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Abstract: Human pose estimation (HPE) has become a prevalent research topic in computer vision.
The technology can be applied in many areas, such as video surveillance, medical assistance, and
sport motion analysis. Due to higher demand for HPE, many HPE libraries have been developed
in the last 20 years. In the last 5 years, more and more skeleton-based HPE algorithms have been
developed and packaged into libraries to provide ease of use for researchers. Hence, the performance
of these libraries is important when researchers intend to integrate them into real-world applications
for video surveillance, medical assistance, and sport motion analysis. However, a comprehensive
performance comparison of these libraries has yet to be conducted. Therefore, this paper aims
to investigate the strengths and weaknesses of four popular state-of-the-art skeleton-based HPE
libraries for human pose detection, including OpenPose, PoseNet, MoveNet, and MediaPipe Pose. A
comparative analysis of these libraries based on images and videos is presented in this paper. The
percentage of detected joints (PDJ) was used as the evaluation metric in all comparative experiments
to reveal the performance of the HPE libraries. MoveNet showed the best performance for detecting
different human poses in static images and videos.
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1. Introduction

Human pose estimation (HPE) aims to locate all of the human body parts from input
images or videos. Nowadays, HPE has become a popular task in the field of computer
vision. It is widely used in video surveillance [1-6], medical assistance [7-15], and sport
motion analysis [16-28]. Human keypoints are used to classify the poses and measure the
correctness of poses in these applications. Using an intelligent video surveillance system,
the human keypoints can be extracted from human body parts to classify poses between
kidnapping and child abuse cases. In the aspect of medical assistance, detected keypoints
from body parts can be used to evaluate the correctness of postures for physiotherapy
exercises, fall detection, and in-home rehabilitation. In addition, the performance and cor-
rectness of an athlete’s movements can be evaluated by comparing the detected keypoints
from body parts with reference poses (ground truth).

HPE can be classified into two-dimensional (2D) HPE and three-dimensional (3D)
HPE. It can also be classified into single-person HPE and multi-person HPE based on the
number of people captured in the input image. In both single-person and multi-person
HPE, it can be further classified into top-down and bottom-up methods, based on the ways
of detecting the skeleton keypoints [29]. This paper focuses on a comparative study of 2D
single-person HPE.

As the demand for HPE increases, many skeleton-based HPE algorithms have been
developed and packaged into libraries to provide ease of use for researchers. The perfor-
mance of these HPE libraries is important to ensure the reliability of the different practical
applications for which they are integrated. For instance, when the HPE library is applied to
an in-home rehabilitation system, it needs to accurately detect the poses of patients freely
performing rehabilitation poses in different home environments to ensure the reliability of
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the application. This situation is even more complicated when common challenges, such
as inappropriate camera position and self-occlusion [11,20,22,23], affect skeleton keypoint
detection. Recently, four state-of-the-art HPE libraries have been applied in various ap-
plications, namely PoseNet [30], MoveNet [31], OpenPose [32], and MediaPipe Pose [33].
Table 1 shows a list of applications in different domains that have utilized these four HPE
libraries in the last 5 years.

Table 1. Applications of PoseNet, MoveNet, OpenPose, and MediaPipe Pose in different domains.

Domain HPE Library Year Purpose of Application
Video OpenPose [6] 2018 Kidnapping detect.lon—u.smg HPE toiclasmfy ku.:lnappmg cases and normal
. cases in an intelligent video surveillance system.
Surveillance A child ab tion decisi t svst ine OpenPose t
OpenPose [5] 2019 child abuse prevention decision-support system-using OpenPose to
P classify adults and children in CCTV.
OpenPose [15] 2020 A fall detection system-using OpenPose to extract features of human body.
PoseNet [8] 2020 Automatic feedback on incorrect posture for physiotherapy exercises.
. PoseNet [10] 2021 A telehealth system providing in-home rehabilitation.
Medical M . 1 d cond : . : 1
Assistance OpenPose [11] 2021 easure joint angles and conduct semi-automatic ergonomic postura
S818 assessments to evaluate the risk of musculoskeletal disorders.
MoveNet [14] 2021 A healthcare system.that measures patient’s strength., k.)a%lance, and range of
motion during physical therapy activities.
MediaPipe Pose [12] 2022 A fall detection system.
A posture corrector system—to notify people who are spending most of
MediaPipe Pose [13] 2022 their time sitting in front of the computer with bad posture to avoid
long-term health issues.
OpenPose [28] 2018 A basketball free-throw shooting prediction system-using OpenPose to
generate body keypoints.
OpenPose [21] 2020 A real-time push-up counter-to classify the correct and incorrect push-ups.
. ' OpenPose [20] 2021 A system to evaluate baseball swinging poses and help baseball players
port Motion correct their poses.
Analysis MediaPipe Pose [24] 2021 A mobile application—to anz‘ﬂyze, improve, and track cricket players
batting performance.
PoseNet [25] 2021 A real-time workout analyzer-allows f1tnes§ enthusiast t.o perform their
workout accurately at home and with proper guidance.
PoseNet [26] 2021 A fitness tutor-to maintain the correctness of the posture during workout
exercises.
PoseNet [27] 2021 A fitness apphcatlon—prowde.s instant feedbac{k to users to ensure the
accuracy of their workout exercise poses.
MedjiaPipe Pose [22] 2022 To score the human body’s balance ability on the wobble board.
MediaPipe Pose [23] 2022 A free weight exercise tracking software—allows users to learn and correct

their exercise poses.

The four HPE libraries face two common challenges in pose estimation, including
inappropriate camera position and the self-occlusion effect. Even though each HPE library
uses different approaches to overcome these challenges, the strengths and weaknesses of
these four existing HPE libraries have yet to be discovered. Therefore, the comparative
performance of these libraries should be carried out to investigate their robustness in
detecting different human poses. This paper aims to compare the performance of these
four state-of-the-art HPE libraries for human pose detection and analyze the strengths and
weaknesses of each HPE library. Hence, a comparative analysis of these four HPE libraries
based on images and videos was carried out. To the best of the authors” knowledge, this
paper is the first attempt to compare and analyze the performance of PoseNet, OpenPose,
MoveNet, and MediaPipe Pose using both image and video datasets.

The rest of this paper is organized as follows. Section 2 reviews the existing compara-
tive analysis of the different HPE libraries and summarizes the functionalities of PoseNet,
OpenPose, MoveNet, and MediaPipe Pose. The methodology used to evaluate the per-
formance of each HPE library is presented in Section 3. Next, Section 4 provides the
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experimental results, in terms of image and video datasets. Section 5 analyzes the strengths
and weaknesses of each HPE library. The last section presents the conclusion of the study.

2. Literature Review
2.1. Existing Comparative Analysis

In two of the existing comparative analysis studies, the researchers compared the
performance of a few HPE libraries using image datasets. In [34], the AR dataset was
used to compare the performance of OpenPose and BlazePose [33] using PCK@0.2 as the
evaluation metric. The results showed that OpenPose achieved slightly better performance
than BlazePose, with the results of 87.8 and 84.1, respectively. Ref. [31] used OpenPose,
PoseNet, MoveNet Lightning, and MoveNet Thunder in their study. The researchers used
two image datasets: the COCO [35] and MPII [36] datasets. The performances of the HPE
libraries were measured using their own proposed evaluation metric. PoseNet had the
best performance, while MoveNet Lightning had the worst performance. The comparative
analysis of both existing studies was limited to a few selections of HPE libraries using
image datasets. However, the performance of four state-of-the-art HPE libraries based on
video datasets has yet to be investigated. In this paper, the authors have conducted the
experiments using image and video datasets.

2.2. HPE Libraries

Four state-of-the-art HPE libraries are discussed in this section and their specifications
are summarized in Table 2. Among the four HPE libraries, the total number of commonly
detected keypoints is 17. The commonly detected keypoints of the head include ears, eyes,
and nose (5 keypoints). The 6 commonly detected keypoints of the shoulders, elbows, and
wrists are categorized as the upper body, while the lower body includes 6 keypoints from
the hips, knees, and ankles. In addition, OpenPose and MediaPipe Pose provide more
annotations of the keypoints at the face, hand, and foot to reach the maximum number
of keypoints, at 135 and 33 keypoints, respectively. OpenPose provides an additional
70 keypoints of the face, 20 keypoints of both hands, 1 keypoint of the upper body, and
7 keypoints of the lower body. MediaPipe Pose provides 6 additional keypoints of the head,
6 keypoints of the upper body, and 4 keypoints of the lower body. The approach of keypoint
detection in the HPE libraries can be classified into top-down and bottom-up methods. In
the top-down method, the number of people is first detected from the given input and
each person is assigned into a separate bounding box, respectively [37]. Subsequently,
the keypoint estimation is performed in each bounding box. In contrast to the top-down
method, the bottom-up method performs keypoint detection in the first step [38]. After
that, the keypoints are grouped based on human instances. Among these four libraries,
PoseNet and MediaPipe Pose employ the top-down method while OpenPose and MoveNet
use the bottom-up method to perform human pose estimations. The four HPE libraries
use different underlying networks for pose estimation. OpenPose uses ImageNet with the
VGG-19 backbone, PoseNet uses ResNet [39] and MobileNet [40], MediaPipe Pose uses the
Convolutional Neural Network (CNN), and MoveNet uses the MobileNetV2.

Table 2. Specifications of each HPE library.

Maximum . e . .
HPE Libraries Released Number of Keypoints Position in the Type of Pose Method Underlying
Year . Body Parts Network
Keypoints
Face, hand, head, upper body, Single- and ~ ImageNet with
OpenPose [32] 2017 135 lower body multi-person Bottom-up VGG-19
Single- and ResNet and
PoseNet [30] 2017 17 Head, upper body, lower body muléi-persor. Top-down MobileNet
MedjiaPipe Pose [33] 2020 33 Head, upper body, lower body Single-person Top-down CNN
MoveNet [31] 2021 17 Head, upper body, lower body Single- and Bottom-up MobileNetV2

multi-person
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OpenPose is the first open-source library available since 2017 for 2D multi-person
HPE [32]. OpenPose employs a non-parametric representation known as Part Affinity Fields
(PAFs) to detect the body parts associated with the person in an input image. The PAFs
describe a list of 2D vector fields in an image, encoding both orientation and location of the
body limits. In 2019, Cao et al. [41] released a new version of OpenPose that combined body
and foot keypoint detectors. The combined detector needs less inference time than running
the body and foot keypoint detectors independently, while also maintaining the accuracy
rate. Hence, OpenPose became the first open-source library that can detect body, hand,
foot, and facial keypoints on a single image with a total of 135 keypoints. Furthermore,
OpenPose is also able to perform the task of vehicle keypoint detection by utilizing the
same network architecture [41].

Similar to OpenPose, PoseNet was also released in 2017 [30]. It was built on a Ten-
sorFlow machine learning platform and provides real-time HPE implementation in the
browser. There are two versions of the algorithm in PoseNet. One algorithm is used to
estimate the single pose and the other is used to estimate multiple poses from the input
image or video. Both algorithms are able to detect 17 keypoints in a single person. The
computational time of the multi-person HPE algorithm is slightly slower than that of
the single-person HPE algorithm. However, it is not affected by the number of detected
persons. When using the single-person algorithm, the keypoints might be conflated if there
is more than one person in the input image or video. Moreover, there are two architec-
tures in PoseNet, which are ResNet [39] and MobileNet [40]. MobileNet is designed for
mobile devices. It is more lightweight than the ResNet, but has lower accuracy. Although
ResNet achieves higher accuracy than MobileNet, its larger number of layers requires
longer loading and inference time.

In 2020, a solution called MediaPipe Pose was released to achieve higher fidelity hu-
man body pose tracking using the machine learning approach [33]. It utilizes the BlazePose
and ML Kit Pose Detection API to infer a maximum of 33 keypoints (3D landmarks) from
an RGB input. It can be performed in real-time on mobile phones, desktops, or laptops.
BlazePose employs a two-step detector-tracker pipeline for single-person pose estima-
tion [33]. The first step of this pipeline locates the region-of-interest (ROI) of the person
inside the image frame. Subsequently, the tracker uses the ROI from the detector as the
input to predict the position of each keypoint within the ROL If the input is a video, the
detector is invoked at the first frame to extract the human ROI, followed by keypoint
extraction using the tracker. The tracker uses the same ROI to estimate the keypoints of
the human in the next frame. When the algorithm loses track of the person, the detector is
invoked again to generate a new ROL.

MoveNet [31], which was released in 2021, is a pose detection model that detects
17 keypoints of a single person in real-time. There are two variants of MoveNet, which
are Lightning and Thunder. The accuracy of Lightning is lower than that of Thunder.
However, the inference time of Lightning is faster than that of Thunder. MoveNet uses
heatmaps to accurately localize the human keypoints. Its architecture consists of two
components, which are a feature extractor and a set of prediction heads. The prediction
technique of MoveNet loosely follows that of CenterNet [42] to improve its accuracy and
speed. CenterNet is an object detector that uses the keypoint estimation networks to find
the center points and regress to the object size, location, and orientation. The feature
extractor is MobileNetV2 with an attached feature pyramid network [43] to produce a high
resolution and semantically rich feature map output. MobileNetV2 is a neural network
designed with mobile devices to extract features for object detection, classification, and
semantic segmentation. There are four parts in the prediction heads, which include person
center heatmap, keypoint regression field, person keypoint heatmap, and 2D per-keypoint
offset field. They are responsible for predicting the human keypoints using heatmaps.
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3. Methodology

In this section, the descriptions of the datasets used in the experiments are presented.
After selecting the dataset, data pre-processing was carried out. The HPE procedure was
then performed. Next, an evaluation metric was used to evaluate the performance of the
HPE library. The evaluation metric is discussed in this section.

3.1. Datasets

The datasets of image and video sources used in this experiment were the Microsoft
Common Object in Context (COCO) [35] and Penn Action [44] datasets, respectively. Table 3
shows the characteristics of the COCO and Penn Action datasets. Both datasets have
6 common upper body keypoints and 6 lower body keypoints. However, the difference
between these two datasets is the number of keypoints annotated for the head. COCO has
5 keypoints, including the nose, eyes, and ears, while Penn Action only provides 1 keypoint
at the head position. Figures 1 and 2 show sample images of the COCO and Penn Action
datasets, respectively.

COCO [35] is a large-scale object detection, segmentation, and captioning dataset. It is
commonly used in experiments for HPE [45-47]. It consists of 330,000 images, 1.5 million
object instances, 80 object categories, 91 stuff categories, and 250,000 humans with keypoints.
This dataset provides annotations for the body keypoint detection, where each instance of
a person is labeled with 17 keypoints. There are various versions of COCO. COCO 2017 is
commonly selected for HPE experiments.

Penn Action [44] is a video dataset, which consists of 2326 video sequences with
15 actions. It is commonly used in HPE experiments [18,48-50]. Each video sequence
contains RGB image frames and annotations. The annotations include different human
actions, 2D bounding boxes to locate human positions, and skeleton keypoints in the body
parts. Each instance of a human is labeled with 13 keypoints.

Figure 1. Sample images from the COCO dataset.
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Figure 2. Sample video frames of each action from the Penn Action dataset.

Table 3. The characteristics of the COCO and Penn Action datasets.

Number of Keypoints

Annotation of Body Parts Provided
Per Person

Dataset Name Dataset Type

Nose, Left Eye, Right Eye, Left Ear, Right Ear, Left
Shoulder, Right Shoulder, Left Elbow, Right Elbow,
cOco Image 17 Left Wrist, Right Wrist, Left Hip, Right Hip, Left
Knee, Right Knee, Left Ankle, Right Ankle

Head, Left Shoulder, Right Shoulder, Left Elbow,
Penn Action Video 13 Right Elbow, Left Wrist, Right Wrist, Left Hip, Right
Hip, Left Knee, Right Knee, Left Ankle, Right Ankle

3.2. Data Pre-Processing

Before evaluating the performance of the HPE libraries, data pre-processing was
conducted to filter out irrelevant data in both datasets. There are three types of images
in COCO, including images of a single person, images of multiple-people, and images
without people. This experiment focused on single-person HPE. Hence, images with
multiple people and without people were removed. In addition, images with only half of
the human body were removed. Thus, 1100 remaining images were used in the experiment.
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In order to compare the performance of the four HPE libraries, 17 commonly detected
keypoints from the human body were matched with 17 annotations provided by the dataset
(ground truth).

For the Penn Action videos, the action of guitar strumming was removed since the video
frames only consisted of the upper half of the human body. The first 14 actions were used in
this experiment (refer to Figure 2). Since the Penn Action dataset only provided 1 annotation
of a keypoint of the head, which differed from the four HPE libraries (refer to Table 3), the
head annotation was removed from the experiments to maintain a fair comparison among all
libraries. Thus, the 12 remaining keypoints were used as the ground truth.

3.3. Evaluation Metrics

Evaluation metrics play an important role in evaluating the quality of HPE libraries.
The evaluation metric used in this study was the percentage of detected joints (PDJ), which
was able to measure the performance of the HPE library [37,51,52]. PDJ uses the Euclidean
distance between the ground truth and predicted keypoints in pixel(s) to measure the
detection accuracy of the HPE libraries. The higher the value of PDJ, the higher the accuracy
rate. The calculation of Euclidean distance d(x, y) between the ground truth (xq,y;) and
predicted keypoints (x2,7) is shown in Equation (1). The threshold of PDJ was 0.05 for the
value of the torso diameter. The torso diameter was computed for the Euclidean distance
from the left shoulder to the right hip, represented as the coordinates (x5, y;5) and (x4, Y1),
as shown in Equation (2). When the d(x, y) between the predicted keypoints and ground
truth keypoints was smaller than the threshold, the predicted keypoints were considered to
be correctly detected. Hence, the PD]J can be deduced as shown in Equation (3), where n
represents the total number of predicted joints.

d(x,y) = (x1 - 222+ (1 — v2)? (pixel) M

torsa diameter = \/ (x1, — )% + (y1s — yn)? @
n ' .

PDJ = Y4 bool(d; < 0.0: x torso diameter) 3)

4. Experiment Results

Three experiments were conducted to evaluate the performances of the HPE libraries.
For the image dataset, an experiment was conducted to compare the performance of each HPE
library for each image. For the video dataset, the first experiment was conducted to compare
the performance of each HPE library for each video frame, whereas the second experiment
investigated how well each HPE library performed for each body part of each action.

4.1. Image Dataset

The PD]J value for each image was calculated to compare the performance of the HPE
libraries for each image. The results are presented in a box plot, as shown in Figure 3.
Among the four HPE libraries, MoveNet (orange box) achieved the highest PDJ in terms
of the lower fence, first quartile, median, and third quartile values. The second best
performing HPE library was OpenPose (blue box), which achieved the same median and
third quartile values as MoveNet; however, OpenPose had lower first quartile and fence
(outlier) values. The third best performing HPE library was PoseNet (green box), followed
by MediaPipe Pose (red box). The minimum values of MediaPipe Pose and PoseNet were 0.
Meanwhile, the outlier values for MoveNet and OpenPose were also 0. The value of 0
indicated that the keypoints detected in some of the images were incorrectly matched with
the ground truth provided by the COCO dataset.
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Figure 3. Box plot of PDJ of all images in the image dataset.

Table 4 divides the performance of the HPE libraries into five groups, including 0%,
0-25%, 25-50%, 50-75%, and 75-100%. Each group shows the number of images that were
recognized by the HPE library in the specific range of PDJ values. MoveNet had the least
number of images that achieved 0% of PDJ, which included 5 images. OpenPose achieved
the second lowest number of images at 0% (8 images), followed by PoseNet (30 images)
and MediaPipe Pose (240 images). In the range of 0-25%, MoveNet had the least number
of images (33 images), followed by OpenPose (87 images), PoseNet (128 images), and
MediaPipe Pose (342 images). Likewise, MoveNet had the least number of images that
achieved the PDJ within the range of 25-50% (68 images).

Table 4. Number of images recognized by each HPE library in each specific range of PDJ values.

0% 0% <PDJ<25% 25%<PDJ<50% 50%<PDJ<75% 75% <PDJ < 100%

MediaPipe Pose 240 342 116 127 275
OpenPose 8 87 85 252 668
PoseNet 30 128 185 323 434
MoveNet 5 33 68 247 747

MoveNet achieved superior performance because it had the highest number of images
in the last two groups (50-100%), which indicated that more than 50% of the detected
keypoints from 994 images were correctly matched with the ground truth. In contrast,
MediaPipe Pose was found to have the poorest performance because it had the highest
number of images in the first to third groups (0-50%). In a total of 698 images, less than 50%
of the detected keypoints were correctly matched with the ground truth. Overall, MoveNet
achieved the top performance because it showed the highest number of images in the fifth
group, which indicated that 747 out of 1,100 images were recognized by MoveNet with
75-100% detected keypoints. In contrast, MediaPipe Pose showed the poorest performance
as it only achieved the lowest number of images in the range of 75-100%, but it received
the highest number of images in the 0% group. OpenPose achieved the second highest
performance, which was slightly lower than MoveNet. PoseNet and MediaPipe Pose
achieved the third and fourth highest performances, respectively.

In the overall comparison, MoveNet was the most robust because it achieved the
top performance in terms of lower fence, first quartile, median, and third quartile values
compared to the other HPE libraries. MoveNet achieved more than 50% PDJ value for 994
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out of 1100 images. In addition, MediaPipe Pose showed the poorest performance in the
image dataset as it has the lowest PDJ in terms of first quartile, median, and third quartile
values. MediaPipe Pose also showed that less than 50% of detected keypoints could be
correctly matched with the ground truth in 698 out of 1100 images. OpenPose and PoseNet
achieved the second best and third best performances, respectively.

4.2. Video Dataset

The mean PD]J for each action was calculated and the PD]J values for all actions are
shown in Figure 4. Among three HPE libraries, MoveNet (orange box), MediaPipe Pose
(red box), and PoseNet (green box) achieved slightly similar performances in terms of
minimum, first quartile, median, maximum, and third quartile values. MediaPipe Pose (red
box) had the highest PDJ in terms of maximum and median values, while MoveNet (orange
box) scored the highest in terms of minimum, first, and third quartile values. OpenPose
(blue box) portrayed a weak performance with the lowest values for all quartiles.

Percentage of Detected Joints (PDJ) (%) in All Actions

B VMediaPipe Pose [l OpenPose [ PoseNet [E MoveNet

100
9257 92,06 0121

90

80 76]71 76{90

69.10 69.62
63.18

70

60

53.41

50{36
50

PDJ (%)

40
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20
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Figure 4. PD]J in all actions in the video dataset.

Similar to Table 4, Table 5 lists the performance of the HPE libraries for all actions
into five groups, which are 0%, 0-25%, 25-50%, 50-75%, and 75-100%. There was no
action showing 0% in all HPE libraries. In the range of 75-100%, MediaPipe Pose achieved
the greatest number of actions, which was 5 actions. MoveNet and PoseNet achieved
4 actions in this group, while OpenPose showed 0 actions in this group. In the fourth
group (50-75%), MoveNet achieved the greatest number of actions (10 actions), followed by
PoseNet (7 actions), MediaPipe Pose (6 actions), and OpenPose (4 actions). In the first three
groups (0-50%), OpenPose showed the greatest number of actions (10 actions), MediaPipe
Pose and MoveNet showed 3 actions, while MoveNet showed 0 actions in these groups.
Overall, MoveNet achieved the best performance because it achieved above 50% PD]J in all
actions. OpenPose showed the worst performance since the PDJ for 10 actions were lower
than 50%.

Table 5. Number of actions recognized by each HPE library in each specific range of PDJ values.

0% 0% <PDJ <25% 25%<PDJ <50% 50% <PDJ<75% 75% <PDJ <100%

MediaPipe Pose 0 0 3 6 5
OpenPose 0 5 5 4 0
PoseNet 0 0 3 7 4
MoveNet 0 0 0 10 4
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To get a better understanding of the performance of the HPE libraries for each action,
the highest and lowest average PDJ values of each library for each action are highlighted in
Table 6. Among 14 actions, the libraries achieved the best performance in Action 8 (jumping
jacks). MediaPipe Pose showed the poorest performance in Action 12 (squat) among all
actions. Coincidentally, both OpenPose and PoseNet showed the poorest performance in
Action 2 (bench press). On the other hand, MoveNet showed the poorest performance
in Action 4 (bowling). The overall average PDJ values for all actions are highlighted in
the last row of Table 6. The performance rank from the highest to lowest PDJ values was
MoveNet, MediaPipe Pose, PoseNet, and OpenPose. The performances among MoveNet,
MediaPipe Pose, and PoseNet fell between 65% and 70%. The performance of OpenPose
was much lower than the others, which fell at approximately 37%. Although MediaPipe
Pose successfully detected 5 actions (refer Table 5), achieving between 75% and 100% PD],
which was more than MoveNet, its overall performance was 1.38% lower than that of
MoveNet.

Table 6. Overall average of PDJ (%) in each action.

MediaPipe Pose OpenPose PoseNet MoveNet
Action 1 66.62 39.94 68.47 68.70
Action 2 48.38 5.20 41.20 58.68
Action 3 74.21 52.35 77.55 80.58
Action 4 48.92 21.04 56.69 53.95
Action 5 76.34 45.44 72.34 75.67
Action 6 79.00 54.71 77.49 81.42
Action 7 72.10 4417 69.72 69.31
Action 8 92.57 72.03 92.06 91.21
Action 9 78.03 35.98 76.45 71.85
Action 10 63.59 14.11 48.66 66.73
Action 11 66.32 17.63 54.89 64.68
Action 12 46.56 23.93 48.97 50.36
Action 13 75.72 52.12 72.99 74.79
Action 14 70.17 4191 65.82 69.93

Average PDJ (%) 68.47 2T 65.95
Green words represent the highest PD]J of each HPE library among all actions. Red words represent the lowest
PDJ of each HPE library among all actions. The green cell represents the highest value in average PD]. The red
cell represents the lowest values in average PD]J.

The ranking of each library for each action is listed in Table 7. MediaPipe Pose achieved
the top performance in 7 of 14 actions. It achieved the second highest performance in 3 actions
and the third highest performance in 4 actions. MoveNet achieved the highest performance
in 6 actions, second highest performance in 5 actions, and third highest performance in 3
actions. PoseNet showed the highest performance in only Action 4 (bowling), second highest
performance in 6 actions, and third highest performance in 7 actions. OpenPose showed the
lowest performance in all actions among all the HPE libraries.
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Frame 11

Frame 28

Table 7. Overall average of PDJ (%) in each action.

Action Rank 1 Rank 2 Rank 2 Rank 3
Action 1 MoveNet PoseNet OpenPose
Action 2 MoveNet PoseNet OpenPose
Action 3 MoveNet PoseNet OpenPose
Action 4 PoseNet MoveNet OpenPose
Action 5 MoveNet PoseNet OpenPose
Action 6 PoseNet OpenPose
Action 7 PoseNet MoveNet OpenPose
Action 8 PoseNet MoveNet OpenPose
Action 9 PoseNet MoveNet OpenPose

Action 10 PoseNet OpenPose
Action 11 MoveNet PoseNet OpenPose
Action 12 MoveNet PoseNet _ OpenPose
Action 13 MoveNet PoseNet OpenPose
Action 14 MoveNet PoseNet OpenPose

Red cells represent MediaPipe Pose. Orange cells represent MoveNet. Green cells represent PoseNet. Blue cells
represent OpenPose.

Since the results in Table 6 show that the four HPE libraries achieved the best per-
formance in Action 8 (jumping jacks) among all actions, a closer analysis was performed.
MediaPipe Pose, MoveNet, and PoseNet reached approximately 92% while OpenPose
achieved approximately 72% for Action 8. Figure 5 shows the video frame and detection
results of Action 8, where the two challenges, self-occlusion and inappropriate camera
position, are absent. Hence, the performance of HPE should be better when there are less
challenges affecting keypoint detection. On the other hand, the performance of HPE is
reduced when there are more challenges. MediaPipe Pose showed the poorest performance
in Action 12 (squat); OpenPose and PoseNet showed the worst performance in Action
2 (bench press); while MoveNet showed the poorest performance in Action 4 (bowling).
Figures 6-8 show the sample video frames and detection results of each HPE library for
Actions 12, 2, and 4, respectively.

MediaPipe Pose OpenPose PoseNet MoveNet

Figure 5. Sample video frame and detection result of Action 8 (jumping jacks). Green lines indicate
the ground truth, red lines indicate the tested HPE library.

MediaPipe Pose OpenPose PoseNet MoveNet

Figure 6. Sample video frame and detection result of Action 12 (squat). Green lines indicate the
ground truth, red lines indicate the tested HPE library.
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" 10

Frame 54 MediaPipe Pose OpenPose PoseNet MoveNet

Figure 7. Sample video frame and detection result of Action 2 (bench press). Green lines indicate the
ground truth, red lines indicate the tested HPE library.

Frame 21 MediaPipe Pose OpenPose PoseNet MoveNet

Figure 8. Sample video frame and detection result of Action 4 (bowling). Green lines indicate the
ground truth, red lines indicate the tested HPE library.

In addition, the PDJ values for each body part in each action were also calculated.
Frequent changes in keypoint positions also affects the performance of keypoint detection.
In Actions 1, 3, 4, 6, 13, and 14, the PDJ values for elbows and wrists in all the tested
libraries were lower than those of other body parts, as shown in Figures 9-11. This was
due to frequent changes in keypoint positions in the elbows and wrists compared to other
body parts. For instance, the person who plays bowling only needs to use his elbow and
wrist to release the ball to the bowling lane, hence showing fewer changes of movement in
other body parts. Likewise, the performance of OpenPose (blue line) showed the lowest
PDJ among these actions, while the fluctuations in PD]J values between other HPE libraries
were relatively small.

Percentage of Detected Joints (%) of Each Body Part in Action1 - Baseball Pitch

Il VediaPipePose [l OrenPose Il PoseNet MoveNet

90
80
70
60

50

PDJ (%)

40
30
20
10

0
left shoulder right shoulder  left elbow right elbow left wrist right wrist left hip right hip left knee right knee left ankle right ankle

Body Part

Figure 9. PDJ for each body part in Action 1-baseball pitch.
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Percentage of Detected Joints (%) of Each Body Part in Action4 - Bowling
Il VediaPipePose [l OrenPose [l PoseNet MoveNet
80
70
60
50
9
5 40
[a}
a
30
20
10
0
left shoulder right shoulder  left elbow right elbow left wrist right wrist left hip right hip left knee right knee left ankle right ankle
Body Part
Figure 10. PDJ for each body part in Action 4-bowling.
Percentage of Detected Joints (%) of Each Body Part in Action13 - Tennis Forehand
I VediaPipePose [l OpenPose [l PoseNet MoveNet
100
90
80
70
- 60
2
3
5 50
[a]
O 40
30
20
10
0
left shoulder right shoulder  left elbow right elbow left wrist right wrist left hip right hip left knee right knee left ankle right ankle

7 Frame 1

Body Part
Figure 11. PDJ for each body part in Action 13-tennis forehand.

When the common challenges (self-occlusion and inappropriate camera position)
occurred in the videos, the performance of keypoint detection was affected in all HPE
libraries. Figure 12 shows the video frames of Action 9 (pull up), showing the self-occlusion
effect in the action. In this action, all libraries showed much lower performance in some
of the body parts compared to that of other body parts due to this self-occlusion effect.
The corresponding PDJ values are reported in Figure 13. The PD]J values for ankles (black
dotted box) were much lower than other parts because of self-occlusion from the crossed
ankles, as shown in Figure 14. OpenPose (blue line) achieved the lowest performance
for all body parts, particularly for elbows and wrists. Additionally, the performance of
MoveNet for the ankles was lower than that of MediaPipe Pose and PoseNet when facing
the self-occlusion effect.

Figure 12. Sample video frames of Action 9 (pull up).
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Percentage of Detected Joints (%) of Each Body Part in Action9 - Pull Up

I VediaPipePose [l OpenPose [l PoseNet MoveNet

PDJ (%)

left shoulder  right shoulder left elbow right elbow left wrist right wrist left hip right hip left knee right knee left ankle right ankle
Body Part

Figure 13. PDJ for each body part in Action 9-pull up.

(b) MoveNet (c) MediaPipe Pose (d) OpenPose (e) PoseNet

Figure 14. (a) Frame 4 of Action 9 (pull up). In (b—e), green lines indicates the ground truth while red
lines indicates the tested HPE library.

In addition, inappropriate camera position is one of the common challenges for human
pose estimation. In Action 7 (jump rope), the camera was placed on the right side of the
person and the video frames were recorded from the right side, as shown in Figure 15.
Hence, self-occlusion occurred to the left body parts, which reduced the performance of
keypoint detection for the left body parts. Figure 16 clearly shows that the performance of
all HPE libraries for the right body parts was higher than that for the left body parts, where
the PDJ values for the right shoulder and right elbow were always higher than those for
the left shoulder and left elbow.

Frame 1 Frame 7 Frame 11

Figure 15. Sample video frames of Action 7 (jump rope).
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Percentage of Detected Joints (%) of Each Body Part in Action7 - Jump Rope
Il VediaPipePose [l OpenPose [l PoseNet MoveNet

PDJ (%)

left shoulder  right shoulder left elbow right elbow left wrist right wrist left hip right hip left knee right knee left ankle right ankle
Body Part

Figure 16. PD] for each body part in Action 7 (jump rope).

In the overall comparison, MoveNet achieved the highest PD] values in terms of
minimum, first quartile, and third quartile values compared to the other HPE libraries. The
PDJ values for MoveNet in all actions were more than 50%. MediaPipe Pose achieved the
highest PD]J values in terms of maximum and median values. All HPE libraries achieved
superior performance in Action 8 (jumping jacks) among all actions, which consists of
fewer challenges. Based on the ranking of the HPE libraries in each action, MediaPipe Pose
achieved the top performance in 7 actions, followed by MoveNet (6 actions) and PoseNet
(1 action). OpenPose showed the poorest performance in all actions. MoveNet achieved
the highest average PDJ value, while OpenPose showed the lowest average PDJ value.
However, MediaPipe Pose and PoseNet were still competitive with MoveNet because the
average PDJ values for these three libraries were in the range of 65-68%.

5. Discussion

The main findings of this study are summarized in this section. MediaPipe Pose had
the lowest overall performance in the image dataset. However, it performed well in the
video dataset with an overall performance slightly lower than the top overall performer,
MoveNet. It achieved the best performance in 7 out of 14 actions.

MoveNet achieved the highest overall performance for keypoint detection in the image
and video datasets. For the video dataset, the PDJ values for all actions were greater than
50%, which was the best performance compared to the other HPE libraries. Additionally,
it achieved the best performance in 6 actions, compared to 7 actions in MediaPipe Pose.
However, its overall average PDJ was the highest (69.85%).

OpenPose achieved the second highest performance in the image dataset. However,
the weakness of OpenPose was in detecting the keypoints in continuous video frames. Its
overall performance in the video dataset was the lowest, approximately 30% lower than
the other HPE libraries. Overall, PoseNet had the third highest performance in both the
image and video datasets.

The performance of HPE libraries is reduced when they are constrained by challenges
such as inappropriate camera position and the self-occlusion effect. OpenPose was the least
robust in detecting video frames when facing these challenges. This is because OpenPose
always loses track when self-occlusion occurs in the video frames. Figure 17 illustrates this
point in the line graph of PDJ values for OpenPose in each frame in Action 1 (baseball pitch).
Based on the results, the PDJ values decreased from frame 84 to 102 (refer to the green
box). Due to the bottom-up method used by OpenPose, the detected keypoints cannot be
grouped into a human instance when there is self-occlusion in these frames, resulting in
tracking failure. The original video frames and results of the OpenPose detection from
frame 78 to 103 are shown in Figure 18 for illustration. OpenPose obviously performed
poorly in frames with self-occlusion (frames 84 to 103).
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PDJ(%) of Each Frame

Frame 84 Frame 86

Frame 82

Frame 81

Frame 95

Frame 96 Frame 97 Frame 98 Frame 99 Frame 100 Frame 101 Frame 102 Frame 103

Figure 18. Original images and results from OpenPose from frame 78 to frame 103. Green points and
lines represent ground truth, while red points and lines represent OpenPose.

Based on the results of this experiment, MoveNet is suitable for detecting both images and
videos. On the other hand, OpenPose is more suitable for detecting images while MediaPipe
Pose is more suitable for detecting videos. The performance of PoseNet is mediocre.

6. Conclusions

Currently, HPE is a popular task in the field of computer vision because it can be
applied in various practical applications. Hence, the performance of HPE libraries is
important. This paper has presented a comparative analysis of four state-of-the-art HPE
libraries, including OpenPose, PoseNet, MediaPipe Pose, and MoveNet, to investigate their
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strengths and weaknesses in processing image and video HPE. This study focused only on
2D single-person HPE. PDJ was the evaluation metric used in this study to evaluate the
quality of the HPE libraries.

As a result, MoveNet has superior performance while MediaPipe Pose has the lowest
performance in detecting images. In addition, MoveNet also has top performance while
OpenPose has the lowest performance in detecting videos. However, OpenPose has the
second highest performance in detecting images. PoseNet showed average performance in
detecting images and videos. When facing challenges such as inappropriate camera position
or self-occlusion, the performance in detecting body parts will be reduced. MoveNet,
MediaPipe Pose, and PoseNet can handle these challenges well, but OpenPose shows the
poorest performance under these conditions. In detecting videos, OpenPose had the lowest
robustness because it loses track when self-occlusion occurs with body parts.

The limitation of this study is that the experiments were focused on analyzing the
performance of four HPE libraries using the PD]J. The memory consumption, inference
time, and detection speed of each HPE library will be compared in our future work.
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