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Abstract: This paper addresses the fundamental problem of the trade-off between resource efficiency
and user satisfaction in the limited environments of Named Data Networks (NDNs). The proposed
strategy is named RADC (Resource Allocation based Data Classification), which aims at managing
such trade-off by controlling the system’s fairness index. To this end, a machine learning technique
based on Multinomial Naïve Bayes is used to classify the received contents. Then, an adaptive
resource allocation strategy based on the Lagrange utility function is proposed. To cache the received
content, an adequate content placement and a replacement mechanism are enforced. Simulation at
the system level shows that this strategy could be a powerful tool for administrators to manage the
trade-off between efficiency and user satisfaction.

Keywords: named data network; cache strategy; machine learning; placement strategy; name
classification; resource allocation

1. Introduction

In recent years, new network architectures under the name of Information-Centric
Networking (ICN) have attracted the attention of many academics and enterprises. ICN
proposes new structures and concepts that can solve the traffic congestion problems caused
by massive content distribution in the network [1]. The content is considered a very
important factor in ICN, which is the basis for content demand and reception. Among
the ICN architectures, NDN is a promising active research project that aims to develop a
candidate architecture for the future Internet [2]. NDN follows the same design as the IP
system, the difference being that the names of the data replace the IP address. NDN data
names are similar to the URL names structure, which better matches the current shift in
intranet usage from site-specific to content-specific searches. Routing and data transmission
also depend on the content names by implementing the longest prefix corresponding to the
requested name prefix [3]. In-network caching is also an important key in NDN, where
each router has a cache, and the received data are cached according to a specific caching
strategy. The caching mechanism enables future requests to be satisfied by the nearest
available routers instead of reaching the end producer of the data [4].

It is obvious that the in-network caching saves limited bandwidth resources and
improves network performance; however, in practice, the size of the caches remains limited
due to the huge amount of data circulating in the network; therefore, the main challenge
is how to use these limited caching resources for massive content while ensuring Quality
of Service (QoS). In addition, the administration and allocation of caching resources in
the network is also an important issue. These problems have been the subject of several
research papers in terms of caching strategies and algorithms; however, many of the
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proposed strategies focus on the large network environment and simply consider user
satisfaction as a basic factor for caching important data. In practice, these methods are not
always effective when dealing with a small limited network, such as a university network,
a company network, etc. This type of network usually has a limited set of nodes, and its
own data representing its direction, which is often stored in its own servers. In fact, the
huge demand for content from social networks and video-on-demand (VoD) has become a
large part of the data consumed in everyday life [5,6]. This poses a problem for this type
of network, since the owners of these networks will not be able to take advantage of the
cached data using existing caching strategies. As an example, the analysis of data traffic
at the University Amar Telidji Laghouat shows that the consumed data belonging to the
university represents only 4% of the total resource consumption. In this case, with the
existing strategies in the NDN, the data related to this network has no advantage in terms
of delay, satisfaction, and load on the servers. This looks to be contrary to the primary
goals of NDN; therefore, controlling the trade-off between maximum user satisfaction and
resource efficiency is one of the most fundamental issues in a limited NDN environment.
From the network administrator’s perspective, it is very essential to use the network caches
efficiently, and the benefits must be maximized. Similarly, from the users’ perspective, it is
more important that their Quality of Service (QoS) requirements are met adequately. Hence,
the question is how to manage this trade-off?

In this paper, we use a proven Bayesian classification-based machine learning method
to classify the received data in such a network. Then, using the Lagrange method, we
propose a utility function based on a preference parameter that allocates different partitions
to the content classes in the routers. A new placement and replacement strategy is also
defined for processing the data received by the routers. Finally an exhaustive simulation of
the results is presented to demonstrate the performance of the proposed model.

This paper is organized as follows. In Section 2, we review some NDN background.
In Section 3, the related work on the NDN caching solution is presented. In Section 4,
the proposed solution for resource allocation is described. Simulation results are then
presented and discussed in Section 5. Finally, we conclude this study and discuss future
research in Section 6.

2. NDN Background

In an NDN communication process, as illustrated in Figure 1, there are two types of
packets called interest and data packet. On the one hand, the interest packet mainly contains
the name of the content; on the other hand, the data packet mainly contains the name of the
content, the encrypted information, and the data. As Figure 1 indicates, NDN is based on
three essential modules for processing the requested and received packets. These modules
are called Content Store (CS), Pending Interest Table (PIT), and Forwarding Information
Base (FIB). The CS has a role of caching the data packets with some caching strategies in
order to satisfy the next requests for the same data. PIT is used to record the interfaces of
the incoming interest packets until the interest packet is satisfied, or the recording time
of the same packet is expired. The PIT also has a content name aggregation function, in
which the interest packets for the same content received from different interfaces will be
registered as a single request to avoid the retransmission of similar requests for the same
data. The role of the FIB module is to transmit the packets of interest to the producer(s) of
the data using packet transmission mechanisms, which are mainly based on the names of
the contents.



Future Internet 2022, 14, 48 3 of 14

CS PIT  FIB 

PIT 

CS 

Interest 
packet 

Add incoming interface 
Data 

Forward 
interest 

Discard 

forward 

Discard Data 

Cache 
Data 
packet 

0 0 

1 
1 

0 

1 

0 

1 

PIT entry is removed 

Registred 
to PIT 

NDN router when it receive an  interest packet  

NDN router when it receive a data packet 

Figure 1. NDN background.

3. Related Work

Based on previous studies on resource allocation in ICNs, we can see a strong similarity
between these strategies and content placement strategies. Arguably, the first and best
known resource allocation strategy is Leave Copy Every Were (LCE) [3], where resources
are shared and cached in all nodes in the return path. There are also other strategies
proposed in this area, which can be divided into two categories. Strategies that allocate
resources over the entire network or path, and strategies that allocate resources over the
node itself.

The first category refers to caching strategies that use coordination between nodes
to allocate resources fairly, or to allocate popular resources to nodes that are considered
important in the network. In [7], the authors propose a strategy called ProbCache, which
approximates the capacity of paths to cache content using the hop count. In this strategy,
nodes connected near the content source will be given priority to cache content over other
nodes along the path. In [8], the authors propose a strategy that combines routing and
resource allocation in the NDN network. This strategy uses a Q-learning algorithm based
on the basic components of a semi-Markov decision process called SMDP to prove the best
routing and resource allocation path. In [9], the authors propose a joint routing strategy
with a resource allocation algorithm for wireless environments, which they called dynamic
routing and resource allocation. In [10], the authors propose a resource allocation strategy
for a limited network environment. They formulate an optimization problem that attempts
to maximize the caching of popular content to reduce latency. At the same time, they
minimize the hit variance to achieve a balanced resource allocation among the network
nodes. In [11], the authors attempt to divide the network topology into different tiers
based on the demands from different interfaces and video applications. The goal is to
minimize redundancy and cache popular content closer to the consumers. In [12], the
authors studied the object allocation problem using game theory as a distributed many-
to-one in ISP networks to improve cache utilization in NDN. In [13], the authors measure
the node utilization ratio (NUR), which considers the consumers distribution, the server
distribution, and the content routing paths. Then they take the proportion between the
NUR and the cache size of the node, along with the transmission ratio of the node, to
allocate more contents in the relevant nodes.

Despite the importance of these strategies, they do not offer much to the limited
network community, as most of these strategies only rely on the popularity of the data in
the network distribution. Further, they do not provide an effective solution for controlling
the data that should be cached.
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Regarding the second category of proposed strategies, we find that researchers have been
more interested in classifying the data to give each class a chance to obtain space to cache
its data. The main reason is that sharing data in caches by prioritizing caching for the most
popular data prevents the rest of the data from having a chance to be cached. In [14], the
authors propose a method for dynamic allocation of cache space. They divide the content into
five categories based on the packet characteristics, where each category has a different priority
to decide how many items should be cached in each category. In [15], the authors propose a
caching strategy called Cache Based on Popularity and Class (CAPIC). This strategy caches a
copy of the data one hop closer to the consumer for each request. In addition, when the CS of
a node is full, the router checks the class of the received data and replaces it in the portion of
the same class. Each class has a portion that changes periodically depending on the calculated
popularity of the classes. In [16], the authors divide the received data into two categories
of popular and non-popular data based on a calculated threshold where the non-popular
data are placed near the consumers, and the popular data are placed at the shortest path that
contains a maximum of users that request the same data.

We believe that this type of strategy is better than the first type for limited network
environments. The main reason is that, in these strategies, many types of data can be
cached, especially the less requested data. Yet, these strategies remain limited because
they do not provide a robust classification model for the data, as they classify the data
only using their frequencies, and do not focus on the content. Furthermore, the proposed
strategies do not provide a control factor that matches the demands of consumers and the
needs of the managers of these networks.

4. RADC: Resource Allocation Based Data Classification
4.1. System Model

The system model is much more focused on limited network environments, such as
academic and industrial networks, etc. In these types of networks, each area consists of a
network administrator, and a set of nodes and server(s). For instance, Figure 2 illustrates a
network with four areas denoted Area = {Areai|i ∈ [1.4]}. Routers in the same network
area sent periodically the sum of each consumed class to the administrator side. Similarly,
the network administrator will calculate the allocated partitions for each class according to
the utility function given in Section 4.3. The communication between administrator/routers
of the same area can be performed using the IP layer in the NDN hourglass [3]. To classify
the received contents, each router in the network will use the proposed classification model
(Section 4.2) to assign the contents to the corresponding classes. The nodes outside those
networks use the default caching mechanism used in NDN.

4.2. Content Classification

As mentioned above, most of the proposed methods in the NDN do not provide a
robust model for content classification, as they typically use simple parameters to clas-
sify their content (e.g., request frequency). One of the most important keys introduced
by NDN that can be exploited to classify contents efficiently is the data naming, which
adopts the same structure as URL naming. The names in NDN are significant sources of
information and knowledge; however, processing names is a difficult task regarding their
unstructured format. We use a Naïve Bayes (NB) classifier [17], which has been widely
used to analyze and solve many scientific problems due to its simplicity, efficiency, and
effectiveness [18,19]. Naive Bayes is computationally inexpensive and also needs a very
low amount of memory [20]. The role of the NB in this study is to classify the received
content into two classes, where the first class represents the consumed data that belong
to the server or domain of the addressed network, and the second class is the consumed
data that do not bring any benefit to the addressed network. Before starting to use the
BN model, a step concerning the preparation of the dataset for the training and testing of
the model should be performed. The dataset used should contain a sufficient number of
names of the requested contents in each selected class. Once the preparation of the dataset
is complete, the conversion of the dataset into a word count matrix is performed, with each
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row representing a data name, and the columns representing the features that represent the
entire vocabulary existing in the dataset. The model uses the n-gram model [21] to extract
more features, and also uses the Term-Frequency Inverse Document Frequency (TF-IDF)
model [22] to weigh the selected features.

Area 2 

Area 3 Aria 1 

Area 4 

Local Server 

Local Server 

Local Server 

Local Server 

Admin 2 

Admin 4 

Admin 1 

Admin 3 

Figure 2. Example of targeted networks.

4.2.1. The High-Level Description of the Naïve Bayes Classifier

If the number of content names (L) fit into s classes where s ∈ {c1, c2, . . . , cs}, the
predicted output class is c ∈ C. The Naïve Bayes algorithm can be described as follows:

P(c | l) =
P(l | c)P(c)

P(l)
(1)

where l is the content name, and c indicates classes.

CPredicted = arg max
c∈C

P(l | c)P(c) (2)

4.2.2. Multinomial Naïve Bayes Classifier

Naive Bayes classifiers differ mainly in the assumptions they make about the prob-
ability distribution of P(l | c). in text classification such as content names of NDN the
multinomial distribution performs well compared to other distributions such as the Gaus-
sian distribution or the Bernoulli distribution [17]. The Multinomial Naïve Bayes algorithm
can be written as:

P(c | l) =
P(c)∏w∈l P(l | c)nwl

P(d)
(3)

where nwl denotes the number of times that word w occurs in the name, and P(w | c) is the
probability of observing word w given class c.

P(w | c) is calculated as:

P(c | wi) =
count(wi, c) + 1
count(w, c) + V

(4)
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where count(wi, c) is the number of times the word appears in class c in the training dataset,
count(w, c) is the total number of all words appearing for class c, and V is a constant value
that represents the number of features (words) that represent the model.

4.3. Resource Allocation

One of these solutions, which is very simple, efficient, and suitable for solving prob-
lems of allocation of limited resources between a set of independent activities, is that of
Lagrange multipliers. The use of this technique does not guarantee that a solution will
necessarily be found for all problems, but it is safe in the sense that any solution found
by using them is a real solution [18]. To this end, the aim of this work is to optimize the
resource allocation of the two selected classes of data by giving each of them an associated
space taking into account two factors. The first one is the priority level of the space associ-
ated with data that is not important to the targeted network compared to the second space.
The second factor is the frequency of requests received in each class. This is performed
within the constraint of the maximum cache space in each router as formulated by the
equation below:

P |
max

x̃
f (x̃)

u.c g(x̃) = c
(5)

Hence, our problem can be formulated as:

P |
max
C1,C2

f (C1, C2)

u.c g(C1, C2) = MaxC
(6)

where C1 and C2 represent, respectively, the space associated to the data that belong to the
domain of the targeted network, and the second to the other data; MaxC represents the
maximum cache space in the router.

The chosen objective function f (C1, C2) and the constrained g(C1, C2) that can give
the best allocation to the two spaces are formulated according to:

P |
max
C1,C2

− αC1 − βCk
2

u.c C1 + C2 = MaxC
(7)

where α and β represent, respectively, the frequency of requests that belong to the organiza-
tion, and the requests that do not belong to the organization, These requests are classified
using the Naive Bayes classifier. k represents the priority level of the space C2 with respect
to the space C1, where the value of factor k takes the scale from 0.1 to 0.9 inspired from the
work presented in [14]. The meaning of the scale is presented in Table 1 (Note: The values
0.2, 0.4, and 0.8 of the factor k mean that the importance of the space C1 in respect to C2 is
situated between the two adjacent levels shown in the Table 1).

Table 1. Meaning of the scale from 0.1 to 0.9.

Value Meaning

0.1 The data in the C1 space have an obvious importance in the network compared to the C2 space.
0.3 The data in the C1 space have a higher importance in the network compared to the C2 space.
0.6 The data in the C1 space have a low importance in the network compared to the C2 space.
0.9 The data in the C1 space have the same importance in the network compared to the C2 space.

The Lagrangian function associated with this program is written as shown below:

L(C1, C2, λ) = −αC1 − βCk
2 − λ(C1 + C2 −Max C) (8)

where λ is called the Lagrange multiplier associated with the constraint.
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We obtain the desired spaces by calculating the derivatives of our variable as follows:
∂L

∂C1
= 0⇔ −α− λ = 0

∂L
∂C2

= 0⇔ −βkCk−1
2 − λ = 0

∂L
∂λ = 0⇔ −C1 − C2 + Max C = 0

(9)

Finally we obtain the two spaces C1 and C2, where C1 is equal to
⌈

Max C−
(

α
kβ

) 1
k−1
⌉

,

and C2 is equal to
⌊(

α
kβ

) 1
k−1
⌋

. We can add the Laplace smoothing to the spaces to avoid

zero in the denominator, so C1 and C2 will equal, respectively:
C1 =

⌈
Max C−

(
α+1

kβ+1

) 1
k−1
⌉

C2 =

⌊(
α+1

kβ+1

) 1
k−1
⌋ (10)

In certain cases when the margin between the frequencies of requests belonging to
the two classes is very large, we can find that C1 is equal to a negative number to satisfy
our constraint. Since the Lagrange is limited by the constraints of equality, we can fix this
problem by affecting C1 = 0, and C2 = MaxC when C1 6 0.

4.4. Placement and Replacement of Data

Unlike strategies that share the same space for all content, our strategy allocates the
desired space for each content class. It is known that content placement and replacement
in NDN is also an important feature that can improve the overall network performance.
As shown in Figure 3, when the routers in the network receive the content, they classify it
using the classification model. Then, the received content is placed in the corresponding
space that was allocated to the same class. If the corresponding space is full, a replacement
strategy will be applied to insert the received content by evicting another from the same
class. We note that the design of our strategy allows us to adapt any replacement strategy
to replace data of the same class, but for simplicity we use the Least Recently Used (LRU)
method to replace the received data. In this strategy, the received data will replace the least
recently used data [19].

Figure 3. Data placement and replacement process.
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5. Performance Results of RACD Strategy

In this section we present and discuss the different performance results obtained. To
this end we start by detailing the simulation environment used, and next we proceed to
show the actual results achieved. Further, for the sake of reproducibility, the detailed work-
ing code of RACD is available at: https://github.com/Herouala/RADC.git (accessed on
12 December 2021).

5.1. Simulation Environment

The performance evaluation of the proposed strategy was performed in two steps.
First, we implemented the classification model to classify the dataset used in the simulation.
Then, the proposed strategy was evaluated through simulation. Due to the lack of standard
datasets in NDN, we constructed our dataset by combining the DMOZ (DMOZ: https:
//web.archive.org/web/20170312160530/http://rdf.dmoz.org/rdf/content.rdf.u8.gz (ac-
cessed on 12 December 2021)) dataset with links extracted from the website of the University
Amar Telidji Laghouat (UATL). DMOZ is a well-known dataset for classification, and it
is used in many works as in [20,21]. The names of the DMOZ dataset are labeled as data
belonging to the class {0} (unimportant), and the links extracted from the UATL are labeled
as data belonging to class {1} (important). The dataset used is divided into two parts,
one for the training and the other for testing the model. The implemented Multinomial
Naïve Bayes classifier model has achieved 98% accuracy in classifying the content names.
After that, the RADC strategy is evaluated through ndnSIM [22], which represents the
official ns-3-based simulator deployed by the NDN community. ndnSIM enables reliable
simulation experiments that can be replicated in real environments without having to
modify the source code [23]. To make our simulation as realistic as possible, we chose
a real dataset from the University Amar Telidji Laghouat (UATL) as a realistic interest
consumption. The UATL dataset contains more than one million links consumed during a
week at this university.

The strategies are simulated using a non-complete K-ary tree as in [24–26]. This topology
is based on two parameters, D and k, where they represent consecutively the depth of the tree
and the number of children of each node in the tree. We chose D ∈ [3, 7] and k in the interval
[0, 5], where k is randomly generated for each node as in [26]. For the simulation scenario, we
assume that there are two root nodes, where the first is a server that belongs to the university,
and it contains all its data. The second represents a server containing all other data requests.
Furthermore, we assume that all requests are sent by leaf nodes.

For each test run, users are assumed to express interests from the used UATL dataset. For
simplicity, we set a similar cache size for all nodes in the network. Each link in our topology
has a bandwidth of 10 Gbps, which is greater than the traffic demand, and a propagation
delay of 1 ms. Table 2 shows the choice of the main parameters for our simulation.

Table 2. Parameter settings for the simulation.

Parameter Default Value Range

Tree-ary k - [0;5]
Tree depth D 5 [3;7]

node cache capacity 100 [10;100]
Priority level 0.4 [0.1;0.9]

Delay 1 ms -
Bandwidth 10 Gbps -

For the evaluation method, we studied the impact of parameters priority level, cache
size, and tree depth on the caching performance in the network. We compare the results of
our resource allocation mechanism with the mechanism that promotes content sharing in
the same cache. The sharing mechanism represents the majority of the proposed strategies,
with a difference in the choice of the placement and replacement strategy. Since RADC
does not apply any particular technique to manage the cache content, any strategy could

https://github.com/Herouala/RADC.git
https://web.archive.org/web/20170312160530/http://rdf.dmoz.org/rdf/content.rdf.u8.gz
https://web.archive.org/web/20170312160530/http://rdf.dmoz.org/rdf/content.rdf.u8.gz
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easily be adopted. We compare the two strategies in the same environment, applying the
same placement and replacement technique. The two strategies represent, consecutively,
LCE [3] and LRU [19] for placement and replacement.

We quantify the performance of the in network caching from two metric aspects:
Cache hit ratio, a metric that measures the ratio between the served content requests

and the number of received requests. It also reflects the load saving of the servers, and the
delay of the data delivery, since the higher the cache hit ratio is, the faster the data delivery
becomes before the user’s request reaches the data source. In our case, we study the cache
hit of the served data that belong to the university, and also the hit of the other data for
both strategies; we can define it as follows:

Cachehitratio =
r
|R| (11)

where r represent the number of requests satisfied by in-network caches, and |R| is the total
number of requests.

The hop reduction ratio indicates the variation of the data delivery distance in the
network. In our study, we investigate the hop reduction ratio of the data belonging to
the university against the other data in both tested strategies. The hop reduction ratio is
defined as follows:

Hop reduction ratio = 1− ∑r∈R hr

∑r∈R Hr
(12)

where hr and Hr are the hop counts from the requester of r ∈ R to the node, which serves
the request, and to the original content server, respectively.

5.2. Performance Results

In the comparison of results, we named the results obtained for the two classes with our
strategy as UD-RA and OD-RA, where the UD-RA acronym refers to the results obtained
for the data belonging to the university using our strategy, and the OD-RA acronym refers
to the obtained results for the data outside the university using our strategy. Further, for
the sharing strategy, we name the results obtained for the two classes as UD-sharing and
OD-sharing.

5.2.1. The Impact of the Priority Level on Performance

Figure 4 shows the effect of the priority level (k) on the performance of the resource
allocation strategy in terms of hit ratio and hop reduction ratio. We can see that, when
the priority level k increases, the results of the university data (UD-RA) decrease, and the
results of the other data (OD-RA) increase. Here we observe that, from 0.1 to 0.4, there is
an increase in the hit ratio and in the hop reduction ratio for university data compared to
non-university affiliated data. The reason is that, as the priority coefficient increases, the
space given to non-university data increase until it reaches nearly the same size for both
types of data when k = 0.4. Starting from k = 0.5, We can see a clear superiority for OD-RA
reaches almost 90% as a difference in the hit ratio, and also for the hop reduction ratio.
Notice that, as the k coefficient increases, the space allocated to OD-RA also increases. The
reason why OD-RA takes more storage space compared to UD-RA even with the priority
coefficient k in the ranges from 0.5 to 0.9 is because there is a large difference between the
amounts of data consumed in the two classes, as the amount of data that belong to the
university represent only 4% of the total resource consumption. This, in turn, has an impact
on space allocation.
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Figure 4. Caching performance vs. priority level in terms of (a) cache hit ratio, and (b) hop reduc-
tion ratio.

5.2.2. Impact of the Cache Size on the Performance of Our Strategy

Figures 5 and 6 show the effect of cache size on the performance of the data sharing
and data resource allocation strategy in terms of hit ratio and hop reduction ratio. From the
two figures, we can see that, for the sharing strategy, the hop reduction and hit ratio values
increase with the cache size, with a large margin for the OD-Sharing results compared to the
UD-Sharing. The improvement in results when cache size increases makes sense because
now more data are cached, which increases the chances of having the data searched to the
closest possible node. The difference in the results between the two classes is due to the fact
that the requests in the OD-Sharing class are more numerous than those of UD-Sharing.
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Figure 5. Caching performance vs. cache size in terms of: cache hit ratio.
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For the resource allocation strategy, with k = 0.1, the university data (UD-RA) achieves
a higher hit ratio and hop reduction ratio as the cache size increases. The OD-RA achieves
low and constant values compared to UD-RA. This is because, when using a very small
value for coefficient k, the cache partition size given to UD-RA is much larger than the size
given to OD-RA, which was small and fixed in all sizes tested. When k = 0.9, we find
that our strategy performs inversely to k = 0.1 where, as the cache size increases, OD-RA
performs well compared to UD-RA in terms of hit ratio and hop reduction ratio. The reason
is that, when the coefficient is k = 0.9, the coefficients of the two data classes become almost
equivalent; therefore, the allocations of each partition become related to the amount of data
received from both classes. Since the consumed university data represents only 4% of the
total consumption, all the cache is allocated to OD-RA data. We also notice that, when
k = 0.4, from 10 to 30, the UD-RA obtains a null hit and hop reduction ratio, in contrast to
the OD-RA, which increases with the increase in cache size. From 40 to 60 we notice an
increase in the results of both classes of data, with their convergence until they are equal in
the capacity 70. From 80 to 100, the results show a continuous increase in both classes, with
dominance of UD-RA over OD-RA. The reason for the continuous increase in results for
both classes is that both classes obtain more space when the total cache space increases. The
reason why these results are obtained when k = 0.4 is that, when the cache size is between
10 and 30, the Lagrange utility function gives the total memory space for the OD-RA. Then,
beyond size 40, the function starts to give more memory space for UD-RA, and OD-RA
space remains fixed until they reach equal results for size 70. Then, the increase in space
continues for UD-RA, which takes more memory space, and thus achieves better results
than OD-RA.

5.2.3. Impact of Tree Depth on Performance

Figures 7 and 8 show the effect of tree depth on the performance of the sharing and
resource allocation strategies by calculating the hit ratio and hop reduction ratio for each
strategy. For the sharing strategy, we observe a slight increase in the results for both classes
of data in terms of hit and hop reduction ratio as depth increases. We also observe a large
difference in the results for the two classes, with a 50% difference in hits, and a difference
ranging from 60% to 35% in hop reduction results between OD-Sharing and UD-Sharing.
The increase in the results obtained is due to the number of nodes that increase with length,
allowing more cache space to be allocated. This allows more data to be cached, including
low-consumption data, such as university-owned data (UD-Sharing), which results in a
higher hit ratio and less hop ratio.
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Figure 7. Caching performance vs. tree depth in terms of cache hit ratio when varying k.
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Figure 8. Caching performance vs. tree depth in terms of hop reduction ratio when varying k.

Regarding the resource allocation strategy, the results differ depending on the k factor.
When k = 0.1, we notice a very slight increase in the hit and hop reduction results with the
increase in depth D. We also notice a big difference between the results obtained for the
two classes of data, being that this difference grows up to 85% between the UD-RA and
the OD-RA, where OD-RA achieves the lowest percentage. Indeed, the use of a coefficient
k = 0.1 leads to a very high priority for the data that belong to the university compared to
the other data. With the use of k = 0.9, we see the opposite of the results given with the use
of k = 0.1. This is because the coefficients between the two classes of data become closer,
and thus the priority becomes dependent on the amount of consumed data for both classes.
Since the amount of consumed data that are not affiliated with the university is much larger
than the others, OD-RA gained a significant advantage within the given space, leading to
the obtained results. At k = 0.4, there is an improvement in the results of both classes as the
depth D increases. The difference between the two classes of data is between 20% and 60%
for the hit ratio, and between 40% and 25% for the hop reduction ratio, with a preference
for the UD-RA. The convergence of the results obtained for the two classes is due to the
fact that the space given to them is similar, with a bias towards the space reserved for the
university data.

Through this study and the results obtained, we can say that the proposed strategy
offers the possibility to control the data in an excellent way, even at the levels where there
is a big difference between the consumed data classes. Indeed, by using this strategy, we
are able to determine the desired priority level, which in turn can allocate space for the
desired data resources.

6. Conclusions and Future Work

The proposed strategies for resource allocation in NDNs are known to be effective
in optimizing the overall network performance; however, these strategies may suffer in a
limited network environment. That is because a fundamental trade-off problem between
resource efficiency and user satisfaction might arise. To this end, a resource allocation
scheme based on data classification has been proposed with a weighting factor that is
used to decide at which level we want to control the aforementioned trade-off. Simulation
results show that our strategy outperforms the sharing strategies, since it proves its ability
to control any desired trade-off point of their respective efficiency and satisfaction levels.

As future work, further experiments should be performed to evaluate the robustness
of our approach against other state-of-the-art approaches. We also want to add other
factors to the objective function of the resource allocation which may help at enhancing
and improving network performance.



Future Internet 2022, 14, 48 13 of 14

Author Contributions: Data curation, C.A.K.; Investigation, A.T.H. and N.L.; Methodology, C.A.K.,
B.Z., C.T.C. and N.L.; Software, A.T.H.; Supervision, C.A.K., B.Z. and A.e.K.T.; Validation, C.T.C.;
Writing—original draft, A.T.H.; Writing—review & editing, C.A.K., B.Z., C.T.C., N.L. and A.e.K.T. All
authors have read and agreed to the published version of the manuscript.

Funding: This work is derived from R&D project RTI2018-096384-B-I00, funded by MCIN/AEI/
10.13039/501100011033 and “ERDF A way of making Europe”.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Vasilakos, A.V.; Li, Z.; Simon, G.; You, W. Information centric network: Research challenges and opportunities. J. Netw. Comput.

Appl. 2015, 52, 1–10. [CrossRef]
2. Abdullahi, I.; Arif, S.; Hassan, S. Survey on caching approaches in information centric networking. J. Netw. Comput. Appl. 2015,

56, 48–59. [CrossRef]
3. Zhang, L.; Afanasyev, A.; Burke, J.; Jacobson, V.; Claffy, K.; Crowley, P.; Papadopoulos, C.; Wang, L.; Zhang, B. Named data

networking. ACM SIGCOMM Comput. Commun. Rev. 2014, 44, 66–73. [CrossRef]
4. Ahmad, F.; Kerrache, C.A.; Kurugollu, F.; Hussain, R. Realization of blockchain in named data networking-based internet-of-

vehicles. IT Prof. 2019, 21, 41–47. [CrossRef]
5. Cisco Annual Internet Report (2018–2023) White Paper. Available online: https://www.cisco.com/c/en/us/solutions/collateral/

executive-perspectives/annual-internet-report/white-paper-c11-741490.html (accessed on 12 December 2021).
6. Kerrche, C.A.; Ahmad, F.; Elhoseny, M.; Adnane, A.; Ahmad, Z.; Nour, B. Internet of vehicles over named data networking:

current status and future challenges. In Emerging Technologies for Connected Internet of Vehicles and Intelligent Transportation System
Networks; Springer: Cham, Switzerland, 2020; pp. 83–99.

7. Psaras, I.; Chai, W.K.; Pavlou, G. In-network cache management and resource allocation for information-centric networks. IEEE
Trans. Parallel Distrib. Syst. 2013, 25, 2920–2931. [CrossRef]

8. Yao, J.; Yin, B.; Lu, X. A novel joint adaptive forwarding and resource allocation strategy for named data networking based on
SMDP. In Proceedings of the 2016 12th IEEE International Conference on Control and Automation (ICCA), Kathmandu, Nepal,
1–3 June 2016; pp. 956–961.

9. Li, C.; Xie, R.; Huang, T.; Huo, R.; Liu, J.; Liu, Y. Joint Forwarding Strategy and Resource Allocation in Information-Centric HWNs.
In Proceedings of the GLOBECOM 2017-2017 IEEE Global Communications Conference, Singapore, 4–8 December 2017; pp. 1–6.

10. Yuan, D.; Xu, Y.; Ran, J.; Hu, H.; Liu, Y.; Li, X. An optimal fair resource allocation strategy for a lightweight content-centric
networking architecture. In Proceedings of the 2017 3rd IEEE International Conference on Computer and Communications
(ICCC), Chengdu, China, 13–16 December 2017; pp. 573–577.

11. Zhang, Y.; Tan, X.; Li, W. In-network cache size allocation for video streaming on named data networking. In Proceedings of
the 2017 VI International Conference on Network, Communication and Computing, Kunming, China, 8–10 December 2017;
pp. 18–23.

12. Ehsanpour, M.; Bayat, S.; Hemmatyar, A.M.A. On Efficient and Social-Aware Object Allocation in Named Data Networks Using
Matching Theory. In Proceedings of the 2018 IEEE Symposium on Computers and Communications (ISCC), Natal, Brazil,
25–28 June 2018; pp. 298–303.

13. Zhang, M.; Xie, P.; Zhu, J.; Wu, Q.; Zheng, R.; Zhang, H. NCPP-based caching and NUR-based resource allocation for information-
centric networking. J. Ambient. Intell. Humaniz. Comput. 2019, 10, 1739–1745. [CrossRef]

14. Huo, R.; Xie, R.; Zhang, H.; Huang, T.; Liu, Y. What to cache: differentiated caching resource allocation and management in
information-centric networking. China Commun. 2016, 13, 261–276. [CrossRef]

15. Yovita, L.V.; Syambas, N.R.; Edward, I.Y.M. CAPIC: Cache based on popularity and class in named data network. In Proceedings
of the 2018 International Conference on Control, Electronics, Renewable Energy and Communications (ICCEREC), Bandung,
Indonesia, 5–7 December 2018; pp. 24–29.

16. Naeem, M.A.; Nor, S.A.; Hassan, S.; Kim, B.S. Compound popular content caching strategy in named data networking. Electronics
2019, 8, 771. [CrossRef]

17. McCallum, A.; Nigam, K. A comparison of event models for naive bayes text classification. In Proceedings of the AAAI-98
Workshop, Madison, WI, USA, 26–27 July 1998; Volume 752, pp. 41–48.

18. Dehghan, M.; Massoulie, L.; Towsley, D.; Menasche, D.S.; Tay, Y.C. A utility optimization approach to network cache design.
IEEE/ACM Trans. Netw. 2019, 27, 1013–1027. [CrossRef]

19. Situmorang, H.; Syambas, N.R.; Juhana, T.; Edward, I.Y.M. A Simulation of Cache Replacement Strategy on Named Data Network.
In Proceedings of the 2018 12th International Conference on Telecommunication Systems, Services, and Applications (TSSA),
Yogyakarta, Indonesia, 4–5 October 2018; pp. 1–4.

http://doi.org/10.1016/j.jnca.2015.02.001
http://dx.doi.org/10.1016/j.jnca.2015.06.011
http://dx.doi.org/10.1145/2656877.2656887
http://dx.doi.org/10.1109/MITP.2019.2912142
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
http://dx.doi.org/10.1109/TPDS.2013.304
http://dx.doi.org/10.1007/s12652-017-0590-5
http://dx.doi.org/10.1109/CC.2016.7897549
http://dx.doi.org/10.3390/electronics8070771
http://dx.doi.org/10.1109/TNET.2019.2913677


Future Internet 2022, 14, 48 14 of 14

20. Kim, J.; Ko, M.C.; Kim, J.; Shin, M.S. Route Prefix Caching Using Bloom Filters in Named Data Networking. Appl. Sci. 2020,
10, 2226. [CrossRef]

21. Zaeem, R.N.; Barber, K.S. A Large Publicly Available Corpus of Website Privacy Policies Based on DMOZ. In Proceedings of the
Eleventh ACM Conference on Data and Application Security and Privacy, Virtual, 26–28 April 2021.

22. Mastorakis, S.; Afanasyev, A.; Zhang, L. On the evolution of ndnSIM: An open-source simulator for NDN experimentation. ACM
SIGCOMM Comput. Commun. Rev. 2017, 47, 19–33. [CrossRef]

23. Amadeo, M.; Ruggeri, G.; Campolo, C.; Molinaro, A. IoT services allocation at the edge via named data networking: From
optimal bounds to practical design. IEEE Trans. Netw. Serv. Manag. 2019, 16, 661–674. [CrossRef]

24. Chai, W.K.; He, D.; Psaras, I.; Pavlou, G. Cache “less for more” in information-centric networks (extended version). Comput.
Commun. 2013, 36, 758–770. [CrossRef]

25. Ren, J.; Qi, W.; Westphal, C.; Wang, J.; Lu, K.; Liu, S.; Wang, S. Magic: A distributed max-gain in-network caching strategy in
information-centric networks. In Proceedings of the 2014 IEEE conference on computer communications workshops (INFOCOM
WKSHPS), Toronto, ON, Canada, 27 April–2 May 2014; pp. 470–475.

26. Hu, X.; Gong, J.; Cheng, G.; Fan, C. Enhancing in-network caching by coupling cache placement, replacement and location. In
Proceedings of the 2015 IEEE International Conference on Communications (ICC), London, UK, 8–12 June 2015; pp. 5672–5678.

http://dx.doi.org/10.3390/app10072226
http://dx.doi.org/10.1145/3138808.3138812
http://dx.doi.org/10.1109/TNSM.2019.2900274
http://dx.doi.org/10.1016/j.comcom.2013.01.007

	Introduction
	NDN Background
	Related Work
	RADC: Resource Allocation Based Data Classification
	System Model
	Content Classification
	The High-Level Description of the Naïve Bayes Classifier
	Multinomial Naïve Bayes Classifier

	Resource Allocation
	Placement and Replacement of Data

	Performance Results of RACD Strategy
	Simulation Environment 
	Performance Results
	The Impact of the Priority Level on Performance
	Impact of the Cache Size on the Performance of Our Strategy
	Impact of Tree Depth on Performance


	Conclusions and Future Work
	References

