and future work.

2. Related Work

In RADAR [15,16], one of the first localization systems using RSS and fingerprinting,
RSS readings are taken at different points in the place where the localization is to be carried
out. Each reading contains the RSS values received from the WiFi routers. Such information
is recorded in a fingerprint database. After this training, when a user requests your location,
the RSS values of the request are compared with those observed in the training phase
using the kNN classifier, which will return the most likely position from which the request
was sent.

In the Horus System [23,24], a joint grouping technique is proposed for the location
estimation using a probabilistic method. In this system, each possible coordinate that the
candidate may be in is considered a class or category. To minimize the distance error, the
location is chosen where its probability is the highest. Increasing the number of samples
at each sampling site improves accuracy, as this improves the estimation of the mean and
standard deviation of the Gaussian distribution used. Similar probabilistic systems have
also been proposed in other works [25–27]. A training-based method for determining the
localization using classifiers based on neural networks is proposed in [28]. In a more broad
approach, the authors in [29] compared the various classifiers mentioned: neural networks,
kNN, and probabilistic methods. Their results show that all techniques performed well in
different scenarios.

In [30], several experiments were carried out to show that localization techniques for
indoor environments based on training (fingerprinting) perform better than the traditional
ones based on trilateration/multilateration. The main reason given was the multipath
phenomenon, in which the signal behavior is affected by the various obstacles encountered
in such scenarios. However, an observation raised in this work is that the training-based
localization techniques suffer degradations in the location accuracy in dynamic environ-
ments, where the properties of the place can change with time (e.g., rearranging cabinets,
tables, partitions).

Due to multipath, shadow fading, and some hardware restrictions, outliers in RSS
measurements are not uncommon. If the measurement is a outiler, either in the offline or
online phase, the resulting position estimate is likely to be the wrong [31]. In [19], an outlier
detection technique called iF_Ensemble was developed. The proposed solution is able
to analyze the quality of the RSS using a combination of supervised, unsupervised, and
ensemble machine learning methods. In this solution, the isolation forest (iForest) is used
as an unsupervised learning method. The supervised learning method includes support
vector machine (SVM), kNN, and random forest (RF) classifiers.
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In [17], the authors propose a novel multiple-bandwidth generalized regression neural
network (GRNN) with the outlier filter indoor positioning approach, named GROF, to
improve the positioning accuracy and robustness. It uses a new type of multiple bandwidth
kernel architecture to achieve more flexible regression performance than the traditional
GRNN. In addition, an outlier filtering scheme is used to improve the system’s robustness
against RSS fluctuation caused by the dynamic environment.

A Probabilistic Threshold k-Nearest-Neighbor Query (T-k-PNN) is proposed in [32].
This solution returns sets of k results with probabilities higher than some threshold T.
The result is refined using filters to remove results with the aid of a spatial index and
probabilistic candidate selection.

In [33], a probabilistic threshold kNN (PTkNN) query is used. It uses a combination
of three techniques for the efficient processing of PTkNN queries. Minimal indoor walk-
ing distance (MIWD) metric to prune objects that are too far away, efficient probability
estimation to prune unqualified candidates, and an efficient probability evaluation for the
remaining candidate and k-subsets. Similarly, in [34], it is used the probabilistic KNN
(pkNN) algorithm that uses the probability of RSS in the radio-map as a weighting to
calculate the Euclidean distance. This solution also filters the RSS values whose probability
is less than 3%.

In [35], it was proposed an iBeacon-based method by integrating a trilateration algo-
rithm and a fingerprinting method that uses weight matrix to differentiate the contribution
of beacons in various distances and adopt cosine similarity to reveal the consistent trend
between two RSSI vectors to reduce effects of RSS fluctuations. In the second phase, the
pedestrian trajectories are segmented and applied a Kalman filter (KF) to improve the
locations derived by the pedestrian dead reckoning (PDR). The last step uses another KF
to derive locations in each segmented path by fusing the BLE-based positioning and the
PDR. The positioning accuracy of the iBeacon-based method is RMSE 2.75 m. When the
smartphone is held steadily, the fusion positioning tests result in RMSE of 2.39 and 2.22 m
for the two routes.

Ref. [36] has evaluated BLE localization performances based on RSS fingerprint-
ing. They presented a Ray-Launching based application to emulate BLE radio frequency
(RF) signal propagation in an indoor office environment. An appropriate measurement
workplace and its setup are proposed to measure RSS values and are used to create an RSS-
fingerprinting map. Accuracy of position determination is computed and evaluated. The
results show that the performance of the BLE technology, for indoor localization purposes,
highly depends on both the number of considered BLE nodes and the applied evaluation
method (e.g., number of considered sectors).

In [37], it is used BLE with multiple anchors and multiple radio channels to improve
the reliability of power measurements. The accuracy–complexity trade-off affects the
four most popular supervised learning techniques (k-Nearest Neighbors, Support Vector
Machines, Random Forest, and Artificial Neural Network). They were evaluated in one
and two-dimensional environments with four static anchors. The best result is obtained by
the Random Forest with a classification accuracy of over 99%.

Another pedestrian dead reckoning (PDR) localization technique is proposed in [38].
The authors used the smartphone sensors to estimate a pedestrian’s location with a lower
installation cost. Nowadays, smartphones have multiple inertial sensors (e.g., accelerometer,
gyroscope, and magnetometer) that can be used for mobility and localization sensing [39].

In [40], using a magnetometer, a magnetic field strength fingerprinting approach is
used to localize a pedestrian indoor. Accelerometer and gyroscope sensors are also used to
find the pedestrian’s traveled distance and heading estimation combined with the patterns
of magnetic field strength to formulate a fingerprint database. Experiments were conducted
with many models of smartphones and they were able to localize a pedestrian within
1.21 m at 50% and within 1.93 m at 75%, irrespective of the device used for localization.
The performance of the proposed approach is compared to the K-Nearest Neighbor (KNN).
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The geomagnetic field localization has a limit because smartphones have embedded
magnetic sensors from different manufacturers. In [41], the authors propose the use of
geomagnetic field data collected from multiple smartphones to make the geomagnetic field
pattern (MP) database. The evaluation using four different smartphones demonstrates that
using a database with multiple smartphones has the same performance when compared to
using a single smartphone. Moreover, the performance comparison with previous research
indicates that the overall performance of smartphones is improved.

In all of these works, there is no evaluation of the quality of the returned positions.
Thus, even a result which the system is not quite sure is correct is still returned by the
system. This can lead to higher localization errors and, in a real-world application, can
cause the position of the user to jump between different rooms even when the user is static.
Our proposed solution tries to solve this problem by carefully analyzing the quality of the
positioning before passing it to the application.

In these works, even though they try to improve accuracy using probabilities and
other filters, most of them are based on refining the training database and/or combining
information from several samples for statistical analysis, making them harder to be used by
energy-constrained mobile devices. In this work, we are proposing a different approach
by combining a novelty detection system with the prediction probability to filter out
these unreliable position estimations without discarding correct, useful information from
mobile devices.

3. LocFiND—Localization Using Fingerprinting and Novelty Detection

In this section, we present our proposed solution called LocFiND (Localization using
Fingerprinting and Novelty Detection). The main objective of our solution is to provide the
location of mobile devices in indoor environments for different location-based services. In
this type of environment, it is expected that the traditional solutions (e.g., GNSS, GPS) will
not work very well [42].

We propose three variations of our solution: a naive one that uses only the prediction
probability and two extended versions that use novelty detection to refine the results.

In these applications, it is common for the person to be located to carry some type of
device, that can be used to estimate your location. Another requirement of our application
is that this mobile device needs to be low-profile, i.e., each person carries a very small,
battery-powered device. To enable localization, our mobile nodes send information to
Bluetooth-based anchor nodes so that there is lower interference with the wireless data
network at the location.

As in other solutions, LocFiND can be divided into two distinct phases, as depicted in
Figure 1. In the first, training phase, samples for training the algorithm are gathered. The
obtained fingerprint database follows the format as described,

Ai = {RSSi,1, RSSi,2, . . . , RSSi,n, CLASSi} (1)

where Ai is the collected packet set i, RSSi,n is the RSS of packet i received at anchor node
n, and CLASSi is the class (or label) that can be mapped to the location at which the packet
was sent. All of these data will be used by the supervised training algorithm to generate
a model.

For the label of the samples, two granularities were used. For room classification
CLASSi = {41, 57, 40, 53, 39, 47, 51, 62, 45, 43, 61, 46, 16, 63} , where each number represents
the ID of a room. For the classification of specific points inside rooms, the labels have the
format R_X_Y that represents the R as the room ID, X as the line, and Y as the column
inside the room (with cells of approximately 2 m × 2 m).

In the second, online phase, the procedures for estimating the localization of the mobile
devices are executed. A centralized architecture was chosen mainly due to the limitations of
the mobile nodes (e.g., energy savings and limited hardware). In this phase, a mobile node
sends a data packet that will be received by the anchor nodes that will measure the RSS for
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this packet and forward the information to a central server. The server will then be able to
estimate the location in which the packet was sent and, thus, the mobile device location.

Figure 1. LocFiND architecture: the training phase generates the fingerprint database, which is used
in the online phase to estimate the position of the mobile devices.

The central server uses a KNN algorithm with the fingerprint database from the
training phase, thus will return not only the class but also the probabilities of the sample to
belong to each one of the different classes. These probabilities will then be evaluated by
our proposed approaches for the evaluation of confidence for the final classification. The
similarity measuring metric used in KNN is the euclidean distance.

As previously mentioned, RSS values have a variation even when the node is not
moving. This is due to ambient characteristics and obstacles that can change the signal
momentarily causing errors both in the training phase and in the online phase.

Many works in the literature deal with the RS noise in the training phase [43], but the
signal information in the online phase suffers from the same problem or worse since, in
most cases, training is done in an empty building while the online phase occurs in a more
crowded and dynamic scenario. Thus, we need solutions that also take into consideration
the impact of this RSS variation in the online phase.

An intuitive step would be to discard and ignore data where we have low confidence
at the time of localization. However, after some time without localization information, this
missing information will start being noticeable. Thus, we cannot simply start ignoring any
information that might be unreliable. The question that remains is how to define, in the
online phase, if a set of RSS’s received can be considered reliable for correct classification.
We refer to this step as Evaluation of Confidence in our LocFiND architecture.

As mentioned before, we propose three different techniques in LocFiND to evaluation
the confidence for estimated positions:

1. Prediction Probability: uses the estimated prediction probability to decide whether to
accept the estimated class.

2. Novelty Detection: uses the novelty detection technique to identify the reliability of
the classified sample.

3. Hybrid Approach: uses both probability and novelty detection to improve on the
isolated solutions.

These three techniques are explained and detailed in the next sections.

3.1. Using Prediction Probability

In the first technique, called Prediction Probability, we evaluate the confidence of
the estimated position by using the classification probability, available in the scikit-learn
KNN implementation. In this implementation, the predict_proba function returns the
probabilities that a sample has for belonging to each one of the different classes (trained
positions, labels). The most probable class is the result of the classification. For probability
estimation, predictors usually implement methods that quantify the confidence of the
predictions. In KNN, each class probabilities are the normalized weighted average of
indicators for the k-nearest classes, weighted by the inverse distance [44].

Prediction Probability approach uses the model generated by KNN using the finger-
print database from the training phase. The model evaluates each new, online sample
received and returns the probabilities that it belongs to each one of the available classes. In
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this approach, we choose the class with the highest probability and, if this probability is
greater than a threshold α, the classification is accepted and the new estimated position
is sent to the application. Otherwise, the result is rejected. Figure 2 shows the complete
diagram for this confidence evaluation.

Figure 2. Evaluation of confidence using prediction probability: classifications with low probabilities
are discarded to improve accuracy.

3.2. Using Novelty Detection

In the previous solution, as we will show in Section 4, even when discarding classifica-
tions that have a low prediction probability, we still have some wrong classifications. In
this section, we define a novel approach that helps to decide which classifications should
be discarded. In this solution, which we refer simply as Novelty Detection, we check (i.e.,
confirm) whether the classified sample really belongs to the class that was estimated by the
classifier (KNN chooses the class that most closely matches). For this, we use the concept of
novelty, a concept used in the area of outlier detection. Novelty can be defined as the task
of recognizing whether a tested sample differs, in some aspects, from the data gathered
during the training phase [45].

Detecting new, never seen samples is an important skill for any classification system.
When realizing that it is not possible to train a machine learning system with all types of
data the system is likely to find, it becomes important to be able to differentiate between
information from known and unknown data during the online phase [46].

Novelty detection refers to the identification of novel or abnormal patterns embedded
in a large amount of normal data. Novelty (anomaly, outlier, exception) happens when
a sample does not conform to the expected, normal behavior [47]. Unlike outlier detection
approaches, that are done in training, novelty detection defines whether or not a new
sample (online phase) belongs to a class. A novelty detection architecture is depicted in
Figure 3.

Figure 3. Novelty detection using One-Class SVM.

Novelty detection techniques can be implemented using different techniques such as
support vector machines based techniques, clustering-based techniques, nearest-neighbor-
based techniques, and statistical techniques [48].

A commonly used unsupervised novelty detection technique is based on SVM. It
builds a spherical boundary scheme that groups and encloses most normal data samples.
Any new, unseen sample falling outside the group’s boundaries is detected as novelty. In
recent works on SVM-based novelty detection, a variation called OC-SVM (one-class SVM)
is used since it has some kernel tricks that allow it to easily separate normal and novel
data in higher dimensional spaces [49], which is the case of our localization system with
15 dimensions (i.e., anchor nodes).

In this evaluation of confidence part of LocFiND, we first use the prediction probability,
as in the previous Section 3.1, to have a first evaluation from the KNN itself regarding the
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classification reliability. Then, in order to have a second validation of the result, we use the
concept of novelty detection to confirm that a given sample really belongs to that class.

Thus, the same prediction probability explained previously with the threshold α is
used. However, the classifications are further validated using novelty detection imple-
mented using the One-Class SVM. In addition to passing the threshold test, a new validation
is done by the novelty algorithm that tests whether that sample really belongs to the chosen
class (the one with the highest probability returned by KNN). Only when both tests are
passed, a classification is accepted. This complete decision process for the evaluation of
confidence is depicted in Figure 4.

Figure 4. Evaluation of confidence using the novelty detection technique: accuracy is improved by
further discarding unreliable classifications.

3.3. Hybrid Approach: Combining Prediction Probability with Novelty Detection

The previous Sections 3.1 and 3.2 are more reliable and accurate but, as we show in
Section 4, it discards and ignores a high number of position estimations, leaving the system
with little position information. Thus, in this section, we propose a new technique called
Hybrid Approach. We call it hybrid because it combines the confidence assessment of the
two previous configurations, each one being applied to a threshold used in different steps
and techniques. The first threshold is a probability estimate, while the second is a novelty
factor. Thus, this hybrid approach combines the first and second approaches.

To understand the hybrid approach, we need to first understand the behavior of the
probability threshold α. The lower the probability threshold, the higher the classification
errors, resulting in a higher average localization error. However, in this case, we also have
a higher number of position estimations, which is good for the application. If we increase
this threshold, we improve accuracy but also reduce the number of accepted classifications,
leaving the system without enough position estimations.

In the hybrid approach, we initially use the same probability threshold α as in the
previous sections. However, instead of simply rejecting the classifications that do not pass
this filter, we use novelty detection to give a second chance for some of these classifications
that would be discarded otherwise. For this, we use a second, lower probability threshold
β and use novelty detection to confirm the classifications above this second threshold.

The result of this decision process, which is depicted in Figure 5, is that classifications
with high prediction probabilities (threshold α) are not checked by the novelty detection.
Classifications with lower prediction probabilities, but still higher than the threshold β, will
be confirmed by the novelty detection. Finally, classifications with prediction probabilities
lower than β or that did not pass the novelty check, are discarded.

Figure 5. Evaluation of confidence using the hybrid approach: a compromise between accuracy and
number of position estimations.
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4. Performance Evaluation

In this section, we evaluate the performance of our proposed LocFiND solution and
its approaches for the evaluation of confidence of the estimated positions. We will discuss
the results of our solution compared in various ways, to have a better view of its operation
and a better understanding of its behavior.

4.1. Methodology

We evaluated the performance of our solution in a large-scale, real-world testbed,
shown in Figure 6. Since we are focused on applications based on small, low-processing,
low-power, and battery-operated mobile devices, we used nodes and anchors with BLE
technology. Figure 7a shows the hardware used for the mobile devices, a smartwatch-based
wearable device, while Figure 7b shows the hardware used as anchor nodes for the location
data gathering.

09 08

05

06

07

Room 01

Room 02
Room 03 Room 04 Room 05 Room 06

Room 07Room 08Room 09Room 10Room 11

Toilets

Collected Samples of RSSI Anchor Nodes

Figure 6. Real-world application/testbed map: area of 645 m2 (43 m × 15 m), 11 rooms of averaged
42 m2 (7 m × 6 m), 3 halls, 15 anchor nodes, and 150 reference points. For each reference point,
100 samples were gathered to a total of 15,000 samples. 11 different mobile devices were used, 9 for
training and 3 for testing.

(a)
(b)

Figure 7. Device Nodes [20]. (a) Bluetooth-based, smartwatch-like devices are used as mobile devices.
(b) Bluetooth-based access points are used as anchor nodes.

Since our main application is to localize students, our testbed was implemented in
a school area of 645 m2 consisting of 15 spaces (11 rooms and 3 halls). The complete map of
the area is depicted in Figure 6. To cover the entire area, 15 anchor nodes were installed
on the ceiling of the rooms in places where it was somewhat convenient to connect them
to the mains power. These anchor nodes are depicted in blue in Figure 6. This base was
collected and used in other works from our research group [20].

To execute the training phase of LocFiND and generate the fingerprint database, we
evenly distributed 150 reference points (RPs) throughout the area. These RPs are depicted
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as gray dots in Figure 6. For each RP, we went to that location and started sending data
packets using 11 different mobile devices. We collected a total of 100 samples per RP to
a total of 15,000 samples in our fingerprint database. Finally, in our results shown in the
following sections, we used the samples from nine mobile devices as training and the
samples from three other mobile devices as testing. Thus, the samples used for testing are
from never-seen devices from the training.

To choose the parameters of KNN, the GridSearchCV method of the scikit-learn was
used, which is a tool of selection of parameters using cross-validation on the training
base, thus avoiding overfitting. By using GridSearchCV with five folds, we set the main
parameters in KNN the value of k = 9. Selecting k is not an exact science because it’s hard
to estimate how well your fold represents your overall dataset. For this reason, we used the
GridSearchCV with a 5-fold cross-validation to find the best k value without overfitting the
system. Finally, we also used different devices for training and testing, so that the values in
testing are from never-seen devices. This increases the chances for the proposed solution to
work with new devices in a real-world application.

As a baseline of comparison for the results, a traditional fingerprint-based solution
that uses the RSS database and KNN (with k = 9) was used, having a 96% accuracy for
room classification and a 36% for point estimation with an average error of 1.9 m. Since in
this case there is no evaluation of confidence, 100% of the position estimations were sent
to the application. Our goal for LocFiND is to improve these classifications and average
localization error while delivering as many position estimates for the application as possible.

4.2. Evaluation of Confidence Using Prediction Probability

As mentioned in Section 3.1, the evaluation of confidence using prediction probability
uses the threshold α to decide whether to accept or discard an estimated class/position
based on the probability of the sample belonging to that class. Only samples with prediction
probability higher than α are accepted.

Figure 8a shows the relationship among the value of the threshold α, and the final
accuracy of the accepted classifications (in red) as well as the percentage of accepted
estimations (in blue). Similarly, Figure 8b shows the behavior of the average localization
error (in red) and, again, the percentage of accepted estimations (in blue) as we increase
the threshold α. Finally, Figure 8c shows the behavior of the room estimation accuracy, i.e.,
we are using the room name as classes. These results show several characteristics of our
proposed LocFiND solution that we will discuss in the next paragraphs.
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(c)
Figure 8. Results for the evaluation of confidence using prediction probability: relationship among
the value of the threshold α (x-axis), the percentage of accepted estimations (in blue), and (a) the final
accuracy of the accepted classifications, (b) the average localization error, and (c) the room accuracy.

First, as expected, as we increase the threshold α, the number of accepted estimations
decreases (blue curve in Figure 8a–c). However, since we are accepting higher quality
predictions, the accuracy increases (Figure 8a) , and thus the average localization error
decreases (Figure 8b) and the room accuracy also increases (Figure 8c).

For instance, compared to a traditional kNN, in the case of Figure 8a,b, a threshold
α = 40% accept 85% of the predictions while increasing the accuracy from 36% to 41% and
decreasing the average localization error from 1.9 m to 1.7 m. In the case of room accuracy,
for α = 40%, the number of accepted predictions remained almost the same at 99.6%, while
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increasing only slightly the accuracy to 96.4%. This is mostly because it is easier to estimate
rooms and the classifier is able to do it with higher probabilities.

On the other hand, when we use a threshold α = 80%, only 20% of the position
estimations were forwarded to the application, as depicted in Figure 8a,b. However, these
estimations were very reliable, having almost 70% accuracy and a localization error lower
than 0.9 m. A better result came from the room accuracy, in which 92% of the predictions
were accepted with an accuracy of almost 99%.

To have a better understanding of how the localization errors are distributed, Figure 9
shows the cumulative distribution function for the thresholds α = 25%, 45%, and 75%. This
graph shows the percentage of estimations (y-axis) with an error lower than the x-axis. In
this curve, the smaller the x-axis value and the larger the y-axis value, the better since this
means that the majority of the estimations have lower errors. As we can see, for instance,
when using a threshold α = 25%, only 68% of the estimations resulted in an error lower
than or equal to 2 m. On the other hand, for a threshold α = 75%, almost 85% of the
estimations resulted in errors lower than or equal to 2 m.
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Figure 9. Cumulative distribution function of the localization error using prediction probability with
thresholds α = 25%, 45%, and 75%: it shows the percentage of estimations (y-axis) with an error
smaller than the x-axis.

Thus, as we can see, the choice of which threshold to use really depends on the scenario
and type of application. The main challenge is how to decide what is the best case for
our current problem: a higher number of position estimations with a lower accuracy or
fewer estimations with higher accuracy. However, we can make this decision easier if we
can improve this solution by using better mechanisms for the evaluation of confidence.
Thus, in our LocFiND solution, we used Novelty Detection to improve this evaluation
of confidence.

4.3. Evaluation of Confidence Using Novelty Detection

As mentioned in Section 3.2, in order to further improve the accuracy of the local-
ization system, we introduced the novelty detection test. This test evaluates whether
a sample belongs to a certain class (KNN predicted class/position). This approach still
uses the threshold α, but uses the novelty detection to improve even more the evaluation
of confidence.

Similar to the previous section, Figure 10 shows the relationship among the value
of the threshold α (x-axis), the percentage of accepted estimations (in blue), and the final
accuracy of the accepted classifications (red curve in Figure 10a), the average localization
error (red curve in Figure 10b), and the room accuracy (red curve in Figure 10c).
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(c)
Figure 10. Results for the evaluation of confidence using novelty detection: relationship among the
value of the threshold α (x-axis), the percentage of accepted estimations (in blue), and (a) the final
accuracy of the accepted classifications, (b) the average localization error, and (c) the room accuracy.
Compared to the previous results, the localization accuracy is improved, but at the cost of reducing
the number of accepted estimations.

As we can see, the novelty detection was indeed able to improve both the localization
accuracy and the average error. However, it was at the cost of a lower number of accepted
predictions. For instance, compared to the prediction probability in Section 4.2, as we
can see in Figure 10a, for a threshold of α = 40%, the classification accuracy is near 45%,
increased from 40%. As for the average localization error, shown in Figure 10b, it decreased
from 1.8 m to 1.7 m. However, in both cases, the accepted predictions went from 85% to
68%. In the case of room accuracy, it increased from 96.4% to 97.7%, while the accepted
predictions decreased from 99.6% to 87%.

On the other hand, for a threshold α = 80% the results do not change significantly
since, in most cases, the estimations with high prediction probabilities also passed the test
for novelty detection.

Finally, Figure 11 shows the cumulative distribution function for the thresholds
α = 25%, 45%, and 75%. When compared to the previous results, we can notice some
improvements in the localization errors. For instance, when using a threshold α = 25%
and considering the estimations with errors lower than or equal to 2 m, the number of
estimations increased from 68% to 72%.
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Figure 11. Cumulative distribution function of the localization error using novelty detection with thresh-
olds α = 25%, 45%, and 75%: a higher percentage of the position estimations resulted in lower errors.

As we can see, even though the novelty detection is able to improve accuracy, it was at
the cost of accepted predictions. In the next section, we will show the results for our hybrid
approach for the evaluation of confidence, that tries to minimize this problem.

4.4. Evaluation of Confidence Using the Hybrid Approach

In this section, we show and discuss the results of our third, hybrid approach to
evaluate the confidence of the estimated positions. As mentioned in Section 3.3, it combines
the previous two approaches in order to improve accuracy while reducing the number of
discarded estimations.
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It was observed in the previous sections that the lower the probability threshold, the
higher the localization error. Thus, in this hybrid solution, we use the prediction probability
for higher values of α as a first, initial filter. Then, we use a lower probability threshold β to
get possibly wrong estimations and apply the stricter, novelty detection test, to confirm their
predictions. Thus, we expect to mitigate the loss of predictions in the highest probabilities
and, thus, have some lost estimations only in the predictions with lower probabilities.

As in the previous sections, Figure 12 shows our results when using the hybrid
approach for the evaluation of confidence. In the case of Figure 12a, we can notice that the
localization accuracy is very close to the ones obtained by the novelty detection approach
(as shown in Section 4.3). On the other hand, the number of accepted predictions is closely
similar to the ones obtained by the probability prediction approach (as shown in Section 4.2).
For instance, for the threshold α = 40, the accuracy is 42%, close to the second approach and,
in terms of accepted predictions, it increased from 64% to 70%, similar to the first approach.
These results show that this hybrid approach can reach a compromise, improving the
localization while decreasing only slightly the number of discarded estimations.
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(c)
Figure 12. Results for the evaluation of confidence using the hybrid approach: relationship among
the value of the threshold α (x-axis), the percentage of accepted estimations (in blue), and (a) the final
accuracy of the accepted classifications, (b) the average localization error, and (c) the room accuracy.
A compromise is reached having improved localization estimations while increasing the number of
accepted predictions.

The same can be observed for the average localization error, shown in Figure 12b.
Finally, in the case of room accuracy, shown in Figure 12c, the hybrid approach was also
able to improve this accuracy while having almost the same number of accepted samples
when compared to the prediction probability.

Figure 13 shows the cumulative distribution function of the localization error using our
three approaches for the evaluation of confidence in three different threshold configurations.
As we can see, the hybrid approach has an error curve almost equal to or better than the
more restrictive technique but, as seen in the previous results, it has a higher number of
accepted estimations.
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Figure 13. Comparing the cumulative distribution function of the localization error using our three ap-
proaches, (a) Using lower probability 25% (b) Using lower probability 45%, and (c) Using lower
probability 70%.

5. Applicability, Strengths, and Weaknesses of the Proposed System

Our main motivation for implementing an indoor localization system is to localize
students inside a school. However, in the first version of our system, the unstable position
estimations resulted in the students jumping from room to room, even though they were
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actually static. To reduce these jumps and improve our system accuracy and stability, we
started looking for solutions to evaluate and improve the confidence of the predictions.

Thus, we proposed and applied the LocFiND solution, our localization system, which
was able to significantly improve the results and stability while keeping the feeling of
a real-time system. Our solution has the advantage of choosing the most reliable results,
based on the assessment of probability and novelty. This makes the system more resilient
since even if we have any communication problem, packet loss, or interference up to
a limit, the system can keep working just by discarding the problematic information. For
other scenarios, depending on the requirements of the application, our proposed solution
can be easily adjusted to have an acceptable percentage of discarded estimations while
considerably improving the accuracy and stability of the system.

However, discarding data causes some problems for evaluating the results since the
final amount of results is less than if we used all of the data. In this work, the evaluation
was based on accuracy and mean error. Accuracy can be defined as a = h/n, and the
average error as ae = e/n, where h is the number of correct sort results, and e is the sum of
errors associated with the results considered valid by the algorithms, and n is the number
of valid outputs from the algorithm. However, as our algorithm discards some data, the
value of n for them becomes different, making the comparison between them not totally fair.
Thus, in most results, we included the percentage of accepted predictions to make it clear
that, even though the error decreased, the number of accepted predictions also decreased.

Finally, it is known that RSS values reported by the devices are somewhat hardware-
dependent and can vary from one manufacturer to another. Even though this might affect
the performance of the localization systems, in the case of our application, in which we
implemented the proposed solution in the school area, this was not an issue since all of the
hardware was similar and from the same manufacturer.

6. Conclusions and Future Work

In this paper, we propose and evaluate the performance of a new approach for indoor
localization, the LocFiND (Localization using Fingerprinting and Novelty Detection). In
our solution, information received in the online phase will only be accepted after it passes
an evaluation of confidence. We then propose three different approaches for this evaluation
of confidence. A first using only the probability of classification, another adding novelty
detection, and a hybrid approach uses both prediction probability and novelty detection to
improve localization accuracy while trying to discard as little information as possible.

The main contribution of our solution is the possibility of removing unreliable results
(which may have been affected by noisy information) in the online phase, while most works
in the literature assess the impact of noise in the training or data collection phase. The main
concern of our approach is how to discard the fewer possible estimations while increasing
the accuracy and stability. Thus, our solution provides an important tradeoff between
accuracy and the number of estimations that can be discarded without compromising
the system.

Our results show that we can have less restricted configurations, for a threshold
α = 40%, that improves the position accuracy from 36% to 44% and the average localization
error from 1.9 m to 1.6 m compared to a traditional kNN, while discarding only 30% of the
estimations. On the other hand, we can have more strict configurations, for a threshold
α = 80%, that can improve the accuracy to almost 70% and the average localization error
to 0.9 m but accepting only 18% of the estimations. In terms of room accuracy, which was
the main focus of our application, LocFiND was able to improve the accuracy from 96% to
almost 99.5% while discarding only 20% of the estimations for a threshold α = 90%.

In future work, we intend to propose and analyze other methods for the evaluation of
confidence. For instance, the residual value, mainly used in the least square method, could
be used to compute a “distance” between the new sample and the nearest neighbors in the
fingerprint database. We aim at evaluating how this and other measures of discrepancies
could be used to improve our solution.
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Another point that we can advance is the problem generated by discarding unreliable
information in the localization phase. We aim at defining, given the response time required
by the system, how much information we can discard without harming its operation. We
can define minimum amounts of data distributed over time as an application requirement,
which defines the maximum data discard limit.

Also in future work, we intend to compare our work to a more robust, state-of-the-art
approach, other than KNN. Our proposed solution has some particularities that make it
somewhat different from most proposed solutions, mainly the characteristic of discarding
unreliable classifications based on novelty detection. Since most known solutions do not dis-
card these classifications, it would be difficult, in this current work, to make the comparison
while being able to see the isolated gains obtained by our evaluation of confidence step.
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